Isometric Deformation of Surfaces in the Hyperbolic 3-Manifold Preserving the Mean Curvature

Hiroshi TAKEUCHI
Shikoku University
(Communicated by Y. Maeda)

1. Introduction.

Let ($N^{3}(c), h$) be a complete simply connected Riemannian 3-manifold of constant curvature c with metric h. Let $X: M \rightarrow N^{3}(c)$ be an isometric immersion of a Riemannian 2-manifold M into $N^{3}(c)$ and H the mean curvature of X. The isomertic immersion X is called H-deformable if there exists a non-trivial 1-parameter family of immersions X_{t} such that

$$
\begin{equation*}
X_{0}=X, \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
X_{t}^{*} h=X_{0}^{*} h, \tag{2}\\
H_{t}=H, \tag{3}
\end{gather*}
$$

where H_{t} denotes the mean curvature of X_{t}. An H-deformation $\left\{X_{t}\right\}$ is trivial if for each parameter t, there exists an isometry L of $N^{3}(c)$ such that $X_{t}=L \circ X_{0}$. An isometric immersion X is called locally H-deformable if each point of M has a neighborhood restricted to which X is H-deformable.

There are some papers on the H-deformable surfaces in Euclidean 3-space. \mathbf{O}. Bonnet [1] proved that a surface of constant mean curvature in Euclidean space can be locally isometrically deformed preserving the mean curvature. É. Cartan [4] has studied such deformations for surfaces of nonconstant mean curvature and showed that they are W-surfaces. Chen and Peng [5] and K. Kenmotsu [8] characterized in some detail the Riemannian metrics and the mean curvature functions of the surfaces. Colares and Kenmotsu [7] and Roussos [14] proved that if a surface of constant Gaussian curvature in Euclidean 3-space is locally H -deformable, then the Gaussian curvature must be zero and such a deformation starts from a cylinder over a logarithmic spiral. Kokubu [9] studied such a deformation of hypersurfaces in Euclidean n-space ($n \geq 3$).

In sections 2 and 3 of this paper we study locally H-deformable surfaces in $N^{3}(c)$. In section 4 we discuss the case of $\boldsymbol{c}=-1$ in detail. The study of \boldsymbol{H}-deformable surfaces in the hyperbolic space is more complicated than that in Euclidean space. The results we get are the following: If the Gaussian curvature K of the surface is constant, then $K=0$ or $K=-1$. In case of $K=0$, the mean curvature of the surface is constant. In case of $K=-1$, we can explicitly determine the mean curvature function in section 4.2. In both cases we can completely determine the first and second fundamental forms of the H-deformation $\left\{X_{t}\right\}$.

In this paper we deal with the local one. In fact for compact surfaces, Umehara [17] showed that the \boldsymbol{H}-deformability characterizes surfaces with constant mean curvature in $N^{3}(c)$, which extends Tribuzy's result [16] for higher genus.

The author would like to thank Professor K. Kenmotsu for his advice and encouragement and the referee for kind advice.

2. Preliminaries.

We consider a piece of oriented surface M in $N^{3}(c)$, which does not contain any umbilic point. We apply the method by which Colares and Kenmotsu [7] studied an H-deformable surface in Euclidean 3-space. We get similar formulas for the surface \boldsymbol{M} in $N^{3}(c)$ to those in Euclidean space.

Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal vector fields on M such that e_{1} and e_{2} are unit tangent vectors at $x \in M$ and e_{3} is the unit normal vector at $x \in M \subset N^{3}(c)$. Let $\left\{\omega^{1}\right.$, $\left.\omega^{2}, \omega^{3}\right\}$ be the system of dual 1 -forms of $\left\{e_{1}, e_{2}, e_{3}\right\}$, and ω_{B}^{A} the connection form given by

$$
\omega^{i}(X)=\left\langle X, e_{i}\right\rangle, \quad \omega_{B}^{A}(X)=\left\langle\nabla_{X} e_{A}, e_{B}\right\rangle
$$

where the indices A, B, C run through 1 to 3 , and X is any vector field on M. Here ∇ denotes the Levi-Civita connection of the Riemannian metric h and \langle,$\rangle the inner$ product induced by h on $N^{3}(c)$. We then have the structure equations of $N^{3}(c)$,

$$
\begin{aligned}
& d \omega^{A}=-\sum_{B=1}^{3} \omega_{B}^{A} \wedge \omega^{B} \\
& d \omega_{B}^{A}=-\sum_{C=1}^{3} \omega_{C}^{A} \wedge \omega_{B}^{C}+c \cdot \omega^{A} \wedge \omega^{B} .
\end{aligned}
$$

Restricting these equations to M, we get

$$
\begin{gather*}
d \omega^{1}=-\omega_{2}^{1} \wedge \omega^{2} \tag{4}\\
d \omega^{2}=-\omega_{1}^{2} \wedge \omega^{1} \tag{5}\\
d \omega_{j}^{i}=-\sum_{k=1}^{3} \omega_{k}^{i} \wedge \omega_{j}^{k}+c \cdot \omega^{i} \wedge \omega^{j} \tag{6}
\end{gather*}
$$

where the indices i, j run through 1 to 2 . From $\left.X^{*} \omega^{3}\right|_{M}=0$, and $d \omega^{3}=-\sum_{j=1}^{2} \omega_{j}^{3} \wedge \omega^{j}$, we can write

$$
\omega_{j}^{3}=\sum_{k=1}^{2} h_{j k} \omega^{k},
$$

where $h_{j k}$ is the coefficient of the second fundamental form of the immersion X. The Gaussian curvature K of M is defined by

$$
d \omega_{2}^{1}=K \cdot \omega^{1} \wedge \omega^{2}
$$

Then the Gauss equation is given by

$$
K=c+\operatorname{det}(h)
$$

We may write as $\omega_{1}^{3}=(H+x) \omega^{1}+y \omega^{2}, \omega_{2}^{3}=y \omega^{1}+(H-x) \omega^{2}$ for some functions x and y on M. By the Gauss equation, we have $H^{2}-K+c=x^{2}+y^{2}$. Thus we can write as

$$
\begin{align*}
& \omega_{1}^{3}=\left(H+\sqrt{H^{2}-K+c} \cos \alpha\right) \omega^{1}+\sqrt{H^{2}-K+c} \sin \alpha \omega^{2} \tag{7}\\
& \omega_{2}^{3}=\sqrt{H^{2}-K+c} \sin \alpha \omega^{1}+\left(H-\sqrt{H^{2}-K+c} \cos \alpha\right) \omega^{2} \tag{8}
\end{align*}
$$

where α is a locally defined function on M. We define

$$
\begin{equation*}
D \alpha:=d \alpha+2 \omega_{1}^{2}=\alpha_{1} \omega^{1}+\alpha_{2} \omega^{2} \tag{9}
\end{equation*}
$$

where α_{1} and α_{2} are coefficients of the 1 -form $D \alpha$. For any tensor field of (0,1)-type α_{i}, we define its covariant derivatives $\alpha_{i, j}$ as follows:

$$
\begin{equation*}
D \alpha_{i}:=d \alpha_{i}-\sum \alpha_{s} \omega_{i}^{s}=\sum \alpha_{i, j} \omega^{j} \tag{10}
\end{equation*}
$$

Exterior differentiations of (7) and (8) gives

$$
\begin{align*}
\sqrt{H^{2}-K+c} D \alpha= & \cos \alpha\left(H_{1} \omega^{2}+H_{2} \omega^{1}\right)-\sin \alpha\left(H_{1} \omega^{1}-H_{2} \omega^{2}\right) \tag{11}\\
& +\left(\sqrt{H^{2}-K+c}\right)_{2} \omega^{1}-\left(\sqrt{H^{2}-K+c}\right)_{1} \omega^{2}
\end{align*}
$$

where H_{i} and $\left(\sqrt{H^{2}-K+c}\right)_{i}, i=1,2$, are exterior derivatives of the scalar functions H and $\sqrt{H^{2}-K+c}$ defined as in (9), respectively.

We define the 1 -forms

$$
\beta_{1}=\frac{H_{1} \omega^{1}-H_{2} \omega^{2}}{\sqrt{H^{2}-K+c}}, \quad \beta_{2}=\frac{H_{2} \omega^{1}+H_{1} \omega^{2}}{\sqrt{H^{2}-K+c}}
$$

Since the $*$-operator of Hodge is given by $* \omega^{1}=\omega^{2}$ and $* \omega^{2}=-\omega^{1}$, the formula (11) can be written as

$$
\begin{equation*}
D \alpha=-\sin \alpha \cdot \beta_{1}+\cos \alpha \cdot \beta_{2}-* d \log \sqrt{H^{2}-K+c} \tag{12}
\end{equation*}
$$

We calculate the exterior derivatives of β_{i} as follows:

$$
\left\{\begin{align*}
d \beta_{1}=\frac{1}{\sqrt{H^{2}-K+c}}[& {\left[\left(\log \sqrt{H^{2}-K+c}\right)_{1} H_{2}+\left(\log \sqrt{H^{2}-K+c}\right)_{2}\right.} \tag{13}\\
& \left.\left.\times H_{1}-2 H_{1,2}\right\} \omega^{1} \wedge \omega^{2}-2 \sqrt{H^{2}-K+c} \beta_{2} \wedge \omega_{1}^{2}\right] \\
d \beta_{2}=\frac{1}{\sqrt{H^{2}-K+c}}[& \left(\log \sqrt{H^{2}-K+c}\right)_{1} H_{1}+\left(\log \sqrt{H^{2}-K+c}\right)_{2} \\
& \left.\left.\times H_{2}+H_{1,1}-H_{2,2}\right\} \omega^{1} \wedge \omega^{2}+2 \sqrt{H^{2}-K+c} \beta_{1} \wedge \omega_{1}^{2}\right]
\end{align*}\right.
$$

where $H_{i, j}$'s are covariant derivatives of H_{i} defined in (10). Using (9) and (13), the exterior differentiation of (12) gives the condition:

$$
\begin{equation*}
-2 A \sin \alpha+B \cos \alpha+P=0 \tag{14}
\end{equation*}
$$

where we put

$$
\left\{\begin{array}{l}
A=H_{1,2} \sqrt{H^{2}-K+c}-H_{2}\left(\sqrt{H^{2}-K+c}\right)_{1}-H_{1}\left(\sqrt{H^{2}-K+c}\right)_{2} \tag{15}\\
B=\left(H_{2,2}-H_{1,1}\right) \sqrt{H^{2}-K+c}+2 H_{1}\left(\sqrt{H^{2}-K+c}\right)_{1}-2 H_{2}\left(\sqrt{H^{2}-K+c}\right)_{2} \\
P=\left(H^{2}-K+c\right)\left(\Delta \log \sqrt{H^{2}-K+c}-2 K\right)-|\operatorname{grad} H|^{2}
\end{array}\right.
$$

We shall give another formula obtained from (12). Applying the *-operator to (12), we obtain

$$
\begin{equation*}
\alpha_{1} \omega^{2}-\alpha_{2} \omega^{1}=-\sin \alpha \cdot \beta_{2}-\cos \alpha \cdot \beta_{1}+d\left(\log \sqrt{H^{2}-K+c}\right) . \tag{16}
\end{equation*}
$$

By exterior differentiation of (16), we obtain

$$
\begin{equation*}
\left(H^{2}-K+c\right) \Delta \alpha=2 A \cos \alpha+B \sin \alpha \tag{17}
\end{equation*}
$$

It follows from (14) and (17) that the conditions $A=B=0$ are equivalent to the conditions $P=\Delta \alpha=0$.

3. \boldsymbol{H}-deformable surfaces with constant Gaussian curvature in $\boldsymbol{N}^{\mathbf{3}}(\boldsymbol{c})$.

In this section we study a surface with constant Gaussian curvature in $N^{3}(c)$ which admits an isometric deformation preserving the mean curvature. We denote by ∇ the covariant differentiation of the induced metric from an isometric immersion $X: M \rightarrow$ $N^{3}(c)$ and we put $Z=\left(e_{1}-i e_{2}\right) / 2$. Then we get the following theorem which can be proved in a similar way to [7].

Theorem 1. Let M be a piece of an oriented surface in $N^{3}(c)$ such that it has no umbilic points. Then, M admits a non-trivial isometric deformation preserving the mean curvature if and only if one of the following conditions holds:

$$
\begin{gather*}
\nabla\left(\frac{\nabla H}{H^{2}-K+c}\right)(Z, Z)=0, \tag{18}\\
P=0 \quad \text { and } \quad \Delta \alpha=0 . \tag{19}
\end{gather*}
$$

We classify surfaces with constant Gaussian curvature K in $N^{3}(c)$ which admit an isometric deformation preserving the mean curvature function H.

Theorem 2. Let M be a piece of an oriented surface in $N^{3}(c)$ without umbilic points such that K is constant on M. If M admits a non-trivial isometric deformation preserving the mean curvature function, then $K=c$ or $K=0$.

Proof. First we consider the case M is a minimal suface. By results of [2], [3], [11], and [13], we have $K=0$ or $K=1$ when $c=1$, we have $K=0$ when $c=0$, and we have $K=-1$ when $c=-1$. Next suppose that $H \neq 0$. We define a tensor field of $(0,1)$ type defined by $f_{i}=H_{i} /\left(H^{2}-K+c\right)$ for $i=1,2$. A computation shows us $f_{i, j}=\left\{\left(H^{2}-\right.\right.$ $\left.K+c) H_{i, j}-2 H H_{i} H_{j}\right\} /\left(H^{2}-K+c\right)^{2}$. The condition $A=0$ implies

$$
H_{1,2}\left(H^{2}-K+c\right)-2 H_{1} H H_{2}=0 .
$$

The condition $B=0$ implies

$$
H_{2,2}\left(H^{2}-K+c\right)-2 H H_{2}^{2}=H_{1,1}\left(H^{2}-K+c\right)-2 H H_{1}^{2} .
$$

Hence there exists a scalar function λ with $f_{i, j}=\lambda \delta_{i, j}$. By taking the trace of these equations, we get

$$
2 \lambda=\sum f_{i, i}=\frac{\left(H^{2}-K+c\right) \Delta H-2 H|\operatorname{grad} H|^{2}}{\left(H^{2}-K+c\right)^{2}} .
$$

On the other hand the condition $P=0$ is equivalent to

$$
\left(H^{2}-K+c\right) \Delta H-2 H|\operatorname{grad} H|^{2}=\frac{2 K\left(H^{2}-K+c\right)^{2}}{H} .
$$

These formulas follow $\lambda=K / H$, which implies

$$
\begin{equation*}
H f_{i, j}=K \delta_{i, j}, \quad 1 \leq i, j \leq 2 . \tag{20}
\end{equation*}
$$

We have from (20),

$$
\begin{equation*}
H_{k} f_{i, j}-H_{j} f_{i, k}+H\left(f_{i, j, k}-f_{i, k, j}\right)=0 . \tag{21}
\end{equation*}
$$

We use the Ricci identities of the tensor field f_{i} :

$$
\begin{align*}
& f_{1,2,1}-f_{1,1,2}=K f_{2} \tag{22}\\
& f_{2,1,2}-f_{2,2,1}=K f_{1} \tag{23}
\end{align*}
$$

By (20), (21), (22), and (23), we have $K(K-c) H_{i}=0, i=1,2$. Thus if $H_{i}=0, i=1,2$,
then H is constant and $f_{i, j}$'s vanish identically. Therefore K must be zero. This completes the proof.

4. Deformations of surfaces in the hyperbolic space $H^{3}(-1)$.

In this section we study deformations of \boldsymbol{H}-deformable surfaces with constant curvature in the hyperbolic 3 -space $H^{3}(-1)$. We consider the hyperbolic 3 -space as the upper half space model $\left\{\left(x_{1}, x_{2}, x_{3}\right) \in R^{3}: x_{3}>0\right\}$ with the metric $\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right) / x_{3}^{2}$. Recall that the theorem 2 implies the curvature of the surface is $K=0$ or $K=-1$.
4.1. The case of the Gaussian curvature $K=0$. Let M be a piece of Euclidean 2-plane with flat metric $d u^{2}+d v^{2}$. Consider an isometric immersion $X(u, v): M \rightarrow$ $H^{3}(-1)$ such that it has no umbilic points and satisfies the condition (18). Putting $\omega^{1}=d u$ and $\omega^{2}=d v$, we have $\omega_{2}^{1}=0$. The condition (18) is equivalent to

$$
\begin{gather*}
\sqrt{H^{2}-1} H_{u v}-H_{v}\left(\sqrt{H^{2}-1}\right)_{u}-H_{u}\left(\sqrt{H^{2}-1}\right)_{v}=0 \tag{24}\\
\left(H^{2}-1\right)\left(H_{v v}-H_{u u}\right)+2 H\left(H_{u}^{2}-H_{v}^{2}\right)=0 \tag{25}
\end{gather*}
$$

The general solutions of (24) are

$$
H(u, v)=\frac{1+c_{1}(u) c_{2}(v)}{1-c_{1}(u) c_{2}(v)}
$$

where $c_{1}(u)$ and $c_{2}(v)$ are any functions depending only on u and v satisfying $c_{1}(u) c_{2}(u)>0$, respectively. Considering (25), we get

$$
\begin{equation*}
H(u, v)=\frac{1+K_{1} \exp \left(K_{2}\left(u^{2}+v^{2}\right)\right)}{1-K_{1} \exp \left(K_{2}\left(u^{2}+v^{2}\right)\right)} \tag{26}
\end{equation*}
$$

where K_{1} is a positive constant and K_{2} is a constant independent of u and v. Furthermore, considering (19), K_{2} must be zero. As a result the surface has the constant mean curvature $H=\left(1+K_{1}\right) /\left(1-K_{1}\right)$. This is an equidistance surface from a geodesic line in $H^{3}(-1)$ (see [15], [16]). Then the isometric deformation preserving the mean curvature H is given by

$$
\begin{equation*}
X_{t}(u, v)=(r \cos \theta, r \sin \theta, r \tan \omega) \tag{27}
\end{equation*}
$$

where we set $r=\exp (\sin \omega \cdot \tilde{u})$ and $\theta=\tan \omega \cdot \tilde{v}$, also $\tilde{u}=\cos t \cdot u-\sin t \cdot v$ and $\tilde{v}=\sin t \cdot u+$ $\cos t \cdot v$, and ω is a constant.
4.2. The case of the Gaussian curvature $K=-1$. In this section we study surfaces with the curvature $K=-1$ having the properties (18) and (19). Let M be a piece of the hyperbolic surface as the upper half-space model $\left\{(u, v) \in \boldsymbol{R}^{2}: v>0\right\}$ with the metric $d s^{2}=\left(d u^{2}+d v^{2}\right) / v^{2}$. We consider an isometric immersion $X(u, v): M \rightarrow H^{3}(-1)$ such that it has no umbilic points and satisfies the condition (18). Putting $\omega^{1}=d u / v$
and $\omega^{2}=d v / v$, we have $\omega_{2}^{1}=-d u / v$. The condition (18), which means the conditions that A and B in (15) are zero, is equivalent to

$$
\begin{gather*}
H\left\{v H_{u v}+H_{u}\right\}=2 v H_{u} H_{v}, \tag{28}\\
H\left\{v\left(H_{u u}-H_{v v}\right)-2 H_{v}\right\}=2 v\left(H_{u}^{2}-H_{v}^{2}\right) . \tag{29}
\end{gather*}
$$

We can easily see that these formulas are also equivalent to

$$
\begin{gather*}
\left(\frac{H}{v}\right)\left(\frac{H}{v}\right)_{u v}-2\left(\frac{H}{v}\right)_{u}\left(\frac{H}{v}\right)_{v}=0 \tag{30}\\
\frac{H}{v}\left\{\left(\frac{H}{v}\right)_{v v}-\left(\frac{H}{v}\right)_{u u}\right\}+2\left\{\left(\left(\frac{H}{v}\right)_{u}\right)^{2}-\left(\left(\frac{H}{v}\right)_{v}\right)^{2}\right\}=0 . \tag{31}
\end{gather*}
$$

The general solution of (28) is

$$
\begin{equation*}
\frac{H(u, v)}{v}=\frac{1}{(\phi(u)+\psi(v))} \tag{32}
\end{equation*}
$$

where ϕ and ψ are any functions. Considering (29), we get

$$
\begin{equation*}
\phi^{\prime \prime}(u)-\psi^{\prime \prime}(v)=0 . \tag{33}
\end{equation*}
$$

Thus, we have

$$
\phi(u)=a u^{2}+b u+d^{\prime}, \quad \psi(v)=a v^{2}+e v+d^{\prime \prime} .
$$

Therefore we have

$$
\begin{equation*}
\frac{H(u, v)}{v}=\frac{1}{a\left(u^{2}+v^{2}\right)+b u+e v+d} \tag{34}
\end{equation*}
$$

where a, b, e and $d=d^{\prime}+d^{\prime \prime}$ are some real numbers. When $K=c=-1$, the equation $P=0$ in (19) becomes

$$
\begin{equation*}
\Delta \log H+2-|d \log H|^{2}=0 . \tag{35}
\end{equation*}
$$

Substituting (34) into (35), we have $e=0$.
Case 1. We first consider the case $b^{2}-4 a d=0$. By taking an isometric transformation of the hyperbolic surface such that $u \mapsto u+b /(2 a)$, we may assume that the mean curvature H is

$$
H=\frac{v}{a\left(u^{2}+v^{2}\right)}
$$

Furthermore, by taking isometric transformations such that

$$
u \mapsto-\frac{u}{u^{2}+v^{2}}, \quad v \mapsto \frac{v}{u^{2}+v^{2}},
$$

and

$$
u \mapsto u / a, \quad v \mapsto v / a,
$$

we may assume

$$
\begin{equation*}
H=v . \tag{36}
\end{equation*}
$$

By (11), we have

$$
\begin{equation*}
\frac{\partial \alpha}{\partial u}=\frac{\cos \alpha-1}{v}, \quad \frac{\partial \alpha}{\partial v}=\frac{\sin \alpha}{v} \tag{37}
\end{equation*}
$$

We can easily check $\Delta \alpha=0$. This system is integrable, and general solutions of (37) are

$$
\begin{equation*}
\tan \frac{\alpha}{2}=\frac{t v}{t u+1} \tag{38}
\end{equation*}
$$

where t is any real number. In this case we get a 1-parameter family of isometric immersions X_{t} preserving the mean curvature $H=v$: The second fundamental tensors $h_{i j}$'s of X_{t} are given by

$$
\begin{align*}
\left(h_{i j}\right) & =\left(\begin{array}{ll}
v+v \cos \alpha & v \sin \alpha \\
v \sin a & v-v \cos \alpha
\end{array}\right) \tag{39}\\
& =\left(\begin{array}{ll}
\frac{2 v(1+t u)^{2}}{(1+t u)^{2}+(t v)^{2}} & \frac{\left(2 t v^{2}\right)(1+t u)}{(1+t u)^{2}+(t v)^{2}} \\
\frac{\left(2 t v^{2}\right)(1+t u)}{(1+t u)^{2}+(t v)^{2}} & \frac{2 t^{2} v^{3}}{(1+t u)^{2}+(t v)^{2}}
\end{array}\right) .
\end{align*}
$$

We have the following system of the differential equations for $\left\{X_{t}, e_{1}, e_{2}, e_{3}\right\}$:

$$
\left\{\begin{array}{l}
\nabla_{e_{1}} e_{1}=\omega_{1}^{2}\left(e_{1}\right) e_{2}+\omega_{1}^{3}\left(e_{1}\right) e_{3}=e_{2}+h_{11} \cdot e_{3} \tag{40}\\
\nabla_{e_{2}} e_{1}=\omega_{1}^{2}\left(e_{2}\right) e_{2}+\omega_{1}^{3}\left(e_{2}\right) e_{3}=h_{12} \cdot e_{3} \\
\nabla_{e_{1}} e_{2}=\omega_{2}^{1}\left(e_{1}\right) e_{1}+\omega_{2}^{3}\left(e_{1}\right) e_{3}=-e_{1}+h_{21} \cdot e_{3} \\
\nabla_{e_{2}} e_{2}=\omega_{2}^{1}\left(e_{2}\right) e_{1}+\omega_{2}^{3}\left(e_{2}\right) e_{3}=h_{22} \cdot e_{3} \\
\nabla_{e_{1}} e_{3}=\omega_{3}^{1}\left(e_{1}\right) e_{1}+\omega_{3}^{2}\left(e_{1}\right) e_{3}=-h_{11} \cdot e_{1}-h_{12} \cdot e_{2} \\
\nabla_{e_{2}} e_{3}=\omega_{3}^{1}\left(e_{2}\right) e_{1}+\omega_{3}^{2}\left(e_{2}\right) e_{2}=-h_{12} \cdot e_{1}-h_{22} \cdot e_{2}
\end{array}\right.
$$

where $h_{i j}$'s are given in (39), and $\left\{e_{1}=v \partial X_{t} / \partial u, e_{2}=v \partial X_{t} / \partial v, e_{3}\right\}$ is a system of orthonormal vector fields. When $t=0$, we have $h_{11}=2 v, h_{12}=h_{21}=h_{22}=0$. Thus the integral curve of e_{2} is a geodesic. The surface X_{0} is realized as the following one:

$$
\begin{equation*}
X_{0}(u, v)=(c \sin (2 u), c \cos (2 u), 2 c v), \tag{41}
\end{equation*}
$$

or

$$
\begin{equation*}
X_{0}(u, v)=\left(\frac{c}{1+4 v^{2}} \cdot \cos (2 u), \frac{c}{1+4 v^{2}} \cdot \sin (2 u), \frac{2 c v}{1+4 v^{2}}\right), \tag{42}
\end{equation*}
$$

where c is a constant. We can see easily that $X_{0}(u, v)$ satisfies (40), and $X_{0}\left(u_{0}, v\right)$ is a geodesic for fixed u_{0}. When $t=\infty$, we have $h_{11}=2 u^{2} v /\left(u^{2}+v^{2}\right), h_{12}=h_{21}=2 u v^{2} /\left(u^{2}+v^{2}\right)$, $h_{22}=2 v^{3} /\left(u^{2}+v^{2}\right)$. The surface X_{∞} is realized as the following hyperbolic cylinder [12]:

$$
\begin{equation*}
X_{\infty}(u, v)=\left(\zeta(\varphi) \cdot \frac{u}{\sqrt{u^{2}+v^{2}}}, \eta(\varphi), \zeta(\varphi) \cdot \frac{v}{\sqrt{u^{2}+v^{2}}}\right) \tag{43}
\end{equation*}
$$

where $\exp (\varphi)=\sqrt{u^{2}+v^{2}}$. The functions ζ and η depending on φ are defined by the following equation:

$$
\frac{d \zeta}{d \varphi}=\zeta \cos y, \quad \frac{d \eta}{d \varphi}=\zeta \sin y
$$

where y is the function of φ, which satisfies

$$
\frac{d y}{d \varphi}-\sin y=-2 e^{\varphi}
$$

Case 2. We consider the case $b^{2}-4 a d>0$. By taking an isometric transformation such that $u \mapsto u+\left(-b \pm \sqrt{b^{2}-4 a d}\right) /(2 a)$, we may assume that H is

$$
H=\frac{v}{a\left(u^{2}+v^{2}\right)+b u} .
$$

Furthermore, by

$$
u \mapsto-\frac{u}{u^{2}+v^{2}}, \quad v \mapsto \frac{v}{u^{2}+v^{2}},
$$

and $u \mapsto u-a / b$, we may assume that

$$
\begin{equation*}
H(u ; v)=\frac{v}{b u} . \tag{44}
\end{equation*}
$$

By (11) and (44), we have

$$
\begin{equation*}
\frac{\partial \alpha}{\partial u}=\frac{\sin \alpha}{u}+\frac{(\cos \alpha-1)}{v}, \quad \frac{\partial \alpha}{\partial v}=\frac{1-\cos \alpha}{u}+\frac{\sin \alpha}{v} . \tag{45}
\end{equation*}
$$

We can easily check $\Delta \alpha=0$. This system is integrable, and general solutions of this system are

$$
\begin{equation*}
\tan \frac{\alpha}{2}=\frac{2 u v t}{t\left(u^{2}-v^{2}\right)+1} \tag{46}
\end{equation*}
$$

where t is any real number. Therefore we get a 1-parameter family of isometric immersion X_{t} preserving the mean curvature $H=v /(b u)$: The second fundamental tensors $h_{i j}$'s of X_{t} are given by

$$
\begin{align*}
\left(h_{i j}\right) & =\frac{1}{b}\left(\begin{array}{ll}
\frac{v}{u}+\frac{v}{u} \cos \alpha & \frac{v}{u} \sin \alpha \\
\frac{v}{u} \sin \alpha & \frac{v}{u}-\frac{v}{u} \cos \alpha
\end{array}\right) \tag{47}\\
& =\frac{1}{b}\left(\begin{array}{ll}
\frac{2 v\left(t\left(u^{2}-v^{2}\right)+1\right)^{2}}{u\left\{t^{2}\left(u^{2}+v^{2}\right)^{2}+2 t\left(u^{2}-v^{2}\right)+1\right\}} & \frac{4 u v^{2} t\left(t\left(u^{2}-v^{2}\right)+1\right)}{u\left\{t^{2}\left(u^{2}+v^{2}\right)^{2}+2 t\left(u^{2}-v^{2}\right)+1\right\}} \\
\frac{4 u v^{2} t\left(t\left(u^{2}-v^{2}\right)+1\right)}{u\left\{t^{2}\left(u^{2}+v^{2}\right)^{2}+2 t\left(u^{2}-v^{2}\right)+1\right\}} & \frac{8 t^{2} u^{2} v^{3}}{u\left\{t^{2}\left(u^{2}+v^{2}\right)^{2}+2 t\left(u^{2}-v^{2}\right)+1\right\}}
\end{array}\right) .
\end{align*}
$$

We get again the total differential equation (40) for X_{t}, where $h_{i j}$'s are given in (47). When $t=0$, it follows that $h_{12}=h_{21}=h_{22}=0, h_{11}=2 v /(b u)$. Thus the integral curve of e_{2} is a geodesic. The surface X_{0} is realized as the following:

$$
\begin{equation*}
X_{0}(u, v)=2\left(\int \sin \frac{\log u}{b} d u, \int \cos \frac{\log u}{b} d u, v\right) \tag{48}
\end{equation*}
$$

When $b=1$, this formula is the same as that of H-deformable surfaces in Euclidean 3 -space [7]. But the first and the second fundamental forms are different from those of Euclidean case.

Case 3. We consider the case $b^{2}-4 a d<0$. By taking isometric transformations such that $u \mapsto u+b /(2 a)$, and $u \mapsto a u, u \mapsto a v$, we may assume that

$$
\begin{equation*}
H=\frac{v}{u^{2}+v^{2}+d} \tag{49}
\end{equation*}
$$

where d is a positive number. By (11) and (49), we have

$$
\left\{\begin{array}{l}
\frac{\partial \alpha}{\partial u}=\frac{2 u}{u^{2}+v^{2}+d} \sin \alpha+\frac{u^{2}-v^{2}+d}{v\left(u^{2}+v^{2}+d\right)}(\cos \alpha+1)-\frac{2}{v} \tag{50}\\
\frac{\partial \alpha}{\partial v}=\frac{2 u}{u^{2}+v^{2}+d}(1-\cos \alpha)+\frac{u^{2}-v^{2}+d}{v\left(u^{2}+v^{2}+d\right)} \sin \alpha
\end{array}\right.
$$

This system is integrable, and general solutions are given by

$$
\psi\left(u-v \cot \frac{\alpha}{2}, \frac{\sin \alpha / 2}{v}\right)=0
$$

for an arbitrary function ψ. We get a 1-parameter family of isometric immersions X_{t} preserving the mean curvature $H=v /\left(u^{2}+v^{2}+d\right)$: The second fundamental tensors $h_{i j}$'s of X_{t} are given by

$$
\left(h_{i j}\right)=\frac{v}{\left(u^{2}+v^{2}+d\right)}\left(\begin{array}{ll}
1+\cos \alpha & \sin \alpha \tag{51}\\
\sin \alpha & 1-\cos \alpha
\end{array}\right) .
$$

Therefore we have proved the following:
Theorem 3. Let M be a piece of surface with constant Gaussian curvature $K=0$ or $K=-1$ in the hyperbolic 3-manifold $H^{3}(-1)$, which does not contain any umbilic point. Suppose that M admits a non-trivial isometric deformation preserving the mean curvature function H.

1. If $K=0$, then H becomes constant. Consequently M is an equidistance surface from a geodesic line in $H^{3}(-1)$, and the H-deformation is given by (27).
2. If $K=-1$, then we get
2.1. $H=v$, and the second fundamental forms of M are determined by (39) for some t and the H-deformation of M starts from the surface which is given by (41) or (42), or
2.2. $\quad H=v /(b u)$ for any real number b, and the second fundamental forms of M are determined by (47) for some t and the H-deformation of M starts from the surface which is given by (48),
or
2.3. $H=v /\left(u^{2}+v^{2}+d\right)$ for a positive number d, and the second fundamental forms of M are determined by (51).

References

[1] O. Bonnet, Meḿoire sur la théorie des surfaces applicables, J. Éc. Polyt. 42 (1867), 72-92.
[2]. R. L. Bryant, Minimal surfaces of constant curvature in S^{n}, Trans. Amer. Math. Soc. 290 (1985), 259-271.
[3] E. Calabi, Minimal immersions of surfaces in Euclidean spheres, J. Differential Geom. 1 (1967), 111-125.
[4] É. Cartan, Sur les couples de surfaces applicables avec conservation des courbures principales, Bull. Sci. Math. 66 (1942), 1-30.
[5] X. Chen and C. PENG, Deformation of surfaces preserving principal curvatures, Lecture Notes in Math. 1369 (1989), Springer, 63-70.
[6] S. S. Chern, Deformations of surfaces preserving principal curvatures, Differential Geometry and Complex Analysis, H. E. Rauch Memorial Volume, Springer (1985), 155-163.
[7] A. G. Colares and K. Kenmotsu, Isometric deformation of surfaces in \mathbf{R}^{3} preserving the mean curvature function, Pacific J. Math. 136 (1989), 71-80.
[8] K. Kenmotsu, An intrinsic characterization of \boldsymbol{H}-deformable surfaces, J. London Math. Soc. 49 (1994), 555-568.
[9] M. Kокивu, Isometric deformations of hypersurfaces in a Euclidean space preserving mean curvature, Tôhoku Math. J. 44 (1992), 433-442.
[10] H. B. Lawson, Jr and R. A. Tribuzy, On the mean curvature function for compact surfaces, J. Differential Geom. 16 (1981), 179-183.
[11] J. D. Moore, Isometric immersions of space forms in space forms, Pacific J. Math. 40 (1972), 157-166.
[12] E. Portnoy, Developable surfaces in hyperbolic space, Pacific J. Math. 57 (1975), 281-288.
[13] M. Pinl and W. Ziller, Minimal hypersurfaces in spaces of constant curvature, J. Differential Geom. 11 (1976), 335-343.
[14] I. M. Roussos, Principal curvature preserving isometries of surface in ordinary space, Bol. Soc. Brasil. Mat. 18 (1987), 95-105.
[15] S. SASAKI, On complete flat surfaces in hyperbolic 3-space, Kodai Math. Sem. Rep. 25(1973), 449-457.
[16] R. De A. Tribuzy, A characterization of tori with constant mean curvature in a space form, Bol. Soc. Brasil. Mat. 2 (1980), 259-274.
[17] M. Umehara, A characterization of compact surfaces with constant mean curvature, Proc. Amer. Math. Soc. 108 (1990), 483-489.

Present Address:
Shikoku University,
Ojin-cho, Tokushima, 771-11 Japan.

