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Introduction.

The purpose of this paper is to characterize Bloch functions on smoothly bounded
strongly pseudoconvex domains in terms of invariant geometry, Bergman-Carleson
measures and K\"ahler diffusion processes.

We will begin with describing the motivation of this paper. As is well known, the
class of Bloch functions on the unit disc can be characterized in many different ways,
and therefore it arises in several different areas such as function theory, operator theory
and harmonic analysis etc. For the case of several complex variables, Timoney [21]

extended a number of characterizations of Bloch functions on the unit disc to bounded
homogeneous domains (see [21]). Later, Krantz and Ma [10] studied systematically
Bloch functions on strongly pseudoconvex domains, and characterized them in terms
of Schlicht disks, BMOA functions and normal families of mappings.

Recently, two new characterizations of Bloch functions on the open unit ball
in $C^{n}$ were given by Choa, Kim and Park ([5]) and by Muramoto ([18]); first, a
Bergman-Carleson measure characterization ([5, Main Theorem]), and secondly a
characterization in terms of hyperbolic Brownian motion ([18, Theorem]). (In [18],

Muramoto assumed that $n=1.$)
It must be noted that Lyons pointed out already in [13] a close connection between

hyperbolic Brownian motion and Bloch functions on the unit disc. Furthermore, using
this connection, Lyons [13] proved a certain law of the iterated logarithm for boundary
behavior of Bloch functions on the unit disc, which is regarded as a probabilistic
analogue of Makarov’s celebrated law of the iterated logarithm for radial behavior of
Bloch functions on the unit disc ([15]). Moreover, in [13] it was proved that his
probabilistic analogue implies Makarov’s law of the iterated logarithm.

Now we will explain our results. Our main theorem is Theorem 2 stated in Section
2, which extends the characterizations by Choa, Kim and Park [5] and Muramoto [18]
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to strongly pseudoconvex domains. Moreover, as an application of our main theoren
we will prove a several dimensional version, for Bloch functions on a certain strongl
pseudoconvex domain, of Lyon’s law of the iterated logarithm.

The plan of this paper is as follows: In Section 1 we will prepare some notatio
from function theory, invariant geometry and probability theory. Our main theorem $i$

stated and proved in Section 2. In Section 3 we will prove that our main result include
the main theorem in Choa, Kim and Park [5]. Furthermore, using Theorem 2, we wi
give a several dimensional version of Lyons’ law of the iterated logarithm.

1. Preliminaries.

Throughout this paper, we denote by $D$ a smoothly bounded strongly pseudoconve
domain in $C^{n},$ $n\geq 2$ , and by $\partial D$ the boundary of $D$ . For $z\in D$, let $\delta(z):=\inf\{|z-\zeta|:\zeta$

$\partial D\}$ . We can take a positive number $r_{0}$ such that for every $z\in D$ with $\delta(z)<r_{0}$ , ther
exists a unique point $b(z)\in\partial D$ such that $|z-b(z)|=\delta(z)$ . If $s>0$, we denote by $D(s)$ th
set $\{z\in D;\delta(z)<s\}$ .

If $z\in D$ and $\xi\in T_{z}(D)$ , then we denote by $F_{K}(z, \xi)$ the infinitesimal Kobayashi metri
for $D$ (cf [9]). A holomorphic function $f$ on $D$ is said to be a Bloch function $f\in\ovalbox{\tt\small REJECT}(B)$ if

$\Vert f\Vert_{g}:=\sup\{|f_{*}(p)\cdot\xi|/F_{K}(p, \xi)\}<\infty$ ,

where the sup is taken over all $p\in D$ and $0\neq\xi\in T_{p}(D)$ , and $f_{*}(p)$ is the mapping fron
$T_{p}(D)$ to $T_{f\langle p)}(C)$ induced by $f$. This definition was given in Krantz and Ma [10].

Let $H(D)$ be the set of all holomorphic functions on $D$ and $A^{2}(D)$ the Bergma]
space, that is,

A $(D):=\{f\in H(D):\int_{D}|f(z)|^{2}dV(z)<\infty\}$ ,

where $dV$ is the $2n$-dimensional Lebesgue measure on $C^{n}$ .
Following Luecking [12], we call a positive measure $\mu$ on $D$ is a Bergman-Carleso]

measure if there exists a positive constant $C$ such that for all $f\in A^{2}(D)$ ,

(1) $\int_{D}|f(z)|^{2}d\mu(z)\leq C\int_{D}|f(z)|^{2}dV(z)$ .

We denote by $C(\mu)$ the infimum over the constants on the right-hand side of (1).
Let $(g_{i_{J}}\prec z))$ be the Bergman metric of $D$ and $d_{g}(z, w)$ the distanoe function witl

respect to the Bergman metric $ofD$ . For $z\in D$ and $r>0$, let $E(z, r):=\{w\in D : d_{g}(z, w)<r\}$ .
If $f\in C^{1}(D)$ is holomorphic and $z\in D$ , then we denote by $\Vert\nabla f(z)\Vert$ the norm of $th_{1}$

gradient of $f$ with respect to the Bergman metric of $D$ , that is,

$\Vert\nabla f(z)\Vert^{2}:=\sum_{j,k=1}^{n}g^{\overline{j}k}(z)\frac{\partial f(z)}{\partial z_{j}}\overline{\frac{\partial f(z)}{\partial z_{k}}}$ ,
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where $(g^{\overline{j}k}(z))$ is the inverse matrix of the Bergman metric $(g_{j\overline{k}}(z))$ .
Let $L$ be the Laplace-Beltrami operator of the Bergman metric of $D$ .
In order to describe our probabilistic characterization of Bloch functions, we will

recall the definition and basic properties of Brownian motion on the K\"ahler manifold
$(D, (g_{i\overline{j}}))$ .

In [8] it was proved that the holomorphic sectional curvatures of the Bergman
metric of $D$ approach a negative constant near the boundary. Therefore by [23, Theorem
2 and 4] the operator $(1/2)L$ is the generator of an FD semigroup $(T_{t})_{t}$ with an honest
transition function $p(t, x,y)$ (see [22] for the definitions of FD semigroups and honest
transition functions). As is well known, from this semigroup one can construct an honest
FD diffusion on $D$ (cf. [22, III, Theorem 28]). Since this diffusion has continuous paths
in $D$ and its life time is equal to $\infty$ , we can represent the diffusion as follows: Denote
by $W$ the set of all continuous maps from $[0, \infty$ ) to $D$ and by $Z_{t}$ the coordinate projection
mapping from $W$ to $D$ via $Z_{t}(w)=w(t),$ $w\in W$. Let $\mathscr{B}$ (resp. $\mathscr{B}_{t}$) be the smallest $\sigma- field$

for which all elements of $\{Z_{s} : 0\leq s\}$ (resp. $\{Z_{s}$ : $0\leq s\leq t\}$ ) are measurable. For a
probability Borel measure $v$ on $D$ , there exists a unique probability measure $P^{v}$ on
$(W, \mathscr{B})$ such that for every $0<t_{1}<\cdots<t_{m}$ and for any finite Borel subsets $G_{1},$ $\cdots,$ $G_{m}$

$ofD$ ,

$P^{v}(\{w\in W:w(t_{j})\in G_{j},j=1, \cdots, m\})=\int_{D}\int_{G_{1}}\int_{G_{2}}\cdots\int_{G_{m}}p(t_{1}, z_{O}, z_{1})$

$\times p(t_{2}-t_{1}, z_{2}, z_{1})$ . . $p(t_{m}-t_{m-1}, z_{m-1}, z_{m})dV_{g}(z_{m})$ . . . $dV_{g}(z_{2})dV_{g}(z_{1})dv(z_{0})$ ,

where $dV_{g}$ is the Riemannian measure on $(D, (g_{j\overline{k}}))$ . If $v$ is the unit mass at $a\in B_{n}$ , then
$P^{a}$ denotes $P^{v}$ . Let $(W, \mathscr{F}^{\nu}, \mathscr{F}_{t}^{v}, P^{v})$ be the usual $P^{v}$ augmentation of ( $W$, as, $\mathscr{B}_{t},$ $P^{\nu}$) in
the sense of [22, II, 40]. Put $\tilde{\mathscr{F}}=\cap \mathscr{F}^{\nu}$ and $\tilde{\mathscr{F}}_{t}=\cap \mathscr{F}_{t}^{v}$ , where the intersections being
taken over all probability Borel measures $v$ on $B_{n}$ . Then $Z=(Z_{t}, W, \mathscr{J}\tilde{\mathscr{F}}_{t}, P^{a} : a\in D)$

is an honest FD diffusion which is called Brownian motion on the manifold $(D, (g_{j\overline{k}}))$ .
The following lemma is very close to Theorem 1 in Debiard and Gaveau [6].

LEMMA 1. Let $a\in D$ . Thenfor $dP^{a}$-almost every $w\in W$, a limit $Z_{\infty}(w)=\lim_{t\rightarrow\infty}Z_{t}(w)$

exists and $Z_{\infty}(w)\in\partial D$ .

A proof of this lemma will be given in Appendix.
Let $\mathcal{T}$ be the collection of all $(\mathscr{F}_{t})$-stopping times. As usual, we denote by $E^{a}[$ $]$

the expectation associated with $P^{a}$ .
In this paper we will use the notation $A_{1}\approx A_{2}$ to mean that there exists a positive

constant $c$ depending only on $D$ such that $c$

‘

$1A_{2}\leq A_{1}\leq cA_{2}$ . Moreover, we will use
$C_{1},$ $C_{2},$ $ C_{3}\cdots$ to denote positive constants depending only on $n$ , the Bergman metric
and the Kobayashi metric for $D$ .
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2. Bloch functions, Bergman-Carleson measures and Kahler diffusions.

In this section we will characterize Bloch functions on $D$ in terms of $invarian|$

geometry, Bergman-Carleson measures and invariant diffusion processes.
Our main results is the following theorem.

THEOREM 2. Let $f$ be a holomorphicfunction in D. Then thefollowingfour condition;

are mutually equivalent:
(i) $f$ is a Bloch function.
(ii) $\sup_{z\in D}\Vert\nabla f(z)\Vert<\infty$ .
(iii) The measure

$d\mu_{f}(z):=\Vert\tilde{\nabla}f(z)\Vert^{2}dV(z)$

is a Bergman-Carleson measure on $D$ .
(iv) The stochastic process $\{f(Z_{t})\}_{t}$ satisfies that

$\Vert f\Vert_{B.prob}^{2}:=\sup_{z\epsilon D}\{\sup\{\frac{E^{z}[|f(Z_{T})-f(Z_{0})|^{2}]}{E^{z}[T]}:T\in \mathcal{T},$ $ E^{z}[T]>0\}\}<\infty$ .

Besi&s, four quantities $\Vert f\Vert_{g},$ $\sup_{z\in D}\Vert\nabla f(z)\Vert,$ $C(v_{f})^{1/2}$ and $\Vert f\Vert_{B,prob}$ are equivalent

The equivalence relations (i) $\Leftrightarrow(ii),$ $(i)\Leftrightarrow(iii)$ and $(i)\Leftrightarrow(vi)$ are invariant
analogues, for strongly pseudoconvex domains, of Choa, Kim and Park [5, Theorem
2.4 $(a)\Leftrightarrow(b)$], [ $5$ , Main Theorem] and Muramoto [18, Theorem] respectively.

In order to prove these equivalent relations, we need to modify the original $proof_{L}($

in [5] and [18], because a generic smoothly bounded strongly pseudoconvex domain
is not homogeneous. In particular, our proofs of $(i)\Leftrightarrow(ii)$ and $(i)\Leftrightarrow(iii)$ differ from
the proofs for the case of the unit ball by Choa, Kim and Park ([5]) in detail and
method. Indeed, the method in [5] is based on the transitivity of the group of auto.
morphisms on the unit ball. To prove $(i)\Leftrightarrow(vi)$ , we will simplify and exploit the
method in Muramoto [18] by combining an idea in Lyons [13].

$PR\infty F$ OF THEOREM 1. (Proof of $(i)\Rightarrow(ii).$) Suppose that $f$ is a Bloch func.
tion. Let $\nabla f=(\partial f/\partial z_{1}, \cdots, \partial f/\partial z_{n})$ . Denote by $\nabla_{N}f$ (resp. $\nabla_{T}f$) the complex normal
piece of $\nabla f$ (resp. the complex tangential piece of $\nabla f$). Then by the proof of $[10$

Theorem 2.1], $|\nabla_{N}f(z)|=O(\delta(z)^{-1})$ and $|\nabla_{T}f(z)|=O(\delta(z)^{-1/2})$ . Let $\lambda$ be a $C^{\infty}$ strictl)
plurisubharmonic function on a neighborhood $U$ of the closure $\overline{D}$ of $D$ such thal
$D=\{w\in U:\lambda(w)<0\}$ and $d\lambda(\zeta)\neq 0$ for $\zeta\in\partial D$ . Then $-\lambda(z)=O(\delta(z))$ when $z\in D$ is $neal$

to $\partial D$ . Now we recall Fefferman’s result about the Bergman kemel ([7, Corolary])
Let $K(z, w)$ be the Bergman kemel on $D$ . Fefferman’s theorem asserts that

$K(z, z)=\Phi(z)(-\lambda(z))^{-(n+1)}+\Phi_{1}(z)\log(-\lambda(z))$ ,

where $\Phi$ and $\Phi_{1}$ are $C^{\infty}$ functions on the intersection of $\overline{D}$ and a neighborhood of $\partial D$
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and $\Phi\neq 0$ on $\partial D$ (see Fefferman [7, p. 45]).
Let $c_{1}$ $:=\Phi\{1+\Phi^{-1}\Phi_{1}(-\lambda)^{n+1}\log(-\lambda)\}$ . Then $K(z, z)=c_{1}(z)(-\lambda(z))^{-\langle n+1)}$ near

$\partial D$ . Since $K(z, z)>0$ , the definition of the function $c_{1}$ guarantees that there is an open
set $W\subset C^{n}$ such that $\partial D\subset W,$ $c_{1}\geq b$ on $W\cap D$ for some positive constant $b$ , and $c_{1}$ has
all derivatives of order $\leq n$ bounded continuous in $W\cap D$ . Therefore, we get that there
exists a positive $C^{\infty}$ function $c$ on $D$ such that

(2) $K(z, z)=c(z)\times(-\lambda(z))^{-\langle n+1)}$ ,

where $c\geq b$ on $W\cap D$ and $c$ has all derivatives of order $\leq n$ bounded continuous on $M$.
(Note that $n\geq 2.$) Therefore, by a similar argument as in [20, p. 57] we have that

$(g^{\overline{i}j})=\frac{1}{n+1}(-\lambda)^{2}\left\{\begin{array}{ll}4/d^{2}+O(-\lambda) & O(1)\\O(1) & (-\lambda)^{-1}Q_{2}^{-1}+O(1)\end{array}\right\}$ ,

where

$Q_{2}=(\frac{\partial^{2}\lambda}{\partial z_{i}\partial\overline{z}_{j}})$ and $d=|\nabla\lambda(b(z))|$ .

Computing $(g_{i_{\overline{J}}})$ we get that
$\Vert\nabla f(z)\Vert\approx\delta(z)|\nabla_{N}f(z)|+\delta(z)^{1/2}|\nabla_{T}f(z)|$

whenever $z\in D$ is near to $\partial D$ . Consequently $\Vert\nabla f\Vert$ is bounded in $D$ .
(Proof of $(ii)\Rightarrow(iii).$) This part is obvious.
(Proof of $(iii)\Rightarrow(i).$) Assume that $\mu_{f}$ is a Bergman-Carleson measure. We will

prove that $f$ is a Bloch function. By virtue of [10, Theorem 2.1] and of the maximum
principle, it is sufficient to prove that there exists $r_{1}>0$ depending only on $D$ such
that

(3) $\sup_{z\in D\langle r_{1})}|\nabla_{N}f(z)|\delta(z)\leq C_{1}C(\mu_{f})^{1/2}$

To prove this we use the following

LEMMA 3 ([11, Theorem 12]). If a number $R>0$ is given, then there are positive
constants $r_{1},$ $c_{1}$ , and $c_{2}$ depending only on $R$ and $D$ such that $r_{1}<r_{0}$ and

$c_{1}\delta(z)^{-(n+1)}\leq|K(z, w)|\leq c_{2}\delta(z)^{-\langle n+1)}$ ,

whenever $z\in D(r_{1})$ and $w\in E(z, R)$ .
Now let $a$ be an arbitrary point in $D(r_{1})$ . Denote by $v$ the inward unit normal

vector field on $\partial D$ with respect to the Euclidean metric. By an appropriate coordinate



378 HITOSHI ARAI

change we may suppose that $v_{b\langle a)}=(1,0, \cdots, 0)$ . Then $a=(\delta(a), 0, \cdots, 0)$ . Note that
the ball $E(a, 1)$ is comparable to the following polydisc:

$P(a):=\{(w_{1}, \cdots, w_{n}) : |w_{1}-\delta(a)|<\gamma_{1}\delta(z), |w_{j}|<\gamma_{j}\delta(a)^{1/2},j=2, \cdots, n\}$ ,

where $\gamma_{j}$ is a positive constant depending only on $D$ . Since $\partial f/\partial z_{1}$ is holomorphic in $D$

we get that

$\nabla_{N}f(a)=\frac{\partial f}{\partial z_{1}}(a)=\frac{1}{|P(a)|}\int_{P\langle a)}\frac{\partial f}{\partial z_{1}}(w)dV(w)$ ,

where (and always from now on) for a measurable set $E\subset D$ , we denote by $|E|$ the
$2n$-dimensional Lebesgue measure of $E$. Therefore we have that

$\delta(a)^{2}|\nabla_{N}f(a)|^{2}\leq\delta(a)^{2}\frac{1}{|P(a)|}\int_{P(a)}|\frac{\partial f}{\partial z_{1}}(w)|^{2}dV(w)$ .

Note that $|a-w|\approx\delta(a)\approx\delta(w)$ whenever $w\in P(a)$ , and hence for $w\in P(a)$ ,

$\nabla_{N}f(w)=\frac{\partial f}{\partial z_{1}}(w)+O(\delta(w)|\nabla f(w)|)$ .

Therefore if $w\in P(a)$ , then

$\delta(w)|\frac{\partial f}{\partial z_{1}}(w)|\leq\delta(w)|\nabla_{N}f(w)|+O(\delta(w)^{2}|\nabla f(w)|)\leq C_{2}\Vert\nabla f(w)\Vert$ .

Consequently we have that

$\delta(a)^{2}|\nabla_{N}f(a)|^{2}\leq\frac{C_{3}}{|P(a)|}\int_{P(a)}\Vert\nabla f(w)\Vert^{2}dV(w)$ .

Since $E(z, 1)$ is comparable to $P(z)$ , we have the following inequalities by Lemma 3 and
by (1) in Section 1:

$\delta(a)^{2}|\nabla_{N}f(a)|^{2}\leq\frac{C_{3}}{|P(a)|}\int_{P\langle a)}\Vert\nabla f(w)\Vert^{2}dV(w)$

$\leq\frac{C_{4}}{|E(a,1)|}\int_{E\langle a,1)}\Vert\nabla f(w)\Vert^{2}dV(w)$

$\leq\frac{C_{5}}{\delta(a)^{n+1}}\int_{E(a,1)}|K(a, w)|^{2}\delta(a)^{2\langle n+1)}\Vert\nabla f(w)\Vert^{2}dV(w)$

$\leq C_{5}\delta(a)^{n+1}\int_{D}|K(a, w)|^{2}\Vert\nabla f(w)\Vert^{2}dV(w)$
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$\leq C_{5}C(\mu_{f})\delta(a)^{n+1}\int_{D}|K(a, w)|^{2}dV(w)$

$=C_{5}C(\mu_{f})\delta(a)^{n+1}K(a, a)\leq C_{6}C(\mu_{f})$ .
Therefore we find that $f$ is a Bloch function.

(Proof of $(ii)\Rightarrow(vi).$) The following proof, which is inspired from Lyons [13],
simplifies one in [18]. Assume that $\sup_{z\in D}\Vert\nabla f(z)\Vert<\infty$ . By Ito’s formula we get that
for every $z\in D$ and $T\in \mathcal{T}$ ,

$E^{z}[|f(Z_{T})-f(Z_{0})|^{2}]=\frac{c}{2}E^{z}[\int_{0}^{T}\Vert\tilde{\nabla}f(Z_{s})\Vert^{2}ds]\leq C_{7}\sup_{\in D}\Vert\tilde{\nabla}f(z)\Vert E^{z}[T]$ ,

where $c$ is the constant depending only on $n$ . Therefore

$\Vert f\Vert_{B,prob}\leq C_{7}\sup_{\in D}\Vert\tilde{\nabla}f(z)\Vert<\infty$ .

(Proof of $(vi)\Rightarrow(ii).$) To prove this we use an idea in Muramoto [18]. Suppose
that $\Vert f\Vert_{B,prob}<\infty$ . We will estimate $\Vert f\Vert_{B}:=\sup_{z\in D}\Vert\nabla f(z)\Vert$ .

Take an arbitrary number $0<\alpha<\Vert f\Vert_{B}$ . Then there exist $\eta\in D$ and a positive number
$\epsilon$ such that $\alpha\leq\Vert\tilde{\nabla}f(z)\Vert$ , whenever $z\in E(\eta, \epsilon)$ . Let

$T(\epsilon):=\inf\{t\geq 0 : d_{g}(Z_{t}, Z_{0})\geq\epsilon\}$ .
Then we get that

$\alpha^{2}E^{\eta}[T(\epsilon)]=E^{\eta}[\int_{0}^{T\langle\epsilon)}\alpha^{2}ds]\leq E^{\eta}[\int_{0}^{T\langle\epsilon)}\Vert Ff(Z_{s})\Vert^{2}ds]$

$=E^{\eta}[|f(Z_{T(\epsilon)})-f(Z_{0})|^{2}]\leq\Vert f\Vert_{B,prob}^{2}E^{\eta}[T(\epsilon)]$ .
This implies that $\alpha\leq\Vert f\Vert_{B,prob}$ , and therefore we obtain that $\Vert f\Vert_{B}\leq\Vert f\Vert_{B,prob}$ . $\square $

3. Applications.

Let $B_{n}=\{z\in C^{n} : |z|<1\}$ . By an easy calculation we have that for every holomorphic
function $f$ on $B_{n}$ ,

$\Vert\tilde{\nabla}f\Vert^{2}=4(1-|z|^{2})(|\nabla f(z)|^{2}-|\mathscr{B}f(z)|^{2})$ ,

where $\mathscr{B}f=\sum_{j=1}^{n}z_{j}(\partial f)/(\partial z_{j})$ . Therefore as a corollary of Theorem 2 $(i)\Leftrightarrow(iii)$ we
$get$ the following

COROLLARY 4 (Choa, Kim and Park [5]). Let $f$ be a holomorphic function on $B_{n}$ .
Then $f$ is a Bloch function if and only if the measure defined by

$(1-|z|^{2})(|\nabla f(z)|^{2}-|\mathscr{B}f(z)|^{2})dV(z)$
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is a Bergman-Carleson measure.

As we noted in Section 1, Lyons obtained in [13] a probabilistic analogue of th
Makarov’s law ofthe iterated logarithm. By virtue ofTheorem 2, his method is applicabl
to our setting, and we have a several dimensional version of Lyons’ law of the iterate $($

logarithm:

COROLLARY 5. Suppose that the Kahler manifold $(D, (g_{i\overline{j}}))$ is negatively curved an
simply connected. Fix a point $a\in D$ . Then for every Bloch function $f$ on $D$ ,

$\lim_{t\rightarrow}\sup_{\infty}\frac{|f(Z_{t})|}{(\log(\delta(Z_{t})^{-1})\log\log\log(\delta(Z_{t})^{-1}))^{1/2}}\leq C_{8}\Vert f\Vert_{g}$ $a.s$ . $dP^{a}$

$PR\infty F$ OF COROLLARY 5. Since the geometry of strongly pseudoconvex domain
is.more subtle than that of the unit disc, we need extra arguments in order to appl
Lyons’ arguments in [13] to our context.

By Ito’s formula we have that $\{f(Z_{t})\}_{t}$ is a conformal local martingale with respe $($

to $P^{a}$ in the sense of Getoor and Sharpe (see [19, p. 177] for the definition of conform\v{c}

local martingales). Hence by Theorem 2.4 in [19, p. 178], there exists (possibly on a
enlargement for the usual $P^{a}$ augmentation of ( $W$, es, $g_{t},$ $P^{a}$)) a complex Brownia
motion $X_{t}$ such that $f(Z_{t})-f(a)=X_{\tau\langle t)}$ , where $\tau(t)$ is the quadratic variational proces
to$f(z)$ , that is, $\tau(t)=\langle f(z),\overline{f(z)}\rangle_{t}/2$ . Recall the following Khintchine’s law of the iterate
logarithm for complex Brownian motion (cf. [13, p. 160]):

$\lim_{t-}\sup_{\infty}\frac{|X_{\tau(t)}|}{(\tau(t)\log\log\tau(t))^{1/2}}=1$ a.s. $dP^{a}$

Now Theorem 2 $(i)\Rightarrow(vi)$ yields that $\tau(t)\leq C_{9}\Vert f\Vert_{g}^{2}t$ . Accordingly we get

$\lim_{t\rightarrow}\sup_{\infty}\frac{|f(Z_{t})|}{(t\log\log t)^{1/2}}\leq C_{10}\Vert f\Vert_{g}$ a.s. $dP^{a}$

Let $d(t)=d_{g}(a, Z_{t})$ . Note that the sectional curvatures of $M$ is bounded by tw
negative constants because of our hypothesis. Therefore $d(t)\approx t$ as $ t\rightarrow\infty$ (cf. (3.2) $i$

[ $17$ , p. 254]). Consequently we have that

(4) $\lim_{t\rightarrow}\sup_{\infty}\frac{|f(Z_{t})|}{(d(t)\log\log d(t))^{1/2}}\leq C_{11}\Vert f\Vert_{a}$ a.s. $dP^{a}$

Since it is plain that $d(t)\approx\log(\delta(Z_{t})^{-1})$ as $ t\rightarrow\infty$ , the inequality (4) yields Corolla]

5. $\square $

REMARK 1. In [13] Lyons showed that Makarov’s law of the iterated logarith
is obtained as a direct consequence of both his probabilistic analogue of the Makarov
law and a result in [14] for a symmetric space of rank one.
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REMARK 2. It should be noted that Makarov studied dyadic Bloch martingales
in [16].

4. Appendix (Proof of Lemma 1).

Lemma 1 is proved by a similar way as the proof of [6, Theorem 1]. However, it
is also a consequence of a result in [3] that the boundary $\partial D$ consists of the minimal
Martin boundary points with respect to $L$ . In order to make the paper reasonably
self-contained, we will mention the proof of Lemma 1 given in [3].

$PR\infty F$ OF LEMMA 1 (cf. [3]). We will use essentially the potential theory for
coercive operators developed by Ancona ([1], [2]). It is assumed the reader is familiar
with this theory. Our starting point is [1, Theorem 8]. We will recall it. Let $(M, h)$ be
a complete Riemannian manifold with bounded geometry property such that the
Laplacian on $M$ is coercive. Ancona’s result is that if a compactification of $M$ satisfies
the (G.A.) condition in the sense of [1], then it is homeomorphic to the Martin
compactification of $(M, h)$ and its Martin boundary consists ofminimal Martin boundary
points (see [1, Theorem 8]). Here we will prove that $L$ is coercive and that the Euclidean
$compactification-\overline{D}$ of $D$ satisfies the (G.A.) condition. By the boundary behavior of
$(g^{ij})$ mentioned in the proof of Theorem 2 $(i)\Rightarrow(ii)$ we have that for $e$very $ 0<\gamma<\infty$ ,

$L((-\lambda)^{n\gamma})=\frac{4}{n+1}\{n^{2}\gamma(\gamma-1)+O(-\lambda)\}(-\lambda)^{n\gamma}$ ,

where $\lambda$ is a $C^{\infty}$ strictly plurisubharmonic defining function of $D$ . Therefore if $0<\gamma<1$ ,
then there exist a compact subset $ K\subset\Omega$ and a positive number $\epsilon$ such that $(-\lambda)^{n\gamma}$ is a
positive $(L+\epsilon I)$-superharmonic function on $\Omega\backslash K$. Hence by [1, Lemma 2 and the proof
of Lemma 21] we have that the operator $L$ is coercive on $\Omega$ .

To prove that $\partial D$ has (G.A.) condition, we prepare some notation. Let $v$ be the
inward unit normal vector field on $\partial D$ with respect to the Euclidean metric. For $\zeta\in\partial D$

and $r>0$ , let $\zeta(r)=\zeta+rv_{\zeta}$ . We set

$ Q_{\alpha}(\zeta, r):=\{z\in\Omega$ : $\delta(z)<r,\sum_{j,k=1}^{n}g_{j\overline{k}}(\zeta(r))(b(z)_{j}-\zeta_{j})\overline{(b(z)_{k}-\zeta_{k})}<\alpha\}$ ,

for $\zeta\in\partial D,$ $\alpha>0$ and $0<r<r_{0}$ . Let $\Pi_{b\langle z)}$ (resp. $\Pi_{b\langle z)}^{\perp}$) be the orthogonal projection of
$C^{n}$ to the complex linear space spanned by the vector $v_{b\langle z)}$ (resp. $\{w\in C^{n}$ : $w\cdot\overline{v_{b\langle z)}}=0\}$).
Since the equation (2) in the proof of Theorem 2 $(i)\Rightarrow(ii)$ guarantees that

$(\sum_{j,k=1}^{n}g_{J^{\overline{\lambda}}}(z)\xi_{j}\overline{\xi_{k}})\approx\frac{1}{\delta(z)}|\Pi_{b\langle z)}\xi|+\frac{1}{\delta(z)^{1/2}}|\Pi_{b(z)}^{\perp}\xi|$ ,

for all $\xi\in C^{n}$ and $z$ near to $\partial D$ , we have by the same way as in the proofs of [1, Theorem
11 and Lemma 26], that there exists a positive constant $0<c^{\prime}<1$ depending only on



382 HITOSHI ARAI

the Bergman metric $g$ such that two points $y\in\partial Q_{a}(\zeta, r)$ and $y^{\prime}\in\partial Q_{a}(\zeta, (c^{\prime})^{2}r)$ can be
joined by a $\Phi$-chain through $\zeta(c^{\prime}r)$ (for the definition of $\Phi$-chain, see Definition 14 in
[1]). Therefore by [1, Theorem 8] we obtain that $\overline{D}$ is homeomorphic to the Martin
compactification of $D$ with respect to $L$ , and that $\partial D$ consists of minimal Martin
boundary points.

Consequently, from [2, Theorem 3.1]. it follows that for $\alpha\in D$ , a limit $Z_{\infty}(w)=$

$\lim_{r\rightarrow\infty}Z_{t}(w)$ exists and $Z_{\infty}\in\partial D$ for $dP^{a}$-almost every $w\in W$. Furthermore we have thal
for a continuous function $F$ on $\partial D$ ,

$PI[F](a):=E^{a}[F(Z_{\infty})]$ , $a\in D$

is the unique L-harmonic function on $D$ such that $\lim_{a\rightarrow\zeta}PI[F](a)=F(\zeta)$ for ever3
$\zeta\in\partial D$ . $\square $
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