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Abstract. In the present paper we extend the study in [3]. Let $\psi(\xi, \eta, \zeta)$ be a harmonic homogeneous
polynomial of degree $s=2\sigma\geq 4$ in three variables $\xi,$

$\eta,$
$\zeta$ . Then the bi-symmetric tensor $C$ of bi-degree $(s, s)$

satisfying

$\psi(\langle J_{1}w, v\rangle, \langle J_{2}w, v\rangle, \langle J_{3}w, v\rangle)=C(v, \cdots, v;w, \cdots, w)$

identically belongs to the linear space $W(3, s)$ of isometric minimal immersions of the three-sphere into
spheres. The purpose of the present paper is to study such tensors $C$ and to state some related topics.

1. Introduction.

Isometric minimal immersions of spheres into spheres were studied by M. do
Carmo and N. Wallach [1]. They established a theorem which is fundamental in the
study of such immersions. In [1] we can see that such immersions can be regarded as
$f$ : $S^{m}(1)\rightarrow S^{n-1}(r)$ where $n$ and $r$ depend on $m$ and a natural number $s$ which is the
order of the spherical harmonics on $S^{m}(1)$ inducing $f$, thus

$n=n(m, s)=(2s+m-1)(s+m-2)!/(s!(m-1)!)$ ,

$r^{2}=(r(m, s))^{2}=m/(s(s+m-1)$ .
In the present paper the set of such isometric minimal immersions is denoted by

$IMI(m, s)$ . From an immersion $f\in IMI(m, s)$ we get a set of immersions by the action
of the group of isometries of $S^{n-1}(r)$ . This set is called the equivalence class of $f$ and
is denoted by $eq(f)$ . There exists a linear space $W(m, s)$ with a compact convex body
$L(m, s)$ such that to any set $eq(f)$ there corresponds just one point of $L(m, s)$ . We
consider only cases $m\geq 3,$ $s\geq 4$ since $W(m, s)$ is nothing but one point only if $m<3$ or
$s<4$ .

We can regard $W(m, s)$ as a linear space of some tensors [2], [4], [6]. Any point
$C$ of $W(m, s)$ is a harmonic bi-symmetric tensor of bi-degree $(s, s)$ , namely $C$ is a tensor
of degree $2s$ on $R^{m+1}$ satisfying the following conditions (i), (ii), (iii). In addition $C$
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satisfies the condition (iv).
(i) $C(v_{1}, \cdots, v_{s};v_{1+s}, \cdots, v_{2s})$ is symmetric both in $v_{1},$ $\cdots,$ $v_{s}$ and in $v_{1+s}$, –, $v_{2s}$

(ii) $C(v, \cdots, v;w, \cdots, w)=C(w, \cdots, w;v, \cdots, v)$ ,
(iii) $\sum_{i=1}^{m+1}C(e_{i}, e_{i}, v, \cdots, v;w, \cdots, w)=0$ ,
(iv) $C(w, w, v, \cdots, v;v, \cdots, v)=0$ .

Here $v_{1},$ $\cdots,$ $v_{2s},$ $v,$ $w$ are arbitrary vectors of $R^{m+1}$ in which $S^{m}(1)$ is embedded as the
unit sphere and $\{e_{1}, \cdots, e_{m+1}\}$ is an orthonormal basis of $R^{m+1}$ . (iv) is equivalent tc
$C(w, v, \cdots, v;w, v, \cdots, v)=0$ .

In \S 2 various formulas used later are explained. The isometric minimal immersion
considered here are general ones, restricted somewhere only by $ s=2\sigma$ . In \S 3 we conside]

a homogeneous polynomial $\psi(\xi, \eta, \zeta)$ and try to find the condition for $\psi$ to be relatec
to an element of $W(3, s)$ . Thus we find a mapping of $V(2, s)$ into $W(3, s)$ , where $V(2,$ $s$

is the linear space of harmonic homogeneous polynomials of degree $s$ in three variables
Here $s$ must be even and this mapping is denoted by $J^{\$}$ . In \S 4 contraction of the $element_{\iota}^{t}$

of $W(3, s)$ obtained in \S 3 is discussed. In \S 5 a mapping $I^{l}$ having almost the samt

property as $J$“ is defined and some properties of them are studied. In \S 6 inner products
are defined for the elements of $V(2, s)$ and those of $W(3, s)$ respectively and their relationt,

to $J^{g}$ and $I^{r}$ are studied. \S 7 is devoted to elevation of elements of $J$“ $V(2, s)$ . In \S 8 $som($

properties of geodesics of isometric minimal immersions associated with $J^{\iota}V(2, s)ar($

studied.

2. Preliminaries.

Let $C$ be a point of $L(m, s)$ and an isometric minimal immersion $f_{m,s}$ associatet
with $C$ be expressed by

$f_{m,s}(u)=\sum_{A=1}^{n}f^{A}(u)\tilde{e}_{A}$ ,

where $u=\sum_{i=1}^{m+1}u^{i}e_{i}$ is the unit vector of $R^{m+1}$ indicating a point of $S^{m}(1)$ and $\{\tilde{e}_{1},$ $\cdots,\tilde{e}_{n}$

is a fixed orthonormal basis of $R^{n}$ in which $S^{n-1}(r)$ is embedded with center at th
origin of $R^{n}$ . Then $f^{A}(A=1, \cdots, n)$ are spherical harmonics of degree $s$ and there exist
a set of symmetric harmonic tensors $F^{A}$ of degree $s$ such that

$F^{A}(u, \cdots, u)=f^{A}(u)$ .
This means that, to an isometric minimal immersion $f_{m,s}$ there corresponds some set $c$

$n$ symmetric harmonic tensors $\{F^{1}, \cdots, F^{n}\}$ satisfying

(2.1) $f_{m,s}(u)=\sum_{A=1}^{n}F^{A}(u)\tilde{e}_{A}$ .

Let $V(m, s)$ denote the linear space of symmetric harmonic tensors of degree $so$

$R^{m+1}$ . Then dim $V(m, s)=n(m, s)$ is the number already mentioned. Let $\{H^{1},$ $\cdots,$
$H^{n}$
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be any orthonormal basis of $V(m, s)$ . Then there exists an isometric minimal immersions
$h_{m,s}$ such that

(2.2) $h_{m,s}(u)=\sum_{A=1}^{n}H^{A}(u)\tilde{e}_{A}$ .

This immersion is called a standard minimal immersion.

REMARK. That $\{H^{1}, \cdots, H^{n}\}$ is an orthonormal basis of $V(m, s)$ may be inter-
preted as follows,

$\int_{M}H^{A}(u)H^{B}(u)d\omega_{m}=c\delta^{AB}$ ,

where $M$ is $S^{m}(1),$ $d\omega_{m}$ is the volume element of $S^{m}(1)$ and

$c=(r(m, s))^{2}Vol(S^{m}(1))/n(m, s)$ .

At the same time $H^{A}(u)$ satisfy

$\sum_{A=1}^{n}(H^{A}(u))^{2}=r^{2}$ ,

when $u$ is any unit vector of $R^{m+1}$ . For the details see, for example, [2] \S 5.
From tensors $F^{A}$ and $H^{A}$ we can construct tensors

$\sum_{A}F^{A}\otimes F^{A}$ , $\sum_{A}H^{A}\otimes H^{A}$ .

Here and in the sequel $\sum_{A}$ is the abbreviation of $\sum_{A=1}^{n}$ . These tensors are harmonic
bi-symmetric tensors of bi-degree $(s, s)$ . As it is easy to see, these tensors do not change
if $f_{m,s}$ and $h_{m,s}$ are replaced by $\mathcal{F}\in eq(f_{m,s})$ and $\tilde{h}\in eq(h_{m,s})$ respectively. The harmonic
bi-symmetric tensor defined by

(2.3) $C=\sum_{A}F^{A}\otimes F^{A}-\sum_{A}H^{A}\otimes H^{A}$

satisfies the isometry condition (iv).
For harmonic bi-symmetric tensors see \S 2 of [7]. The set of harmonic bi-symmetric

tensors of bi-degree $(s, s)$ is denoted by $B(m, s)$ . If $ s=2\sigma$ , the unit tensor $U\in B(m, s)$ is
defined by

(2.4) $U(v;w)=\sum_{p=0}^{\sigma}u_{p}\langle v, w\rangle^{s-2p}\langle v, v\rangle^{p}\langle w, w\rangle^{p}$ ,

where $u_{0}=1$ and $u_{1},$ $\cdots,$ $u_{\sigma}$ satisfy

$(s-2p+2)(s-2p+1)u_{p-1}+2p(2s+m-2p-1)u_{p}=0$ .
The following relation between $U$and any standard minimal immersion is often used,
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(2.5) $c^{\prime}U=\sum_{A}H^{A}\otimes H^{A}$ ,

where $c^{\prime}$ is the number such that

$ac^{\prime}=r^{2}$ , $a=\sum_{p=0}^{\sigma}u_{p}$ .

WhenB isabi-symmetric tensor of bi-degree $(s, s),$ $B_{p,q}(v, w)$ is defined by

(2.6) $B_{p,q}(v, w)=B(v, \cdots, v, w, \cdots, w;v, \cdots, v, w, \cdots, w)$ ,

where in the right hand side $w$ appears $p$ times before the semicolon and $q$ times afte
the semicolon. If we consider only orthonormal pairs $\{v, w\},$ $U_{p,q}(v, w)$ does not $depen\iota$

on the choice of the pair. Then we can write

(2.7) $U_{p,q}(v, w)=u_{p,q}$ .

3. Some elements of $W(3, s)$ obtained from a polynomial $\psi(\xi, \eta, \zeta)$ and $J_{1},$ $J_{2},$ $J_{3}$

First we define orthogonal transformations $J_{\lambda}(\lambda=1,2,3)$ . Let us fix an or
thonormal basis $\{e_{1}, e_{2}, e_{3}, e_{4}\}$ of $R^{4}$ . For $a=(a^{1}, a^{2}, a^{3})\in R^{3}$ , linear transformation
$J_{a}=a^{1}J_{1}+a^{2}J_{2}+a^{3}J_{3}$ are defined by

$J_{a}e_{1}=-a^{1}e_{2}+a^{2}e_{3}-a^{3}e_{4}$ ,

$J_{a}e_{2}=a^{1}e_{1}-a^{2}e_{4}-a^{3}e_{3}$ ,

$J_{a}e_{3}=-a^{1}e_{4}-a^{2}e_{1}+a^{3}e_{2}$ ,

$J_{a}e_{4}=a^{1}e_{3}+a^{2}e_{2}+a^{3}e_{1}$ .
$J_{\lambda}$ satisfy $J_{2}J_{3}=-J_{3}J_{2}=J_{1},$ $J_{3}J_{1}=-J_{1}J_{3}=J_{2},$ $J_{1}J_{2}=-J_{2}J_{1}=J_{3}$ , and $J_{\lambda}^{2}=-1(\lambda=$

$1,2,3)$ .
Let $\psi(\xi, \eta, \zeta)$ be a homogeneous polynomial of degree $s$ in three variables $\xi,$

$\eta$ ,
and let us suppose that there exists a harmonic bi-symmetric tensor $B$ of bi-degree $(s,$ $s$

satisfying

(3.1) $\psi(\langle J_{1}\omega, v\rangle, \langle J_{2}w, v\rangle, \langle J_{3}w, v\rangle)=B(v;w)$

for arbitrary vectors $v,$ $w$ of $R^{4}$ . Here $B(v;w)$ is the abbreviation of $B(v, \cdots, v;w, \cdots, w)$ .
As we have $\langle J_{\lambda}w, v\rangle=-\langle J_{\lambda}v, w\rangle,$ $s$ must be even and we put $ s=2\sigma$ .
From (3.1) we get

$ sB(e_{i}, v, \cdots, v;w, \cdots, w)=\frac{\partial\psi}{\partial\xi}\langle J_{1}w, e_{i}\rangle+\frac{\partial\psi}{\partial\eta}\langle J_{2}w, e_{i}\rangle+\frac{\partial\psi}{\partial\zeta}\langle J_{3}w, e_{i}\rangle$ .

This formula is the result of replacing $v$ by $v+te_{i},$ $t\in R$ , and differentiating the resultin
formula with respect to $t$ at $t=0$ . Such means are often used hereafter. For the sake $($
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convenience we put $\xi=\xi_{1},$ $\eta=\xi_{2},$ $\zeta=\xi_{3}$ and rewrite the above formula as follows,

(3.2) $ sB(e_{i}, v, \cdots, v;w, \cdots, w)=\sum^{\underline{\partial\psi}}\langle J_{\lambda}\omega, e_{i}\rangle$ .
$\lambda\partial\xi_{\lambda}$

Then following a similar process we get

$ s(s-1)B(e_{i}, e_{j}, v, \cdots, v;w, \cdots, w)=\sum_{\lambda,\mu}\frac{\partial^{2}\psi}{\partial\xi_{\lambda}\partial\xi_{\mu}}\langle J_{\lambda}w, e_{i}\rangle\langle J_{\mu}w, e_{j}\rangle$ .

Putting $j=i$ and summing for $i=1,2,3,4$ , we get

$\frac{\partial^{2}\psi}{\partial\xi^{2}}+\frac{\partial^{2}\psi}{\partial\eta^{2}}+\frac{\partial^{2}\psi}{\partial\zeta^{2}}=0$ ,

since we have

$\sum_{i}\langle J_{\lambda}w, e_{i}\rangle\langle J_{\mu}w, e_{i}\rangle=\langle J_{\lambda}w, J_{\mu}w\rangle=\delta_{\lambda\mu}\langle w, w\rangle$

and $B$ is harmonic.
On the other hand the tensor $B$ satisfying (3.1) satisfies $B(w, w, v, \cdots, v;v, \cdots, v)=0$

if $\sigma\geq 2$ . Hence we get the following theorem.

THEOREM 3.1. Let $\psi(\xi, \eta, \zeta)$ be a homogeneous polynomial ofdegree $s=2\sigma\geq 4$ . The
bi-symmetric tensor $B$ of bi-degree $(s, s)$ satisfying (3.1) is a harmonic one if and only $\iota f$

$\psi$ is a harmonic homogeneous polynomial. Moreover in this case $B$ belongs to the linear
space $W(3, s)$ .

This theorem states that there exists a mapping $J^{\iota}$ of $V(2, s)$ into $W(3, s)$ .
DEFINITION 3.2. $J$“ : $\dot{V}(2, s)\rightarrow W(3, s)$ is the mapping such that

(3.3) $\psi(\langle J_{1}w, v\rangle, \langle J_{2}w, v\rangle, \langle J_{3}w, v\rangle)=(J^{t}\psi)(v;w)$ .

4. Contraction.

DEFINITION 4.1. Let $C$ be an element of $W(m, s)$ . There exists an element $C^{1}$ of
$W(m, s-1)$ such that

$C^{1}(v;w)=\sum_{i}C(e_{i}, v, \cdots, v;w, \cdots, w, e_{i})$ .

$C^{1}$ is called the contraction (reduction) of $C[5]$ .
We consider $C\in W(3, s)$ stated in Theorem 3.1, hence

$C(v;w)=\psi(\langle J_{1}w, v\rangle, \langle J_{2}w, v\rangle, \langle J_{3}w, v\rangle)$ .
From this we get
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$ sC(e_{i}, v, \cdots, v;w, \cdots, w)=\sum_{\lambda}\frac{\partial\psi}{\partial\xi_{\lambda}}\langle J_{\lambda}w, e_{i}\rangle$ .

Replacing $w$ by $w+te_{j}$ and differentiating with respect to $t$ , we get

$ s^{2}C(e_{i}, v, \cdots, v;w, \cdots, w, e_{j})=\sum_{\lambda,\mu}\frac{\partial^{2}\psi}{\partial\xi_{\lambda}\partial\xi_{\mu}}\langle J_{\lambda}w, e_{i}\rangle\langle J_{\mu}e_{j}, v\rangle+\sum_{\lambda}\frac{\partial\psi}{\partial\xi_{\lambda}}\langle J_{\lambda}e_{j}, e_{i}\rangle$

and then

$s^{2}\sum_{i}C(e_{i}, v, \cdots, v;w, \cdots, w, e_{i})=-\sum_{\lambda,\mu}(\frac{\partial^{2}\psi}{\partial\xi_{\lambda}\partial\xi_{\mu}}\sum_{i}\langle J_{\lambda}w, e_{i}\rangle\langle J_{\mu}v, e_{i}\rangle)$ .

Since we have

$\sum_{i}(\langle J_{\lambda}w, e_{i}\rangle\langle J_{\mu}v, e_{i}\rangle+\langle J_{\mu}w, e_{i}\rangle\langle J_{\lambda}v, e_{i}\rangle)=\langle J_{\lambda}w, J_{\mu}v\rangle+\langle J_{\mu}w, J_{\lambda}v\rangle=2\langle v, w\rangle\delta_{\lambda\mu}$
,

we get

$\sum_{\dot{t}}C(e_{i}, v, \cdots, v;w, \cdots, w, e_{i})=0$ .

Thus we have the following theorem.

THEOREM 4.2. Any element of $J^{\$}V(2, s)$ vanishes by contraction.

5. The mappings $J$ and $p$ .

Let $M_{4}$ : $R^{4}\rightarrow R^{4}$ be the linear transformation such that $M_{4}e_{i}=e_{i}$ for $i=1,2,3an($

$M_{4}e_{4}=-e_{4}$ . Then $I_{\lambda}(\lambda=1,2,3)$ defined by

$I_{\lambda}=M_{4}J_{\lambda}M_{4}$

satisfy $I_{2}I_{3}=-I_{3}I_{2}=I_{1},$ $I_{3}I_{1}=-I_{1}I_{3}=I_{2},$ $I_{1}I_{2}=-I_{2}I_{1}=I_{3},$ $I_{\lambda}^{2}=-1$ , and $J_{\lambda}I_{\mu}=I_{\mu}I_{\lambda}$ .
It is easy to prove the following theorem.

THEOREM 5.1. There exists a mapping $I^{t}$ : $V(2, s)\rightarrow W(3, s),$ $s=2\sigma\geq 4$ , such that

$\psi(\langle I_{1}w, v\rangle, \langle I_{2}w, v\rangle, \langle I_{3}w, v\rangle)=(I^{\iota}\psi)(v;w)$

holds with every $\psi\in V(2, s)$ and $I^{\#}\psi\in W(3, s)$ .

The contraction of I $\psi$ also vanishes.
Let $I_{O}=J_{O}$ be the identity transformation and $a=(a^{0}, a^{1}, a^{2}, a^{3})\in R^{4}$ be such tha

$(a^{O})^{2}+(a^{1})^{2}+(a^{2})^{2}+(a^{3})^{2}=1$ . Then the sets $\{I_{a}=a^{O}I_{0}+a^{1}I_{1}+a^{2}I_{2}+a^{3}I_{3}\}$ and $\{J_{a}=$

$a^{0}J_{0}+a^{1}J_{1}+a^{2}J_{2}+a^{3}J_{3}\}$ are subgroups of $SO(4)$ , which are denoted by $O_{I}an($

$O_{J}$ , respectively. We get, in view of $J_{\lambda}I_{a}=I_{a}J_{\lambda}$ ,
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$\langle J_{\lambda}I_{a}w, I_{a}v\rangle=\langle(I_{a})^{-1}J_{\lambda}I_{a}w, v\rangle=\langle J_{\lambda}w, v\rangle$ .

This proves that every element of $J^{\#}V(2, s)$ is invariant by the action of $O_{I}[5]$ . In such
a way we get the following theorem.

THEOREM 5.2. Every element of $J^{t}V(2, s)$ (resp. $I^{\#}V(2,$ $s)$) is invariant by the action

of $O_{I}$ (resp. $O_{J}$).

Clearly the mapping $J^{\#}$ is linear. In order to show that $J^{\#}$ is an injection, it is
sufficient to prove that the $\psi\in V(2, s)$ satisfying

$\psi(\langle J_{1}w, v\rangle, \langle J_{2}w, v\rangle, \langle J_{3}w, v\rangle)=0$

identically is nothing but $\psi\equiv 0$ . To prove this, let us take $v$ and $w$ such that, for example,

$v=-\xi e_{2}+\eta e_{3}-\zeta e_{4}+ae_{1}$ , $w=e_{1}$ ,

where $\xi,$
$\eta,$

$\zeta$ are considered to be arbitrary. Then we have

$\psi(\langle J_{1}w, v\rangle, \langle J_{2}w, v\rangle, \langle J_{3}w, v\rangle)=\psi(\xi, \eta, \zeta)$

and hence $\psi=0$ identically, which proves that $J^{\#}$ is an injection.

DEFINITION 5.3. $W_{0}(m, s)$ is the linear subspace of $W(m, s)$ consisting of all
elements of $W(m, s)$ with vanishing contraction.

Then we get the following theorem.

THEOREM 5.4. $J$“ and $I^{\iota}$ are injective linear mappings of $V(2, s)$ into $W_{0}(3, s)$

respectively.

6. Inner products and $J^{\#},$ $I^{\#}$ .
Let $\psi_{1}$ and $\psi_{2}$ be elements of $V(2, s),$ $ s=2\sigma$ , where

$\psi_{1}(\xi_{1}, \xi_{2}, \xi_{3})=A^{\lambda_{1}\cdots\lambda_{s}}\xi_{\lambda_{1}}\cdots\xi_{\lambda_{s}}$ , $\psi_{2}(\xi_{1}, \xi_{2}, \xi_{3})=B^{\lambda_{1}\cdots\lambda_{s}}\xi_{\lambda_{1}}\cdots\xi_{\lambda_{s}}$ .

DEFINITION 6.1. The inner product $\langle\psi_{1}, \psi_{2}\rangle$ of the polynomials $\psi_{1}$ and $\psi_{2}$ is
defined by

$\langle\psi_{1}, \psi_{2}\rangle=A^{\lambda_{1}\cdots\lambda_{s}}B_{\lambda_{1}\cdots\lambda_{s}}$

where $B_{\lambda_{1}\cdots\lambda_{s}}=B^{\lambda_{1}\cdots\lambda_{s}}$ .

DEFINITION 6.2. Let $C_{1}$ and $C_{2}$ be elements of $W(m, s)$ . The inner product
$\langle C_{1}, C_{2}\rangle$ is defined by

$\langle C_{1}, C_{2}\rangle=\sum_{i}*\sum_{j}*C_{1^{1}}^{i\cdots i_{s},j_{1}\cdots j_{s}}C_{2^{1}}^{i\cdots i..j_{1}\cdots j_{s}}$
,
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namely

$\langle C_{1}, C_{2}\rangle=\sum_{j}\sum_{j}*C_{1}(e_{i_{1}}, \cdots, e_{i}.;e_{j_{1}}, \cdots, e_{j}.)\times C_{2}(e_{j_{1}}, \cdots, e_{i_{s}};e_{j_{1}}, \cdots, e_{j_{s}})$ ,

where

$\sum_{k}^{*}=\sum_{k_{1}=1k}^{m+1}\cdots\sum_{s^{=1}}^{m+1}$

Now we consider the case $m=3,$ $ s=2\sigma$ and inquire into the relation between
$\langle\psi_{1}, \psi_{2}\rangle$ and $\langle C_{1}, C_{2}\rangle$ when

$\psi_{a}(\langle J_{1}w, v\rangle, \langle J_{2}w, v\rangle, \langle J_{3}w, v\rangle)=C_{a}(v;w)$ ,

where $a=1,2$ . In order to get the formulas of $\langle\psi_{1}, \psi_{2}\rangle$ and $\langle C_{1}, C_{2}\rangle$ it is desirable $te$

rewrite the formula written above, namely

$\psi_{a}^{\lambda_{1}\cdots\lambda_{*}}\langle J_{\lambda_{1}}w, v\rangle\cdots\langle J_{\lambda_{s}}w, v\rangle=C_{a}(v;w)$

in a precise form

$(s!)^{-2}\sum_{P}\sum_{Q}\psi_{a}^{\lambda_{1}\cdots\lambda}\cdot\langle J_{\lambda_{1}}w_{Q\langle 1)}, v_{P\langle 1)}\rangle\cdots\langle J_{\lambda}.w_{Q\langle s)}, v_{P(s)}\rangle=C_{a}(v_{1}, \cdots, v_{s};w_{1}, \cdots, w_{s})$ ,

where each of $P$ and $Q$ is a permutation of 1, $\cdots,$ $s$ . Since $\psi_{a}^{\lambda_{1}\cdots\lambda_{*}}$ is symmetric witl
respect to $\lambda_{1},$ $\cdots,$

$\lambda_{s}$, the left hand side can be rewritten

$(s!)^{-1}\sum_{Q}\psi_{a}^{\lambda_{1}\cdots\lambda_{*}}\langle J_{\lambda_{1}}w_{Q\langle 1)}, v_{1}\rangle\cdots\langle J_{\lambda_{l}}w_{Q(s)}, v_{s}\rangle$ .

In order to get $\langle C_{1}, C_{2}\rangle$ , we must replace $v_{r}$ by $e_{i_{r}}$ and $w_{r}$ by $e_{j_{r}}$ where $r=1,$ $\cdots,$ $s$

Now we can find the relation between $\langle C_{1}, C_{2}\rangle$ and $\langle\psi_{1}, \psi_{2}\rangle$ following the metho $($

used in [3] pages 344, 345. Though $s$ is an even number $\geq 4$ , the way of deduction $i^{t}$

similar to the case $s=4$ . Thus we get for each permutation $P$ the number $c_{P}$ satisfyinl
$ c_{P}=\gamma_{P}\langle\psi_{1}, \psi_{2}\rangle$ ,

where $\gamma_{P}$ is a number depending only on $P$ . Hence we get

$\langle C_{1}, C_{2}\rangle=(s!)^{-1}(\sum_{P}\gamma_{P})\langle\psi_{1}, \psi_{2}\rangle$ ,

and this proves

(6.1) $\langle J^{\iota}\psi_{1}, J\psi_{2}\rangle=(s!)^{-1}(\sum_{P}\gamma_{P})\langle\psi_{1}, \psi_{2}\rangle$ ,

(6.2) $\langle I^{\iota}\psi_{1}, I^{1}\psi_{2}\rangle=(s!)^{-1}(\sum_{P}\gamma_{P})\langle\psi_{1}, \psi_{2}\rangle$ .
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On the other hand we have $\langle J^{g}\psi_{1}, I^{\#}\psi_{2}\rangle=0$ . The proof is almost the same as that
in the case $s=4$ (see [3] pages 345, 346).

Thus we get the following theorem.

THEOREM 6.3. Let $\psi_{1}$ and $\psi_{2}$ be elements of $V(2, s)$ . Then we have

$\langle J^{t}\psi_{1}, J^{r}\psi_{2}\rangle=(s!)^{-1}(\sum_{P}\gamma_{P})\langle\psi_{1}, \psi_{2}\rangle$ ,

$\langle I^{\#}\psi_{1}, I^{\iota}\psi_{2}\rangle=(s!)^{-1}(\sum_{P}\gamma_{P})\langle\psi_{1}, \psi_{2}\rangle$ ,

$\langle J^{\$}\psi_{1}, I^{\$}\psi_{2}\rangle=0$ ,

where $\gamma_{P}$ is a certain number depending only on a permutation $P$ of 1, $\cdots,$ $s$ .

This theorem may be considered as another proof of Theorem 5.4.

COROLLARY 6.4. If $\psi_{1},$ $\cdots,$
$\psi_{d}$ are linearly independent in $V(2, s)$ , then $J^{\$}\psi_{1},$ $\cdots$ ,

$J^{\epsilon}\psi_{d},$ $F\psi_{1},$
$\cdots,$

$I^{t}\psi_{d}$ are also linearly independent.

7. Elevation.

Let us consider an element $C$ of $W(m, s)$ which satisfies

(7.1) $C(w, v, \cdots, v;w, \cdots, w)=0$

for any $v,$
$w\in R^{m+1}$ . Then for any natural number $k$ there exists a sequence $a_{0},$ $a_{1},$ $\cdots,$ $a_{e}$ ,

where $e=[k/2]$ such that $C_{k}$ , which is a bi-symmetric tensor of bi-degree $(s+k, s+k)$

defined by

(7.2) $C_{k}(v;w)=\sum_{p=0}^{e}a_{p}\langle v, w\rangle^{k-2p}\langle v, v\rangle^{p}\langle w, w\rangle^{p}C(v;w)$ ,

belongs to $W(m, s+k)$ . Since $C_{k}$ must be harmonic, $a_{p}$ are determined by

(7.3) $(k-2p+2)(k-2p+1)a_{p-1}+2p(2s+m+2k-2p-1)=0$ ,

where $a_{0}$ can be chosen arbitrarily.
As it is easy to see, $C_{k}$ satisfies the condition (iv) in \S 1 and we can state the following

theorem.

THEOREM 7.1. Let $C$ be an element of $W(m, s)$ which satisfies (7.1) and $a_{p}(p=0$ ,

1, $\cdots,$ $[k/2]$) be constants determined by (7.3) for a given natural number $k$ . Then
bi-symmetric tensor $C_{k}$ of bi-degree $(s+k, s+k)$ given by (7.2) belongs to $W(m, s+k)$ .

DEFINITION 7.2. The tensor $C_{k}$ stated in Theorem 7.1 is called an element elevated
from $C$ .
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If $C\in W(3, s)$ belongs to $J$“ $V(2, s)$ or $I$“ $V(2, s)$ , then $C$ satisfies (7.1). $Therefor\epsilon$

we have the following.

COROLLARY 7.3. Let $C$ be an element of $J^{\$}V(2, s)$ or $I^{l}V(2, s)$ and $a_{p}(p=0$ .
1, $\cdots,$ $[k/2]$) be constants determined by (7.3). Then $C_{k}$ given by (7.2) belongs $tc$

$W(3, s+k)$ .

8. Geodesics.

We consider geodesics in minimal immersions of $S^{3}$ into spheres where the
immersions $f_{3,s}$ are those associated with $J^{\$}V(2, s)$ or $pV(2, s)$ . Thus a geodesic is the
image in $f_{3,s}(S^{3}(1))$ of a great circle

$u(t)=a$ cos $t+b$ sin $t$

of $S^{3}(1)$ , where $\{a, b\}$ is an orthonormal set of vectors of $R^{4}$ . As we consider the
geodesic as a curve

$X(t)=\sum_{A=1}^{n}X^{A}(t)\tilde{e}_{A}$

in $R^{n}$ , we can put

$X^{A}(t)=F^{A}(u(t), \cdots, u(t))$ .
Since we can follow almost the same way as in [7], we can omit some formulas

stated in [7] though $s$ is now an even number $\geq 4$ . Let us define $V_{p}(t)$ by

$V_{p}(t)=\sum_{A=1}^{n}F_{p}^{A}(t)\tilde{e}_{a}$ ,

where

$F_{p}^{A}(t)=F^{A}(u(t), \cdots, u(t), u^{\prime}(t), \cdots, u^{\prime}(t))$

is of degree $p$ in $u^{\prime}(t)$ . $V_{p}(t)$ satisfy

$\frac{dV_{p}}{dt}=(s-p)V_{p+1}-pV_{p-1}$ ,

which is the result of $u^{\prime\prime}(t)=-u(t)$ . Then as it is stated in [7], we have

$X(t)=V_{0}(t)$ , $\frac{dX(t)}{dt}=sV_{1}(t)$ ,

$\frac{d^{2}X(t)}{dt^{2}}=-sV_{0}(t)+s(s-1)V_{2}(t)$ ,
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$\frac{d^{3}X(t)}{dt^{3}}=(-3s^{2}+2s)V_{1}(t)+s(s-1)(s-2)V_{3}(t)$ ,

or

$\frac{d^{2p}X(t)}{dt^{2p}}=\sum_{q=0}^{p}a_{p,q}V_{2q}(t)$ ,

$\frac{d^{2p+1}X(t)}{dt^{2p+1}}=\sum_{q=0}^{p}b_{p,q}V_{2q+1}(t)$ ,

where $a_{p,q}$ and $b_{p,q}$ are some polynomials with respect to $s$ . We define $V_{q,r}(t)$ by

$V_{q,r}(t)=\langle V_{q}(t), V_{r}(t)\rangle=\sum_{A}F_{q}^{A}(t)F_{r}^{A}(t)$ .

Then we get

$V_{q,r}(t)=C_{q,r}(u(t), u^{\prime}(t))+c^{\prime}u_{q,r}$

from (2.3), (2.5), and (2.7) (for the details see [7]).
Because of $ s=2\sigma$ we have

$\frac{d^{s}X(t)}{dt^{s}}=\sum_{q=0}^{\sigma-1}a_{\sigma,q}V_{2q}(t)+s!V_{s}(t)$ , $\frac{d^{s+1}X(t)}{dt^{s+1}}=\sum_{q=0}^{\sigma-1}b_{\sigma,q}V_{2q+1}(t)$ .

This shows that $d^{s+1}X/dt^{s+1}$ is a linear combination of $dX/dt,$ $\cdots,$ $d^{s-1}X/dt^{s-1}$ . The
Frenet formula of a geodesic considered as a curve in $R^{n}$ is therefore written

$’\frac{dX}{dt}=i_{1}$ , $\frac{di_{1}}{dt}=k_{1}i_{2}$ , $\frac{di_{2}}{dt}=-k_{1}i_{1}+k_{2}i_{3}$ ,

$\frac{di_{s-1}}{dt}=-k_{s-2}i_{s-2}+k_{s-1}i_{s}$ , $\frac{di_{s}}{dt}=-k_{s-1}i_{s-1}$ .

First we get from $k_{1}i_{2}=d^{2}X/dt^{2}$

$(k_{1})^{2}=s^{2}V_{0,0}-2s^{2}(s-1)V_{0,2}+s^{2}(s-1)^{2}V_{2,2}$

and hence

$(k_{1})^{2}=s^{2}\{c^{\prime}u_{0,0}-2(s-1)c^{\prime}u_{0.2}+(s-1)^{2}c^{\prime}u_{2,2}+(s-1)^{2}C_{2,2}(u(t), u^{\prime}(t))\}$ .

Now let us consider the property of $C_{p,q}(u(t), u^{\prime}(t))$ when $C$ belongs to $J^{\$}V(2, s)$

or $I$“ $V(2, s)$ . In view of (3.1) and $\langle J_{\lambda}v, v\rangle=0$ we have

$C_{p,q}(v, w)=0$ if $p+q\neq s$ ,
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hence

$C_{p,q}(u(t), u^{\prime}(t))=0$ if $p+q\neq s$ .
Then, in view of

$\underline{d}C$

$p,s-p(u(t), u^{\prime}(t))=(s-p)C_{p+1,s-p}(u(t), u^{\prime}(t))+pC_{p,s-p+1}(u(t), u^{\prime}(\}))$
$dt$

$-pC_{p-1,s-p}(u(t), u^{\prime}(t))-(s-p)C_{p,s-p-1}(u(t), u^{\prime}(t))=0$ ,

$wecanseethateveryC_{p,q}(u(t), u^{\prime}(t))$ is independent of t.
This proves that $k_{1}$ does not depend on $t$ . Calculation similar to that performed

in [7] results in the following theorem.

THEOREM 8.1. Let $\Gamma=f(\gamma)$ be a geodesic of $f_{3,s}(S^{3}(1))$ , where $f_{3,s}$ are isometric
minimal immersions associated with $J^{\iota}V(2, s)$ or $I^{l}V(2, s)$ and $k_{1},$ $\cdots,$ $k_{s-1}$ be curvatures
of $\Gamma$ when it is considered as a curve in $R^{n}$ . Then the curvatures are constants which depend
on the geodesic.
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