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Abstract. Certain exact results concerning the Bernstein-Nikolsky inequality are established in this paper.

1. Introduction.

It is well-known that while trigonometric polynomials are good means of ap-
proximation for periodic functions, entire functions of exponential type may serve as
a mean of approximation for nonperiodic functions. Some properties of entire func-
tions of exponential type, bounded on the real space R” have been considered in [5].
These results (one of them is the Bernstein-Nikolsky inequality) are very important in
the imbedding theory, the approximation theory and applications. The present paper
is a continuation of this direction.

Let 1<p<co and 6=(0y, -, 0,), 6;>0,j=1, - - -, n. Denote by M, , the space
of all entire functions of exponential type ¢ which as functions of a real x belong to
L,(R"). The Bernstein-Nikolsky inequality reads as follows [5, p. 114]: Let f(x)e M, -
Then ‘

1) ID*fll,<e®lfll,,  «=0.

It is natural to ask whether there is a function f (x)¢ M, , for which these inequalities
(1) hold? We will show by a very simple proof (for a more general case) that the answer
is negative. In other words, the Bernstein-Nikolsky inequality wholly characterizes the
space M, ,. Further, we extend results obtained in [1, 2] for L,-norm to Luxemburg-norm
and prove one exact inequality which is dual with the Bernstein-Nikolsky inequality.
Finally, we consider the corresponding results for functions defined on torus 7™.

2. Results.

Let ¢(?): [0, + c0)—[0, + 0] be an arbitrary Young function [4, 6], i.e. $(0)=
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0, (1) =0, ¢(r)#0 and ¢(?) is convex. Denote by L (R") the space of all functions f(x)
measurable on R” such that

Ilf||¢=inf{/1>0 : f ¢(|f<x)|/z)dxsl}<oo.
. R” S

Then Ly (R") with respect to the Luxemburg norm || - ||, is a Banach space. L (R") is
called Orlicz space.

Recall that ||+ |lg=]| |, when 1<p<oo and §(t)=t?; and | |l4=]| ", when
¢(t)=0 for 0<r<1 and ¢(t)=oo for t>1. Orlicz spaces often arise in the study of
nonlinear problems.

Denote by M, , the space of all entire functions of exponential type o which as
functions of a real x € R" belong to L (R"). It is easy to check that M, ,< %’. Therefore,
it follows from the Paley-Wiener-Schwartz theorem that

M, ,={feLy(R") : suppFfc4,},

where F is the Fourier transform and 4,={¢:|¢;|<0;,j=1, - - -, n}.
We obtain the following result:

THEOREM 1. LetfeS'. So that f(x)e M, 4, it is necessary and sufficient that there
exists a constant C= C(f) such that

@ ID*fl,<Co®,  a>0.

PRrROOF. Necessity. In the same way as in [5] we easily get the Bernstein-Nikolsky
inequality for Luxemburg norm:

ID*fllg<o®Iflly, a=0.

Therefore, we have (2).
Sufficiency. Without loss of generality we may assume that ¢(¢) is left continuous.
Actually, in the contrary case, there exists a point z,>0 such that

lim ¢t)<P(tp)< o0, and ¢(t)=o0 fort>1¢,.

t—t0—
We put
| o), t#1,
lim'_.'o_.¢(t) ’ t= to .

Then Y(¢) is a left continuous Young function and || - ||, =1 - l|4. Therefore, we can

replace ¢(¢) by Y(1).
Assume that (2) holds. It is easily seen that f(x)e C*°(R"). We put

3) f=— | fexetnar,

mesB(0, ) Jpo,n

Y(1)= {
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where B(0, r)is the ball of radius r centered at zero. Then by Jensen’s inequality we get

o2 ) NELLAPE
||D°‘f||4,+s mes B(0, r) Jgo,n ID*fllp+e mes B(0, r)

for ¢ >0and a > 0. Therefore, taking account of the left continuity of ¢(¢) and (2), we have

4) sup | D*f(x)| <4,|D°f|l4<Cho®,  a=0,
xeR"

where A, =sup{¢: ¢(t)<1/mes B(0, r)}. Therefore, the Taylor series
1
S D0

lel=0 o!

converges for any point ze C" and represents f,(x) in R". Hence, taking account-of (4),
we have

|fr(z)|SC)~reXP(i G,-IZ,-I), zeC".
Jj=1,

Therefore, f,(z) is an entire function of exponential type o. Hence, it follows from the
Paley-Wiener-Schwartz theorem that

5) suppFf,<4,, r>0.

On the other hand, it obviously follows from (3) that f, converges weakly to f in
&' and therefore, Ff, also converges weakly to Ffin &'. Consequently, it follows readily
from (5) that suppFfc 4,. The proof is complete.

To check f(x)e M, ,, the following result is more convenient:

THEOREM 2. A function f(x)e &’ belongs to M, , if and only if

(6) 1i|m sup(c ~*| D*f || ) 1*1<1.

a|—* o0

Proor. The “if” part follows readily from Theorem 1. Further, we suppose that
inequality (6) holds. Given £¢>0. There exists a constant C, such that

ID*flly<C(1+¢)*a®,  a>0.
Therefore, taking account of Theorem 1, we get

supprc A(l +eée)o
Therefore,

suppFf ﬂo Ay +ee=4, . (Q.E.D)).
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REMARK 1. Theorem 2 gives us ability to estimate more roughly than Theorem
1. For example, if we have

ID°Alg<Clal*c*,  a20,

then (6) is valid although (2) does not hold. Further, we notice that the root 1/|a| in
(6) cannot be replaced by any 1/ a|f(a), where 0< (), lim,_, ,, )= co0. Actually, let
fix)=e'?"*. Then f(x)e M,, .. At the same time,

lim (a"'llD“f" Jal@ — Jim 2@

al|—> oo la]—= o0
In the same way as in [2] we easily get the following result:

THEOREM 3. Let f(x)e M, 4, and ¢(t)>0 for t>0. Then
lim fix)=0.

|x|—o

REMARK 2. In order that lim,,, ., f(x)=0, the condition ¢(t)>0 for >0 is
necessary because, in the contrary case, M, 4, contains all constant functions.

REMARK 3. Let 1<p<oo and f(x)e M, ,. It has been proved in [1] that

lim ¢~*|Df]|,=

|a| =0
(This property is not true if p=o00.) The question arises as to what happens for M, ,?
It is not hard to show that

lim ¢~%|D*f|l,=0

lal—wo

if ¢(2) satisfies the 4,-condition at zero, i.e. there exist positive numbers §, M such that
d(2t) < M¢(t) for 0<1<6. We omit the proof of this fact here and let us return to this
question another time, when we can completely solve this problem.

Further, let a=(a,, - - -, a,) be an arbitrary real unit vector. Then
DS@=1dn= 3 aj 2 (x)
is the derivative of f at the point x in the direction a, and

fOR=DSE )= ¥ a*f @)  (=1,2--)

is the derivative of order / of f at x in the direction a.
Arguing as in [1] we can prove the following theorem:

THEOREM 4. Let f(x)e Ly(R"™) and h(a)=Sup; ¢ upprysla| < oo. Then
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IDZf e <[h@]"Iflls, m=0.
Let us now prove one general result, which is dual with the Bernstein-Nikolsky

inequality:

THEOREM S. Let I be an unbounded set of integral multi-indices a=(ay, * - -, &),
®;=0,j=1, -+, nand 0el. And let f(x) be a nonconstant measurable function such that
its generalized derivative D*f(x) belongs to Ly(R"), a€l. Then

a|—* o0

M lliminf(lé'“IIID“fII,p)”'“'Zl

for any point & € supp f, where f=Ff.

ProoF. Let&%esuppf, 9+#£0,j=1, - - -, n. For the sake of convenience, we denote
suppf by sp(f) and assume that £9>0,j=1, - - -, n. We fix a number £>0 such that
2e<min,; _;.,¢? and choose a domain G with a smooth boundary I' such that (%°eG
and Gc< K, where

K={¢:{§—e<§<&f+e,j=1,"",n}.
It follows from feL,(R") that fe%’. Hence,

® <T@, 9> =< f(x), §x)>

for any function ¢ €.&. Further, we fix a function 5 CP(G) such that £°esupp(if).
Putting (&) =0(&)W(€) in (8), where w(&)e CF(G) is an arbitrary function, we have

® (HETE), WED =S (%), (x>,

where @(x)= v*w(x), where #(x)=u(—x). The distribution #¢)f(¢) has a compact
support. Therefore, it can be represented in the form

5(6)f(~f)=| lz D%h(¢),
alsm
where m is a nonnegative integer ‘and h,(¢) are ordinary functions in G. Without loss
of generality we may assume that m>2n.
It is well-known that the Dirichlet problem for the elliptic differential equation

Lz...f(é)=' 'Z (— DIDYD#E) = &) S (&)
ajsm
has a unique solution 2(¢)e W3 ,(G) (see, for example, [3, p. 82]).

(Recall that the Sobolev space W, ,(G) is the completion C™(G) with respect to
the norm

1/2
nunm.2=( Y nD“uuzz(G)) -

lal<sm
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And W7}, 5(G) is the subspace of all functions u(x) € W,, ,(G) such that the zero extension
of u(x) outside G belongs to W, »(R").)
From (9) we obtain

(10) CHE), LamM($)) =S (x), @(x))

for all w(&)e C§(G). It is obvious that the left side of (10) admits a closure up to an
arbitrary function w(¢) e W5, ,(G). Hence, replacing w(¢) by &*w(¢)in (10), we get easily

(1) CHE), Lym(ESWEN> =(—i)*IKD*f(x), o(x)>

for all w(&)e W ,(G).
Now let wo(€)e WS ,(G) be a solution of the equation L,,Wo(£)=2(€). Then since
0¢ G we get

(12) Lon(EW8) = Ell(cy—ze)“fa*ci,
where w,(&)=[]]-, (£7 —2&)¢ ~*W(&) and «>0. Therefore, it follows from (11) that
1‘[1 (E9—26f5CHE), HE)D =(— ) *I<Df(x), o) ,

where ¢ (x)= V* w(x)e Lz(R")and a >0 (the fact that ¢,(x) € Lz(R") will be shown later).
Therefore, using the Weiss theorem [6], we get

(13) jl:[l (9 —2y<2(E), 2E)> <21D*f llglivll Iwallg,  ael.

Now we prove that there exists a constant C>0 such that
(14) 2vllylwellg<C,  «=0.
Indeed, since

xPwy)=(—)#1 T (€9 — 20 j e*EDA(E " Wo(ENdE

G

from the Leibniz formula and the definition of G, we obtain for any | f|<2n

n [ n
sup | xPw,(x)| < [T (£9—28)~ . {ﬁ— IT o (+n—1
xeRn j=1 y=p LYIB—Y)! k=1

x f | =@ NDE~1p4(&) Idé}
G

n 9__2 aj 1 n
<C, H(c’ 8) Ep__—y!(ﬁﬂ—y)! kglak"'(akwk—l),

i=1\ &7 —e
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C1=maX{j lf"D”“’Wo(é)ldé:vsﬁ,IﬂISZn}-
G
On the other hand, since

kll o+ y— ) <(a|+2n)*"

(because of |y|<|B|<2n), and

2181 = Z B!
y<g Y(B—7)!
and
n 0o__ aj
lim (a|+2n)> [] (6’}, 28) =0,
laj—>o =1\ &j—e¢ )
we obtain

sup | xfw,(x)|< C,

xeR™®

for all | B|<2n and a>0. Consequently, there is an absolute constant C, such that

sup (1+x3): - (1 +x2)| wy(x) | < Cs .

xeR®

Further, let 0 < 1, < 0o such that ¢(C,/1,) <n~". Then it is easy to check that ||w,]| <40
for all >0. Thus we have proved (14) with C=24,]|v|,. Further, combining (13) and
(14), we obtain

[1 €7 —20r¢22), 2> <CID*fNy, el

j=
Therefore,

lslinli inf(|| D*f | [T (£2—2¢)~2) /el
laj—= o j=1 :

Therefore, since ¢ >0 is arbitrarily chosen and
T o o_ ~a; Y1/l al 0
1) T s
i=1 &; 15jsn &9 —2¢

1 <liminf((£%) %[ D*f || )"
la]—= o0

we get
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by letting ¢ —0.

Finally, we shall prove (7) for “zero” points: Let £ esp(f), £°#0 and £9---£2=0.
For the sake of convenience, we assume that £¢9>0, j=1, ---,kand £, ,="--=¢(3=0
(1 <k <n). Then, it is enough to show (7) only forindices x € /such thata, , ;= - - =a,=0
(we presuppose that A/0= oo for 4>0). Then the proof is analogous to the one above
after only the following modification of choosing &: We fix a number ¢>0 such that
2e<min, .;.,¢? and a domain G with a smooth boundary I' such that £°eG and
Gc K, where

K={¢:¢&)—e<t;<&%+e,j=1,--,n}.
The proof of Theorem 5 is complete.

REMARK 4. Let f(x)e M, , and sp(f) contains at least one vertex of the paral-
lelepiped 4,. Then, using the Bernstein-Nikolsky inequality and Theorem 5, we get
easily

lim (o~%|D*f|g)/1*=1,
|a|—= o0

which shows that the bound 1 in inequality (7) cannot be improved.

REMARK 5. All the corresponding results for functions defined on torus 7™ hold.
We, for example, give here one result, which we can prove by a much easier way—
by representing the considered function by its Fourier series:

THEOREM 6. Let I be an unbounded set of multi-indices >0 and Oe I. And let f(x)

be a nonconstant measurable function such that its generalized derivative D*f(x) belongs
to Ly(T"), al. Then

Liminf(| k=% || D*f ||, an)'*1 21
| .

a|— o0

for any point k € sp(f).

References

[1] H. H. BaANG and M. MoRrMOTO, On the Bernstein-Nikolsky inequality, Tokyo J. Math. 14 (1991),
231-238.

[2] H. H. BANG and M. MoriMOTO, The sequence of Luxemburg norms of derivatives, Tokyo J. Math.
17 (1994), 141-147.

[3] Ju.B. EGOROV, Lectures on partial differential equations, Moscow State Univ. Press (1985).

[4] W.LUXEMBURG, Banach function spaces, (Thesis), Technische Hogeschool te Delft., the Netherlands
(1955).

[5] S. M. NIKOLSKY, Approximation of Functions of Several Variables and Imbedding Theorems, Nauka
(1977).

[6] R. O’NELL, Fractional integration in Orlicz space I, T rans. Amer. Math. Soc. 115 (1965), 300-328.



BERNSTEIN-NIKOLSKY INEQUALITY 131

Present Address:
INSTITUTE OF MATHEMATICS,
P.O. Box 631, Bo Ho, HANOI1, VIETNAM.




