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\S 1. Introduction.

Let $M$ be a compact $C^{\infty}$-Riemannian manifold, $C^{\infty}(M)$ the space of all smooth
functions on $M$, and $\Delta$ the Laplacian on $M$. The $\Delta$ is a self-adjoint elliptic differential
operator acting on $C^{\infty}(M)$ , which has an infinite discrete sequenoe of eigenvalues:

$Spec(M)=\{0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{k}<\cdots\uparrow\infty\}$ .
Let $V_{k}=V_{k}(M)$ be the eigenspace of $\Delta$ corresponding to the k-th eigenvalue $\lambda_{k}$ . Then
$V_{k}$ is finite-dimensional. We define an inner product $(, )$ on $C^{\infty}(M)$ by

$(f, g)=\int_{M}fgdV$ ,

where $dV$ denotes the volume element on $M$. Then $\sum_{t=0}^{\infty}V_{t}$ is dense in $C^{\infty}(M)$ and the
decomposition is orthogonal with respect to the inner product $(, )$ . Thus we have

$C^{\infty}(M)=\sum_{t=0}^{\infty}V_{t}(M)$ (in $L^{2}$-sense).

Since $M$ is compact, $V_{0}$ is the space of all constant functions which is l-dimensional.
Let $\tilde{M}$ be a compact $C^{\infty}$-Riemannian manifold, and assume that $M$ is a submanifold

of $\tilde{M}$ which is immersed by an isometric immersion $\varphi$ . We have the decomposition

$C^{\infty}(\tilde{M})=\sum_{s=0}^{\infty}V_{s}(\tilde{M})$ (in $L^{2}$-sense)

with respect to the Laplacian $\Delta_{\tilde{M}}$ of $\tilde{M}$. We denote by $\varphi^{*}$ the pull-back, i.e., $\varphi^{*}$ is
$anR- 1inearmapofC^{\infty}(\tilde{M})intoC^{\infty}(M)$ such that

$(\varphi^{*}F)(p)=F(\varphi(p))$ , $p\in M$ , $F\in C^{\infty}(\tilde{M})$ .
For each integer $s,$

$\varphi^{*}V_{s}(\tilde{M})$ is a subspace of $C^{\infty}(M)$ . Then we have a decomposition
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$\varphi^{*}V_{s}(\tilde{M})\subset\sum_{t=0}^{\infty}W_{t}$ , $W_{t}=W_{t}(M,\tilde{M}, \varphi, s)\subset V_{t}(M)$ ,

where each $W_{t}$ is the minimal subspace of $V_{t}(M)$ such that $\sum_{t=0}^{\infty}W_{t}$ contains $\varphi^{*}V_{s}(\tilde{M})$ .
We say that $\varphi$ (or $M$) is offinite-type with respect to $V_{s}(\tilde{M})$ , if $\#\{t\geq 1|W_{t}\neq(0)\}$ is

finite, and if it is not finite, we say that $\varphi$ (or $M$) is of infinite-type with respect to $V_{s}(\tilde{M})$ .
If $\#\{t\geq 1|W_{t}\neq(0)\}$

, is equal to $k$, then we say that $\varphi$ (or $M$) is of k-type with respect
to $V_{s}(\tilde{M})$ , and that $\varphi$ (or $M$) is of order $\{t\geq 1|W_{t}\neq(0)\}$ with respect to $V_{s}(\tilde{M})$ .
Furthermore, we say that $\varphi$ (or $M$) is of mass-symmetric with respect to $V_{s}(\tilde{M})$ if
$W_{O}=(0)$ .

In this paper, we consider the case where $\tilde{M}$ is an n-dimensional complex projective
space $CP^{n}(4)$ of constant holomorphic sectional curvature 4, and $s=1$ . So we omit the
terms “with respect to $V_{1}(CP^{n}(4))$ in conditions for immersions of $M$ into $CP^{n}(4)$ .
These definitions are compatible with those by B. Y. Chen in [4].

A submanifold $M$ of $CP^{n}(4)$ is said to be full, if $M$ is not contained in any totally
geodesic complex submanifold of $CP^{n}(4)$ . In [6], A. Ros shows that a l-type complex
submanifold of $CP^{n}(4)$ is a totally geodesic K\"ahler submanifold, so that it is of order
{1}. He also shows that an m-dimensional l-type totally real minimal submanifold of
$CP^{n}(4)$ is a totally real minimal submanifold of $CP^{m}(4)$ which is a totally geodesic
K\"ahler submanifold of $CP^{n}(4)$ . In $[9, 11]$ , S. Udagawa shows that a full K\"ahler
submanifold $CP^{n}(4)$ is of 2-type if and only if it is Einstein, so that it is of order {1, 2}.
He also studies compact Hermitian symmetric submanifolds of degree 3 in $CP^{n}(4)$ .
Here, for a K\"ahler submanifold $M$ of $CP^{n}(4)$ , we say that $M$ is of degree $k$ if the pure
part of the $(k-2)- nd$ covariant derivative of $h$ is not zero and the pure part of the
$(k-1)- st$ covariant derivative of $h$ is zero, where $h$ is the second fundamental form.
He shows that compact irreducible Hermitian symmetric submanifolds of degree 3 in
$CP^{n}(4)$ are of order {1, 2, 3}. Moreover, we can see in [10] that there exists a compaet
Hermitian symmetric submanifold of degree 3 in $CP^{n}(4)$ which has different order, but
it is reducible.

One ofthe most typical examples ofirreducible submanifolds in $CP^{n}(4)$ is a 2-sphere.
Let $S^{2}(c)$ be the 2-sphere of constant curvature $c>0$ . S. Bando and Y. Ohnita in [1]
gave the family $\{\varphi_{n,k}\}$ of all full isometric minimal immersions of $S^{2}(c)$ into $CP^{n}(4)$ ,
using irreducible unitary representations of $SU(2)$ . Independently, in [2], J. Bolton, G.
R. Jensen, M. Rigoli and L. M. Woodward gave this family $\{\varphi_{n.k}\}$ , using the method
of harmonic sequence. They called this family the Veronese sequence.

The purpose of this paper is to give the type of minimal 2-spheres of constant
curvature in $CP^{n}(4)$ , and to characterize them in terms of the type.

We obtain the following main results.

THEOREM A. (1) $\varphi_{n,k}$ is of at most n-type and mass-symmetric. For integers
$n,k,$ $l$ with $n\geq 1,0\leq k,$ $l\leq n$, define
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$q_{l}^{k}=\frac{1}{l!}\sum_{m=0}^{l}(-1)^{m}\left(\begin{array}{l}l\\m\end{array}\right)\prod_{j=1}^{l}(k+j-m)(n-k-j+m+1)$ .

Then the order of $\varphi_{n,k}$ is $\{l|1\leq l\leq n, q_{l}^{k}\neq 0\}$ .
(2) A holomorphic imbedding $\varphi_{n,0}$ and its antipodal $\varphi_{n,n}$ are ofn-type and of order

$\{1, 2, 3, \cdots, n\}$ .
(3) If $n$ is even, then a totally real minimal immersion $\varphi_{n,n/2}$ is of $n/2$-type and of

order $\{2, 4, 6, \cdots, n\}$ .
REMARK. Generic $\varphi_{n,k}$ is of n-type except for totally real $\varphi_{2k,k}$ .
PROPOSITION B. If a compact submanifold in $CP^{n}(4)$ is mass-symmetric, then it is

fully immersed.

THEOREM C. Let $S^{2}$ be a k-type, mass-symmetric, minimal 2-sphere in $CP^{n}(4)$ . Then
$n$ satisfies $n\leq 2k$ .

THEOREM D. If a mass-symmetric, minimal 2-sphere $S^{2}$ in $CP^{n}(4)$ is of at most
2-type, then $S^{2}$ is of constant curvature, so that the immersion is congruent to either
$\varphi_{1,0},$ $\varphi_{1,1},$ $\varphi_{2,0},$ $\varphi_{2,1},$ $\varphi_{2.2}$ or $\varphi_{4,2}$ .

Let $M$ be a compact surface in $CP^{n}(4)$ , and $z=x+iy$ an isothermal coordinate in
$M$. We call the angle $\theta$ between $J\partial/\partial x$ and $\partial/\partial y$ the K\"ahler angle, where $J$ is the complex
structure of $CP^{n}(4)$ . $M$ is holomorphic (resp. anti-holomorphic) in $CP^{n}(4)$ if and only
if $\theta$ is equal to0 (resp. $\pi$). $Mistota11yrealinCP^{n}(4)$ if and only if $\theta$ is equal to $\pi/2$ .

THEOREM E. Let $S^{2}$ be a mass-symmetric, minimal 2-sphere in $CP^{n}(4)$ . If $S^{2}$ is of
at most 3-type and with constant Kahler angle, then $S^{2}$ is of constant curvature, so that
the immersion is congruent to either $\varphi_{n,k}(n=1,2,3,0\leq k\leq n),$ $\varphi_{4.2}$ or $\varphi_{6,3}$ .

REMARK. In [2], J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward show
that, without the assumption of 3-type, Theorem $E$ remains true if $n\leq 4$ and the
immersion is neither holomorphic, antiholomorphic nor totally real.

The author wishes to thank Professors K. Ogiue and Y. Ohnita for many valuable
comments and suggestions.

\S 2. Preliminaries.

Let $M$ be a compact $C^{\infty}$ -Riemannian manifold, $C^{\infty}(M)$ the spaoe of all smooth
functions on $M$, and $\Delta$ the Laplacian on $M$. In a natural manner, $\Delta$ can act on $R^{N}$-valued
functions on $M$. We assume that $M$ is a submanifold of an N-dimensional Euclidean
space $R^{N}$ with an isometric immersion $F$. Then an $R^{N}$-valued function $F$ has the
decomposition
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$F=F_{0}+\sum_{k=1}^{\infty}F_{k}$ , $\Delta F_{k}=\lambda_{k}F_{k}$ ,

where $F_{0}$ is a constant map and $\lambda_{k}$ is the k-th eigenvalue of $\Delta$ . Here, the center of mass
of $M$ in $R^{N}$ is equal to $F_{0}$ . We say that $F$ (or $M$) is offinite-type, if $\#\{t\geq 1|F_{t}\neq 0\}$ is
finite, and if it is not finite, we say that $F$ (or $M$) is of infinite-type. If $\#\{t\geq 1|F_{t}\neq 0\}$

is equal to $k$, then we say that $F$ (or $M$) is of k-type, and that $F$ (or $M$) is of order
{ $t\geq 1$ I $F_{t}\neq 0$}. B. Y. Chen in [4] showed the following:

THEOREM 2.1. Let $F:M\rightarrow R^{N}$ be an isometric immersion $ofa$ compact Riemannian
manifold $M$ into $R^{N}$ . Then $F$ is offinite-type ifand only if there exis $ts$ a polynomial $P(x)$

and some constant $F_{0}$ in $R^{N}$ satisfying

(2.1) $P(\Delta)(F-F_{0})=0$ .
Moreover, $F$ is of k-type if and only if there exists a polynomial $P(x)$ of degree $k$ and
some constant $F_{0}$ in $R^{N}$ satisfying (2.1), and any polynomial $P(x)$ of degree $<k$ and any
constant $F_{0}$ in $R^{N}$ do not satisfy (2.1).

The natural Hermitian inner product in $C^{n+1}$ is defined by

(2.2) $\langle v, w\rangle=\sum_{i=0}^{n}v_{i}\overline{w_{i}}$ , $v={}^{t}(v_{0}, \cdots, v_{n})$ , $w={}^{t}(w_{0}, \cdots, w_{n})$ .

The unitary group $U(n+1)$ is the group of all linear transformations on $C^{+1}$ leaving
the Hermitian inner product (2.2) invariant. An n-dimensional complex projective space
$CP^{n}istheorbitspaceofC^{n+1}-\{0\}$ under the action of the group C’ $=C-\{0\};z\rightarrow$

$\lambda z(\lambda\in C^{*})$ . Let $\pi:C^{n+1}-\{0\}\rightarrow CP^{n}$ be the natural projection. Denote by $X_{z}$ and $\gamma_{z}$

the horizontal and the vertical spaces of $\pi$ at $z\in C^{n+1}-\{0\}$ , respectively, so that
$T_{z}(C^{n+1}-\{0\})=\ovalbox{\tt\small REJECT}_{z}\oplus\gamma_{z}$

$\ovalbox{\tt\small REJECT}_{z}=\{v\in C^{n+1}|\langle v, z\rangle=0\}$ , $\gamma_{z}=\{\lambda z|\lambda\in C\}$ .
Then $\pi_{*}:$ $\ovalbox{\tt\small REJECT}_{z}\rightarrow T_{\pi(z)}CP^{n}$ is a linear isomorphism over $C$. The Fubini-Study metric $\tilde{g}$

of constant holomorphic sectional curvature $\tilde{c}$ in $CP^{n}$ is given by

$\tilde{g}(\pi_{*}(v), \pi_{*}(w))=\frac{4}{\tilde{c}}{\rm Re}\frac{\langle v,w\rangle}{|z|^{2}}$ , $z\in C^{n+1}-\{0\}$ , $v,$ $w\in\ovalbox{\tt\small REJECT}_{z}$ ,

where $|z|^{2}=\langle z, z\rangle$ . $U(n+1)$ acts on $CP^{n}$ as follows:
$U\pi(z)=\pi(Uz)$ , $U\in U(n+1)$ , $z\in C^{n+1}-\{0\}$ ,

so that this action leaves the metric $\tilde{g}$ invariant. We denote by $CP^{n}(\tilde{c})$ an n-dimensional
complex projective space equipped with the metric $\tilde{g}$ .
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Let $HM(n+1, C)$ be the set of all Hermitian $(n+1, n+1)$-matrices over $C$, which
can be identified with $R^{N},$ $N=(n+1)^{2}$ . For $X,$ $Y\in HM(n+1, C)$ , the natural inner
product is given by

(2.3) (X, $Y$) $=\frac{2}{\tilde{c}}{\rm Re}(trXY)$ .

$U(n+1)$ acts on $HM(n+1, C)$ by $X\rightarrow UXU^{*},$ $U\in U(n+1),$ $X\in HM(n+1, C)$ , where
$U^{*}={}^{t}U$, so that this action leaves the inner product (2.3) invariant. Define two linear
subspaces of $HM(n+1, C)$ as follows:

$HM_{0}=HM_{0}(n+1, C)=$ {$X\in HM(n+1,$ $C)|$ tr$X=0$},

$HM_{R}=HM_{R}(n+1, C)=\{aI|a\in R\}$ ,

where $I$ is the $(n+1, n+1)$-identity matrix. Both of them are invariant under the action
of $U(n+1)$ , and irreducible. We get the orthogonal decomposition of $HM(n+1, C)$ as
follows:

$HM(n+1, C)=HM_{0}\oplus HM_{R}$ .
It is well-known that $HM_{O}$ (resp. $HM_{R}$) is identified with the first eigenspace $V_{1}(CP^{n}(c\urcorner)$

(resp. the set of all constant functions, i.e., $V_{0}(CP^{n}(c\gamma))$ . The first standard imbedding
$\Psi$ of $CP^{n}(\tilde{c})$ is defined by

(2.4) $\Psi(\pi(z))=\frac{1}{|z|^{2}}zz^{*}\in HM(n+1, C)$ , $z\in C^{n+1}-\{0\}$ .

$\Psi$ is $U(n+1)$-equivariant and the image of $CP^{n}(\tilde{c})$ under $\Psi$ is given as follows:
$\Psi(CP^{n}(c\sim))=$ {$A\in HM(n+1,$ $C)|$ A $=A$ , trA $=1$ },

so that it is contained fully in a hyperplane

$HM_{1}=HM_{1}(n+1. C)=$ {$A\in HM(n+1,$ $C)|$ trA $=1$ }

$=\{A+\frac{1}{n+1}I|A\in HM_{0}\}$

of $HM(n+1, C)$ . Denote by $S^{N-2}(\tilde{c}(n+1)/(2n))$ the hypersphere in $HM_{1}(n+1, C)$

centered at $(1/(n+1))I$ with radius $\sqrt{2n/(\tilde{c}(n+1))}$ . Thus we obtain that $\Psi$ is a minimal
immersion of $CP^{n}(\tilde{c})$ into $S^{N-2}(\tilde{c}(n+1)/(2n))$ , and that the center of mass of $CP^{n}(\tilde{c})$

is $(1/(n+1))I$. In fact, $\Psi$ satisfies the equation $\Delta\Psi=\tilde{c}(n+1)(\Psi-(1/(n+1))I)$ , so that $\Psi$

is of order 1. Moreover, all coefficients of $\Psi-(1/(n+1))I$ span the first eigenspace
$V_{1}(CP^{n}(\tilde{c}))$ . For details, see [4].

From now on, we assume that $M$ is a submanifold of $CP^{n}(\tilde{c})$ with an isometric
immersion $\varphi$ . Then $ F=\Psi\circ\varphi$ is an isometric immersion of $M$ into $HM(n+1, C)$ , and the
set of all coefficients of $F-(1/(n+1))I$ spans the pull-back $\varphi^{*}V_{1}(CP^{n}(\tilde{c}))$ . Therefore,
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the conditions “of finite-type”, “of infinite-type”, “of k-type” and mass-symmetric’
for $\varphi$ defined in \S 1 are compatible with those for $F$, and so is “order”, so that we obtain
the following proposition:

PROPOSmON 2.2. Let $\varphi$ : $M\rightarrow CP^{n}(\tilde{c})$ be an isometric immersion of a $ compac\downarrow$

Riemannian manifold $M$ into $CP^{n}(\tilde{c})$ . Then $\varphi$ is mass-symmetric and offinite-type if $ an\iota$

only if there exists a polynomial $P(x)$ satisfying

(2.5) $P(\Delta)(F-\frac{1}{n+1}I)=0$ ,

where $ F=\Psi\circ\varphi$ . Moreover, $\varphi$ is mass-symmetric and ofk-type if and only if there exists
a polynomial $P(x)$ ofdegree $k$ satisfying (2.5), and any polynomial $P(x)$ of degree $<k$ do
not satisfy (2.5).

REMARK. $\varphi$ is mass-symmetric if and only if the center of mass of $M$ in
$HM(n+1, C)$ is equal to that of $CP^{n}(\tilde{c})$ .

Now we prove Proposition B. Let $M$ be a compact Riemannian submanifold of
$CP^{n}(\tilde{c})$ , which is fully contained in a totaly geodesic complex submanifold $CP^{m}(\tilde{c})$ of
$CP^{n}(\tilde{c})$ . We can assume that

$\Psi(CP^{m}(c\sim))=\{\left(\begin{array}{ll}A^{\prime} & 0\\0 & 0\end{array}\right)|A^{\prime}\in HM(m+1, C),$ $A^{\prime 2}=A^{\prime},$ $trA^{\prime}=1\}$ .

Let $\varphi:M\rightarrow CP^{n}(\tilde{c})$ be an isometric immersion, and for $x\in M$, set $\Psi\circ\varphi(x)=A(x)=$

$\left(\begin{array}{ll}A^{\prime}(x) & 0\\0 & 0\end{array}\right)$ . Then the center of mass of $M$ is given by

$\frac{1}{vol(M)}\int_{x\in M}^{\prime}A(x)dv_{M}=\frac{1}{vo1(M)}\left(\begin{array}{ll}\int_{x\epsilon M}A^{\prime}(x)dv_{M} & 0\\0 & 0\end{array}\right)$ .

If $M$ is mass-symmetric in $CP^{n}(\tilde{c})$ , then this is equal to $(1/(n+1))I$. Therefore, we get
$m=n$ so that $M$ is full in $CP^{n}(\tilde{c})$ .

\S 3. Minimal 2-spheres with constant curvature in $CP^{n}(\tilde{c})$.
The purpose of this section is to prove Theorem A. First, we review S. Bando and

Y. Ohnita’s results for minimal 2-spheres of constant curvature.
$SU(2)$ is defined by

$SU(2)=\{\left(\begin{array}{l}ba\\-5\overline{a}\end{array}\right)|a,$ $b\in C,$ $|a|^{2}+|b|^{2}=1\}$ .

The Lie algebra su(2) of $SU(2)$ is given by
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$\mathfrak{s}u(2)=\{(\sqrt{-1}x-\overline{y}$ $-\sqrt{-1}xy)|x,$ $y^{\prime},$ $y^{\prime\prime}\in R,$ $y=y^{\prime}+\sqrt{-1}y^{\prime\prime\}}$ .

Define a basis $\{\epsilon_{0}, \epsilon_{1}, \epsilon_{2}\}$ of $\mathfrak{s}u(2)$ by

$\epsilon_{0}=(0\sqrt{-1}-\sqrt{-1}0)$ $\epsilon_{1}=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ , $\epsilon_{2}=(\sqrt{}^{\frac{0}{-1}}\sqrt{-1}0)$ .

Then these satisfy

$[\epsilon_{0}, \epsilon_{1}]=2\epsilon_{2}$ , $[\epsilon_{1}, \epsilon_{2}]=2\epsilon_{0}$ , $[\epsilon_{2}, \epsilon_{0}]=2\epsilon_{1}$ .
Let $V_{n}$ be an $(n+1)$-dimensional complex vector space of all complex homogeneous

polynomials of degree $n$ with respect to $z_{0},$ $z_{1}$ . We define a Hermitian inner product
$\langle, \rangle$ of $V_{n}$ in such a way that

$\{u_{k}^{(n)}=z_{0}^{k}z_{1}^{n-k}/\sqrt{k!(n-k)!}|0\leq k\leq n\}$

is a unitary basis for $V_{n}$ . We define a real inner product by $(,)={\rm Re}\langle, \rangle$ . A unitary
representation $\rho_{n}$ of $SU(2)$ on $V_{n}$ is defined by

$\rho_{n}(g)f(z_{0}, z_{1})=f((z_{0}, z_{1})g)=f(az_{0}-5z_{1}, bz_{0}+\overline{a}z_{1})$

for $g\in SU(2)$ and $f\in V_{n}$ . We also denote by $\rho_{n}$ the action of $\mathfrak{s}u(2)$ on $V_{n}$, so that

(3.1) $\rho_{n}(X)(u_{k}^{\langle n)})=(k-(n-k))\sqrt{-1}xu_{k}^{\langle n)}$

- $\sqrt{k(n-k+1)}\overline{y}u_{k-1}^{\{n)}+\sqrt{(k+1)(n-k)}yu_{k+1}^{(n)}$ ,

for $0\leq k\leq n$ and $X\in \mathfrak{s}u(2)$ . It is well-known that $\{(\rho_{n}, V_{n})|n=0,1,2, \cdots\}$ is the set of
all inequivalent irreducible unitary representations of $SU(2)$ .

Put $T=\{\exp(t\epsilon_{0})\in \mathfrak{s}u(2)|t\in R\}$ and we have $S^{2}=CP^{1}=SU(2)/T$. We identify the
tangent space of $S^{2}$ at $0=\{T\}\in S^{2}=SU(2)/T$with a subspace $m=span\{\epsilon_{1}, \epsilon_{2}\}$ of su(2).
We fix a complex structure on $S^{2}$ so that $\epsilon_{1}-\sqrt{-1}\epsilon_{2}$ is a vector of type $(1, 0)$ . Let $g_{c}$

be an $SU(2)$-invariant Riemannian metric on $S^{2}$ defined by

$g_{c}(X, Y)=-\frac{2}{c}$ tr$XY$

for $X$ and $Y\in \mathfrak{m}$ and $c$ is a positive constant. It is the restriction of $SU(2)$-invariant
inner product on su(2). Clearly, $\{(\sqrt{c}/2)\epsilon_{1}, (\sqrt{c}/2)\epsilon_{2}\}$ forms an orthonormal basis of
$m\cong T_{o}S^{2}$ and $(S^{2}, g_{c})$ has the constant curvature $c$, so that we denote this by $S^{2}(c)$ .
The spectrum of the Laplacian $\Delta$ of $S^{2}(c)$ is given by $Spec(S^{2}(c))=\{\lambda_{l}=cl(l+1)|l\geq 0\}$ .

Put $S^{2n+1}=\{v\in V_{n}|\langle v, v\rangle=4/\tilde{c}\}$ where $\tilde{c}$ is a positive constant. Let $\pi:S^{2n+1}$
$\rightarrow$

$CP^{n}(\tilde{c})$ be the Hopf fibration, so that the action of $\rho_{n}(SU(2))$ on $S^{2n+1}$ induces the
action on $CP^{n}(\tilde{c})$ through $\pi$ . Thus, for any non-negative integers $n$ and $k$ with $0\leq k\leq n$ ,
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denote by $\varphi_{n,k}$ the $SU(2)$-equivariant mapping of a Riemann sphere $S^{2}(c)$ into $ CP^{n}(c_{J}\sim$

defined by

(3.2) $\varphi_{n,k}$ : $S^{2}(c)=SU(2)/T\in gT\mapsto\pi(\rho_{n}(g)\frac{2}{\sqrt{\tilde{c}}}u_{k}^{(n)})\in CP^{n}(\tilde{c})$ .

Bando and Ohnita in [1] show the following:

THEOREM 3.1. (1) $\varphi_{n,k}$ is a full isometric immersion.
(2) $C\dot{i}$ equal to $\tilde{c}/(2k(n-k)+n)$ .
(3) $\varphi_{n,k}$ is a minimal immersion.
(4) (a) $Ifk=0$ (resp. $k=n$), $then\varphi_{n,k}isholomorphic$ ($resp$ . anti-holomorphic).

(b) Ifn is even $andk=n/2,$ $then\varphi_{2k,k}istotallyrealand\varphi_{2k.k}(S^{2}(c))\dot{i}$ containea
in a totally geodesic totally real submanifold $RP^{2k}(\tilde{c}/4)$ of $CP^{2k}(\tilde{c})$ .

(c) Otherwise, $\varphi_{n,k}$ is neither holomorphic, anti-holomorphic nor totally real.
(5) $\varphi_{n.k}(S^{2}(c))=\varphi_{n,n-k}(S^{2}(c))$ .
Moreover, they show the following rigidity theorem.

THEOREM 3.2. Let $\varphi:S^{2}(c)\rightarrow CP^{n}(\tilde{c})$ be afull isometric minimal immersion. Then
there exists an integer $k$ with $0\leq k\leq n$ such that $c=\tilde{c}/(2k(n-k)+n)$ and $\varphi$ is congruent
to $\varphi_{n,k}$ up to a holomorphic isometry of $CP^{n}(\tilde{c})$ .

We identify $V_{n}$ with $C^{n+1}$ such that $\{u_{0}^{1n)}, \iota A^{n)}, \cdots, u_{n}^{\langle n)}\}$ is the canonical basis of
$\sigma^{+1}$ , so that we.can regard $\rho_{n}(g),$ $g\in SU(2)$ , as an element of $U(n+1)$ .

Put $\tilde{V}=HM(n+1, C)$ . Let $\tilde{\rho}:SU(2)\rightarrow GL(\tilde{\eta}$ be a real representation defined
by $\tilde{\rho}(g)X=\rho_{n}(g)X\rho_{n}(g)^{*}$ for $g\in SU(2)$ and $X\in\tilde{V}$. Let $(\tilde{p}, V^{c})$ be the complexification
of $(\tilde{\rho},\tilde{V})$ . It is easy to see that $(\tilde{p}, V^{c})=(\tilde{\rho}, \mathfrak{g}I(n+1, C))$ is $SU(2)$-equivalent to
$(\rho_{n}\otimes\rho_{n}, V_{n}\otimes V_{n})$ , since the dual representation $(\rho_{n}, V_{n})$ of $(\rho_{n}, V_{n})$ is $SU(2)$-equivalent
to $(\rho_{n}, V_{n})$ . By Clebsch-Gordan’s theorem, we have the following decomposition $V^{c}=$

$\tilde{V}_{O}\oplus\tilde{V}_{1}\oplus\cdots\oplus\tilde{V}_{n}$ , where $(\beta,\tilde{V}_{l})$ is $SU(2)$-equivalent to $(\rho_{2l}, V_{2l})$ for each $l$ with
$0\leq l\leq n$ . Set $W_{l}=\tilde{V}\cap\tilde{V}_{l}$ . Then each $(\tilde{\rho}, W_{l})$ is an irreducible real representation, and
$\tilde{V}$ is decomposed into $\tilde{V}=W_{0}\oplus W_{1}\oplus\cdots\oplus W_{n}$ . Let $C_{\tilde{\rho}}$ be the Casimir operator of

$\tilde{\rho}$, which is a real operator on $V^{c}$ defined by $C_{\tilde{\rho}}=\sum_{i=0}^{2}\tilde{\rho}((\sqrt{c}/2)\epsilon_{i})^{2}$ . Then each $W_{l}$ is
characterized by the eigenspace of $C_{\tilde{\rho}}$ in $\tilde{V}$ with the eigenvalue $-cl(l+1)$ .

Let $\tilde{V}_{T}$ be the set of all $\tilde{\rho}(T)$-invariant elements of $\tilde{V}$, i.e., $\tilde{V}_{T}=\{v\in\tilde{V}|\tilde{\rho}(t)v=v$ for
any $t\in T$}. For integers $i$ and $j$ with $0\leq i,$ $j\leq n$, let $E_{ij}$ be the matrix in $V^{c}$ whose
$(i+1,j+1)$-coefficient is 1 and others are zero, so that $E_{ij}$ is equal to $u_{i}^{(n)}(u_{j}^{(n)})^{*}$ and $\tilde{V}$

is spanned by $\{E_{ii}, (1/2)(E_{ij}+E_{ji}), (\sqrt{-1}/2)(E_{jj}-Efl)|0\leq i<j\leq n\}$ over $R$ . By the defini-
tion, for $t=\left(\begin{array}{ll}e^{il} & 0\\0 & e^{-i\theta}\end{array}\right)\in T$, we get $\rho_{n}(t)u_{k}^{\langle n)}=e^{i\langle 2k-n)\theta}u_{k}^{(n)}$ . Therefore, we obtain $\tilde{V}_{T}$ is

spanned by $\{E_{u}|0\leq i\leq n\}$ over $R$, i.e., $\tilde{V}_{T}$ is the set of all diagonal matrices in $\tilde{V}$. Since
$(\rho_{2l}, V_{2l})$ is a spherical representation, $\tilde{V}_{T}\cap W_{l}$ is l-dimensional, so that there exists an
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element $Q_{l}$ such that $\tilde{V}_{T}\cap W_{l}=R\{Q_{l}\}$ . Since $C_{\tilde{\rho}}$ and $\tilde{\rho}(SU(2))$ are commutable, $\tilde{V}_{T}$ is
invariant under $C_{\tilde{\rho}}$ . Therefore, each $Q_{l}$ is characterized by an eigenvector of $C_{\tilde{\rho}}$ in $\tilde{V}_{T}$

with the eigenvalue $-cl(l+1)$ .
For $v\in\tilde{V}_{T},$ $f_{v}$ denotes a $\tilde{V}$-valued function on $S^{2}$ defined by $f_{v}(go)=\tilde{\rho}(g)v$ for

$g\in SU(2)$ . Then the action \^of $\Delta$ for $f_{v}$ is give by $\Delta f_{v}=f_{-C\gamma v}$ . Thus, $v$ has the decom-
position $v=\sum_{l=0}^{n}v_{l},$ $v_{l}\in W_{l}\cap\tilde{V}_{T}$ if and only if $f_{v}$ is the sum of the $\lambda_{l}$-eigenfunctions
$f_{v_{l}}$ . Now, $wedefinetheorderoff_{v}(orv\in\tilde{V}_{T})byOrd(f_{v})=Ord(v)=\{l|1\leq l\leq n, v_{i}\neq 0\}$ .

For integersn andk with0 $\leq k\leq n,$ $wesetF_{n.k}=\Psi\circ\varphi_{n.k}$ . By the definition of $\varphi_{n,k}$,
we get $F_{n,k}=f_{E_{kk}}$ . Since $E_{kk}\in\tilde{V}_{T}$ , we have $Ord(F_{n,k})=\{l|1\leq l\leq n, (E_{kk}, Q_{l})\neq 0\}$ , so that
$\varphi_{nk}$ is at most n-type. Put $Q_{l}=\sum_{k=0}^{n}q_{l}^{k}E_{u},$ $q_{l}^{k}\in R$ . Then the order of $\varphi_{n,k}$ is given by
$\{l|1\leq l\leq n, q_{l}^{k}\neq 0\}$ .

We can easily see that the identity matrix $I$ in $\tilde{V}$ is a O-eigenvector of $C_{\tilde{\rho}}$, and so
we put $Q_{0}=I$. Since the $W_{0}$-part of $E_{kk}$ is equal to $(1/(n+1))I$, the constant term of
$F_{n,k}-(1/(n+1))I=f_{E_{kk}-\langle 1/\langle n+1))I}$ vanishes. Therefore, $\varphi_{n.k}$ is always mass-symmetric.

To prove Theorem A (1), we shall give $q_{l}^{k}$ explicitly. First, we restrict $C_{\tilde{\rho}}$ to $\tilde{V}_{T}$ .
LEMMA 3.3. For $A=\sum_{l=0}^{n}a_{l}E_{ll}$ and $B=\sum_{l=0}^{n}b_{l}E_{ll}\in\tilde{V}_{T},$ $B=C_{\tilde{\rho}}A$ if and only if

$b_{l}=-c\{(2l(n-l)+n)a_{l}-l(n-l+1)a_{l-1}-(l+1)(n-l)a_{t+1}\}$

for $0\leq l\leq n$ .
$PR\infty F$ . By (3.1) we get

$\rho_{n}(\epsilon_{1})u_{l}^{1n)}=-\sqrt{l(n-l+1)}u_{l-1}^{\{n)}+\sqrt{(l+1)(n-l)}u_{l+1}^{\langle n)}$ ,

$\rho_{n}(\epsilon_{2})u_{l}^{\langle n)}=\sqrt{l(n-l+1)}\sqrt{-1}u_{l-1}^{(n)}+\sqrt{(l+1)(n-l)}\sqrt{-1}u_{l+1}^{\langle n)}$ ,

so that

$\rho_{n}(\epsilon_{1})^{2}u_{l}^{\langle n)}=-(2l(n-l.)+n)u_{l}^{(n)}+\sqrt{l(l-1)(n-l+1)(n-l+2)}u_{l-2}^{\langle n)}$

$+\sqrt{(l+1)(l+2)(n-l)(n-l-1)}u_{l+2}^{\langle n)}$ ,

$\rho_{n}(\epsilon_{2})^{2}u_{l}^{\langle n)}=-(2l(n-l)+n)u_{l}^{\langle n)}-\sqrt{l(l-1)(n-l+1)(n-l+2)}u_{l-2}^{\langle n)}$

$-\sqrt{(l+1)(l+2)(n-l)(n-l-1)}u_{l+2}^{(n)}$ .
Thus simple computation gives

$\sum_{i=1}^{2}\rho_{n}(\epsilon_{i})^{2}u_{l}^{(n)}=-2(2l(n-l)+n)u_{l}^{\langle n)}$ ,

$u_{l}^{\langle n)*}\sum_{i=1}^{2}\rho_{n}(\epsilon_{t})^{2}=(\sum_{i=1}^{2}\rho_{n}(\epsilon_{i})_{\mathcal{U}_{l}}^{2\langle n)})^{*}=-2(2l(n-l)+n)u_{l}^{\langle n)*}$ .

Since $E_{ll}=u_{l}^{\langle n)}u_{l}^{\langle n)*}$ , we get
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$C_{\rho}\sim A=\frac{c}{4}\sum_{i=1}^{2}\tilde{\rho}(\epsilon_{i})^{2}\sum_{l=0}^{n}a_{l}u_{l}^{\langle n)}u_{l}^{\langle n)*}$

$=\frac{c}{4}\sum_{\iota=0}^{n}a_{l}\{(2\langle n))u_{l}^{(n)*}+2\sum_{i=1}^{2}(\rho_{n}(\epsilon_{i})u_{l}^{(n)})(\rho_{n}(\epsilon_{i})u_{l}^{\langle n)})+u_{l}^{\langle n)(\sum_{i=1}^{2}\rho_{n}(\epsilon_{i})^{2}u_{l}^{(n))^{*}\}}}$

$=c\sum_{l=0}^{n}a_{l}\{-(2l(n-l)+n)u_{l}^{\langle n)}u_{l}^{(n)*}+l(n-l+1)u_{l-1}^{(n)}u_{l-1}^{(n)*}+(l+1)(n-l)u_{l+1}^{(n)}u_{l+1}^{\langle n)*}\}$ .

This implies Lemma 3.3 immediately. $\square $

We identify $\tilde{V}_{T}$ with $R^{n+1}$ such that $\{E_{00}, E_{11}, \cdots, E_{nn}\}$ is the canonical basis of
$R^{n+1}$ . Define an $(n+1, n+1)$-matrix $R=(r_{jj})_{0\leq i.j\leq n}$ by

$r_{ij}=1_{0^{-i(n-i+1)}}^{2i(n-i)+n}-(i+1)(n-i)$

,
$ifj=i+lotherwiseifj=iifj=i-l$

,

and put $q_{l}={}^{t}(q_{l}^{0}, q_{l}^{1}, \cdots, q_{l}^{n})$ . Then, from Lemma 3.3, $q_{l}$ and $R$ are corresponding to
$Q_{l}$ and $-(1/c)C_{\tilde{\rho}}$, respectively. Therefore, each $q_{l}$ is characterized by an eigenvector of
$R$ with the eigenvalue $l(l+1)$ . Notice that $q_{0}={}^{t}(1,1, \cdots, 1)$ is a O-eigenvector of $R$ .

In order to prove Theorem A (1), it is sufficient to show the following lemma.
LEMMA 3.4. Let $q_{l}={}^{t}(q_{l}^{0}, q_{l}^{1}, \cdots, q_{l}^{n}),$ $1\leq l\leq n$ , be a vector in $R^{n+1}$ &fined by

(3.3) $q_{l}^{k}=\frac{1}{l!}\sum_{m=0}^{l}(-1)^{m}\left(\begin{array}{l}l\\m\end{array}\right)\prod_{j=1}^{l}(k+j-m)(n-k-j+m+1)$ .

Then for each $l$ with $0\leq l\leq n,$
$q_{l}$ is an eigenvector of $R$ with an eigenvalue $l(l+1)$ .

To prove this lemma, we need some lemmas. Put $r_{j}=j(n-j+1)$ , so that

$R=[^{r_{O}+r_{1}}-r_{1}0r_{1^{+\gamma_{2}}}^{-r_{1}}-r_{2}-r_{2}\dot{r}_{n-1}+r_{n}-r_{n}r_{n}+r_{n+1}-r_{n}0)$

It is easy to see that

(3.4) $r_{k+l}+r_{k-l}-2r_{k}=-2l^{2}$ , for all $k,$ $l$ .
In particular, we have
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(3.5) $r_{k+1}+r_{k-1}-2r_{k}=-2$ , for all $k$ .
LEMMA 3.5. (1) For any integers $k,$ $l$ and $p$ with $0\leq p\leq l$, we have

(3.6) $r_{k+l-p}=-(l-p)(l-p+1)+(l-p+1)r_{k}-(l-p)r_{k-1}$ .
For any $k$ and $p$ with $p\geq 1$ , we have

(3.7) $pr_{k}-(p+1)r_{k-1}=-p(p+1)-r_{k-p-1}$ .
(2) For any integers $k$, landpwith $0\leq p\leq l$, we have

(3.8) $r_{k-l+p}=-(l-p)(l-p+1)+(l-p+1)r_{k}-(l-p)r_{k+1}$ .
For any $k$ and $p$ with $p\geq 1$ , we have

(3.9) $pr_{k}-(p+1)r_{k+1}=-p(p+1)-r_{k+p+1}$ .
$PR\infty F$ . We shall prove (1). We get

$r_{k+l-p}=(r_{k+l-p}-2r_{k+l-p-1}+r_{k+l-p-2})$

$+2(r_{k+l-p-1}-2r_{k+l-p-2}+r_{k+l-p-3})$

$+3(r_{k+l-p-2}-2r_{k+l-p-3}+r_{k+l-p-4})+\cdots$

$+(l-p-1)(r_{k+2}-2r_{k+1}+r_{k})$

$+(l-p)(r_{k+1}-2r_{k}+r_{k-1})$

$+(l-p+1)r_{k}-(l-p)r_{k-1}$ ,

which, together with (3.5), implies

$r_{k+l-p}=-2(1+2+\cdots+(l-p))+(l-p+1)r_{k}-(l-p)r_{k-1}$

$=-(l-\dot{p})(l-p+1)+(l-p+1)r_{k}-(l-p)r_{k-1}$ .
Next, we show (3.7). Similarly, we get

$pr_{k}-(p+1)r_{k-1}=p(r_{k}-2r_{k-1}+r_{k-2})$

$+(p-1)(r_{k-1}-2r_{k-2}+r_{k-3})$

$+(p-2)(r_{k-2}-2r_{k-3}+r_{k-4})+\cdots$

$+2(r_{k-p+2}-2r_{k-p+1}+r_{k-p})$

$+(r_{k-p+1}-2r_{k-p}+r_{k-p-1})$

$-r_{k-p-1}$ ,

which, together with (3.5), implies

$pr_{k}-(p+1)r_{k-1}=-2(p+(p-1)+\cdots+2+1)-r_{k-p-1}$

$=-p(p+1)-r_{k-p-1}$ .
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(2) is proved similarly. $\square $

LEMMA 3.6. (1) For each $p=0,1,$ $\cdots,$ $[(l-2)/2]$ , we have

(3.10) $-l(l+1)\sum_{meI_{p}}(-1)^{m}\left(\begin{array}{l}l-1\\m\end{array}\right)$

$\prod_{1\leq j\leq l,j\neq m+1}r_{k+j-1-m}$

$=\sum_{meJ_{p}}(-1)^{m}\left(\begin{array}{l}l+1\\m\end{array}\right)\prod_{1\leq j\leq l}r_{k+j-m}$

$+(-1)^{p+2}\left(\begin{array}{l}l\\p+1\end{array}\right)r_{l+l-p-1}\cdots r_{k+1}r_{k-1}\cdots r_{k-p-1}$

$+(-1)^{l-p-1}\left(\begin{array}{ll}l & \\l-p & -1\end{array}\right)r_{k+p+1}\cdots r_{k+1}r_{k-1}\cdots r_{k-l+p+1}$ ,

where $I_{p}=\{0,1, \cdots, p, l-p-1, \cdots, l-1\}$ and $J_{p}=\{0,1, \cdots, p+1, l-p, --, l+1\}$ .
(2) We have

(3.11) $-l(l+1)\sum_{m=0}^{l-1}(-1)^{m}\left(\begin{array}{l}l-1\\m\end{array}\right)$

$\prod_{1\leq j\leq l,j\neq m+1}r_{k+j-1-m}$

$=\sum_{m=0}^{l+1}(-1)^{m}\left(\begin{array}{l}l+1\\m\end{array}\right)\prod_{1\leq j\leq l}r_{k+j-m}$ .

$PR\infty F$. (1) We shall prove (3.10) by induction on $p$ . Assume $p=0$ . By (3.6), we
get

$r_{l+l}=-l(l+1)+(l+1)r_{k}-lr_{k-1}$ ,

which implies

(3.12) $-l(l+1)r_{k+l-1}\cdots r_{l+1}=r_{k+l}\cdots r_{\iota+1}$

$-(l+1)r_{k+l-1}\cdots r_{k}+lr_{k+l-1}\cdots r_{k+1}r_{k-1}$ .
Similarly, from (3.8), we get

(3.13) $-l(l+1)r_{k-1}\cdots r_{k-l+1}=r_{k-1}\cdots r_{k-l}$

$-(l+1)r_{k}\cdots r_{k-l+1}+lr_{k+1}r_{k-1}\cdots r_{k-l+1}$ .
From (3.12) and (3.13), we obtain (3.10).

We assume $p>0$ . From (3.6) and (3.7), we have
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(3.14) $\left(\begin{array}{l}l\\p\end{array}\right)r_{k+l-p}-\left(\begin{array}{l}l+1\\p+1\end{array}\right)r_{k}$

$=\left(\begin{array}{ll} & l\\p & +1\end{array}\right)pr_{k}-\left(\begin{array}{ll} & l\\p & +1\end{array}\right)(p+1)r_{k-1}-\left(\begin{array}{l}l\\p\end{array}\right)(l-p)(l-p+1)$

$=-l(l+1)\left(\begin{array}{l}l-1\\p\end{array}\right)-\left(\begin{array}{ll} & l\\p & +1\end{array}\right)r_{k-p-1}$ .

Similarly, from (3.8) and (3.9), we have

(3.15) $\left(\begin{array}{l}l\\l-p\end{array}\right)r_{k-l+p}-\left(\begin{array}{l}l+1\\l-p\end{array}\right)r_{k}$

$=-l(l+1)\left(\begin{array}{l}l-1\\l-p-1\end{array}\right)-\left(\begin{array}{l}l\\l-p-1\end{array}\right)r_{k+p+1}$ .

By the assumption of induction, we obtain

$-l(l+1)\sum_{meI_{p}}(-1)^{m}\left(\begin{array}{l}l-1\\m\end{array}\right)$
$\prod_{1\leq j\leq l,j\neq m+1}r_{k+j-1-m}-\sum_{meJ_{p}}(-1)^{m\left(\begin{array}{l}l+1\\m\end{array}\right)\prod_{1\leq J\leq l}\gamma_{k+j-m}}$

$-(-1)^{p+2}\left(\begin{array}{ll} & l\\p & +1\end{array}\right)r_{k+l-p-1}\cdots r_{k+1}r_{k-1}\cdots r_{k-p-1}$

$-(-1)^{l-p-1}\left(\begin{array}{l}l\\l-p-1\end{array}\right)r_{k+p+1}\cdots r_{k+1}r_{k-1}\cdots r_{k-l+p+1}$ ,

$=(-1)^{p+1}r_{k+l-p-1}\ldots r_{k+1}r_{k-1}\cdots r_{k-p}$

$\times\{\left(\begin{array}{l}l\\p\end{array}\right)r_{k+l-p}-\left(\begin{array}{l}l+1\\p+1\end{array}\right)r_{k}+\left(\begin{array}{ll} & l\\p & +1\end{array}\right)r_{k-p-1}+l(l+1)\left(\begin{array}{l}l-1\\p\end{array}\right)\}$

$+(-1)^{l-p}r_{k+p}\cdots r_{k+1}r_{k-1}\cdots r_{k-l+p+1}$

$\times\{\left(\begin{array}{l}l\\l-p\end{array}\right)r_{k-l+p}-\left(\begin{array}{l}l+1\\l-p\end{array}\right)r_{k}+\left(\begin{array}{l}l\\l-p-1\end{array}\right)r_{k+p+1}+l(l+1)\left(\begin{array}{l}l-1\\l-p-1\end{array}\right)\}$ .

Combining (3.14) and (3.15), we obtain (3.10).
(2) Putp $=[(l-2)/2]$ . Iflis even, we getp $=l/2-1$ . Then we obtain (3.11) from

(3.10) immediately. Therefore, we assume that $l$ is odd. In this case, we get $p=(l-3)/2$
(or $l=2p+3$), so that $I_{p}\cup\{p+1\}=\{0,1, \cdots, l-1\}$ and $J_{p}\cup\{p+2\}=\{0,1, \cdots, l+1\}$ .
From (3.10), we have
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$-l(l+1)\sum_{m=0}^{l-1}(-1)^{m}\left(\begin{array}{l}l-1\\m\end{array}\right)$
$\prod_{1\leq j\leq l,j\neq m+1}r_{k+j-1-m}-\sum_{m=0}^{l+1}(-1)^{m}\left(\begin{array}{l}l+1\\m\end{array}\right)\prod_{1\leq j\leq l}r_{k+j-m}$

$=-l(l+1)(-1)^{p+1}\left(\begin{array}{l}l-1\\p+1\end{array}\right)$

$\prod_{1\leq j\leq l,j\neq p+2}r_{k+j-p-2}$

$-(-1)^{p+2}\left(\begin{array}{l}l+1\\+p2\end{array}\right)\prod_{1\leq j\leq l}r_{k+j-p-2}$

$+(-1)^{p+2}\left(\begin{array}{l}l\\p+1\end{array}\right)r_{k+l-p-1}\cdots r_{k+1}r_{k-1}\cdots r_{k-p-1}$

$+(-1)^{l-p-1}\left(\begin{array}{l}l\\l-p-1\end{array}\right)r_{k+p+1}\cdots r_{k+1}r_{k-1}\cdots r_{k-l+p+1}$

$=(-1)^{p+2}\left(\begin{array}{l}2p+3\\p+1\end{array}\right)\prod_{1\leq j\leq l}r_{\iota+j-p-2}(2(p+2)^{2}-2r_{k}+r_{k+p+2}+r_{k-p-2})$ ,
$j\neq p+2$

which, combined with (3.4), implies (3.11).

$PR\infty F$ OF LEMMA 3.4. For any $n,$
$k$ and $l$ with $0\leq k,$ $l\leq n$, we get by simple

computation,

$l!q_{l}^{k}=\sum_{m=0}^{l}(-1)^{m\left(\begin{array}{l}l\\m\end{array}\right)\prod_{j=1}^{l}r_{k+j-m}}$

$=\sum_{m=0}^{l-1}(-1)^{m}\left(\begin{array}{l}l-1\\m\end{array}\right)\prod_{j=1}^{l}r_{\iota+j-m}+\sum_{m=1}^{l}(-1)^{m\left(\begin{array}{l}l-1\\-m1\end{array}\right)\prod_{j=1}^{l}r_{k+j-m}}$

$=(\sum_{m=0}^{l-1}(-1)^{m}\left(\begin{array}{l}l-1\\m\end{array}\right)\prod_{1\leq j\leq l}r_{\langle k+1)+j-1-m})r_{k+1}$

$-(\sum_{m=0}^{l-1}(-1)^{m\left(\begin{array}{l}l-1\\m\end{array}\right))r_{k}}\prod_{1\leq j\leq l}r_{\iota+j-1-m}$ .

On the other hand, direct computation gives

$l!(q_{l}^{k}-q_{l}^{\iota-1})=\sum_{m=0}^{l+1}(-1)^{m\left(\begin{array}{l}l+1\\m\end{array}\right)\prod_{1\leq j\leq l}r_{k+j-m}}$ ,

which, combined with (3.11), implies

$-l(l+1)l!q_{l}^{k}=l!(q_{l}^{k+1}-q_{l}^{k})r_{k+1}-l!(q_{l}^{k}-q_{l}^{\iota-1})r_{k}$

$=-l!(-r_{k}q_{l}^{k-1}+(r_{k}+r_{l+1})q_{l}^{\iota}-r_{k+1}q_{l}^{k+1})$ .
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Therefore, we obtain $Rq_{l}=l(l+1)q_{l}$ . $\square $

To prove Theorem A (2) and (3), we need more detailed properties for $q_{l}$ .
LEMMA 3.7. (1) $q_{l}^{0}=n!/(n-l)!$ for all $n$ and $l$ with $0\leq l\leq n$ .
(2) $q_{l}^{n-k}=(-1)^{l}q_{l}^{k}$ for all $n,$

$l$ and $k$ with $0\leq k,$ $l\leq n$ .
(3) Ifn is even andl is odd withO $\leq l\leq n,$ $thenq_{l}^{n/2}=0$ .
(4) If $n$ and $l$ are even with $0\leq l\leq n$ , then $q_{l}^{n/2}\neq 0$ .
$PR\infty F$ . (1) follows immediately from (3.3). Also from (3.3), we have

$l!q_{l}^{n-k}=\sum_{m=0}^{l}(-1)^{m}\left(\begin{array}{l}l\\m\end{array}\right)\prod_{j=1}^{\iota}r_{n-k+j-m}$ .

Put $j^{\prime}=l-j+1$ and $m^{\prime}=l-m$ , and we obtain

$l!q_{l}^{n-k}=\sum_{m’=0}^{\iota}(-1)^{l-m’\left(\begin{array}{l}l\\l-m^{\prime}\end{array}\right)\prod_{j’=1}^{l}r_{k+j’-m^{\prime}}}$

$=(-1)^{l}l!q_{l}^{k}$ .
So (2) holds. (2) implies (3) immediately.

Assume that $q_{l}^{n/2}=0$ , for some even $n$ and $l$ with $0\leq l\leq n$ . Put $k=n/2-j$,
$j=0,1,$ $\cdots,$ $n/2$ . Then (2) implies that $q_{l}^{n/2+j}=q_{l}^{n\prime 2-j}$ . From Lemma 3.4, we get

$-(\frac{n}{2})(\frac{n}{2}+1)(q_{l}^{n/2-1}+q_{l}^{n/2+1})=-r_{n/2}q_{l}^{n/2-1}+(r_{n/2}+r_{n/2+1})q_{l}^{n/2}-r_{n/2+1}q_{l}^{n/2+1}$

$=l(l+1)q_{l}^{n/2}=0$ .
These imply

(3.16) $q_{l}^{n/2-1}=q_{l}^{n/2}=q_{l}^{n/2+1}=0$ .
Now, from Lemma 3.4, for any $k,$ $q_{l}^{k}$ satisfies

$-r_{k}q_{l}^{k-1}+(r_{k}+r_{k+1})q_{l}^{k}-r_{k+1}q_{l}^{k+1}=l(l+1)q_{l}^{k}$ ,

which, combined with (3.16), implies $q_{l}^{k}=0$ for all $k$ with $0\leq k\leq n$ , i.e., $q_{l}=0$ . This
contradicts (1). Therefore, (4) holds. $\square $

$FromLemma3.7(1)$ and (2), $wehaveq_{l}^{0}\neq 0andq_{l}^{n}\neq 0sothattheorderof\varphi_{n,O}$

and $\varphi_{n,n}$ are $\{1, 2, \cdots, n\}$ . Similarly, from Lemma 3.7 (3) and (4), if $n$ is even, then the
order of $\varphi_{n,n/2}$ is $\{2, 4, \cdots, n\}$ . So Theorem A (2) and (3) are proved completely.

By Theorem A (1), if integers $n$ and $k$ with $0\leq k\leq n$ are explicitly given, then we
can obtain the order of $\varphi_{n,k}$ . The following proposition is used in the later section.
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PROPOSmON 3.8. For $n\leq 6$, the order of $\varphi_{nf}$ is given as follows:

REMARK. From Lemmas 3.4 and 3.7, we have $q_{l}^{1}=(-1)^{l}q_{l}^{n-1}=((n-1)!/$

$(n-l)!)(n-l(l+1))$ . Therefore, we see that $\varphi_{n.1}$ and $\varphi_{n.n-1}$ with $n=l(l+1)$ are of order
$\{1, 2, \cdots, l-1, l+1, \cdots, n\}$ and of $(n-1)$-type, and that other $\varphi_{n,1}$ and $\varphi_{n.n-1}$ are of
order $\{1, 2, \cdots, n\}$ and of n-type.

\S 4. Minimal surfaces in $CP^{n}$ and harmonic sequence.

In this section, we consider minimal immersions of $S^{2}$ into $CP^{n}$ in the context of
harmonic maps.

Let $M$ be a smooth manifold and $V$ be a complex vector subbundle of the trivial
bundle $\underline{C}^{n+1}=M\times C^{n+1}$ over $M$. Then $V$ has a connection $\nabla$, induced from the trivial
connection on $\underline{C}^{n+1}$ , given by $\nabla s=\pi_{V}\&$, wheres isasection ofVand $\pi_{V}$ : $\underline{C}^{+1}\rightarrow V$

denotes orthogonal projection onto $V$.
Let $L$ be the universal line bundle over $CP^{n}$ defined by $ L=\{(p, v)\in CP^{n}\times\sigma^{+1}|v\in$

$p\}$ then both $L$ and its orthogonal complement $L^{\perp}$ have induced connections and
Hermitian metrics. Let $T^{(1,O)}CP^{n}$ (resp. $F^{0,1)}CP^{n}$) denote the $(1, 0)$-part (resp. $(0,1)$-part)
of the complexification TCP of $TCP^{n}$ . Thus we have a Hermitian metric and a
connection of $Hom(L, L^{\perp})$ and there is a canonical isomorphism $ h:T^{(1,0)}CP^{n}\rightarrow$

$Hom(L, L^{\perp})$ given by $h(X)s=\pi_{L^{1}}dr(X)$, where $X\in F^{1.0)}CP^{n}$ and $s$ is a local section of
$L$ . Under this isomorphism, the complex structure, the metric and the connection on
$Hom(L, L^{\perp})$ correspond respectively to the complex structure, the Fubini Study metric
and the connection on $CP^{n}$ with constant holomorphic sectional curvature 4.

For a smooth manifold $M$, there is a bijective correspondence between (smooth)
complex line subbundles $of\underline{\sigma}^{+1}$ and smooth maps $\varphi:M\rightarrow CP^{n}$, given by $\varphi\leftrightarrow\varphi^{*}L$ .
Let $d^{(1,0)}\varphi:TM^{C}\rightarrow T^{(1,0)}CP^{n}$ be the $(1, 0)$-part of the derivative of $\varphi$ . Then $ h\circ d^{\langle 1,0)}\varphi$

is a bundle map covering $\varphi$ and the corresponding section $\delta$ of $Hom(TM^{C}\otimes\varphi^{*}L, \varphi^{*}L^{\perp})$
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is given by $\delta(X\otimes s)=\pi_{L^{\perp}}ds(X)$ , where a section $s$ of $\varphi^{*}L$ is considered as $C^{n+1}$ -valued
function. defined on $M$. If $M$ is a Riemann surface, the holomorphic part

$\partial$ : $T^{\langle 1,0)}M\otimes\varphi^{*}L\rightarrow\varphi^{*}L^{\perp}$

of $\delta$ is given in terms of a local complex coordinate $z$ on $M$ by
$\partial(\partial/\partial z\otimes s)=(h\circ d^{(1.0)}\varphi(\partial/\partial z))(s)=\pi_{L^{\perp}}ds(\partial/\partial z)$ ,

and the antiholomorphic part
$\partial$ : $T^{\langle 0,1)}M\otimes\varphi L\rightarrow\varphi^{*}L^{\perp}$

of $\delta$ is given by
$\partial(\partial/\partial\overline{z}\otimes s)=(h\circ d^{\langle 1,0)}\varphi(\partial/\partial\overline{z}))(s)=\pi_{L^{\perp}}ds(\partial/\partial\overline{z})$ .

For any complex vector bundle $V$ over the Riemann surface $M$, by Koszul-
Malgrange theorem, each connection on $V$ determines a holomorphic structure on $V$.
Thus we have holomorphic structures on $\varphi^{*}L$ and $\varphi^{*}L^{\perp}$ , and Wolfson shows that $\varphi$

is harmonic if and only if $\partial$ (resp. $\partial$) is a holomorphic (resp. an antiholomorphic) bundle
map. Using these ideas, for a harmonic map $\varphi$ , Wolfson in [12] goes on to construct
inductively an associated sequence

$\ldots$ $L_{-2},$ $L_{-1},$ $L_{0},$ $L_{1},$ $L_{2}$ , $\cdot$ . .

of complex line subbundles of $\underline{C}^{n+1}$ and bundle maps
$\partial_{p}$ : $T^{(1.0)}M\otimes L_{p}\rightarrow L_{p+1}$ and $\partial_{p}$ : $T^{\langle 0,1)}M\otimes L_{p}\rightarrow L_{p-1}$ .

Here $L_{p}=\varphi_{p}^{*}L$ for a suitable harmonic map $\varphi_{p}$ : $M\rightarrow CP^{n}$ and $\partial_{p}$ (resp. $\partial_{p}$) is essentially
the map $\partial$ (resp. $\partial$ ) defined above for the map $\varphi_{p}$ . Then $\partial_{p}$ (resp. $\partial_{p}$) is a holomorphic
(resp. antiholomorphic) bundle map. If $\partial_{p}\equiv 0$ but $\partial_{p-1}\not\equiv 0$ (resp. $\partial_{p}\equiv 0$ but $\partial_{p+1}\not\equiv 0$)
then the sequence terminates with $L_{p}$ at the right (resp. left) hand end, and the
corresponding harmonic map $\varphi_{p}$ is antiholomorphic (resp. holomorphic). The set of
points of $M$ over which $\partial_{p}$ (resp. $\partial_{p}$) is singular is a set of isolated points and, except
these points, $L_{p+1}$ (resp. $L_{p-1}$ ) is the image of $\partial_{p}$ (resp. $\partial_{p}$). (Also, see [2, 3].)

We call the sequence $\{\varphi_{p}\}$ the harmonic sequence determined by $\varphi$ with $\varphi=\varphi_{p}$ for
some $p$ , and the sequence $\{L_{p}\}$ the associated bundle sequence. $\varphi_{p}$ is conformal if and
only if $L_{p+1}$ is orthogonal to $L_{p-1}$ .

If the harmonic sequence $\{\varphi_{p}\}$ terminates at one end, then it terminates at both
ends and all the elements ofthe associated bundle sequence $\{L_{p}\}$ are mutually orthogonal,
i.e., $L_{p}$ is orthogonal to $L_{q}$ for $p\neq q$ . If the harmonic sequence of $\varphi$ satisfies this condition,
$\varphi$ is called isotropic, so that each $\varphi_{p}$ is conformal. Moreover, in this case, $\varphi$ is full in
$CP^{n}$ if and only if the sequenoe $\{\varphi_{p}\}$ has length exactly $n+1$ , which is equivalent to
the fact that $\underline{C}^{n+1}$ is an orthogonal sum of some $n+1$ consecutive bundles of the bundle
sequence.
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Now we need a local description of the harmonic sequenoe of an isotropic harmonic
map $\varphi$ . Let $z$ be a local complex coordinate on $M$. Then, for each $p$, we can choose a
meromorphic local section $f_{p}$ of $L_{p}$ such that

$f_{p+1}=\partial_{p}(\partial/\partial z\otimes f_{p})$ .
Define functions $\gamma_{p}$ by

$\gamma_{p}=\left\{\begin{array}{ll}\frac{|f_{p+1}|^{2}}{|f_{p}|^{2}} & if f_{p}\not\equiv 0,\\0 & if f_{p}\equiv 0,\end{array}\right.$

then we have

(4.1) $\frac{\partial}{\partial z}f_{p}=f_{p+1}+\frac{\partial}{\partial z}\log|f_{p}|^{2}f_{p}$ ,

(4.2) $\frac{\partial}{\partial\overline{z}}f_{p}=-\gamma_{p-1}f_{p-1}$ .

Sinoe $(\partial^{2}/\partial z\partial\overline{z})f_{p}=(\partial^{2}/\partial\overline{z}\partial z)f_{p}$, we have

(4.3) $\frac{\partial^{2}}{\partial z\partial\overline{z}}\log|f_{p}|^{2}=\gamma_{p}-\gamma_{p-1}$

and the unintegrated Pl\"ucker formulae

(4.4) $\frac{\partial^{2}}{\partial z\partial\overline{z}}\log\gamma_{p}=\gamma_{p+1}-2\gamma_{p}+\gamma_{p-1}$ .

If $\varphi$ is conformal, then $\varphi$ is minimal if and only if $\varphi$ is harmonic. Therefore, in
order to prove Theorems $C,$ $D$ and $E$, we use the method of the harmonic sequenoe.
Notice that in [2], J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward show
Theorems 3.1 and 3.2 using this method.

By Riemann-Roch theorem, every harmonic map of a 2-sphere $S^{2}$ into $CP^{n}$ is
isotropic. Therefore, we will prove Theorems $C,$ $D$ and $E$ for a compact isotropic
minimal surfaoe in $CP^{n}$ .

From now on, we assume that $\varphi:M\rightarrow CP^{n}$ be an isotropic confonnal minimal
immersion of a compact Riemann surfaoe $M$ into $CP^{n}$ , and that $\{\varphi_{p}\}$ is the cor-
responding sequence determined by $\varphi$ with $\varphi=\varphi_{0}$ . Then each $\varphi_{p}$ is also an isotropic
conformal minimal immersion of $M$ (perhaps with isolated singularities). Let $g_{p}$ and $\theta_{p}$

denote the induced metric of $M$ by $\varphi_{p}$ and the K\"ahler angle of $\varphi_{p}$, respectively. Let $\Delta_{p}$

and $K_{p}$ denote the Laplacian and the Gaussian curvature of $(M, g_{p})$, respectively. Then
we have

(4.5) $g_{p}=\sigma_{p}dzd\overline{z}$ , $\sigma_{p}=\gamma_{p}+\gamma_{p-1}$ ,
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(4.6) $\tan^{2}\frac{\theta_{p}}{2}=\frac{\gamma_{p-1}}{\gamma_{p}}$ ,

(4.7) $\Delta_{p}=-\frac{4}{\sigma_{p}}\frac{\partial^{2}}{\partial z\partial\overline{z}}$ ,

(4.8) $K_{p}=-\frac{2}{\sigma_{p}}\frac{\partial^{2}}{\partial z\partial\overline{z}}\log\sigma_{p}$ .

Set $F_{p}=\Psi\circ\varphi_{p}$ . By the definition of $\Psi$, we have

(4.9) $F_{p}=\frac{1}{|f_{p}|^{2}}f_{p}f_{p}^{*}$

From (4.1), (4.2) and (4.7), we will inductively show that

(4.10)
$\Delta_{O}^{l}F_{0}=\sum_{|p|,|q|\leq l}\alpha^{pq}f_{p}f_{q}^{*}$

for any nonnegative integer $l$, where $\alpha^{pq}$ is a C-valued function on $M$. Note that a
matrix $f_{p}f_{q}^{*}$ acts on $C^{n+1}$ as $(f_{p}f_{q})f_{r}=\langle f,, f_{q}\rangle f_{p}$ .

Theorem $C$ follows from the following theorem.

THEOREM $C^{\prime}$ . Let $M$ be a compact, k-type, mass-symmetric, isotropic, minimal
surface in $CP^{n}(4)$ . Then $n$ satisfies $n\leq 2k$.

$PR\infty F$ . By Proposition 2.2, there exist real constants $a_{l},$
$1\leq l\leq k$, such that the

matrix-valued function
$P=\Delta_{0}^{k}F_{0}\neq a_{1}\Delta_{0}^{k-1}F_{0}+\cdots+a_{k-1}\Delta_{0}F_{0}+a_{k}(F_{0}-(1/(n+1))I)$

is identically zero. Sinoe $\varphi$ is exactly k-type, we have $a_{k}\neq 0$ . From (4.10), we get

(4.11) $P=\sum_{|p|,|q|\leq k}\alpha^{pq}f_{p}f_{q}^{*}-\frac{a_{k}}{n+1}I$

where $\alpha^{pq}$ is a C-valued function on $M$. Sinoe $\varphi$ is isotropic, $f_{p}$ is orthogonal to $f_{q}$ for
$p\neq q$ , so that (4.11) implies that if $|p|\geq k+1$ , then $f_{p}=-((n+1)/a_{k})Pf_{p}=0$ . By
Proposition $B,$ $\varphi$ is isotropic and full. Therefore, there exist nonnegative integers $l$ and
$l^{\prime}$ such that $n=l+l^{\prime},$ $f_{p}\not\equiv O$ for $-l^{\prime}\leq p\leq l$ and other $f_{p}’ s$ are identically zero. Thus we
get $l,$ $l^{\prime}\leq k$ so that $n\leq 2k$ . $\square $

(4.1), (4.2) and (4.9) imply that

(4.12) $\frac{\partial}{\partial z}F_{p}=\frac{1}{|f_{p}|^{2}}f_{p+1}f_{p}^{*}-\frac{\gamma_{p-1}}{|f_{p}|^{2}}f_{p}f_{p-1}^{*}$ ,
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(4.13) $\frac{\partial}{\partial\overline{z}}F_{p}=\frac{1}{|f_{p}|^{2}}f_{p}f_{p+1}-\frac{\gamma_{p-1}}{|f_{p}|^{2}}f_{p-1}f_{p}^{*}$ ,

(4.14) $\frac{\partial^{2}}{\partial z\partial\overline{z}}F_{p}=-(\gamma_{p}+\gamma_{p-1})F_{p}+\gamma_{p}F_{p+1}+\gamma_{p-1}F_{p-1}$ ,

which, combined with (4.7), yields

(4.15) $\Delta_{0}F_{p}=(t_{p}+t_{p-1})F_{p}-t_{p}F_{p+1}-t_{p-1}F_{p-1}$

where $t_{p}=4\gamma_{p}/(\gamma_{0}+\gamma_{-1})$ . After simple computation, these imply that

(4.16) $\Delta_{0}^{2}F_{p}=\Delta_{0}(t_{p}+t_{p-1})F_{p}$

$-\frac{4}{\sigma_{0}}(t_{p}+t_{p-1})_{z}(F_{p})_{\overline{z}}-\frac{4}{\sigma_{0}}(t_{p}+t_{p-1})4F_{p})_{z}+(t_{p}+t_{p-1})\Delta_{0}F_{p}$

$-\Delta_{0^{t_{p}F_{p+1}+\frac{4}{\sigma_{O}}(t_{p})_{z}(F_{p+1})_{\overline{z}}+\frac{4}{\sigma_{0}}(t_{p}\succ(F_{p+1})_{z^{-t}}A_{0}}z}F_{p+1}$

$-\Delta_{0}t_{p-1}F_{p-1}+\frac{4}{\sigma_{0}}(t_{p-1})_{z}(F_{p-1})_{\overline{z}}+\frac{4}{\sigma_{O}}(t_{p-1}H_{z}F_{p-1})_{z}-t_{p-1}\Delta_{O}F_{p-1}$ .

PROPOSmON 4.1. If a compact, mass-symmetric, isotropic, minimal surface $M$ in
$CP^{n}(4)$ is of at m.ost 2-type, then $M$ has constant curvature and constant Kahler angle.

$PR\infty F$ . By Proposition 2.2, there exist real constants $b$ and $c$ such that the
matrix-valued function

$P=\Delta_{0}^{2}F_{0}+b\Delta_{0}F_{0}+c(F_{O}-(1/(n+1))/I)$

is identically zero. Since $\varphi$ is isotropic, $f_{p}$ is orthogonal to $f_{q}$ for $p\neq q$ . Since $t_{0}+t_{-1}=4$,
from (4.12), (4.13), (4.15) and (4.16), we have

$Pf_{0}=(16+t_{O}^{2}+t_{-1}^{2}+4b+c\frac{n}{n+1})f_{0}-\frac{4}{\sigma_{O}}(t_{O})_{\overline{z}}f_{1}+\frac{4}{\sigma_{0}}(t_{-1})_{z}\gamma_{-1}f_{-1}$ .

Sinoe $\varphi$ is not a constant map, we see that $f_{0}\not\equiv 0$, and either $f_{1}$ or $f_{-1}$ is not identically
zero. From $P\equiv 0$ , we see that either $(t_{O})_{\overline{z}}$ or $(t_{-1})_{z}$ is vanishing. Since each $t_{p}$ is a real-
valued function, we see that either $t_{0}$ or $t_{-1}$ is constant, so that there exist real constants
$\alpha$ and $\beta$ such that

(4.17) $\alpha\gamma_{0}+\beta\gamma_{-1}\equiv 0$

with $(\alpha, \beta)\neq(0,0)$ and both $t_{0}$ and $t_{-1}$ are constant. (4.6) and (4.17) imply that $M$ has
constant K\"ahler angle.

Since $t_{0}$ and $t_{-1}$ are constant, we have



MINIMAL 2-SPHERES 97

$\Delta_{0}^{2}F_{0}=4\Delta_{0}F_{0}-t_{0}\Delta_{0}F_{1}-t_{-1}\Delta_{0}F_{-1}$ ,

so that

(4.18) $Pf_{1}=(-4t_{0}-(t_{1}+t_{0})t_{0}-bt_{0}-c\frac{1}{n+1})f_{1}$ ,

(4.19) $Pf_{-1}=(-4t_{-1}-(t_{-1}+t_{-2})t_{-1}-bt_{-1}-c\frac{1}{n+1})f_{-1}$ .

Assume that $f_{1}\not\equiv 0$ . Then from (4.17), we have $\gamma_{0}\neq 0$ and $\gamma_{-1}=v\gamma_{0}$ with some constant
$v>0$ . Sinoe $P\equiv 0,$ $(4.18)$ implies that $t_{1}$ is constant so that there exists a constant $\mu$ such
that $\gamma_{1}=\mu\gamma_{0}$ . Then from (4.8) and (4.4), we get

$K_{0}=-\frac{2}{(1+v)\gamma_{0}}\frac{\partial^{2}}{\partial z\partial\overline{z}}\log(1+v)\gamma_{0}$

$=-\frac{2}{(1+v)\gamma_{0}}(\gamma_{1}-2\gamma_{0}+\gamma_{-1})$

$=-\frac{2(v+\mu-2)}{1+v}$ .

Therefore, $M$ has constant curvature.
Similarly, from (4.19), even if $f_{-1}\not\equiv 0,$ $M$ has constant curvature. $\square $

PROPOSITION 4,2. Compact, totally real, minimalflat surfaces in $CP^{n}(4)$ are never
isotropic.

$p_{R\infty F}$ . Let $\varphi:M\rightarrow CP^{n}$ be a totally real minimal immersion of a flat compact
Riemann surface $M$ in $CP^{n}$ , and $\{\varphi_{p}\}$ the corresponding harmonic sequence determined
by $\varphi$ with $\varphi=\varphi_{0}$ .

Since $\theta_{0}=\pi/2,$ $(4.6)$ implies $\gamma_{0}=\gamma_{-1}$ . Applying $\partial^{2}/\partial z\partial\overline{z}$, and using (4.4), we get
$\gamma_{1}=\gamma_{-2}$ . Sinoe $K_{0}=0,$ $(4.8)$ implies $\gamma_{1}=\gamma_{0}$ . Therefore, we have $\gamma_{1}=\gamma_{Q}=\gamma_{-t}=\gamma_{-2}(\not\equiv 0)$

so that (4.6) and (4.8) imply that both $\varphi_{1}$ and $\varphi_{-1}$ are also totally real minimal
immersions of $M$ in $CP^{n}$ , and the induced metrics are flat. Inductively, we obtain that
each $\varphi_{p}$ is totally real. Therefore, the sequenoe $\{\varphi_{p}\}$ never terminates so that $\varphi$ is not
isotropic. $\square $

In [5], Y. Ohnita showed the following:

THEOREM 4.3. Let $M$ be a minimal surface with constant curvature $K$ immersed
fully in $CP^{n}$ . Assume that the Kahler angle of $M$ is constant. Then the following hold:

(1) If$K>0$ , then there exists some $k$ with $0\leq k\leq n$ such that $M$ is an open submani-
fold of $\varphi_{n,k}(S^{2})$ .
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(2) $IfK=0$ ( $i.e.$ , Misflat), thenM is totally real.
(3) $K<0$ is impossible.

Let $\varphi:M\rightarrow CP^{n}$ be a mass-symmetric, 2-type, isotropic, minimal inlmersion of a
compact surfaoe $M$ in $CP^{n}(4)$ . From Proposition $B,$ $\varphi$ is full. Then, from Propositions
4.1, 4.2 and Theorem 4.3, we obtain that $M$ has positive constant curvature, and that
$\varphi:M\rightarrow CP^{n}$ is congruent to $\varphi_{n,k}$ : $S^{2}\rightarrow CP^{n}$ for some $k$ with $0\leq k\leq n$ . On the otheI
hand, from Theorem $C^{\prime}$ , we get $n\leq 4$ . Therefore, from Proposition 3.8, we obtain the
following:

THEOREM $D^{\prime}$ . $Ifa$ compact, mass-symmetric, isotropic, minimal surface $M$ in $CP^{n}(4)$

is of at most 2-type, then $M$ is ofpositive constant curvature, so that the immersion is
congruent to either $\varphi_{1.O},$ $\varphi_{1.1},$ $\varphi_{2,O},$ $\varphi_{2,1},$ $\varphi_{2,2}$ or $\varphi_{4,2}$ .

Theorem $D$ follows immediately from this theorem.

PROPOSITION 4.4. Let $M$ be a compact, mass-symmetric, isotropic, minimal surface
in $CP^{n}(4)$ . If $M$ is ofat most 3-type and with constant Kiihler angle, then $M$ is ofconstanl
curvature.

$PR\infty F$ . From (4.6), both $t_{O}$ and $t_{-1}$ are constant so that we have

$\Delta_{0}F_{0}=4F_{0}-t_{0}F_{1}-t_{-1}F_{-1}$ ,

$\Delta_{0}^{2}F_{0}=4\Delta_{0}F_{0}-t_{0}\Delta_{0}F_{1}-t_{-1}\Delta_{O}F_{-1}$ ,

$\Delta_{0}^{3}F_{0}=4\Delta_{0}^{2}F_{0}-t_{0}\Delta_{0}^{2}F_{1}-t_{-1}\Delta_{0}^{2}F_{-1}$ .
By Proposition 2.2, there exist real constants $a,$

$b$ and $c$ such that the matrix-valued
function

$P=\Delta_{o}^{3}F_{0}+a\Delta_{o}^{2}F_{0}+b\Delta_{0}F_{O}+c(F_{0}-\frac{1}{n+1}I)$

is identically zero. Since the K\"ahler angle is constant, from (4.6), there exist real con-
stants $\alpha$ and $\beta$ such that $\alpha\gamma_{0}+\beta\gamma_{-1}\equiv 0$ with $(\alpha, \beta)\neq(0,0)$ .

Assume that $\varphi$ is not antiholomorphic. Then we have $f_{1}\not\equiv 0$ and $\gamma_{-1}=v\gamma_{0}$ for
some $v>0$ so that from (4.8) and (4.4),

$K_{0}=-\frac{2}{(1+v)\gamma_{0}}(\gamma_{1}+(v-2)\gamma_{0})$ .

If $f_{2}\equiv 0$ , then $\gamma_{1}\equiv 0$ so that $M$ has constant curvature $K_{0}=-2(v-2)/(1+v)$ . So we
assume $f_{2}\not\equiv 0$ . Simple computation implies

$Pf_{2}=2t_{0}t_{1}(t_{1})_{z}f_{1}+(t_{0}(t_{1}(t_{2}+2t_{1}+4)+\Delta t_{1})+at_{0}t_{1}-\frac{c}{n+1})f_{2}-\frac{4}{\sigma_{O}}t_{0}(t_{1})-J_{3}$ ,
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and since $f_{1}\not\equiv O$ and $f_{2}\not\equiv O$ , we have $t_{0}\neq 0$ and $t_{1}\neq 0$ . Then $P\equiv 0$ implies $(t_{1})_{z}\equiv 0$ so
that $t_{1}$ is constant and there exists a constant $\mu$ such that $\gamma_{1}=\mu\gamma_{0}$ . Therefore, we obtain
$K_{0}=-2(v+\mu-2)/(1+v)$ so that $M$ has constant curvature.

Similarly, we see that if $\varphi$ is not holomorphic, then $M$ has constant curvature.
Therefore, Proposition 4.4 is proved completely. $\square $

By an argument similar to Theorem $D^{\prime}$ , Proposition 4.4 implies the following
theorem, from which Theorem $E$ follows immediately.

THEOREM $E^{\prime}$ . Let $M$ be a compact, mass-symmetric, isotropic, minimal surface in
$CP^{n}(4)$ . If $M$ is of at most 3-type and with constant Kahler angle, then $M$ is ofpositive
constant curvature, so that the immersion is congruent to either $\varphi_{n,k}(n=1,2,3,0\leq k\leq n)$ ,
$\varphi_{4,2}$ or $\varphi_{6,3}$ .

REMARK. There exists a compact, mass-symmetric, finite-type minimal surface in
$CP^{n}$ which is not isotropic. From example, a totally real flat minimal torus $T^{2}=$

$\pi(S^{1}(3)\times S^{1}(3)\times S^{1}(3))$ in $CP^{2}(4)$ is mass-symmetric, l-type and its harmonic sequence
is a cyclic infinite sequenoe, where $\pi:C^{3}-\{O\}\rightarrow CP^{2}$ is the projection.
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