On the Bernstein-Nikolsky Inequality II *

Ha Huy BANG

Institute of Mathematics, Hanoi (Communicated by T. Nagano)

Abstract. Certain exact results concerning the Bernstein-Nikolsky inequality are established in this paper.

1. Introduction.

It is well-known that while trigonometric polynomials are good means of approximation for periodic functions, entire functions of exponential type may serve as a mean of approximation for nonperiodic functions. Some properties of entire functions of exponential type, bounded on the real space R^n have been considered in [5]. These results (one of them is the Bernstein-Nikolsky inequality) are very important in the imbedding theory, the approximation theory and applications. The present paper is a continuation of this direction.

Let $1 \le p \le \infty$ and $\sigma = (\sigma_1, \dots, \sigma_n)$, $\sigma_j > 0$, $j = 1, \dots, n$. Denote by $M_{\sigma,p}$ the space of all entire functions of exponential type σ which as functions of a real x belong to $L_p(\mathbb{R}^n)$. The Bernstein-Nikolsky inequality reads as follows [5, p. 114]: Let $f(x) \in M_{\sigma,p}$. Then

(1)
$$||D^{\alpha}f||_{p} \leq \sigma^{\alpha}||f||_{p}, \qquad \alpha \geq 0.$$

It is natural to ask whether there is a function $f(x) \notin M_{\sigma,p}$ for which these inequalities (1) hold? We will show by a very simple proof (for a more general case) that the answer is negative. In other words, the Bernstein-Nikolsky inequality wholly characterizes the space $M_{\sigma,p}$. Further, we extend results obtained in [1, 2] for L_p -norm to Luxemburg-norm and prove one exact inequality which is dual with the Bernstein-Nikolsky inequality. Finally, we consider the corresponding results for functions defined on torus T^n .

2. Results.

Let $\phi(t): [0, +\infty) \rightarrow [0, +\infty]$ be an arbitrary Young function [4, 6], i.e. $\phi(0) =$

Received September 20, 1993

^{*} Supported by the National Basic Research Program in Natural Science, the NCSR of Vietnam "Applied Mathematics" and by the Department of Mathematics, Sophia University.

 $0, \phi(t) \ge 0, \phi(t) \ne 0$ and $\phi(t)$ is convex. Denote by $L_{\phi}(\mathbb{R}^n)$ the space of all functions f(x) measurable on \mathbb{R}^n such that

$$||f||_{\phi} = \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^n} \phi(|f(x)|/\lambda) dx \le 1 \right\} < \infty.$$

Then $L_{\phi}(\mathbf{R}^n)$ with respect to the Luxemburg norm $\|\cdot\|_{\phi}$ is a Banach space. $L_{\phi}(\mathbf{R}^n)$ is called Orlicz space.

Recall that $\|\cdot\|_{\phi} = \|\cdot\|_{p}$ when $1 \le p < \infty$ and $\phi(t) = t^{p}$; and $\|\cdot\|_{\phi} = \|\cdot\|_{\infty}$ when $\phi(t) = 0$ for $0 \le t \le 1$ and $\phi(t) = \infty$ for t > 1. Orlicz spaces often arise in the study of nonlinear problems.

Denote by $M_{\sigma,\phi}$ the space of all entire functions of exponential type σ which as functions of a real $x \in \mathbb{R}^n$ belong to $L_{\phi}(\mathbb{R}^n)$. It is easy to check that $M_{\sigma,\phi} \subset \mathcal{S}'$. Therefore, it follows from the Paley-Wiener-Schwartz theorem that

$$M_{\sigma,\phi} = \{ f \in L_{\phi}(\mathbb{R}^n) : \operatorname{supp} Ff \subset \Delta_{\sigma} \},$$

where F is the Fourier transform and $\Delta_{\sigma} = \{ \xi : |\xi_{j}| \leq \sigma_{j}, j = 1, \dots, n \}$.

We obtain the following result:

THEOREM 1. Let $f \in \mathcal{S}'$. So that $f(x) \in M_{\sigma,\phi}$, it is necessary and sufficient that there exists a constant C = C(f) such that

(2)
$$||D^{\alpha}f||_{\phi} \leq C\sigma^{\alpha}, \qquad \alpha \geq 0.$$

PROOF. Necessity. In the same way as in [5] we easily get the Bernstein-Nikolsky inequality for Luxemburg norm:

$$||D^{\alpha}f||_{\phi} \leq \sigma^{\alpha}||f||_{\phi}, \qquad \alpha \geq 0.$$

Therefore, we have (2).

Sufficiency. Without loss of generality we may assume that $\phi(t)$ is left continuous. Actually, in the contrary case, there exists a point $t_0 > 0$ such that

$$\lim_{t\to t_0-}\phi(t)<\phi(t_0)\leq\infty\;,\qquad\text{and}\quad\phi(t)=\infty\;\;\text{for}\;\;t>t_0\;.$$

We put

$$\psi(t) = \begin{cases} \phi(t), & t \neq t_0 \\ \lim_{t \to t_0} \phi(t), & t = t_0. \end{cases}$$

Then $\psi(t)$ is a left continuous Young function and $\|\cdot\|_{\psi} = \|\cdot\|_{\phi}$. Therefore, we can replace $\phi(t)$ by $\psi(t)$.

Assume that (2) holds. It is easily seen that $f(x) \in C^{\infty}(\mathbb{R}^n)$. We put

(3)
$$f_r(x) = \frac{1}{\text{mes } B(0, r)} \int_{B(0, r)} f(x+t)dt,$$

where B(0, r) is the ball of radius r centered at zero. Then by Jensen's inequality we get

$$\phi\left(\frac{|D^{\alpha}f_{r}(x)|}{\|D^{\alpha}f\|_{\phi} + \varepsilon}\right) \leq \frac{1}{\operatorname{mes}B(0,r)} \int_{B(0,r)} \phi\left(\frac{|D^{\alpha}f(x)|}{\|D^{\alpha}f\|_{\phi} + \varepsilon}\right) dt \leq \frac{1}{\operatorname{mes}B(0,r)}$$

for $\varepsilon > 0$ and $\alpha \ge 0$. Therefore, taking account of the left continuity of $\phi(t)$ and (2), we have

(4)
$$\sup_{x \in \mathbb{R}^n} |D^{\alpha} f_r(x)| \leq \lambda_r ||D^{\alpha} f||_{\phi} \leq C \lambda_r \sigma^{\alpha}, \qquad \alpha \geq 0,$$

where $\lambda_r = \sup\{t : \phi(t) \le 1/\text{mes } B(0, r)\}$. Therefore, the Taylor series

$$\sum_{|\alpha|=0}^{\infty} \frac{1}{\alpha!} D^{\alpha} f_{\mathbf{r}}(0) z^{\alpha}$$

converges for any point $z \in \mathbb{C}^n$ and represents $f_r(x)$ in \mathbb{R}^n . Hence, taking account of (4), we have

$$|f_r(z)| \le C\lambda_r \exp\left(\sum_{j=1}^n \sigma_j |z_j|\right), \quad z \in \mathbb{C}^n.$$

Therefore, $f_r(z)$ is an entire function of exponential type σ . Hence, it follows from the Paley-Wiener-Schwartz theorem that

$$\operatorname{supp} Ff_r \subset \Delta_\sigma, \qquad r > 0.$$

On the other hand, it obviously follows from (3) that f_r converges weakly to f in \mathcal{S}' and therefore, Ff_r also converges weakly to Ff in \mathcal{S}' . Consequently, it follows readily from (5) that supp $Ff \subset \Delta_{\sigma}$. The proof is complete.

To check $f(x) \in M_{\sigma,\phi}$, the following result is more convenient:

THEOREM 2. A function $f(x) \in \mathcal{G}'$ belongs to $M_{\sigma,\phi}$ if and only if

(6)
$$\lim_{|\alpha| \to \infty} \sup (\sigma^{-\alpha} ||D^{\alpha}f||_{\phi})^{1/|\alpha|} \le 1.$$

PROOF. The "if" part follows readily from Theorem 1. Further, we suppose that inequality (6) holds. Given $\varepsilon > 0$. There exists a constant C_{ε} such that

$$||D^{\alpha}f||_{\phi} \leq C_{\varepsilon}(1+\varepsilon)^{|\alpha|}\sigma^{\alpha}, \qquad \alpha \geq 0.$$

Therefore, taking account of Theorem 1, we get

$$\operatorname{supp} Ff \subset \Delta_{(1+\varepsilon)\sigma}.$$

Therefore,

$$\operatorname{supp} Ff \subset \bigcap_{\varepsilon > 0} \Delta_{(1+\varepsilon)\sigma} = \Delta_{\sigma}. \tag{Q.E.D.}$$

REMARK 1. Theorem 2 gives us ability to estimate more roughly than Theorem 1. For example, if we have

$$||D^{\alpha}f||_{\phi} \leq C|\alpha|^{4}\sigma^{\alpha}, \qquad \alpha \geq 0,$$

then (6) is valid although (2) does not hold. Further, we notice that the root $1/|\alpha|$ in (6) cannot be replaced by any $1/|\alpha|t(\alpha)$, where $0 < t(\alpha)$, $\lim_{|\alpha| \to \infty} t(\alpha) = \infty$. Actually, let $f(x) = e^{i2\sigma x}$. Then $f(x) \in M_{2\sigma, \infty}$. At the same time,

$$\lim_{|\alpha|\to\infty} (\sigma^{-\alpha} ||D^{\alpha}f||_{\infty})^{1/|\alpha|t(\alpha)} = \lim_{|\alpha|\to\infty} 2^{1/t(\alpha)} = 1.$$

In the same way as in [2] we easily get the following result:

THEOREM 3. Let $f(x) \in M_{\sigma,\phi}$ and $\phi(t) > 0$ for t > 0. Then

$$\lim_{|x|\to\infty}f(x)=0.$$

REMARK 2. In order that $\lim_{|x|\to\infty} f(x) = 0$, the condition $\phi(t) > 0$ for t > 0 is necessary because, in the contrary case, $M_{\sigma,\phi}$ contains all constant functions.

REMARK 3. Let $1 \le p < \infty$ and $f(x) \in M_{\sigma,p}$. It has been proved in [1] that

$$\lim_{|\alpha|\to\infty}\sigma^{-\alpha}||D^{\alpha}f||_p=0.$$

(This property is not true if $p = \infty$.) The question arises as to what happens for $M_{\sigma,\phi}$? It is not hard to show that

$$\lim_{|\alpha|\to\infty}\sigma^{-\alpha}\|D^{\alpha}f\|_{\phi}=0$$

if $\phi(t)$ satisfies the Δ_2 -condition at zero, i.e. there exist positive numbers δ , M such that $\phi(2t) \le M\phi(t)$ for $0 \le t \le \delta$. We omit the proof of this fact here and let us return to this question another time, when we can completely solve this problem.

Further, let $a = (a_1, \dots, a_n)$ be an arbitrary real unit vector. Then

$$D_{a}f(x) = f'_{a}(x) = \sum_{j=1}^{n} a_{j} \frac{\partial f}{\partial x_{j}}(x)$$

is the derivative of f at the point x in the direction a, and

$$f_a^{(l)}(x) = D_a f_a^{(l-1)}(x) = \sum_{|\alpha|=l} a^{\alpha} f^{(\alpha)}(x)$$
 $(l=1, 2, \cdots)$

is the derivative of order l of f at x in the direction a.

Arguing as in [1] we can prove the following theorem:

THEOREM 4. Let $f(x) \in L_{\phi}(\mathbb{R}^n)$ and $h(a) = \sup_{\xi \in \text{supp} Ff} |a\xi| < \infty$. Then

$$||D_a^m f||_{\phi} \leq [h(a)]^m ||f||_{\phi}, \quad m \geq 0.$$

Let us now prove one general result, which is dual with the Bernstein-Nikolsky inequality:

THEOREM 5. Let I be an unbounded set of integral multi-indices $\alpha = (\alpha_1, \dots, \alpha_n)$, $\alpha_j \ge 0, j = 1, \dots, n$ and $0 \in I$. And let f(x) be a nonconstant measurable function such that its generalized derivative $D^{\alpha}f(x)$ belongs to $L_{\phi}(\mathbf{R}^n)$, $\alpha \in I$. Then

(7)
$$\liminf_{|\alpha| \to \infty} (|\xi^{-\alpha}| \|D^{\alpha}f\|_{\phi})^{1/|\alpha|} \ge 1$$

for any point $\xi \in \text{supp } \tilde{f}$, where $\tilde{f} = Ff$.

PROOF. Let $\xi^0 \in \operatorname{supp} \tilde{f}$, $\xi^0_j \neq 0, j = 1, \dots, n$. For the sake of convenience, we denote $\operatorname{supp} \tilde{f}$ by $\operatorname{sp}(f)$ and assume that $\xi^0_j > 0, j = 1, \dots, n$. We fix a number $\varepsilon > 0$ such that $2\varepsilon < \min_{1 \leq j \leq n} \xi^0_j$ and choose a domain G with a smooth boundary Γ such that $\xi^0 \in G$ and $G \subset K$, where

$$K = \{ \xi : \xi_i^0 - \varepsilon \leq \xi_i \leq \xi_i^0 + \varepsilon, j = 1, \dots, n \}.$$

It follows from $f \in L_{\phi}(\mathbb{R}^n)$ that $f \in \mathcal{S}'$. Hence,

(8)
$$\langle \tilde{f}(\xi), \varphi(\xi) \rangle = \langle f(x), \tilde{\varphi}(x) \rangle$$

for any function $\varphi \in \mathscr{S}$. Further, we fix a function $\tilde{v} \in C_0^{\infty}(G)$ such that $\xi^0 \in \text{supp}(\tilde{v}\tilde{f})$. Putting $\varphi(\xi) = \tilde{v}(\xi)\tilde{w}(\xi)$ in (8), where $\tilde{w}(\xi) \in C_0^{\infty}(G)$ is an arbitrary function, we have

(9)
$$\langle \tilde{v}(\xi) \tilde{f}(\xi), \tilde{w}(\xi) \rangle = \langle f(x), \varphi(x) \rangle$$
,

where $\varphi(x) = v * w(x)$, where u(x) = u(-x). The distribution $v(\xi)f(\xi)$ has a compact support. Therefore, it can be represented in the form

$$\tilde{v}(\xi)\tilde{f}(\xi) = \sum_{|\alpha| \le m} D^{\alpha}h_{\alpha}(\xi)$$
,

where m is a nonnegative integer and $h_{\alpha}(\xi)$ are ordinary functions in G. Without loss of generality we may assume that $m \ge 2n$.

It is well-known that the Dirichlet problem for the elliptic differential equation

$$L_{2m}\tilde{z}(\xi) = \sum_{|\alpha| \le m} (-1)^{|\alpha|} D^{\alpha}(D^{\alpha}\tilde{z}(\xi)) = \tilde{v}(\xi)\tilde{f}(\xi)$$

has a unique solution $\tilde{z}(\xi) \in W_{m,2}^0(G)$ (see, for example, [3, p. 82]).

(Recall that the Sobolev space $W_{m,2}(G)$ is the completion $C^m(G)$ with respect to the norm

$$||u||_{m,2} = \left(\sum_{|\alpha| \le m} ||D^{\alpha}u||_{L^{2}(G)}^{2}\right)^{1/2}.$$

And $W_{m,2}^0(G)$ is the subspace of all functions $u(x) \in W_{m,2}(G)$ such that the zero extension of u(x) outside G belongs to $W_{m,2}(\mathbb{R}^n)$.)

From (9) we obtain

(10)
$$\langle \tilde{z}(\xi), L_{2m}\tilde{w}(\xi) \rangle = \langle f(x), \varphi(x) \rangle$$

for all $\tilde{w}(\xi) \in C_0^{\infty}(G)$. It is obvious that the left side of (10) admits a closure up to an arbitrary function $\tilde{w}(\xi) \in W_{m,2}^0(G)$. Hence, replacing $\tilde{w}(\xi)$ by $\xi^{\alpha}\tilde{w}(\xi)$ in (10), we get easily

(11)
$$\langle \tilde{z}(\xi), L_{2m}(\xi^{\alpha}\tilde{w}(\xi)) \rangle = (-i)^{|\alpha|} \langle D^{\alpha}f(x), \varphi(x) \rangle$$

for all $\tilde{w}(\xi) \in W^0_{m,2}(G)$.

Now let $\tilde{w}_0(\xi) \in W^0_{m,2}(G)$ be a solution of the equation $L_{2m}\tilde{w}_0(\xi) = \overline{\tilde{z}(\xi)}$. Then since $0 \notin G$ we get

(12)
$$L_{2m}(\xi^{\alpha}\widetilde{w}_{\alpha}(\xi)) = \prod_{j=1}^{n} (\xi_{j}^{0} - 2\varepsilon)^{\alpha_{j}} \overline{\widetilde{z}(\xi)},$$

where $\tilde{w}_{\alpha}(\xi) = \prod_{j=1}^{n} (\xi_{j}^{0} - 2\varepsilon)^{\alpha_{j}} \xi^{-\alpha} \tilde{w}_{0}(\xi)$ and $\alpha \ge 0$. Therefore, it follows from (11) that

$$\prod_{j=1}^{n} (\xi_{j}^{0} - 2\varepsilon)^{\alpha_{j}} \langle \tilde{z}(\xi), \overline{\tilde{z}(\xi)} \rangle = (-i)^{|\alpha|} \langle D^{\alpha} f(x), \varphi_{\alpha}(x) \rangle,$$

where $\varphi_{\alpha}(x) = \stackrel{\vee}{v} * \stackrel{\vee}{w}_{\alpha}(x) \in L_{\bar{\phi}}(\mathbb{R}^n)$ and $\alpha \ge 0$ (the fact that $\varphi_{\alpha}(x) \in L_{\bar{\phi}}(\mathbb{R}^n)$ will be shown later). Therefore, using the Weiss theorem [6], we get

(13)
$$\prod_{j=1}^{n} (\xi_{j}^{0} - 2\varepsilon)^{\alpha_{j}} \langle \tilde{z}(\xi), \overline{\tilde{z}(\xi)} \rangle \leq 2 \|D^{\alpha} f\|_{\phi} \|v\|_{1} \|w_{\alpha}\|_{\bar{\phi}}, \qquad \alpha \in I.$$

Now we prove that there exists a constant C>0 such that

(14)
$$2||v||_1||w_{\alpha}||_{\bar{\phi}} \leq C, \qquad \alpha \geq 0.$$

Indeed, since

$$x^{\beta}w_{\alpha}(x) = (-i)^{|\beta|} \prod_{j=1}^{n} (\xi_{j}^{0} - 2\varepsilon)^{\alpha_{j}} \int_{G} e^{ix\xi} D^{\beta}(\xi^{-\alpha}\tilde{w}_{0}(\xi)) d\xi,$$

from the Leibniz formula and the definition of G, we obtain for any $|\beta| \le 2n$

$$\begin{split} \sup_{x \in \mathbb{R}^n} |x^{\beta} w_{\alpha}(x)| &\leq \prod_{j=1}^n (\xi_j^0 - 2\varepsilon)^{\alpha_j} \sum_{\gamma \leq \beta} \left\{ \frac{\beta!}{\gamma! (\beta - \gamma)!} \prod_{k=1}^n \alpha_k \cdots (\alpha_k + \gamma_k - 1) \right. \\ & \times \left. \int_G |\xi^{-(\alpha + \gamma)} D^{\beta - \gamma} \widetilde{w}_0(\xi)| d\xi \right\} \\ &\leq C_1 \prod_{j=1}^n \left(\frac{\xi_j^0 - 2\varepsilon}{\xi_j^0 - \varepsilon} \right)^{\alpha_j} \sum_{\gamma \leq \beta} \frac{\beta!}{\gamma! (\beta - \gamma)!} \prod_{k=1}^n \alpha_k \cdots (\alpha_k + \gamma_k - 1) , \end{split}$$

where

$$C_1 = \max \left\{ \int_G |\xi^{-\gamma} D^{\beta - \gamma} \tilde{w}_0(\xi)| d\xi : \gamma \leq \beta, |\beta| \leq 2n \right\}.$$

On the other hand, since

$$\prod_{k=1}^{n} \alpha_k \cdot \cdot \cdot (\alpha_k + \gamma_k - 1) < (|\alpha| + 2n)^{2n}$$

(because of $|\gamma| \le |\beta| \le 2n$), and

$$2^{|\beta|} = \sum_{\gamma \le \beta} \frac{\beta!}{\gamma!(\beta - \gamma)!}$$

and

$$\lim_{|\alpha|\to\infty} (|\alpha|+2n)^{2n} \prod_{j=1}^n \left(\frac{\xi_j^0-2\varepsilon}{\xi_j^0-\varepsilon}\right)^{\alpha_j} = 0,$$

we obtain

$$\sup_{x \in \mathbb{R}^n} |x^{\beta} w_{\alpha}(x)| \le C_2$$

for all $|\beta| \le 2n$ and $\alpha \ge 0$. Consequently, there is an absolute constant C_3 such that

$$\sup_{x \in \mathbb{R}^n} (1 + x_1^2) \cdots (1 + x_n^2) |w_{\alpha}(x)| \le C_3.$$

Further, let $0 < \lambda_0 < \infty$ such that $\overline{\phi}(C_3/\lambda_0) \le \pi^{-n}$. Then it is easy to check that $\|w_{\alpha}\|_{\overline{\phi}} \le \lambda_0$ for all $\alpha \ge 0$. Thus we have proved (14) with $C = 2\lambda_0 \|v\|_1$. Further, combining (13) and (14), we obtain

$$\prod_{j=1}^{n} (\xi_{j}^{0} - 2\varepsilon)^{\alpha_{j}} \langle \tilde{z}(\xi), \overline{\tilde{z}(\xi)} \rangle \leq C \|D^{\alpha} f\|_{\phi}, \qquad \alpha \in I.$$

Therefore,

$$1 \leq \liminf_{|\alpha| \to \infty} (\|D^{\alpha}f\|_{\phi} \prod_{j=1}^{n} (\xi_{j}^{0} - 2\varepsilon)^{-\alpha_{j}})^{1/|\alpha|}.$$

Therefore, since $\varepsilon > 0$ is arbitrarily chosen and

$$\left[\prod_{j=1}^{n}\left(\frac{\xi_{j}^{0}-2\varepsilon}{\xi_{j}^{0}}\right)^{-\alpha_{j}}\right]^{1/|\alpha|} \leq \max_{1\leq j\leq n}\frac{\xi_{j}^{0}}{\xi_{j}^{0}-2\varepsilon},$$

we get

$$1 \leq \liminf_{|\alpha| \to \infty} ((\xi^0)^{-\alpha} ||D^{\alpha}f||_{\phi})^{1/|\alpha|}$$

by letting $\varepsilon \rightarrow 0$.

Finally, we shall prove (7) for "zero" points: Let $\xi^0 \in \operatorname{sp}(f)$, $\xi^0 \neq 0$ and $\xi_1^0 \cdots \xi_n^0 = 0$. For the sake of convenience, we assume that $\xi_j^0 > 0$, $j = 1, \dots, k$ and $\xi_{k+1}^0 = \dots = \xi_n^0 = 0$ ($1 \le k < n$). Then, it is enough to show (7) only for indices $\alpha \in I$ such that $\alpha_{k+1} = \dots = \alpha_n = 0$ (we presuppose that $\lambda/0 = \infty$ for $\lambda > 0$). Then the proof is analogous to the one above after only the following modification of choosing ε : We fix a number $\varepsilon > 0$ such that $2\varepsilon < \min_{1 \le j \le k} \xi_j^0$ and a domain G with a smooth boundary Γ such that $\xi^0 \in G$ and $G \subset K$, where

$$K = \{ \xi : \xi_j^0 - \varepsilon \leq \xi_j \leq \xi_j^0 + \varepsilon, j = 1, \dots, n \}.$$

The proof of Theorem 5 is complete.

REMARK 4. Let $f(x) \in M_{\sigma,\phi}$ and $\operatorname{sp}(f)$ contains at least one vertex of the parallelepiped Δ_{σ} . Then, using the Bernstein-Nikolsky inequality and Theorem 5, we get easily

$$\lim_{|\alpha|\to\infty} (\sigma^{-\alpha} ||D^{\alpha}f||_{\phi})^{1/|\alpha|} = 1,$$

which shows that the bound 1 in inequality (7) cannot be improved.

REMARK 5. All the corresponding results for functions defined on torus T^n hold. We, for example, give here one result, which we can prove by a much easier way—by representing the considered function by its Fourier series:

THEOREM 6. Let I be an unbounded set of multi-indices $\alpha \ge 0$ and $0 \in I$. And let f(x) be a nonconstant measurable function such that its generalized derivative $D^{\alpha}f(x)$ belongs to $L_{\alpha}(T^{n})$, $\alpha \in I$. Then

$$\liminf_{|\alpha|\to\infty}(|k^{-\alpha}|\|D^{\alpha}f\|_{L_{\phi}(T^n)})^{1/|\alpha|}\geq 1$$

for any point $k \in sp(f)$.

References

- [1] H. H. BANG and M. MORIMOTO, On the Bernstein-Nikolsky inequality, Tokyo J. Math. 14 (1991), 231–238.
- [2] H. H. BANG and M. MORIMOTO, The sequence of Luxemburg norms of derivatives, Tokyo J. Math. 17 (1994), 141-147.
- [3] Ju.B. Egorov, Lectures on partial differential equations, Moscow State Univ. Press (1985).
- [4] W. Luxemburg, Banach function spaces, (Thesis), Technische Hogeschool te Delft., the Netherlands (1955).
- [5] S. M. NIKOLSKY, Approximation of Functions of Several Variables and Imbedding Theorems, Nauka (1977).
- [6] R. O'Neil, Fractional integration in Orlicz space I, Trans. Amer. Math. Soc. 115 (1965), 300-328.

Present Address:
Institute of Mathematics,
P.O. Box 631, Bo Ho, Hanoi, Vietnam.