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1. Introduction.

The purpose of this paper is to study the cohomology of Coxeter groups in terms
of their parabolic subgroups of finite order. Given finite sets $S$ and $\{m_{ij}\},$ $(i,j)\in S\times S$,
where $m_{ij}$ are integers or $\infty$ such that $m_{ii}=1,2\leq m_{tj}=m_{ji}\leq\infty(i\neq j)$ , the group $W$defined
by the generators $\{r_{i}\}_{i\in S}$ and the fundamental relation $(r_{i}r_{j})^{m_{ij}}=1,$ $ m_{ij}\neq\infty$ , is called a
Coxeter group. We will identify the set of generators $\{r_{i}\}_{i\in S}$ with the set $S$. Also, if we
wish to emphasise the set $S$ we shall write $(W, S)$ in place of W. (Some authors call
$(W, S)$ a Coxeter system.)

A subgroup of $(W, S)$ generated by a subset $\tau\subseteq s$ is called a parabolic subgroup
of $W$ and is denoted by $W_{T}$ . In particular, $W_{S}=W$ and $W_{\emptyset}$ is the trivial subgroup. A
parabolic subgroup inherits a structure of a Coxeter group in an obvious way. Note
that Coxeter groups of finite order are completely classified. The reader will refer to
[1] or [6] for a general theory of Coxeter groups.

Given a Coxeter group $(W, S)$ , let $\mathscr{F}$ be the poset of (possibly empty) subsets $F$

of $S$ such that $W_{F}$ is a finite parabolic subgroup of $W$. Given a W-module $A$ of
coefficients, set

$\ovalbox{\tt\small REJECT}^{*}(W, A)=\lim.inv.H^{*}(W_{F}, A)F\in \mathcal{F}$

where the inverse limit is taken with respect to the restriction maps $ H^{*}(W_{F}, A)\rightarrow$

$H^{*}(W_{F’}, A)$ (where $F\supset F^{\prime}$), and define

(1) $\rho:H^{*}(W, A)\rightarrow\ovalbox{\tt\small REJECT}^{*}(W, A)$

to be the canonical homomorphism induced by the restriction maps $ H^{*}(W, A)\rightarrow$

$H^{*}(W_{F}, A)$ . If $A=k$ is a commutative ring with unity (regarded as a W-module with
the trivial W-action), then $\ovalbox{\tt\small REJECT}^{*}(W, k)$ is a graded ring and $\rho$ is a ring homomorphism.
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Rusin [9] and Davis and Januszkiewicz [4] studied, among other things, the mod
2 cohomology ring of certain Coxeter groups. In particular, they proved that $\rho$ yields‘
an isomorphism $H^{*}(W, Z/2)\cong\ovalbox{\tt\small REJECT}^{*}(W, Z/2)$ if $(W, S)$ is a right-angled Coxeter group
(i.e. $m_{ij}=2$ or $\infty$ for all distinct $i,j\in S$)[$4$, Theorem 4.11] or a Coxeter group satisfying
the hypothesis of [9, Corollary 30] (which is too complicated to repeat here). Inspired
by their results, we studied the homomorphism $\rho$ in far general context, and obtained
the following results.

THEOREM 1. Let $k$ be a commutative ring with unity. A ring homomorphism
$\rho:H^{*}(W, k)\rightarrow\ovalbox{\tt\small REJECT}^{*}(W, k)$ satisfies the following two properties:

(i) If $ u\in ker\rho$ , then $u$ is nilpotent.
(ii) Suppose $k$ is afield of characteristic $p>0$ . For every $v\in\ovalbox{\tt\small REJECT}^{*}(W, k)$ , there is an

integer $n\geq 0$ such that $ v^{p^{n}}\in im\rho$ .
(A homomorphism satisfying the properties (i) and (ii) in Theorem 1 is called an

F-isomorphism in [8].) Theorem 1 provides us some understanding of the r\^ole of the
cohomology of finite parabolic subgroups. Notice that the homomorphism $\rho$ may have
a non-trivial kemel (Remark 3), hence our result is best possible in one direction.

We do not know whether $\rho$ may have a non-trivial cokemel at present. We give
a sufficient condition for $\rho$ to be surjective. A Coxeter group $(W, S)$ is called aspherical
in [7] if every three distinct elements of $S$ generate a parabolic subgroup of infinite
order.

THEOREM 2. If $W$ is an aspherical Coxeter group, then $\rho$ is surjectivefor any abelian
group $A$ of coefficients (with the trivial W-action).

In case $k=Z/2$ , we have more to say. By Theorem 1, $\rho$ induoes a homomorphism
$H^{*}(W, k)/\sqrt{0}\rightarrow\ovalbox{\tt\small REJECT}^{*}(W, k)/\sqrt{0}$, where $\sqrt{0}$ denotes the nilradical. Rusin proved that
the mod 2 cohomology ring of any finite Coxeter group has no nilpotent elements [9,
Theorem 9]. Hence the nilradical of $\ovalbox{\tt\small REJECT}^{*}(W, Z/2)$ is trivial. From this together with
Theorems 1 and 2 we obtain

COROLLARY. For any Coxeter group $W,$ $\rho$ induces a monomorphism

$H^{*}(W, Z/2)/\sqrt{0}\rightarrow\ovalbox{\tt\small REJECT}^{*}(W, Z/2)$ ,

which is an isomorphism if $W$ is aspherical.

Any Coxeter group has a finite virtual cohomological dimension [10] and hence
its Farrell cohomology is defined. Theorem 1 and Theorem 2 hold also for the Farrell
cohomology. In particular, the latter holds for all W-module $A$ . We refer to [2] for the
definition and properties of the Farrell cohomology.

The rest of the paper is organized as follows. Given a Coxeter group $W$, Davis
constructed in [3] a contactible W-complex $\mathcal{U}$ , named the universal complex, such
that the isotropy subgroup of each cell is a conjugate of a parabolic group of finite
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order. In \S 2 we will recall his construction and make a further observation on $\mathcal{U}$ .
Associated with the complex $\mathcal{U}$ , there is a spectral sequence converging to the
cohomology of $W$. In \S 3 we will investigate this spectral sequence and its differentials.
In \S 4 we will prove Theorems 1 and 2 and their analogues for the Farrell cohomology
by using the spectral sequenoe described in \S 3.

Finally, we remark that other studies concerning (co)homology of Coxeter groups
can be found in [5], [7].

2. Davis’ construction of W-complexes.

Given a Coxeter group $(W, S)$ , Davis constructed a certain finite dimensional,
contractible W-complex $\mathcal{U}$ on which $W$ acts properly. We recall how this goes.

Let $\mathscr{F}$ be a poset defined in \S 1. Let $|\mathscr{F}|$ be the (abstract) simplicial complex defined
as follows: Namely, the vertices of $|\mathscr{F}|$ are the elements of $\mathscr{F}$ , and the simplices of
$|\mathscr{F}|$ are the linearly ordered finite subsets $F_{0}\subset\cdots\subset F_{n}$ of $\mathscr{F}$ . $|\mathscr{F}|$ is called the nerve
of $\mathscr{F}$ . $|\mathscr{F}|$ is acone with $\emptyset\in \mathscr{F}$ as acone point. We denote the simplex $F_{0}\subset\cdots\subset F_{n}$

by the ordered $(n+1)$-tuple $(F_{O}, \cdots, F_{n})$ , and we identify $|\mathscr{F}|$ with its geometric
realization.

For $s\in S$, let $P(s)$ be the union of simplices $(F_{0}, \cdots, F_{n})$ of $|\mathscr{F}|$ with $s\in F_{0}$ . $P(s)$

is also a cone with a cone point $\{s\}\in \mathscr{F}$ . For each $x\in|\mathscr{F}|$ , set $T(x)=\{s\in S:x\in P(s)\}$ .
Define an equivalence relation $\sim$ in $W\times|\mathscr{F}|,$ $W$ being considered discrete, by

$(w_{1}, x_{1})\sim(w_{2}, x_{2})$ $\Leftrightarrow$

$x_{1}=x_{2}$ and $w_{1}w_{2}^{-1}\in W_{T\langle x_{1})}$ .

Let $\mathcal{U}=W\times|\mathscr{F}|/\sim$ be the quotient space. $\mathcal{U}$ is a simplicial complex, whose simplex
is the image of $\{w\}\times(F_{0}, \cdots, F_{n})\subset W\times|\mathscr{F}|$ in $\mathcal{U}(w\in W, (F_{0}, \cdots, F_{n})\in \mathscr{F})$ . One of
the main results in [3] is that $\mathcal{U}$ is contractible.

For $(w, x)\in W\times|\mathscr{F}|$ , denote its image in $\mathcal{U}$ by $[w, x]$ . By the correspondence
$x\leftrightarrow[1, x]$ , a complex $|\mathscr{F}|$ can be regarded as a subcomplex of $\mathcal{U}$ . $W$ acts on $\mathcal{U}$ by
$w\cdot[w^{\prime}, x]=[ww^{\prime}, x]$ , and the action is simplicial and properly discontinuous. Moreover,
a subcomplex $|\mathscr{F}|$ is a fundamental domain, in the sense that every W-orbit intersects
$|\mathscr{F}|$ in exactly one point. Notice that the isotropy subgroup of a simplex $(F_{0}, \cdots, F_{n})$

$of|\mathscr{F}|\subset \mathcal{U}$ is a finite parabolic subgroup $W_{F_{0}}$ . See [3] for the detail of the construction.
($\mathcal{U}$ is called the universal complex in [3].)

We give a further property of $\mathcal{U}$ which will be used in the next section. Recall that
an ordered (simplicial) complex is a simplicial complex together with a partial ordering
on its vertices, such that the vertices of any simplex are linearly ordered. We have:

LEMMA 1. $\mathcal{U}$ is an ordered simplicial complex. An action of $W$ on $\mathcal{U}$ preserves the
ordering on vertices.

$PR\infty F$ . Since a complex $|\mathscr{F}|$ is the nerve of a poset $\mathscr{F},$ $|\mathscr{F}|$ is an ordered complex.
Any vertex of $\mathcal{U}$ is of the form $[w, F]\in \mathcal{U}forsomew\in WandF\in \mathscr{F}$ . Definea partial
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ordering on vertioes of $\mathscr{U}$ by $[w, F_{1}]<[w, F_{2}]\Leftrightarrow F_{1}\subset F_{2}$ . If $[w, F_{1}]<[w, F_{2}]$ then
$[w^{\prime}w, F_{1}]<[w^{\prime}w, F_{2}]$ for any $w^{\prime}\in W$. Hence the action of $W$ preserves the ordering on
vertices. Using the fact that $|\mathscr{F}|$ is a fundamental domain of the W-action, we see that
any simplex $\sigma$ of $\mathcal{U}$ is expressed as $\sigma=w\tau forsomew\in Wandsomesimplex\tau$ ofl $\mathscr{F}|$ .
If $\tau=(F_{0}, \cdots, F_{n})$ is such a simplex $of|\mathscr{F}|$ , then vertices of $\sigma$ are $[w, F_{0}],$ $\cdots,$ $[w, F_{n}]$ ,
which are linearly ordered. $\square $

3. Some spectral sequence.

Arguments of this section can be applied with no change to the case of the ordinary
as well as the Farrell cohomology (cf. Remark 1). We deal with the both two cases at once.

Let $|\mathscr{F}|_{p}$ (resp. $\mathcal{U}_{p}$) denote the set of p-simplices of $|\mathscr{F}|$ (resp. $\mathcal{U}$ ). Since $|\mathscr{F}|$ is
a fundamental domain of the action of $W$, a set $|\mathscr{F}|_{p}$ can be regarded as a set of
representatives of elements of $\mathcal{U}_{p}$ mod $W$. Since av is a finite dimensional, contractible,
ordered simplicial complex with an order preserving W-action, there is a spectral
sequence of the form

(2) $E_{1}^{pq}=\prod_{\sigma\in|\mathcal{J}|_{p}}H^{q}(W_{\sigma}, A)\Rightarrow H^{p+q}(W, A)$
,

where $W_{\sigma}$ is the isotropy subgroup at $\sigma$ [$2$ , p. 282]. Since $W_{\sigma}=W_{F_{O}}$ for $\sigma=(F_{O}, \cdots, F_{n})$ ,
the $E_{1}$ -term consists of the cohomology of finite parabolic subgroups of $W$.

Next, we investigate the differential $d_{1}^{pq}$ : $E_{1}^{p.q}\rightarrow E_{1}^{p+1,q}$ explicitly. For simplicity,
write H*(W\sigma ) $=H^{*}(W_{\sigma}, A)$ . Fora simplex $\sigma$ of $\mathcal{U}andw\in W,$ $1etc(w^{-1})^{*}:$ $ H^{*}(W_{\sigma})\rightarrow$

$H^{*}(W_{w\sigma})$ be the isomorphism induced by a conjugation. Write $c(w^{-1})^{*}(u)=wu$ . Then
$E_{1}^{pq}$ can be identified with the subgroup of $\prod_{\sigma e\alpha_{p}}H^{q}(W_{\sigma})$ consisting of $\prod_{\sigma\in\alpha_{p}}u_{\sigma}$

satisfying $wu_{\sigma}=u_{w\sigma}$ for all $w\in W,$ $\sigma\in q_{p}$ . The differential $d_{1}^{pq}$ is the restriction to this
subgroup of the map

$d:\prod_{\sigma\epsilon l_{p}}H^{q}(W_{\sigma})\rightarrow\prod_{\tau\in l_{p+1}}H^{q}(W_{f})$

defined as follows. For all $\tau=(F_{0}, \cdots, F_{p+1})\in \mathcal{U}_{p+1}$ let $\tau_{i}=(F_{0}, \cdots,\hat{F}_{i}, \cdots, F_{p+1})$ ,
$0\leq i\leq p+1$ , and let $\rho_{i}$ : $H^{q}(W_{\tau_{i}})\rightarrow H^{q}(W_{\tau})$ be the restriction maps. (If $t\neq 0$ , then $W_{\tau_{t}}=W_{\tau}$

and $\rho_{i}$ is the identity map.) Then $d$ is given by

(3) $d(\prod_{\sigma\in l_{p}}u_{\sigma})=\prod_{\tau\in\sim p+1}(\sum_{i=0}^{p+1}(-1)^{i}\rho_{i}u_{\tau_{i}})$

[2, Lemma X.4.2]. Moreover the edge homomorphism $H^{*}(W)\rightarrow E_{2}^{O,*}\subset\prod_{\sigma eu_{p}}H^{*}(W_{\sigma})$

is identified with the map induced by restriction maps (cf. proof of [2, Proposition
X.4.6]). Now we have the description of the differentials of the spectral sequence (2).

LEMMA 2. The differential of the spectral sequence (2) is given by the formula (3)
with $\mathcal{U}_{p}$ replaced by $|\mathscr{F}|_{p}$ .
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PROOF. Let $\psi_{\sigma}$ be a set of representatives of left cosets of $W_{\sigma}$ in $W$. Then

$\prod_{\tau\in l_{p}}H^{q}(W_{\tau})=\prod_{\sigma\in|\mathcal{F}|_{p}}\prod_{w\in\Psi_{\sigma}}H^{q}(W_{w\sigma})$ .

We assume $1\in\theta_{\sigma}^{\nearrow}$ . Regarding $E_{1}^{pq}$ as a subgroup of $\prod_{\tau\in q_{p}}H^{q}(W_{\tau})$ , define $\alpha$ :
$\prod_{\sigma\in|\mathcal{F}|_{p}}H^{*}(W_{\sigma})\rightarrow E_{1}^{pq}$ by

$\prod_{\sigma\in|F|_{p}}u_{\sigma}\mapsto\prod_{\sigma\in|\mathcal{F}|_{p}}\prod_{w\in\nu_{\sigma}}wu_{\sigma}$ .

Then $\alpha$ is a map which gives the prescribed identification of $E_{1}^{pq}$ with a subgroup of
$\prod_{\tau\in}{}_{q_{p}}H^{q}(W_{\tau})$ (cf. proof of [2, Lemma X.4.2]). A map $\beta:E_{1}^{pq}\rightarrow\prod_{\sigma\in|},{}_{1_{p}}H^{*}(W_{\sigma})$

defined by

$\prod_{\sigma\in|\mathcal{F}|_{p}}\prod_{w\in\nu_{\sigma}^{\prime}}wu_{\sigma}\mapsto\prod_{\sigma\in|\mathcal{F}|_{p}}u_{\sigma}$

is the inverse of $\alpha$ . Both maps are well-defined since any element $\prod_{\sigma\in u_{p}}u_{\sigma}$ of $E_{1}^{pq}$ satisfies
$wu_{\sigma}=u_{w\sigma}$ .

Regard $\prod_{\sigma\in|},{}_{1_{p}}H^{q}(W_{\sigma})$ as a subgroup of $\prod_{\sigma\in q_{p}}H^{q}(W_{\sigma})$ consisting of those
$\prod_{\sigma\in\alpha_{p}}u_{\sigma}$ with $u_{\sigma}=0$ whenever $\sigma\not\in|\mathscr{F}|_{p}$ . Since $|\mathscr{F}|$ is a subcomplex of $\mathcal{U}$ , we see that
$\tau_{i}\in|\mathscr{F}|_{p}$ for each $\tau\in|\mathscr{F}|_{p+1}$ . Hence

$d(\prod_{\sigma\in|\mathcal{F}|_{p}}H^{q}(W_{\sigma}))\subseteq\prod_{\tau\in|\mathcal{F}|_{p+1}}H^{q}(W_{\tau})$ ,

where $d$ is the map given by the formula (3). Define $D^{pq}$ : $\prod_{\sigma\in|\mathcal{F}|_{p}}H^{q}(W_{\sigma})\rightarrow$

$\prod_{\tau\in|\mathcal{F}|_{p+1}}H^{q}(W_{\tau})$ by the restriction of the map $d$ to the subgroup $\prod_{\sigma\in|},{}_{1_{p}}H^{q}(W_{\sigma})$ .
Then $D^{pq}$ is the map satisfying the formula (3) with $\mathcal{U}_{p}$ replaced by $|\mathscr{F}|_{p}$ .

Now the lemma follows from the commutative diagram

$\rightarrow^{d_{1}^{pq}}$

$E_{1}^{p.q}$ $E_{1}^{p+1.q}$

$\alpha\uparrow\downarrow\beta$ $\alpha\uparrow\downarrow\beta$

$\prod_{\sigma\in|\mathcal{F}|_{p}}H^{q}(W_{\sigma})\rightarrow\prod_{\tau\in|\mathcal{F}|_{p+1}}H^{q}(W_{\tau})D^{pq}$ . $\square $

REMARK 1. The description of the spectral sequences in this section quoted from
[2] is written for the Farrell cohomology. However, the same argument holds for the
ordinary cohomology.

4. Proof of theorems.

Thanks to Lemma 2, we can compute $E_{2}^{0,q}$-terms of the spectral sequence (2) as
follows. Recall that $|\mathscr{F}|_{0}$ is identified with $\mathscr{F}$ , while $|\mathscr{F}|_{1}$ is identified with $F_{0}\subset F_{1}$ in
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$\mathscr{F}$ . By Lemma 2, $E_{2}^{0,q}=kerd_{1}^{0,q}$ can be identified with the subgroup of $\prod_{F\in},H^{q}(W_{F})$

consisting of those families $\prod_{F\in},$ $u_{F}$ satisfying the following condition: If $F_{O}\subset F_{1}$ in
$\mathscr{F}$ , then $u_{F_{1}}$ restricts to $u_{F_{O}}$ via the restriction map $H^{*}(W_{F_{1}})\rightarrow H^{*}(W_{F_{0}})$ . That is,

$E_{2}^{0,q}=\ovalbox{\tt\small REJECT}^{q}(W)=\lim_{F\in}.inv.H^{q}(W_{F})$ .

Compare [2, Lemma X.4.3]. An edge homomorphism $H^{*}(W)\rightarrow E_{2}^{0}$.’ can be identified
with $\rho$ . This follows from the commutative diagram

where arrows starting at $H^{q}(W)$ indicate maps induced by the restrictions, and $\alpha,$
$\beta$ are

maps defined in the proof of Lemma 2.
Now we can prove Theorem 1, for both the ordinary and the Farrell cohomology

at once. Let $H^{n.*}(W, k)$ be the filtration of $H^{*}(W, k)$ associated with the spectral
sequence (2). Since $E_{2}^{p.q}$ is concentrated at $0\leq p\leq\dim|\mathscr{F}|,$ $H^{n,*}(W, k)=0$ for
$n>\dim|\mathscr{F}|$ . Since ker $\rho=H^{1,*}(W, k)$ and the spectral sequence has a multiplicative
structure compatible with the cup product of $H^{*}(W, k)$ [$2$ , pp. 284-285], for any
$u\in ker\rho,$ $u^{n}\in H^{n.*}(W, k)=0$ whenever $n>\dim|\mathscr{F}|$ . So $u$ is nilpotent. Next, suppose $k$

is a field ofcharacteristic$p,p$ prime, and let $v\in E_{2}^{0}$ . $’=\ovalbox{\tt\small REJECT}^{*}(W, k)$ . Then $d_{2}(v^{p})=0$ , since
$d_{2}(v^{p})=pv^{p-1}d_{2}(v)=0$ .

Hence $v^{p}\in E_{3}^{0.*}$ . Iterating the argument we obtain $v^{p^{n}}\in E_{\infty}^{0.*}$ whenever $n+2>\dim|\mathscr{F}|$ .
Thus Theorem 1 is proved.

Now we tum to the proof of Theorem 2. It suffices to show that $E_{2}^{*\cdot*}=E_{\infty}^{**}’$ . If a
Coxeter group $(W, S)$ is aspherical, then $|\mathscr{F}|$ is at most two dimensional and hence
the $E_{1}^{p.*}$-terms of the spectral sequence (2) are concentrated at $0\leq p\leq 2$ . Any 2-simplex
$of|\mathscr{F}|$ is of the form $(\emptyset, F_{0}, F_{1})$ , and the isotropy subgroup of such a simplex is trivial.
The Farrell cohomology group of the trivial group vanishes for any coefficients, and
hence $E_{1}^{2,*}=0$ in this case, which proves Theorem 2 for the Farrell cohomology.

The case of the ordinary cohomology needs more work, since $E_{1}^{2.O}\neq 0$ . We claim
that $E_{2}^{2,O}=0$ , which proves the spectral sequence collapses at $E_{2}$-page. Observe that for
every l-simplex $(F_{0}, F_{1})$ of $|\mathscr{F}|$ with $ F_{0}\neq\emptyset$ , a 2-simplex $(\emptyset, F_{0}, F_{1})$ is the only one
having $(F_{0}, F_{1})$ as its face. For a 2-simplex $(\emptyset, F_{O}, F_{1})$ and $a\in A$ , define
$u=\prod_{\sigma\in|’|_{2}}u_{\sigma}\in E_{1}^{2.0}$ and $v=\prod_{\tau\in|’|_{1}}v_{f}\in E_{1}^{1,O}$ by

$u_{\sigma}=\left\{\begin{array}{l}a\sigma=(\emptyset,F_{0},F_{1})\\0otherwise\end{array}\right.$
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$v_{\tau}=\left\{\begin{array}{ll}a & \tau=(F_{0}, F_{1}),\\0 & otherwise.\end{array}\right.$

This is possible since $H^{0}(\{1\}, A)\cong H^{0}(W_{F}, A)\cong A$ . The isomorphisms follow from that
W-action on $A$ is assumed to be trivial for the case of ordinary cohomology. Applying
the defining formula (3) of differentials, we have $d_{1}^{1,0}(v)=u$ . Since any element of $E_{1}^{2.0}$

is a sum of such $u’ s$ , it follows that $d_{1}^{1,0}$ is surjective. Thus $E_{2}^{2,0}=0$ and this completes
the proof.

REMARK 2. The hypothesis of Theorem 2 for the ordinary cohomology that the
action of $W$ on $A$ is trivial cannot be removed. For if the action is non-trivial, then the
restriction map $H^{0}(W_{F}, A)\rightarrow H^{0}(\{1\}, A)$ is not an isomorphism but only an injection.

REMARK 3. There is an aspherical Coxeter group for which $\rho$ is not an
isomorphism. Let $W$ be an aspherical Coxeter group defined by

$W=$ \langle $s_{1},$ $s_{2},$ $s_{3}$ : $s_{i}^{2}=1,$ $(s_{i}s_{j})^{3}=1$ if $ t\neq j\rangle$ .
Then the mod 2 ordinary cohomology of $W$ is given by $H^{*}(W, Z/2)=Z/2[u, v]/(u^{2})$ ,
where deg $u=2$ , deg $v=1$ , and $(u^{2})$ is the ideal generated by $u^{2}$ . The calculation is due
to Rusin [9, p. 52]. As we have mentioned in \S 1, $\mathscr{L}^{*}(W, Z/2)$ has no nilpotent elements.
Hence $\rho(u)=0$ .
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