Spherical Minimal Surfaces with Minimal Quadric Representation in Some Hyperquadric

Manuel BARROS and Oscar J. GARAY
Universidad de Granada
(Communicated by T. Nagano)

Abstract

The totally geodesic 2 -sphere and the Clifford torus in S^{3} are the only compact, minimal surfaces in S^{3} whose quadric representations yield minimally in hyperquadrics.

1. Introduction.

In 1970, H. B. Lawson, [La], showed that every compact surface but the projective plane (which is prohibited) can be minimally immersed into S^{3}. Even more, he discovered that one can find compact, orientable, minimal surfaces in S^{3} of arbitrary genus. New examples of compact embedded minimal surfaces in S^{3} were given in [K-P-S]. Therefore the class of compact minimal surfaces in the 3 -sphere is enormous. On the other hand, if we see S^{3} in the Euclidean space E^{4} as usual (that is embeded by its first standard immersion), then the minimal surfaces in S^{3} are constructed by using eigenfunctions of their Laplacian associated to the same eigenvalue $\lambda=2$. This is clear after a well-known result of T. Takahashi, [Ta].

Therefore, if we want to study minimal surfaces in S^{3} from the point of view of the spectral behaviour of their position vectors in the Euclidean space, it seems natural to immerse S^{3} in the Euclidean space by using a different embedding.

The second standard immersion of S^{3} in the Euclidean space can be defined in $S M(4)$, the Euclidean space of 4 -order real symmetric matrices, by using the products of coordinate functions of $S^{3} \subset E^{4}$, [T]. So minimal surfaces in S^{3} can be regarded into $S M(4)$ by means of their quadric representations (see the next section for details). This idea has been exploited by several authors to give nice characterizations of some minimal surfaces in S^{m} (including: The totally geodesic 2-sphere in S^{3}, the Clifford torus in S^{3}, the Veronese surfaces in S^{4} and S^{6} respectively and the equilateral flat torus in S^{5}) in the context of Finite Type theory of B. Y. Chen, [Ch1], (see for instance [R], [Ba-Ch1], [Ba-Ch2] and [Ba-Ur]).

It is known that the totally geodesic 2 -sphere is the only surface in S^{3} whose

[^0]Supported by a DGICYT grant PB91-0705-C02-01.
quadric representation yields minimally in some hypersphere of $S M(4)$ and consequently it is of mass-symmetric in such a hypersphere. Also one can see that the quadric representation of a Clifford torus in S^{3} is of mass-symmetric in some hypersphere of $S M(4)$ and yields minimally in some hyperquadric of $S M(4)$ concentric with the above mentioned hypersphere (see [$\mathrm{Ba}-\mathrm{Ga}$] and section 4). Furthermore in [$\mathrm{Ba}-\mathrm{Ga}$], the authors proved that the described situation characterizes the Clifford torus among all compact, minimal and non-totally geodesic surfaces of S^{3}.

However a natural and more general question appears:
Problem. Besides the Clifford torus and the totally geodesic 2-sphere, are there other compact minimal surfaces of S^{3} whose quadric representation is minimal in some hyperquadric of $S M(4)$?

In this paper we shall deal with this problem and answer this question by proving the following result:

Main Theorem. Let $x: M^{2} \rightarrow S^{3}$ be a compact, minimal surface of the 3-dimensional unit sphere and $\Phi: M^{2} \rightarrow S M(4)$ its quadric representation. Then $\left(M^{2}, \Phi\right)$ is minimal in some canonical hyperquadric of $S M(4)$, if and only if, $\left(M^{2}, x\right)$ is either totally geodesic or the Clifford torus in S^{3}.

In order to prove this result, we first observe that the hyperquadric, say Q, in which $\left(M^{2}, \Phi\right)$ yields minimally can not be a graph and so it is a hyperquadric with center, say Ψ_{o}. Then we use our main argument based in a systematic study of the nodal sets associated with the coordinate functions of $\left(M^{2}, x\right)$ in E^{4} (which are eigenfunctions of the Laplacian of M as we mentioned earlier) in order to get control on Ψ_{o}. In this manner, we are able to prove that Ψ_{o} is a diagonal matrix in $\operatorname{SM}(4)$ (see Theorem 1). Then we see that Ψ_{o} is not only a diagonal matrix but also $\Psi_{o}=\frac{1}{4} I$ (I being the identity matrix of order 4 in $S M(4)$) (see Proposition 3). Finally we can prove that the center of gravity, say Φ_{o}, of (M^{2}, Φ) coincides with Ψ_{o} and so $\left(M^{2}, \Phi\right)$ is of mass-symmetric in some hypersphere of $S M(4)$. Therefore the proof of our main theorem here is reduced to the main result of $[\mathrm{Ba}-\mathrm{Ga}]$ to which we have already alluded in connection with the statement of the Problem.

In view of our main theorem it is interesting to inquire whether the same kind of result can be achieved for compact minimal surfaces of S^{m} with $m>2$. In this direction, we can obtain a rational uniparametric family of minimal surfaces in $S^{5} \subset \boldsymbol{R}^{6}$ (one of whose members is the equilateral torus in S^{5}) whose quadric representations are minimal in certain hyperquadrics of $S M$ (6), (see Proposition 2). This shows that our result can not sharpened in this respect.

Our method does not work for minimal submanifolds of S^{m} with dimension greater than two. Probably, arbitrary dimension and codimension decreases the possibility of classification of this sort of submanifolds and further hypothesis would be necessary.

During a visit to the University of Ioannina, we posed the problem of finding new
methods for dealing with the classification of minimal hypersurfaces of the sphere with minimal quadric representation in some hyperquadric. Our natural feelings would have expected a richer family than that of the 2-dimensional case. However, the results of Hasanis-Vlachos in [H-V2], extending our characterization of the Clifford torus in [Ba-Ga], express a plausible state of affairs which stands in contradiction to our native geometrical intuition. Nevertheless the problem for minimal hypersurfaces of $S^{\boldsymbol{m}}$ is still open. It is expected that rather weak additional assumptions will suffice to restrict the domain of possibilities to those with which we are familiar.

2. The second standard immersion of $S^{\mathbf{3}}$.

First of all, we describe the most important of the notions discussed in subsequent paragraphs. We start then by enumerating the main facts about the second standard immersion of S^{3} and conclude by explaining the idea of quadric representation.

Let \boldsymbol{R}^{4} be the Euclidean space of dimension 4, endowed as usual with the inner product $\langle u, v\rangle=u \cdot v^{t}$ for any $u, v \in \boldsymbol{R}^{4}$, where a vector in \boldsymbol{R}^{4} is regarded as a 1 -row matrix and v^{t} denotes the transpose of v. Thus, we have that the unit 3 -sphere centered at the origin of \boldsymbol{R}^{4} is given by $S^{3}=\left\{u \in \boldsymbol{R}^{3} \mid\langle u, u\rangle=1\right\}$. Let $S M(4)=\left\{P \in g l(4, R) \mid P^{t}=P\right\}$ be the space of symmetric 4×4 matrices over \boldsymbol{R} endowed with the metric $g(P, Q)=\frac{1}{2} \operatorname{tr}(P \cdot Q)$ for any $P, Q \in S M(4)$. Consider the mapping $f: S^{3} \rightarrow S M(4)$ defined by $f(u)=u^{t} \cdot u$, then f is an isometric immersion which is actually the second standard immersion of S^{3}.

For each point $u \in S^{3}$, the normal space of S^{3} in $S M(4)$ at u (or more precisely at $f(u)$) is given by

$$
T_{u}^{\perp} S^{\mathbf{3}}=\{P \in S M(4) \mid u \cdot P=\mu u \text { for some } \mu \in \boldsymbol{R}\}
$$

In particular, we have that $f(u) \in T_{u}^{\perp} S^{3}$.
If $\bar{\sigma}$ denotes the second fundamental form of f, then

$$
\bar{\sigma}(X, Y)=X^{t} \cdot Y+Y^{t} \cdot X-2\langle X, Y\rangle f(u)
$$

for any $X, Y \in T_{u} S^{3}$. It is also well known, that $\bar{\sigma}$ is parallel and satisfies the following properties (see for instance [R]):

$$
\begin{gathered}
g(\bar{\sigma}(X, Y), \bar{\sigma}(V, W))=2\langle X, Y\rangle\langle V, W\rangle+\langle X, V\rangle\langle Y, W\rangle+\langle X, W\rangle\langle Y, V\rangle, \\
\bar{A}_{\bar{\sigma}(X, Y)} V=2\langle X, Y\rangle V+\langle X, V\rangle Y+\langle Y, V\rangle X \\
g(\bar{\sigma}(X, Y), f(u))=-\langle X, Y\rangle \\
g(\bar{\sigma}(X, Y), I)=0,
\end{gathered}
$$

where \bar{A} is the Weingarten map of f, X, Y, V, W are tangent vectors of S^{3} and I is the identity matrix.

It is also known that $S^{\mathbf{3}}$ is immersed via f as a minimal submanifold of a hypersphere of $S M(4)$ centered at $\frac{1}{4} I$ and of radius $r=\sqrt{3 / 8}$.

Now, let us consider an isometric immersion of a Riemannian surface M into the 3-sphere, $x: M^{2} \rightarrow S^{3}$. We can combine both immersions, x and f to obtain an isometric immersion $\Phi=f \circ x: M \rightarrow S M(4)$, and since the coordinates of Φ depend quadratically on the coordinates of x, we say that Φ is the quadric representation of x (or of M). Also, $\Phi(M)$ will be called the quadric representation image of M (see [Di] for some properties related with this topic).

3. Basic properties.

With a view to future applications, we wish to establish some properties of our immersion. Let $x: M \rightarrow S^{3} \subset E^{4}$ be a compact, minimal surface in the unit 3-sphere and consider its quadric representation $\Phi: M \rightarrow S M(4)$. We already know that $\Phi(M)$ is contained in some hypersphere of $S M(4)$ with center $\frac{1}{4} I(I$ being the identity matrix of order 4$)$. The center of gravity of Φ is $\Phi_{o}=\left(a_{i j}\right)$ where

$$
\begin{equation*}
a_{i j}=\frac{1}{\operatorname{vol}(M)} \int_{M} x_{i} x_{j} d v \tag{1}
\end{equation*}
$$

Let Q be a canonical hyperquadric, that is, a hyperquadric which in the coordinate system $u_{i j}=x_{i} x_{j}$ takes one of the following forms:

$$
\begin{gathered}
\sum_{i \leq j} r_{i j}\left(u_{i j}-b_{i j}\right)^{2}=k \\
\sum_{i \leq j, i \neq 3} r_{i j}\left(u_{i j}-b_{i j}\right)^{2}+2 u_{33}=0,
\end{gathered}
$$

$r_{i j}, b_{i j}, k \in \boldsymbol{R}$.
Now let assume that (M, Φ) is minimal in some canonical hyperquadric, say Q, with center $\Psi_{o}=\left(b_{i j}\right)$. As we shall see (Remark 1) one can assume without loss of generality that Q is given in the coordinate system $u_{i j}=x_{i} x_{j}$ by

$$
\begin{equation*}
\sum_{i \leq j} r_{i j}\left(u_{i j}-b_{i j}\right)^{2}=k \tag{2}
\end{equation*}
$$

for some real constants $r_{i j}$ and k.
We define $h: S M(4) \rightarrow R$ by $h\left(u_{i j}\right)=\sum_{i \leq j} r_{i j}\left(u_{i j}-b_{i j}\right)^{2}$ and denote by H the mean curvature vector field of (M, Φ). Then one has

$$
\begin{equation*}
\Delta \phi=-2 H . \tag{3}
\end{equation*}
$$

Since (M, Φ) is minimal in Q, H must be normal to Q in $S M(4)$, so there exists a smooth function μ on M with

$$
\begin{equation*}
H=\mu \nabla h \tag{4}
\end{equation*}
$$

where ∇h denotes the gradient of h in $S M(4)$ restricted to (M, Φ)
Notice that since (M, Φ) has non-zero constant mean curvatue, namely $|H|^{2}=3$, then $\mu(p) \neq 0$ at any point p of M. Therefore we combine (3) with (4) to get

$$
\begin{equation*}
\Delta\left(x_{i} x_{j}\right)=-4 \mu r_{i j}\left(x_{i} x_{j}-b_{i j}\right) \tag{5}
\end{equation*}
$$

From now on, we will consider that (M, x) is a non-totally geodesic surface in S^{3}. Consequently $r_{i i} \neq 0$, otherwise we use (5) to see that $x_{i}^{2}=c_{i}$ is constant on M and so $c_{i}=0$ which is impossible.

Lemma 1. The following properties hold:

$$
\sum_{i=1}^{4} b_{i i}=1, \quad r_{i j} \neq 0, \quad r_{11}=r_{22}=r_{33}=r_{44}=r
$$

Proof. First we use (5) to get $\int_{M} \mu\left(x_{i}^{2}-b_{i i}\right) d v=0$ and so $\int_{M} \mu d v=\int_{M} \mu d v\left(\sum_{i=1}^{4} b_{i i}\right)$ which proves the first formula.

Next let us assume $r_{i j}=0$ then $x_{i} x_{j}$ must be a constant and so it must be zero because x_{i} are eigenfunctions of M. Set $U=\left\{p \in M \mid x_{j}(p) \neq 0\right\}$, if U is a non-empty open subset of M, then we apply (5) to obtain $4 \mu r_{i i} b_{i i}=0$ on U and so $b_{i i}=0$. Now we come back to (5) to get

$$
\begin{equation*}
\Delta x_{i}^{2}=-4 \mu r_{i i} x_{i}^{2} \tag{6}
\end{equation*}
$$

which is impossible because (M, x) is not totally geodesic in S^{3}.
Finally we use again (5) to have $4 \mu \sum_{i=1}^{4} r_{i i}\left(x_{i}^{2}-b_{i i}\right)=0$ and because μ does not vanish, M is contained in the hypersurface of E^{4} given by

$$
\begin{equation*}
\sum_{i=1}^{4} r_{i i}\left(x_{i}^{2}-b_{i i}\right)=0 \tag{7}
\end{equation*}
$$

Then we apply Δ to this relation to prove that M also satisfies

$$
\begin{equation*}
\sum_{i=1}^{4} r_{i i}^{2}\left(x_{i}^{2}-b_{i i}\right)=0 \tag{8}
\end{equation*}
$$

Since M is contained in S^{3} we use an easy argument involving (7) and (8) to see that $r_{i i} 1 \leq i \leq 4$ are roots of a second order polynomial. Now it is easy to see that the only possibility that one has is that described in the statement.
(Q.E.D.)

Now we can combine (5) with the fact that $\Delta x_{i}=2 x_{i}$, to get the following useful equation

$$
\begin{equation*}
\left\langle\nabla x_{i}, \nabla x_{j}\right\rangle=2\left(1+r_{i j} \mu\right) x_{i} x_{j}-2 \mu r_{i j} b_{i j} \tag{9}
\end{equation*}
$$

where ∇x_{i} denotes the gradient of x_{i} in M.

The mean curvature vector field H of (M, Φ) regarded in $S M(4)$ can be written as

$$
\begin{equation*}
H=\frac{1}{2} \sum_{i=1}^{2} \bar{\sigma}\left(E_{i}, E_{i}\right)=E_{1}^{t} E_{1}+E_{2}^{t} E_{2}-2 x^{t} x \tag{10}
\end{equation*}
$$

where $\left\{E_{1}, E_{2}\right\}$ denotes an orthonormal basis on the tangent plane of M. We set $\Omega=\Delta \Phi=-2 H$ which can be certainly regarded as a field of endomorphisms on R^{4} along M and in particular

$$
\begin{equation*}
\Omega(x)=x \cdot \Omega=4 x . \tag{11}
\end{equation*}
$$

This relation gives us

$$
\begin{equation*}
\mu\left(x_{j} \sum_{i=1}^{4} r_{j i} x_{i}^{2}-\sum_{i=1}^{4} r_{j i} b_{j i} x_{i}\right)+x_{j}=0 \tag{12}
\end{equation*}
$$

where $1 \leq j \leq 4$.
Remark 1. If $F: S M(4) \rightarrow \boldsymbol{R}$ is a differentiable map and we suppose that (M, Φ) is minimal in some hypersurface $F^{-1}(c)$, then its mean curvature vector field H satisfies

$$
H=\mu \nabla F
$$

where ∇F denotes the gradient of F in $S M(4)$ restricted to (M, Φ) and μ is nothing but a smooth function on M which is non-zero anywhere. The above equation can be written as follows:

$$
\Delta\left(x_{i} x_{j}\right)=-2 \mu \frac{\partial F}{\partial u_{i j}}
$$

where $u_{i j}=x_{i} x_{j}, 1 \leq i, j \leq 4$. This shows that $F^{-1}(c)$ can not be a graph. For this reason we have assumed that Q is a hyperquadric with center.

4. Some examples.

We postpone for the time being the proofs of the main results and first, as a kind of illustrative exercise, we give examples of minimal surfaces of S^{5} whose quadric representation is minimal in hyperquadrics. This digression is in fact more than a preliminary exercise. We shall see, Proposition 2, that our main theorem has no equivalent in higher codimension.

Let a be any non-zero, positive real number and define a surface in E^{4} by

$$
\begin{equation*}
M_{a}: x(u, v)=(\cos u \cos a v, \cos u \sin a v, \sin u \cos v, \sin u \sin v) . \tag{13}
\end{equation*}
$$

These surfaces were studied by H. B. Lawson, [La], and they are minimal surfaces in $S^{3} \subset E^{4}$. In particular when $a=1$, one obtains the Clifford torus in $S^{3} \subset E^{4}$.

The Laplacian of M_{a} with the induced metric is given by

$$
\begin{equation*}
\Delta=-\frac{\partial^{2}}{\partial u^{2}}-\frac{1}{g} \frac{\partial^{2}}{\partial v^{2}}-\frac{1}{g}\left(1-a^{2}\right) \cos u \sin u \frac{\partial}{\partial u} \tag{14}
\end{equation*}
$$

where $g=a^{2} \cos ^{2} u+\sin ^{2} u$, (the determinant of the first fundamental form of M_{a}).
Now we consider the quadric representation of $M_{a}, \Phi_{a}: M_{a} \rightarrow S M(4)$ defined by

$$
\begin{equation*}
\Phi_{a}(x(u, v))=x^{t}(u, v) \cdot x(u, v)=\left(u_{i j}(u, v)=x_{i}(u, v) \cdot x_{j}(u, v)\right) \tag{15}
\end{equation*}
$$

where $1 \leq i, j \leq 4$.
A long and direct computation shows that along M_{a} one has

$$
\begin{align*}
& \Delta u_{11}=6 u_{11}-\frac{2 a^{2}}{g} u_{22}-\frac{2 u_{11}}{u_{11}+u_{22}}, \tag{16}\\
& \Delta u_{22}=6 u_{22}-\frac{2 a^{2}}{g} u_{11}-\frac{2 u_{22}}{u_{11}+u_{22}} \tag{17}
\end{align*}
$$

Also notice that $g=a^{2}\left(u_{11}+u_{22}\right)+u_{33}+u_{44}$.
It is clear that $\left(M_{a}, \Phi_{a}\right)$ is minimal in a hyperquadric, say $F^{-1}(0)$, where F is some polynomial of degree two on $S M(4)$ if and only if there exists some smooth function, say μ, on M_{a} such that

$$
\begin{equation*}
\Delta \Phi_{a}=-2 \mu \nabla F \tag{18}
\end{equation*}
$$

In particular if $\left(M_{a}, \Phi_{a}\right)$ is minimal in $F^{-1}(0)$, we use (16), (17) and (18) to get

$$
\begin{align*}
\frac{\partial F}{\partial u_{22}} & \left(6 u_{11} g\left(u_{11}+u_{22}\right)-2 a^{2} u_{11}\left(u_{11}+u_{22}\right)-2 u_{22} g\right) \\
& =\frac{\partial F}{\partial u_{11}}\left(6 u_{22} g\left(u_{11}+u_{22}\right)-2 a^{2} u_{11}\left(u_{11}+u_{22}\right)-2 u_{22} g\right) . \tag{19}
\end{align*}
$$

A new direct computation, involving the fact that $\partial F / \partial u_{11}$ and $\partial F / \partial u_{22}$ are polynomials of degree one and (18), shows that the only possibility is $a=1$. Therefore we have:

Proposition 1. ($\left.M_{a}, \Phi_{a}\right)$ is minimal in some hyperquadric of $S M(4)$ if and only if $a=1$ and so $\left(M_{1}, \Phi_{1}\right)$ is the Clifford torus in $S^{3} \subset E^{4}$.

Remark 2. Notice that our main theorem is an extension of the statement proved in the above proposition.

The next example will show that our main theorem is the best possible in the sense that it does not admit extension to minimal surfaces in $S^{m} \subset E^{m+1}$. In fact we are going to obtain a rational uniparametric family of minimal surfaces in $S^{5} \subset E^{6}$ whose quadric representations are minimal in hyperquadrics of $S M(6)$. Let t be a real number with $0<t \leq \frac{1}{2}$ and $\sqrt{2 t} \in Q$. Define a surface in E^{6} by

$$
\begin{align*}
M_{t}: x(\theta, \tau)=\frac{1}{\sqrt{2(2-t)}} & (\cos \theta, \sin \theta, \cos \tau, \sin \tau \\
& \left.\sqrt{2(1-t)} \cos \frac{\theta+\tau}{\sqrt{2 t}}, \sqrt{2(1-t)} \sin \frac{\theta+\tau}{\sqrt{2 t}}\right) . \tag{20}
\end{align*}
$$

These surfaces were studied by K. Kenmotsu, [Ke], and they are minimal flat tori in $S^{5} \subset E^{6}$. In particular when $t=\frac{1}{2}$ one obtains the so-called equilateral torus. The Laplacian of M_{t} with the induced flat metric is given by

$$
\begin{equation*}
\Delta=-2\left(\frac{\partial^{2}}{\partial \theta^{2}}-2(1-t) \frac{\partial^{2}}{\partial \theta \partial \tau}+\frac{\partial^{2}}{\partial \tau^{2}}\right) \tag{21}
\end{equation*}
$$

Let us consider the quadric representation $\left(M_{t}, \Phi_{t}\right)$ of M_{t} into $S M(6)$. We put $\Phi_{t}=\left(u_{i j}=x_{i} \cdot x_{j}\right), 1 \leq i, j \leq 6$. From a direct, long computation we obtain $\Delta \Phi_{t}$ which can be described as follows:

$$
\begin{gathered}
\Delta\left(u_{i i}-\frac{1}{4(2-t)}\right)=8\left(u_{i i}-\frac{1}{4(2-t)}\right), \\
\Delta\left(u_{j j}-\frac{1-t}{2(2-t)}\right)=8\left(u_{j j}-\frac{1-t}{2(2-t)}\right), \\
\Delta u_{12}=8 u_{12}, \quad \Delta u_{13}=4 u_{13}+4(1-t) u_{24}, \Delta u_{14}=4 u_{14}-4(1-t) u_{23}, \\
\Delta u_{15}=4 u_{15}-\frac{4 t}{\sqrt{2 t}} u_{26}, \quad \Delta u_{16}=4 u_{16}+\frac{4 t}{\sqrt{2 t}} u_{25}, \\
\Delta u_{23}=4 u_{23}-4(1-t) u_{14}, \quad \Delta u_{24}=4 u_{24}+4(1-t) u_{13}, \\
\Delta u_{25}=4 u_{25}+\frac{4 t}{\sqrt{2 t}} u_{16}, \quad \Delta u_{26}=4 u_{26}-\frac{4 t}{\sqrt{2 t}} u_{15}, \quad \Delta u_{34}=8 u_{34}, \\
\Delta u_{35}=4 u_{35}-\frac{4 t}{\sqrt{2 t}} u_{46}, \quad \Delta u_{36}=4 u_{36}+\frac{4 t}{\sqrt{2 t}} u_{45}, \\
\Delta u_{45}=4 u_{45}+\frac{4 t}{\sqrt{2 t}} u_{36}, \quad \Delta u_{46}=4 u_{46}-\frac{4 t}{\sqrt{2 t}} u_{35}, \quad \Delta u_{56}=8 u_{56},
\end{gathered}
$$

where $1 \leq i \leq 4$ and $5 \leq j \leq 6$.
Let us define $F_{t}: S M(6) \rightarrow R$ by

$$
\begin{aligned}
F_{t}\left(\left(u_{i j}\right)\right)= & \frac{1}{2} \sum_{i=1}^{4}\left(u_{i i}-\frac{1}{4(2-t)}\right)^{2}+\frac{1}{2} \sum_{j=5}^{6}\left(u_{j j}-\frac{1-t}{2(2-t)}\right)^{2} \\
& +\frac{1}{2}\left(u_{12}^{2}+u_{34}^{2}+u_{56}^{2}\right)+\frac{1}{4}\left(u_{13}^{2}+u_{24}^{2}\right)+\frac{1}{4}\left(u_{14}^{2}+u_{23}^{2}+u_{15}^{2}+u_{26}^{2}+u_{16}^{2}\right) \\
& +\frac{1}{4}\left(u_{25}^{2}+u_{35}^{2}+u_{46}^{2}+u_{36}^{2}+u_{45}^{2}\right)+\frac{1}{2}(1-t)\left(u_{13} u_{24}-u_{14} u_{23}\right)
\end{aligned}
$$

$$
+\frac{t}{2 \sqrt{2 t}}\left(u_{16} u_{25}+u_{36} u_{45}-u_{15} u_{26}-u_{35} u_{46}\right)
$$

It is not difficult to see that $\Delta \Phi_{t}=8 \nabla F_{t}$ along M_{t} which proves that $\left(M_{t}, \Phi_{t}\right)$ is minimal in some hyperquadric $F_{t}^{-1}(r)$ for all t.

Proposition 2. For a given $t \in \boldsymbol{R}$ satisfying $0<t \leq \frac{1}{2}$ and $\sqrt{2 t} \in \boldsymbol{Q}, M_{t}$ is a minimal flat torus in $S^{5} \subset E^{6}$ whose quadric representation $\left(M_{t}, \Phi_{t}\right)$ is minimal in some hyperquadric of $\operatorname{SM}(6)$.

This proposition is particularly noteworthy because, as a consequence, the codimension of the surface has a very clear geometrical influence and leaves open the problem for surfaces of $S^{m}, m>3$.

5. The nodal lines.

We must undertake in this section a somewhat complicated way of studying the nodal sets of the eigenfunctions x_{i} on M, in order to get control on the center $\Psi_{o}=\left(b_{i j}\right)$ of the hyperquadric Q in which (M, Φ) yields minimally.

First of all, under the assumption that Ψ_{o} is not a diagonal matrix, we derive a group of lemmas in which a role is played by the geometry of the nodal sets of the coordinate functions. Then, by using our work $[\mathrm{Ba}-\mathrm{Ga}]$ we show how the conclusions of these lemmas would lead to contradiction, so that Ψ_{o} must be a diagonal matrix.

Denote by $C_{j}=x_{j}^{-1}(0)=\left\{p \in M \mid x_{j}(p)=0\right\}$ the nodal set associated to the eigenfunctions $x_{j}, 1 \leq j \leq 4$, on M. Let us assume that Ψ_{o} is not a diagonal matrix so that without loss of generality we consider $b_{12} \neq 0$.

Lemma 2. $C_{1}=x_{1}^{-1}(0)$ is a great circle of the unit 2-sphere $S^{2}=S^{3} \cap\left\{x_{1}=0\right\}$. Moreover μ is a constant on C_{1} and it satisfies

$$
\begin{equation*}
r \mu=-3 / 2 \tag{22}
\end{equation*}
$$

Proof. We start by using the first equation of (12) and the above mentioned fact that μ does not vanish to see that C_{1} must satisfy

$$
\begin{gather*}
x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1 \\
r_{12} b_{12} x_{2}+r_{13} b_{13} x_{3}+r_{14} b_{14} x_{4}=0 \tag{23}
\end{gather*}
$$

Since $b_{12} \neq 0$, the last formulae prove the first statement of the lemma. In particular one can parametrize C_{1} as $\alpha_{1}(s)=\left(0, x_{2}(s), x_{3}(s), x_{4}(s)\right)$ in such a way that $\left|\alpha_{1}^{\prime}(s)\right|=1$ and

$$
\begin{equation*}
x_{i}^{\prime \prime}(s)=-x_{i}(s) \tag{24}
\end{equation*}
$$

where $2 \leq i \leq 4$. Then we systematically use (9) to prove

$$
\begin{gather*}
\left|\nabla x_{1}(s)\right|^{2}=-2 \mu(s) r b_{11} \neq 0, \tag{25}\\
\nabla x_{j}(s)=x_{j}^{\prime}(s) \alpha_{1}^{\prime}(s)+\frac{r_{1 j} b_{1 j}}{r b_{11}} \nabla x_{1}(s) \tag{26}
\end{gather*}
$$

Once more we use (9) and combine it with (26) to obtain

$$
\begin{equation*}
x_{j}^{\prime}(s) x_{k}^{\prime}(s)=2\left(1+r_{j k} \mu(s)\right) x_{j}(s) x_{k}(s)+2 \mu(s) c_{j k} \tag{27}
\end{equation*}
$$

with $c_{j k}=r_{1 j} r_{1 k} b_{1 j} b_{1 k} /\left(r b_{11}\right)-r_{j k} b_{j k}$.
In particular

$$
\begin{equation*}
\left(x_{j}^{\prime}(s)\right)^{2}=2(1+r \mu(s)) x_{j}^{2}(s)+2 \mu(s) c_{j j} \tag{28}
\end{equation*}
$$

and summing up these identities for j running from 2 to 4 we get the constancy of μ along C_{1}.

Next we combine (24) with (27) and (28) respectively to obtain

$$
\begin{gather*}
\left(3+2 r_{j k} \mu\right) x_{j}(s) x_{k}(s)=0 \tag{29}\\
(3+2 r \mu) x_{j}(s)^{2}=0 \tag{30}
\end{gather*}
$$

Now we already know that C_{1} is a great circle of S^{2}, then it must intersect to any other great circle of S^{2}, in particular to those defined by $x_{j}=0,2 \leq j \leq 4$. Now (30) proves (22).
(Q.E.D.)

Lemma 3. The following relations hold:

$$
\begin{gathered}
b_{13}=b_{14}=b_{23}=b_{24}=b_{34}=0, \quad r_{12}^{2} b_{12}^{2}-r^{2} b_{11} b_{22}=0, \\
r_{34}=r, \quad b_{33}=b_{44}=1 / 3 .
\end{gathered}
$$

Proof. Using (29) and (30) in (27) and (28) we have

$$
\begin{gather*}
x_{j}^{\prime}(s) x_{k}^{\prime}(s)=-x_{j}(s) x_{k}(s)+2 \mu c_{j k} \tag{31}\\
\left(x_{j}^{\prime}(s)\right)^{2}=-x_{j}(s)^{2}+2 \mu c_{j j} \tag{32}
\end{gather*}
$$

On the other hand one may consider the quadric representation of $C_{1}=S^{1}$ whose center of gravity, say $\bar{\Phi}_{o}$, is a diagonal matrix. So if $\bar{\Delta}$ denotes its Laplacian, one uses (23) and (31) to obtain

$$
\bar{\Delta}\left(x_{j}(s) x_{k}(s)\right)=-\frac{d^{2}}{d s^{2}}\left(x_{j}(s) x_{k}(s)\right)=4 x_{j}(s) x_{k}(s)-4 \mu c_{j k}
$$

Thus if $j \neq k$

$$
0=\int_{C_{1}} \bar{\Delta}\left(x_{j}(s) x_{k}(s)\right) d s=-8 \pi \mu c_{j k}
$$

which proves that

$$
\begin{equation*}
c_{j k}=0 \tag{33}
\end{equation*}
$$

where $j \neq k$.
Equation (24) allows us to write $x_{j}(s)=m_{j} \cos s+n_{j} \sin s, 2 \leq j \leq 4$, for certain real constants m_{j} and n_{j}. Hence we use (31) and (33) to prove

$$
\begin{equation*}
m_{j} m_{k}+n_{j} n_{k}=0 \tag{34}
\end{equation*}
$$

where $j \neq k$. Now it is easy to see that (34) implies that some $x_{j}(s), 2 \leq j \leq 4$, vanishes identically along $C_{1}=x_{1}^{-1}(0)$. Since we are assuming that $b_{12} \neq 0$, it is clear from (23) that $x_{2}(s)$ vanishes identically on C_{1} and so $C_{1}=C_{2}$. Consequently $b_{13}=b_{14}=0$. Also one uses the same argument on $C_{2}=C_{1}$ to obtain $b_{23}=b_{24}=0$. Furthermore we can choose $x_{3}(s)=\cos s$ and $x_{4}(s)=\sin s$, along C_{1} and then use them in (31) and (32) to get $b_{34}=0, r_{12}^{2} b_{12}^{2}-r^{2} b_{11} b_{22}=0$ and $b_{33}=b_{44}=1 / 3$. Finally combining the information we have just obtained with (12) we have

$$
\mu\left(r \cos ^{2} s+r_{34} \sin ^{2} s\right)+\frac{3}{2}=0, \quad \mu\left(r_{34} \cos ^{2} s+r \sin ^{2} s\right)+\frac{3}{2}=0,
$$

in particular, we obtain $r_{34}=r$ and the proof is complete.
(Q.E.D.)

Our next step is the study of the nodal set $C_{4}=x_{4}^{-1}(0)$ associated with the eigenfunction x_{4} on $M . C_{4}$ consists of a finite number of circles, [Che], but actually it can be checked that it is regular. Thus we parametrize C_{4} by $\alpha_{4}(s)=\left(x_{1}(s), x_{2}(s), x_{3}(s), 0\right)$ with $\left|\alpha_{4}^{\prime}(s)\right|=1$. From (9), one has $\left\langle\nabla x_{j}(s), \nabla x_{4}(s)\right\rangle=0,1 \leq j \leq 3$, along C_{4} and so $\nabla x_{j}(s)=x_{j}^{\prime}(s) \alpha_{4}^{\prime}(s), 1 \leq j \leq 4$. Once more we use (9) to obtain

$$
\begin{align*}
x_{1}^{\prime}(s) x_{2}^{\prime}(s) & =2\left(1+r_{12} \mu(s)\right) x_{1}(s) x_{2}(s)-2 \mu(s) r_{12} b_{12}, \tag{35}\\
x_{1}^{\prime}(s) x_{3}^{\prime}(s) & =2\left(1+r_{13} \mu(s)\right) x_{1}(s) x_{3}(s), \tag{36}\\
x_{2}^{\prime}(s) x_{3}^{\prime}(s) & =2\left(1+r_{23} \mu(s)\right) x_{2}(s) x_{3}(s), \tag{37}\\
\left(x_{1}^{\prime}(s)\right)^{2} & =2(1+r \mu(s)) x_{1}^{2}(s)-2 r \mu(s) b_{11}, \tag{38}\\
\left(x_{2}^{\prime}(s)\right)^{2} & =2(1+r \mu(s)) x_{2}^{2}(s)-2 r \mu(s) b_{22}, \tag{39}\\
\left(x_{3}^{\prime}(s)\right)^{2} & =2(1+r \mu(s)) x_{3}^{2}(s)-2 r \mu(s) b_{33}, \tag{40}
\end{align*}
$$

along C_{4}.
One can combine (38), (39) and (40) with Lemmas 1 and 3 to prove that $\mu(s)$ must be a constant along C_{4}, namely $r \mu=-3 / 2$. Therefore (38), (39) and (40) turn to

$$
\begin{align*}
& \left(x_{1}^{\prime}(s)\right)^{2}=-x_{1}^{2}(s)+3 b_{11}, \tag{41}\\
& \left(x_{2}^{\prime}(s)\right)^{2}=-x_{2}^{2}(s)+3 b_{22}, \tag{42}\\
& \left(x_{3}^{\prime}(s)\right)^{2}=-x_{3}^{2}(s)+1 . \tag{43}
\end{align*}
$$

Lemma 4. The nodal line $C_{4}=x_{4}^{-1}(0)$ consists of a finite number of great circles in the 2-sphere $S^{3} \cap\left\{x_{4}=0\right\}$.

Proof. According to a well-known result of S. Y. Cheng, [Che], we already know that C_{4} consists of a finite number of circles immersed in $M \subset S^{3}$. Therefore it is enough to prove that $\left(d^{2} / d s^{2}\right) x_{i}(s)=-x_{i}(s), 1 \leq i \leq 3$, along C_{4}.

First we use (43), (41) and (42) to see that $x_{i}^{\prime \prime}(s) x_{i}^{\prime}(s)=-x_{i}(s) x_{i}^{\prime}(s), 1 \leq i \leq 3$. Thus we will prove that $x_{i}^{\prime}(s) \neq 0$ on an open subset which is dense in C_{4} and then use continuity.

Since $\alpha_{4}(s)$ is regular we see from (43) that, s_{o} is a critical point of $x_{3}(s)$ if and only if $x_{3}\left(s_{o}\right)= \pm 1$ and so $\alpha_{4}\left(s_{o}\right)=(0,0, \pm 1,0)$. Consequently, $x_{3}(s)$ has isolated critical points on C_{4} which proves that $x_{3}^{\prime \prime}(s)=-x_{3}(s)$ along C_{4}.

Next let us prove that $1+r_{13} \mu \neq 0$ and the same argument works for $1+r_{23} \mu \neq 0$. In fact, otherwise (36) proves that $x_{1}^{\prime}(s) x_{3}^{\prime}(s)=0$ along C_{4} and so $x_{1}^{\prime}(s)$ vanishes identically on an open subset, dense in C_{4}. This fact combined with (35) proves that $x_{1}(s)$ and $x_{2}(s)$ are constant on C_{4}, which is impossible.

Finally let us consider $R=\left\{p \in C_{4} \mid x_{3}(p) \neq 0\right\}$. It is an open subset which is dense in C_{4}. In fact since $b_{34}=0$, one can use (9) along C_{4} to see that $C_{4}-\boldsymbol{R}$ can not contain any open subset. It is also clear that $x_{1}^{\prime}(s) \neq 0$ and $x_{2}^{\prime}(s) \neq 0$ on \boldsymbol{R} otherwise either (37) or (36) would imply that either $x_{1}(s)$ and $x_{1}^{\prime}(s)$ at a point vanish or $x_{2}(s)$ and $x_{2}^{\prime}(s)$ vanish, which is impossible.
(Q.E.D.)

Now we use the last lemma and come back to (37), (35) and (36) to get

$$
\begin{equation*}
\left(3+2 r_{i j} \mu\right)\left(x_{i}(s) x_{j}(s)\right)^{\prime}=0 \tag{44}
\end{equation*}
$$

where $1 \leq i \neq j \leq 3$.
If $3+2 r_{i j} \mu \neq 0$, then $x_{i}(s) x_{j}(s)$ must be constant on C_{4}. Since Lemma 4 shows that $x_{i}(s)$ are eigenfunctions of the Laplacian of C_{4}, such a constant is zero and so $x_{i}(s) x_{j}(s)$ vanishes identically on C_{4}. Therefore on the open subset $U=\left\{p \in C_{4} \mid x_{j}(p) \neq 0\right\}, x_{i}(s)$ vanishes identically and this is impossible by (9) and $b_{j 4}=0,1 \leq j \leq 3$. Consequently $r_{12} \mu=r_{13} \mu=r_{23} \mu=-3 / 2$. Now we use this information in (12) to get $\mu r=-3 / 2$ in $M-C_{3}$. But that is also true along C_{3} because we can use the same argument as that we did along C_{4}. Therefore we prove that μ is a constant on M.

Theorem 1. Let (M, x) be a compact minimal surface in the unit 3-sphere $S^{3} \subset E^{4}$. If its quadric representation is minimal in some canonical hyperquadric Q of $S M(4)$ with center Ψ_{o}, then Ψ_{o} is a diagonal matrix.

Proof. If Ψ_{o} were not a diagonal matrix, then we already know that the smooth function μ must be some non-zero constant on M.

On the other hand, from (5) we have

$$
b_{i j}=\frac{1}{\operatorname{vol}(M)} \int_{M} x_{i} x_{j} d v=a_{i j}
$$

which would prove that the center of gravity Φ_{o} of Φ coincides with the center Ψ_{o} of Q. Now we use the lemma and the main theorem of $[\mathrm{Ba}-\mathrm{Ga}]$ to see that (M, x) would be a Clifford torus in S^{3} and this is impossible because in that case $\Phi_{o}=\Psi_{o}$ would be a diagonal matrix.
(Q.E.D.)

6. Proof of the main theorem.

We turn now to a circle of questions centered around how one is to decide whether the centre of $(M, \Phi), \Phi_{o}$, coincides with that of Q, Ψ_{o}, or not. According to the last section, we can suppose from now on that Ψ_{o} is a diagonal matrix. The aim is to prove that Ψ_{o} is not only a diagonal matrix but also a multiple of the identity matrix. In order to prove that we first notice that all nodal curves associated to the eigenfunctions x_{i} have the same behaviour and so without loss of generality we will consider the nodal set C_{1}. From (9) we have $\left|\nabla x_{1}\right|^{2}=-2 \mu r b_{11}>0$ along C_{1}, so C_{1} is a regular curve which can be parametrized by the length of the arc as $\alpha_{1}(s)=\left(0, x_{2}(s), x_{3}(s), x_{4}(s)\right)$. Then we use (9) once more to get

$$
\begin{gather*}
\nabla x_{j}(s)=x_{j}^{\prime}(s) \alpha_{1}^{\prime}(s), \tag{45}\\
x_{j}^{\prime}(s) x_{k}^{\prime}(s)=2\left(1+r_{j k} \mu(s)\right) x_{j}(s) x_{k}(s) \tag{46}\\
\left(x_{j}^{\prime}(s)\right)^{2}=2(1+r \mu(s)) x_{j}^{2}(s)-2 \mu(s) r b_{j j} \tag{47}
\end{gather*}
$$

where $2 \leq j \neq k \leq 4$.
Lemma 5. The smooth function μ is constant along the nodal lines $C_{j}=x_{j}^{-1}(0)$. Namely $\mu=-1 /\left(2 r b_{j j}\right)$ along C_{j}.

Proof. Without loss of generality one can prove the lemma for $j=1$. But this follows automatically from (47).
(Q.E.D.)

Now (47) can be written as

$$
\begin{equation*}
\left(x_{j}^{\prime}(s)\right)^{2}=\frac{2 b_{11}-1}{b_{11}} x_{j}^{2}(s)+\frac{b_{j j}}{b_{11}} \tag{48}
\end{equation*}
$$

Lemma 6. There exists an open subset U in C_{1} in which one of the coordinate functions $x_{j}(s), 2 \leq j \leq 4$, must be a non-zero constant.

Proof. If $1+r_{34} \mu=0$, then we use (46) to get

$$
\begin{equation*}
x_{3}^{\prime}(s) x_{4}^{\prime}(s)=0 \tag{49}
\end{equation*}
$$

and so consider $U=\left\{p \in C_{1} \mid x_{4}^{\prime}(p) \neq 0\right\}$, an open subset of C_{1} on which $x_{3}(s)$ is a non-zero constant because of (48) and $b_{33} \neq 0$.

In the case $1+r_{34} \mu \neq 0$, one can use systematically (46) and (48) to obtain

$$
\left(\frac{2\left(1+r_{23} \mu\right)\left(1+r_{24} \mu\right)}{1+r_{34} \mu}+\frac{1-2 b_{11}}{b_{11}}\right) x_{2}^{2}(s) x_{3}(s) x_{4}(s)=\frac{b_{22}}{b_{11}} x_{3}(s) x_{4}(s)
$$

and so take $U=\left\{p \in C_{1} \mid x_{3}(p) x_{4}(p) \neq 0\right\}$ to have that $x_{2}(s)$ must be a non-zero constant on U.
(Q.E.D.)

Remark 3. One should compare the last lemma with the behaviour of the nodal lines for the coordinate functions of the Clifford torus in S^{3}.

From now on and without loss of generality we will assume $x_{2}(s)$ is a non-zero constant, say k, on an open subset U of C_{1}. Then we use again (48) and (47) to get

$$
\begin{gather*}
r_{23}=r_{24}=-1 / \mu, \tag{50}\\
k^{2}=\frac{b_{22}}{1-2 b_{11}} . \tag{51}
\end{gather*}
$$

Since $b_{13}=b_{14}=0$, we see from (9) that $x_{3}(s)$ and $x_{4}(s)$ can not vanish identically on U. Consequently one can parametrize U as follows

$$
\begin{equation*}
\beta(s)=\left(0, k, \dot{R} \cos \frac{s}{R}, R \sin \frac{s}{R}\right) \tag{52}
\end{equation*}
$$

where $R^{2}=1-k^{2}$.
Then we use (52) in (48) to obtain

$$
\begin{aligned}
& \sin ^{2} \frac{s}{R}=\frac{R^{2}\left(2 b_{11}-1\right)}{b_{11}} \cos ^{2} \frac{s}{R}+\frac{b_{33}}{b_{11}}, \\
& \cos ^{2} \frac{s}{R}=\frac{R^{2}\left(2 b_{11}-1\right)}{b_{11}} \sin ^{2} \frac{s}{R}+\frac{b_{44}}{b_{11}},
\end{aligned}
$$

and so $b_{33}=b_{44}=b_{11}$.
The same argument works on any nodal line so that $b_{i i}=1 / 4$ for $1 \leq i \leq 4$. Therefore we use Lemma 1 to conclude the following:

Proposition 3. The center of the hyperquadric Q is $\Psi_{o}=\frac{1}{4} I$, where I denotes the identity matrix of order 4.

Now we make a straightforward long computation involving (12) in order to show that μ must be a non-zero real constant along M. Then we use (5) and (1) to prove that $\Phi_{o}=\Psi_{o}$. But this means that (M, Φ) is of mass-symmetric in a hypersphere of $S M(4)$, hence by using the main result of $[\mathrm{Ba}-\mathrm{Ga}]$, we obtain the main theorem.

References

[Ba-Ch1] M. Barros and B-Y. Chen, Finite type spherical submanifolds, Lecture Notes in Math. 1209
(1986), 73-93.
[Ba-Ch2] M. Barros and B-Y. Chen, Spherical submanifolds which are of 2-type via the second standard immersion of the sphere, Nagoya Math. J. 108 (1987), 77-91.
[Ba-Ga] M. Barros and O. J. Garay, A new characterization of the Clifford torus in $S^{\mathbf{3}}$ via the quadric representation, Japanese J. Math., to appear.
[Ba-Ur] M. Barros and F. Urbano, Spectral geometry of minimal surfaces in the sphere, Tôhoku Math. J. 39 (1987), 575-588.
[Ch-1] B-Y. ChEn, Total mean curvature and submanifolds of finite type, World Scientific (1984).
[Ch-2] B-Y. ChEn, Linearly independent, orthogonal and equivariant immersions, Kodai Math. J. 14 (1991), 341-349.
[Ch-P] B-Y. Chen and M. Petrovic, On spectral decomposition of immersions of finite type, Bull. Austral. Math. Soc. 44 (1991), 117-129.
[Che] S. Y. Cheng, Eigenfunctions and nodal sets, Comment. Math. Helv. 51 (1976), 43-55.
[D-P-V] F. Dillen, J. Pas and L. Verstraelen, On surfaces of finite type in the Euclidean 3-space, Kodai Math. J. 13 (1990), 10-21.
[Di] I. Dimitric, Quadric representation and submanifolds of finite type, Doctoral Thesis, Michigan State Univ. (1989).
[Gal] O. J. Garay, An extension of Takahashi's theorem, Geom. Dedicata 34 (1990), 105-112.
[Ga-V] O. J. Garay and L. Verstraelen, On submanifolds of finite Chen type and some related topics, Preprint Ser. Dept. Math. Kath. Univ. Leuven 4 (1992), 5-28.
[H-V] T. Hasanis and T. Vlachos, Coordinate finite type submanifolds, Geom. Dedicata 37 (1991), 155-165.
[H-V2] T. Hasanis and T. Vlachos, Quadric representation and Clifford minimal hypersurfaces, preprint.
[K-P-S] H. Karcher, U. Pinkall and I. Sterling, New minimal surfaces in S^{3}, J. Differential Geom. 28 (1988), 169-185.
[Ke] K. Kenmotsu, On a parametrization of minimal immersions of $\boldsymbol{R}^{\mathbf{2}}$ into $\boldsymbol{S}^{\mathbf{5}}$, Tôhoku Math. J. 27 (1975), 83-90.
[La] H. B. Lawson, Complete minimal surfaces in S^{3}, Ann. of Math. 92 (1970), 335-374.
[R] A. Ros, Curvature pinching and eigenvalue rigidity for minimal submanifolds, Math. Z. 191 (1986), 537-548.
[T] S. S. TAI, Minimum imbedding of compact symmetric spaces of rank one, J. Differential Geom. 2 (1968), 55-66.
[Ta] T. TakAhashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.

Present Address:

Departamento de Geometría y Topología, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain.
e-mail: garay@ugr.es

[^0]: Received May 31, 1993

