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Introduction.

Throughout this paper, all rings are assumed to be commutative with identity.
Let $G$ be an Abelian group. We say that a ring $R$ is a G-graded ring, if there exists

a family $\{R_{g}\}_{g\in G}$ of additive subgroups of $R$ such that $R=\oplus_{g\in G}R_{g}$ and $R_{g}R_{h}\subset R_{g+h}$

for every $g,$ $h\in G$ . Similarly, a G-graded R-module is an R-module $M$ for which there
is given a family $\{M_{g}\}_{g\in G}$ of additive subgroups of $M$ such that $M=\oplus_{g\in G}M_{g}$ and
$R_{g}M_{h}\subset M_{g+h}$ for every $g,$ $h\in G$ .

The investigation of the ring-theoretic property of graded rings started with the
following question of Nagata [13].

If $G$ is the ring of integers $Z$, then is Cohen-Macaulay property of $R$ determined
by their local data at graded prime ideals?

As is well-known, Matijevic-Roberts [12] and Hochster-Ratliff [8] gave an af-
firmative answer to the conjecture as above. Similarly Aoyama-Goto [1] and Matijevic
[11] showed that the same as above is also true for Gorenstein property. Furthermore
Goto-Watanabe developed a theory of $Z^{n}$-graded rings and modules in their papers
[5] and [6] and proved the relation between Bass numbers of graded modules at
nongraded prime ideals and Bass numbers at graded prime ideals.

In this paper, we study G-graded rings and G-graded modules for an arbitrary
Abelian group $G$ .

Some homological properties of a G-graded ring $R$ depend only on their local data
at graded prime ideals, when $G=Z^{n}$ . But, for an arbitrary Abelian group $G$ , informations
about graded prime ideals are not enough to determine homological properties. For
example, the hypersurface $k[X]/(X^{2}-1)$ is a $Z_{2}$-graded ring by deg(X) $=1\in Z_{2}$ and has
no graded prime ideals. Here $Z_{2}=Z/2Z$. Therefore we introduce the notion of G-prime
ideals as follows and improve Goto-Watanabe’s arguments using this notion.
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DEFINITION 1.2. A G-graded ideal $p$ of $R$ is said to be a G-prime ideal, if it satisfies
the following condition: for any G-homogeneous elements $a,$ $b\in R$ such that $ab\in \mathfrak{p}$ ,
eigher $a\in \mathfrak{p}$ or $b\in \mathfrak{p}$ .

(Of course, if $G$ is torsion free, G-prime ideals are prime ideals (cf. chap. III, \S 1,
no. 4 of [3]). In section 4, we give a necessary and sufficient condition for a G-prime
ideal to be a prime ideal when $G$ is an arbitrary Abelian group.)

Then we have the following.

THEOREM 2.13. Let $M$ be afinitely generated G-graded module over a Noetherian
G-gradedring $R$ and $\mathfrak{p}$ be a G-prime ideal $ofR$ . Then thefollowing conditions are equivalent.

(1) $M_{\langle p)}$ is a Cohen-Macaulay (resp. Gorenstein) $R_{(p)}$-module.
(2) $M_{P}isaCohen- Macaulay$ ($resp$ . Gorenstein) $R_{P}- moduleforeveryP\in Ass_{R}(R/\mathfrak{p})$ .
(3) $M_{P}isaCohen- Macaulay$ ($resp$ . Gorenstein) $R_{P}- moduleforsomeP\in Ass_{R}(R/\mathfrak{p})$ .
(4) There exists $P\in SpeqR$) such that $P^{*}=\mathfrak{p}$ and $M_{P}$ is a Cohen-Macaulay (resp.

Gorenstein) $R_{P}$-module.
Here $M_{(p)}$ is the module offractions of $M$ with respect to the set of all homogeneous
elements of $R\backslash \mathfrak{p}$ and $P^{*}is$ the maximal graded ideal which is contained in $P$.

Furthermore, we define the i-th G-Bass number $v^{i}(p, M)$ ofa G-graded module $M$ as
$v^{i}(\mathfrak{p}, M)=rank_{R_{t\nu}\sqrt pR_{(’)}}Ext_{(’)}^{\underline{i}}(R_{\langle p)}/\mathfrak{p}R_{\langle p)}, M_{\langle p)})$

where $\mathfrak{p}$ is a G-prime ideal of $R$ (see (2.9)). The following theorem will play important
roles in proving Theorem 2.13.

THEOREM 2.11. Let $M$ be a G-graded module over a Noetherian G-graded ring $R$

and $P$ be a prime ideal of R. We put $d=\dim(R_{P}/P^{*}R_{P})$ . Then

$\mu^{i}(P, M)=\left\{\begin{array}{l}v^{i-t}(P^{*},M)\iota fi\geq d\\0ifi<d\end{array}\right.$

where $\mu^{i}(P, M)=\dim_{R_{P}/PR_{P}}(Ext_{R_{P}}^{i}(R_{P}/PR_{P}, M_{P}))$ is the i-th Bass number of $M$ at $P$.

1. Preiminaries.

In this section, we recall some definitions and basic facts about graded rings and
graded modules (cf. [5], [6] and [14]).

Let $G$ be an Abelian group. We say that a ring $R$ is a G-graded ring, if there exists
a family $\{R_{g}\}_{g\in G}$ of additive subgroups of $R$ such that $R=\oplus_{g\in G}R_{g}$ and $R_{g}R_{h}\subset R_{g+h}$

for every $g,$ $h\in G$ . Similarly, a G-graded R-module is an R-module $M$ for which there
is given a family $\{M_{g}\}_{g\in G}$ of addtive subgroups of $M$ such that $M=\oplus_{g\in G}M_{g}$ and
$R_{g}M_{\hslash}\subset M_{g+h}$ for every $g,$ $h\in G$ . A homomorphism $f:M\rightarrow N$ of G-graded R-modules
is an R-linear map such that $f(M_{g})\subset N_{g}$ for all $g\in G$ . We denote by $M_{G}(R)$ the category
consisting of all G-graded R-modules and their homomorphisms.
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Let $R$ be a G-graded ring and $M$ be a G-graded R-module. For $g\in G$, we define a
G-graded R-module $M(g)$ by $M=M(g)$ as the underlying R-module and graded by
$[M(g)]_{h}=M_{g+h}fora11h\in G$ . We say thatM is free, if it is isomorphic toadirect sum
of G-graded R-modules of the form $R(g)(g\in G)$ . The elements $\bigcup_{g\in G}M_{g}$ are called
homogeneous elements of $M$, a nonzero element $x\in M_{g}$ is said to be homogeneous of
degree $g$ , and we denote $\deg(x)=g$ . For a subset $N\subset M$, we set $h(N)=\bigcup_{g\in G}(N\cap M_{g})$ .
Any non-zero element $x\in M$ has a unique expression as a sum ofhomogeneous elements,
$x=\sum_{g\in G}x_{g}$ where $x_{g}\in M_{g}$ and $x_{g}=0$ for almost all $g\in G$ . With this notation, we call
nonzero $x_{g}$ the homogeneous component (of degree g) of $x$ .

Let $H$ be a subgroup of $G$ and $g\in G$ . We define $R^{(H)}=\oplus_{h\cdot H}R_{h}$ and
$M^{(g,H)}=\oplus_{h\in H}M_{g+h}$ . Then $R^{\langle H)}$ is a subring of $R$ and $M^{\langle g,H)}$ is an $R^{(H)}$-submodule of
$M$. We define a G-grading on $M^{(g,H)}$ as

$[M^{\langle g,H)}]_{g^{\prime}}=\left\{\begin{array}{ll}M_{g^{\prime}} & if g-g^{\prime}\in H\\(0) & if g-g^{\prime}\not\in H\end{array}\right.$

for all $g^{\prime}\in G$ . If $g-g^{\prime}\in H$ , then we have $M^{tg,H)}=M^{g^{\prime},H)}$ as G-graded $R^{\langle H)}$-modules.
Hence $M$ has the following decomposition as a G-graded $R^{(H)}$-module

$M=\bigoplus_{i\in I}M^{(g_{i}.H)}$

where $\{g_{i}\}_{i\in I}$ is a system of representatives of $G$ mod $H$. Also, we have
$R^{\langle g_{i},H)}M^{\langle g_{j}.H)}\subset M^{\langle g_{i}+g_{j}.H)}$ for all $i,j\in I$ . Hence a G-graded ring $R$ (resp. G-graded
R-module $M$) can be regarded as a $G/H$-graded ring (resp. $G/H$-graded R-module).

DEFINITION 1.1. (1) We say that $R$ is a G-domain, ifevery nonzero G-homogeneous
element ofR isanonzero divisor of R. That is to say, if ab $=0$, then a $=0orb=0for$
G-homogeneous elements $a,$ $b\in h(R)$ .

(2) We say that $R$ is G-simple, if every nonzero G-homogeneous element is a unit
of $R$ . Or, equivalently, if $R$ has no proper G-graded ideals except (0).

If $R$ is a G-simple graded ring and $H$ is a subgroup of $G$, then H-graded ring $R^{(H)}$

is H-simple.

DEFINITION 1.2. (1) A G-graded ideal $\mathfrak{p}$ of $R$ is said to be a G-prime ideal, if the
G-graded ring $R/p$ is a G-domain. Or, equivalently, for any G-homogeneous elements
$a,$ $b\in h(R)$ , if $ab\in p$ , then $a\in \mathfrak{p}$ or $b\in \mathfrak{p}$ .

(2) AG-graded idealm ofR is said to beaG-maximal ideal, if the G-graded ring
$R/\mathfrak{m}$ is G-simple.

Note that a G-prime (resp. G-maximal) ideal of $R$ is not necessarily a prime (resp.
maximal) ideal. For example, let $k[X]$ be a polynomial ring over a field $k$ . We consider
a ring $k[X]/(X^{2}-1)$ and regard it as a $Z_{2}$-graded ring. Then $k[X]/(X^{2}-1)$ is a $Z_{2}$-domain
and also $Z_{2}$-simple but it is not a domain. Thus the zero ideal of $k[X]/(X^{2}-1)$ is
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$Z_{2}$-prime and not a prime ideal.
We denoty by $V_{G}(R)$ the set of all G-prime ideals of $R$ . For $\mathfrak{p}\in V_{G}(R)$ , we denote

by $M_{(p)}$ the module of fractions of $M$ with respect to the multiplicatively closed subset
$h(R\backslash \mathfrak{p})$ and call it the homogeneous localization of $M$ at $p$ . We set $ V_{G}(M)=\{p\in$

$V_{G}(R)|M_{(p)}\neq(0)\}$ . For an idealP of R, we denote by P* the maximal graded ideal of
$R$ contained in $P$ (or the graded ideal generated by $h(P)$). If $P$ is a prime ideal of $R$,

then $P^{*}$ is a G-prime ideal of $R$ . Furthermore, for a G-graded R-module $M$ and
$P\in Sp\propto\langle R$), $P\in Supp_{R}(M)$ if and only if $P^{*}\in V_{G}(M)$ .

DEFINITION 1.3. We say that $R$ is a G-local graded ring, if it has the unique
G-maximal ideal $\mathfrak{m}$ . Often we use the notation $(R, \mathfrak{m})$ to say that $R$ is G-local with the
unique G-maximal ideal $\mathfrak{m}$ .

In the rest of this section, we develop some standard techniques of G-graded rings
which will be used freely in this paper.

PROPOSITION 1.4. (1) $Forg\in G,ifa\in R_{g}$ isa unit ofR, $thena^{-1}\in R_{-g}andR_{g}=aR_{0}$ .
(2) $R$ is G-simple if and only if every G-graded R-module $\dot{i}$ free.
(3) Suppose that $(R, \mathfrak{m})$ is G-local and $M$ is afinitely generated G-graded R-module.

Then $M=\mathfrak{m}M$ implies $M=(0)$ . Thus, if $x_{1},$ $\cdots,$ $x_{n}\in h(M)$ and if their images in $M/\mathfrak{m}M$

form a free $R/\mathfrak{m}$-basis, then $M$ is generated by $x_{1},$ $\cdots,$ $x_{n}$ .
(4) Let $(R, \mathfrak{m})$ be G-local and $H$ be a subgroup of $G$ such that $\mathfrak{m}^{(H)}R=\mathfrak{m}$ . Let $\{g_{i}\}_{i\in l}$

be a system of representatives of $G$ mod H. Assume that $R^{(g\iota\cdot H)}$ is a finitely generated
$R^{(H)}$-module for every $i\in I$. Then the following statements hold.

(a) If $R^{(g_{i},H)}\neq 0$ for $i\in I$, then there exists a unit $u_{i}\in R_{g},+h$ of $R$ for some $h\in H$.
Thus $R$ is free over $R^{(H)}$ which has a free basis consisting of G-homogeneous

units of $R$ .
(b) For $q\in V_{H}(R^{\langle H)})$ and $\mathfrak{p}\in V_{G}(R)$, we have $qR\in V_{G}(R)$ and $\mathfrak{p}^{\langle H)}\in V_{H}(R^{\langle H)})$ . This

gives a bijective correspondence between $V_{H}(R^{(H)})$ and $V_{G}(R)$ .
(c) For $p\in V_{G}(R),$ $M_{(p)}=M\otimes_{R^{(H)}}(R^{(H)})_{\langle p^{(H)})}$ .
$PR\infty F$ . Assertions (1) and (2) are the same as Theorem 1.1.4 of Goto-Watanabe

[6] and the assertion (3) is a graded version of Nakayama’s lemma. We only need to

show the assertion (4).
(a) If $R^{(g_{t}.H)}\neq(0)(i\in I)$, then there exists $u_{i}\in h(R^{(g_{\{},H)})$ such that $u_{i}\not\in \mathfrak{m}^{(H)}R^{(g_{t}.H)}$ by

(3). Since $\mathfrak{m}^{(H)}R=\mathfrak{m},$ $u_{i}\not\in \mathfrak{m}$ and, since $(R, \mathfrak{m})$ is $G$-local, $u_{i}$ is aunit of $R$ .
(b) Clearly, $p^{\langle H)}\in V_{H}(R^{(H)})$ for every $\mathfrak{p}\in V_{G}(R)$ . Let $T=\{u_{i}|i\in I,$ $u_{i}\in R^{\langle g_{l}H)}\neq(0)$]

be the set of units of $R$ which is obtained as in (a). Then we have $h(R)=\{au_{i}|a\in h(R^{(H)})$

$u_{i}\in T\}$ . Hence we can verify that $qR\in V_{G}(R)$ for every $q\in V_{H}(R^{(H)})$ .
(c) By (b), we have $h(R\backslash p)=\{au_{i}|a\in h(R^{(H)}\backslash \mathfrak{p}^{(H)})\}$ for every $\mathfrak{p}\in V_{G}(R)$ . Hence

$h(R_{\langle p^{(H)}}\sqrt \mathfrak{p}(R_{(p^{(H)})})$ is the set of units of $R_{\langle p^{(K)})}$ and $M_{(p)}=M\otimes_{R^{(H)}}(R^{(H)})_{(p^{(H)})}$ for
$even\subset$

.
G-graded R-module $M$.
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EXAMPLE 1.5. Let $\mathfrak{p}$ be a finitely generated G-prime ideal of a G-graded ring $R$

and $H$ be a finitely generated subgroup of $G$ which contains degrees of (finite)
homogeneous generators of $\mathfrak{p}$ . Then $p^{(H)}R=p$ . Namely, $(R_{(p)}, \mathfrak{p}R_{(p)})$ and $H$ staisfy the
first assumption of (1.4), (4).

THEOREM 1.6. Let $G$ be a finitely generated Abelian group and $R$ be a ring. Then
the following conditions are equivalent.

(1) $R$ is a G-simple graded ring.
(2) $R$ contains afield $k$ and

$R\cong\frac{k[X_{1},\cdots,X_{m},.Y_{1}^{\pm 1},\cdots,Y_{n}^{\pm 1}]}{(X_{1^{1}}^{q}-u_{1},\cdot\cdot,X_{m^{m}}^{q}-u_{m})}$

where $m,$ $n\geq 0,$
$u_{1},$ $\cdots,$ $u_{m}\in k^{*},$ $X_{1},$ $\cdots,$ $X_{m},$ $Y_{1},$ $\cdots,$ $Y_{n}$ are variables and each $q_{i}$

$(i=1, \cdots, m)$ is a power of a prime integer.
$PR\infty F$ . (2) $\Rightarrow(1)$ Put $G=\oplus_{i=1}^{m}Z/(q_{i})\oplus Z^{n}$ . Then $R$ is G-simple.
(1) $\Rightarrow(2)$ It is clear that $k=R_{0}$ is a field. We suppose that $R\neq k$ and put

$G^{\prime}=\{g\in G|R_{g}\neq(0)\}$ . Then $G^{\prime}$ is a nonzero subgroup of $G$ . Thus we can write

$G^{\prime}=\bigoplus_{i=1}^{m}C(q_{i})\oplus Z^{n}$

where $q_{i}$ is a power of a prime number and $C(q_{i})$ is a cyclic group of order $q_{i}$ for
$1\leq i\leq m$ . Let $e_{i}$ be a generator of $C(q_{i})(1\leq i\leq m)$ and let $e_{1}^{\prime},$

$\cdots,$ $e_{n}^{\prime}$ be free basis of $Z^{n}$ .
Then there exist unit elements $x_{i}\in R_{e_{i}}(1\leq i\leq m)$ and $y_{j}\in R_{e_{j}}(1\leq j\leq n)$ by our choice of
$G^{\prime}$ . By (1.4), (1), we have $R=k[x_{1}, \cdots, x_{m}, y_{1}^{\pm 1}, \cdots, y_{n}^{\pm 1}]$ .

Next, we define a k-algebra map $\varphi:k[X_{1}, \cdots, X_{m}, Y_{1}^{\pm 1}, \cdots, Y_{n}^{\pm 1}]\rightarrow R$ by
$\varphi(X_{i})=x_{i}(1\leq i\leq m)$ , and $\varphi(Y_{j}^{\pm 1})=y_{j}^{\pm 1}(1\leq j\leq n)$ where $X_{1},$ $\cdots,$ $X_{m},$ $Y_{1},$ $\cdots,$ $Y_{n}$ are
variables. Then $\varphi$ is surjective and $ker(\varphi)=(X_{1^{1}}^{q}-u_{1}, \cdots, X_{m^{m}}^{q}-u_{m})(u_{i}=x_{j^{j}}^{q}\in k^{*})$, by
the choice of $\{x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{n}\}$ .

The proof of (1.6) is now complete.

As a consequence, we get the following.

COROLLARY 1.7. A Noetherian G-simple graded ring $R$ is locally a complete
intersection. Inparticular, $Ass_{R}(R)={\rm Min}(R)$ and if$G$ is a torsion group, then $R$ is Artinian.

$PR\infty F$ . Let $R$ be a Noetherian G-simple graded ring. We shall show that a local
ring $R_{Q}$ is a complete intersection for every maximal ideal $Q$ of $R$ . Since $R$ is Noetherian,
$Q$ is finitely generated. Let $H$ be the subgroup of $G$ generated by degrees of all
homogeneous components of (finite) generators of $Q$ . By (1.4), (2), $R$ is free over $R^{\langle H)}$ ,
since R $isH$-simple. Also, by the choice of H, $R/(Q\cap R^{\langle H)})R=R/Q$ . Hence, by (1.6)
and Avramov’s criterion [2], $R_{Q}$ is complete intersection of the same dimension as that
of $(R^{\langle H)})_{Q\cap R^{(H)}}$ . If $G$ is torsion, then so is $H$. By the proof of (1.6), we have $\dim(R^{(H)})=0$ .
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Hence $R$ is Artinian. $\square $

EXAMPLE 1.8. Let $A$ be a Noetherian ring and $R=A[G]$ be a Noetherian group
ring. Then ${\rm Max}(A)=\{Q\cap A|Q\in{\rm Max}(R)\}$ and $V_{G}(R)=\{\mathfrak{p}R|p\in SMA)\}$ . Thus $R$ is
Cohen-Macaulay (resp. Gorenstein, locally complete intersection) ifand only ifso is $A$ .

DEFINITION 1.9. $R$ is said to be a G-Noetherian graded ring, if it satisfies the
following equivalent conditions.

(1) Every strict ascending chain of G-graded ideals of $R$ is finite.
(2) Every nonempty family of G-graded ideals of $R$ has a maximal element.
(3) Every G-graded ideal of $R$ is finitely generated.

REMARK 1.10. (1) Suppose that $R$ is G-Noetherian. Then for every subgroup
$H\subset G$ and every $g\in G,$ $R^{(H)}$ is G-Noetherian and $R^{(g.H)}$ is finitely generated as an
$R^{(H)}$-module.

(2) (Theorem 1.1 of Goto-Yamagishi [4]) Suppose that $G$ is a finitely generated
Abelian group. Then the following conditions are equivalent.

(a) $R$ is a Noetherian graded ring.
(b) $R$ is a G-Noetherian graded ring.
(c) $R_{0}$ is Noetherian and $R$ is a finitely generated $R_{O}$-algebra.

In general, a G-Noetherian ring is not a Noetherian ring. For example, $Z^{\langle I)}$-simple
graded ring $Q[\{X_{i}, X_{i}^{-1}\}_{i\in I}]$ is $Z^{\langle I)}$-Noetherian but it is not Noetherian, if $I$ is infinite.
Also, there exists a Noetherian graded ring $R$ which is not a finitely generated $R_{0}$-algebra
(e.g. Proposition 3.1 of Goto-Yamagishi [4]).

2. $D\dot{i}$lension and Bass numbers of G-graded modules.

Let $M$ be a G-graded module over a G-graded ring $R$ . A G-prime ideal $\mathfrak{p}$ is said
to be associated with M, ifp $=[0:x]_{R}forsomex\in h(M).$ We denote by $\underline{A}ss(M)$ the
set of all G-prime ideals associated with $M$.

The followings will be proved in the same way as in the non graded case (cf.

chap. IV, \S 1, no. 1 of [3]).

PROPOSmON 2.1. Let $M$ be a G-graded module over a G-graded ring $R$ .
(1) If $M$ is the. union of a family $\{M_{i}\}_{i\in I}$ of G-graded submodules of $M$, ther

Ass $(M)=\bigcup_{i\in I}\underline{Ass}(M_{i})$ .
(2) Every maximal element of $\{[0:x]|x\in h(M), x\neq 0\}$ belongs to $\underline{A}ss(M)$ . Thus

Ass $(M)\neq\emptyset$ is equivalent to $M\neq 0$ , provided $R$ is G-Noetherian.
(3) Let $N$ be a G-graded submodule of M. Then $\underline{A}ss(N)\subset\underline{A}ss(M)\subset$

Ass $(N)\cup$ Ass $(M/N)$ .
(4) Every G-prime ideal of $R$ containing an element $of\underline{A}ss(M)$ belongs to $V_{G}(M)$

Conversely, $ifR$ is G-Noetherian, then every $p\in V_{G}(M)$ contains an element $of\underline{A}ss(M)$ .
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(5) IfR is G-Noetherian, $then\underline{Ass}_{R}(M)andV_{G}(M)havethesameminimalelements$ .
(6) If $R$ is G-Noetherian and $M$ is a finitely generated R-module, then there exists

a chain (0) $=M_{n}\subset M_{n-1}\subset\cdots\subset M_{0}=M$ of G-graded submodules of $M$ such that, for
$1\leq i\leq n,$ $M_{i}/M_{i-1}\cong(R/\mathfrak{p}_{i}Xg_{i})$ , where $\mathfrak{p}_{i}\in V_{G}(R)$ and $g_{i}\in G$ . In this case Ass $(M)\subset$

$\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{n}\}\subset V_{G}(M)$ and therefore $\underline{Ass}_{R}(M)$ is finite.
Next, we relate Ass $(M)$ to $Ass_{R}(M)$ .

PROPOSITION 2.2. Let $M$ be a G-graded module over a G-graded ring $R$ .
(1) If $P\in Ass_{R}(M)$ , then $P^{*}\in\underline{Ass}_{R}(M)$ .
(2) If $p\in V_{G}(R)$ and $P\in Ass_{R}(R/p)$ , then $P^{*}=p$ .
(3) $Ass_{R}(M)=\bigcup_{p\in\underline{Ass}_{R}\langle M)}Ass_{R}(R/\mathfrak{p})$ .
$PR\infty F$ . (1) $ForP\in Ass_{R}(M)$ , we put P $=[0:\sum_{g\in G}x_{g}]wherex_{g}\in M_{g}andx_{g}=0$

for almost all $g\in G$ . Then the G-graded ideal $\bigcap_{g\in G,x_{g}\neq 0}[0:x_{g}]$ is contained in $P$ . Thus
$\bigcap_{g\in G,x_{*}\neq 0}[0 : x_{g}]\subset P^{*}$ . Let $a\in h(P)$ . Since $a\sum_{g\in G}x_{g}=0$ , we have $ax_{g}=0$ for every $g\in G$ .
Hence $a\in[0:x_{g}]$ for every $g\in G$ . Namely $P^{*}=\bigcap_{g\in G,x_{r}\neq 0}[0:x_{g}]$ . Since $P^{*}$ is a G-prime
ideal, this implies that $P^{*}=[0:x_{g}]$ for some $g\in G$ .

(2) Let $P\in Ass_{R}(R/\mathfrak{p})$ . It is clear that $p\subset P^{*}$ . Conversely, by (1), there exists a
G-homogeneous element $a$ of $R\backslash p$ such that $p*=[\mathfrak{p} : a]$ . Hence $aP^{*}\subset \mathfrak{p}$ . Since $p$ is a
G-prime ideal and $a\not\in \mathfrak{p}$ , we have $P^{*}\subset \mathfrak{p}$ .

(3) Clearly, we have $Ass_{R}(M)\supset\bigcup_{p\in\underline{Ass}_{R}\langle M)}Ass_{R}(R/\mathfrak{p})$ and we shall show the
converse inclusion.

Let $P\in Ass_{R}(M)$ and $\mathfrak{p}=P^{*}$ . Then, by (1), $p\in\underline{Ass}_{R}(M)$ . Thus it suffices to show
that $P\in Ass_{R}(R/\mathfrak{p})$ . We assume the contrary (i.e. $P\not\in Ass_{R}(R/\mathfrak{p})$). By the aid of Zom’s
lemma, we can show that there exists a maximal G-graded submodule $N\subset M$ such that
Ass $(N)=\{p\}$ and $P\not\in Ass_{R}(N)$ . Since $P\not\in Ass_{R}(N)$, $P\in Ass_{R}(M/N)$ and, by (1),
$P^{*}=p\in\underline{Ass}_{R}(M/N)$ . Hence there exists a G-graded submodule $L\subset M$ such that $N\subset L$

and $L/N\cong(R/PXg)(g\in G)$ . Then, by (2.1), (3), $\underline{Ass}_{R}(l)=\{\mathfrak{p}\}$ and $P\not\in Ass_{R}(L)$ since
$Ass_{R}(L)\subset Ass_{R}(N)\cup$ Ass$R(R/p)$ . This contradicts the maximality of $N$. Hence we have
$P\in Ass_{R}(R/\mathfrak{p})$ . $\square $

DEFINITION 2.3. Let $M$ be a G-graded module over a G-graded ring $R$ . We denote
by $\underline{\dim}(M)$ the largest length of the chains of G-prime ideals in $V_{G}(M)$ and call it
G-dimension of $M$.

We have the following dimension theorem for G-graded modules.

THEOREM 2.4. Let $R$ be a Noetherian G-graded ring and $M$ be a G-gradedR-module.
If $p\in V_{G}(M)$ , then we have $\underline{\dim}(M_{(p)})=\dim(M_{P})$ for every $P\in Ass_{R}(R/\mathfrak{p})$ .

First we show a lemma.

LEMMA 2.5. Let $R$ be a Noetherian G-gradedring andMbe a G-gradedR-module.
(1) $Ass_{R}(R/p)={\rm Min}_{R}(R/\mathfrak{p})$ for $p\in V_{G}(R)$ .
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(2) Let $p\in V_{G}(R)$ . Then $\mathfrak{p}\in V_{G}(M)$ if and only if Ass$R(R/p)\subset Supp_{R}(M)$ .
(3) Let $P,$ $Q\in Supp_{R}(M)$ such that $P\supset Q$ . If $\dim(M_{P})=\dim(R_{P}/QR_{P})$, then

$\dim(R_{P}/Q^{*}R_{P})=\dim(M_{P})$ . In this case, $Q^{*}\dot{i}$ a minimal element of $V_{G}(M)$ .
$PR\infty F$ . (1) By (2.2), (2), Ass$R_{\{)}(R_{(\theta)}/\mathfrak{p}R_{\langle p)})=\{PR_{\{p)}|P\in Ass_{R}(R/p)\}$ . Also, by

(1.7), $Ass_{R_{\{\nu)}}(R_{(p)}/\mathfrak{p}R_{(p)})={\rm Min}_{R_{(p)}}(R_{(p}\sqrt pR_{(p)})$ . Hence $Ass_{R}(R/p)={\rm Min}_{R}(R/\mathfrak{p})$ .
(2) The assertion follows from (2.2), (2).
(3) It is clear that $\dim(M_{P})=\dim(R_{P}/QR_{P})\leq\dim(R_{P}/Q^{*}R_{P})$ . Conversely, since

Ass$R(R/Q^{*})\subset Supp_{R}(M),$ $\dim(M_{P})\geq\dim(R_{P}/Q^{*}R_{P})$ . The second assertion follows from
(1) and (2).

$PR\infty F$ OF (2.4). Let $p,$ $q\in V_{G}(M)$ such that $q\subsetneqq \mathfrak{p}$ and $P\in Ass_{R}(R/\mathfrak{p})$ . Then, by
(2.2)$,.(2),$ $P^{*}=\mathfrak{p}$ and $P\not\in Ass_{R}(R/q)$ . Thus, by (2.5), (1), there exists $Q\in Ass_{R}(R/q)$ such
that $Q\subsetneqq P$. Proceeding in this way, we have $\underline{\dim}(M_{\langle p)})\leq\dim(M_{P})$ for every $P\in Ass_{R}(M)$ .
Conversely, let $P\in Ass_{R}(R/p)$ and $Q\in Supp_{R}(M)$ such that $\dim(M_{P})=\dim(R_{P}/QR_{P})$ . We
put $n=\dim(M_{P})$ and show that $\underline{\dim}(M_{\langle p)})\geq n$ by induction on $n$ .

If $n=0$, then $P=Q$ and $Q^{*}=p$ is a minimal element of $V_{G}(M)$ . Thus $\underline{\dim}(M_{\langle p}j=0$ .
Therefore we assume $n>0$ and the statement holds for $n-1$ . Since $n>0$ and by (2.5),
(3), $\mathfrak{p}\neq Q^{*}$ and there exists $a\in h(\mathfrak{p}\backslash Q^{*})$ . Then $\dim(R_{P}/(Q^{*}, a)R_{P})=n-1$ by (2.5), (3).
Thus, by induction hypothesis, $\underline{\dim}(R_{\{p)}/(Q^{*}, a)R_{\{p)})\geq n-1$ . Since $V_{G}(R/(Q^{*}, a))\subset V_{G}(M)$

and $Q^{*}\subsetneqq(Q^{*}, a)$, we have $\underline{\dim}(M_{(p)})\geq(n-1)+1=n$ . The proof is complete. $\square $

COROLLARY 2.6. Let $M$ be a G-graded module over a Noetherian $G$-gra&d ring $R$

and $P\in Supp_{R}(M)$ . Then $\dim(M_{P})=\underline{\dim}(M_{\langle P)})+\dim(R_{P}/P^{*}R_{P})$ .
$PR\infty F$ . We put $n=\dim(M_{P}),$ $m=\underline{\dim}(M_{(P)})$ and $r=\dim(R_{P}/P^{*}R_{P})$ . By (2.4), we

have $n\geq m+r$ . We show the converse inequality by induction on $m$ .
If $m=0$ , then $P^{*}$ is a minimal element of $V_{G}(M)$ . Then, for every $Q\in Supp_{R}(M)$

such that $Q\subset P,$ $Q^{*}=P^{*}$ (cf. (2.5)). Thus $n\leq r$ . Suppose that $m>0$ . Let $Q\in Supp_{R}(M)$

such that $\dim(M_{P})=\dim(R_{P}/QR_{P})$ . Then $\dim(R_{P}/Q^{*}R_{P})=n$ and $\underline{\dim}(R_{(P)}/Q^{*}R_{(P)})\leq m$ .
Since $P^{*}$ is not minimal, there exists an element $a\in h(P^{*}\backslash Q^{*})$ by (2.5), (3). Then
$\underline{\dim}(R_{(r)}/(Q^{*}, a)R_{(P)})<\underline{\dim}(R_{(P)}/Q^{*}R_{\langle P)})$ and, by induction hypothesis, $n-1=$
$\dim(R_{P}/(Q^{*}, a)R_{P})\leq\underline{\dim}(R_{(r)}/(Q^{*}, a)R_{(P)})+r<m+r$ . $\square $

COROLLARY 2.7. Let $M$ be a G-graded module over a G-Noetherian gra&d ring
R. Then $\underline{\dim}(M_{\{p)})$ isfinite for every $\mathfrak{p}\in V_{G}(M)$ .

$PR\infty F$ . It suffices to show the case $M=R$ . Let $\mathfrak{p}\in V_{G}(R)$ . After the homogeneous
localization at $\mathfrak{p}$ , we may assume that $(R, p)$ is G-local. We denote by $H$ the subgroup
of $G$ generated by the degrees of a finite system of homogeneous generators of $p$ . Then
$p=\mathfrak{p}^{\{H)}R$ and, by (1.4), $\underline{\dim}(R)=\underline{\dim}(R^{(H)})$ . By (1.10), $R^{\{H)}$ is Noetherian and, by (2.4),
$\underline{\dim}(R^{\{H)})$ is finite. $\square $
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Our next goal is to establish an equality similar to (2.4) (or (2.6)) for the Bass
numbers of a G-graded module over a Noetherian G-graded ring.

Let $R$ be a G-Noetherian graded ring. For G-graded R-modules $M,$ $N$, we denote
by $\underline{Hom}_{R}(M, N)_{g}$ the Abelian group of all the G-graded homomorphisms from $M$ to
$N(g)$ . We put $\underline{Hom}_{R}(M, N)=\oplus_{g\in G}\underline{Hom}_{R}(M, N)_{g}$ and consider it as a G-graded
R-module. We denote by $\underline{Ex}_{A}t^{i}$(-, -) the i-th derived functor of $\underline{Hom}_{R}(-$ , - $)$ . If $M$ is
finitely generated, then $\underline{Ext}_{R}^{i}(M, N)=Ext_{R}^{i}(M, N)$ as underlying R-modules, for every
$i\geq 0$ .

Since $R$ is G-Noetherian, there exists injective hull of a G-graded R-module $M$ in
$M_{G}(R)$ uniquely determined by $M$. We denote it by $\underline{E}_{R}(M)$ .

In their papers [5] and [6], Goto-Watanabe proved that some objects of a category
of $Z^{n}$-graded modules can be treated as the same as in the nongraded case. The following
proposition is G-graded version of one of Goto-Watanabe’s arguments (cf. chap. 1, \S 2
of [5]).

PROPOSITION 2.8. (1) Let $M$ be a G-graded R-module. Then Ass $(M)=$

Ass $LE_{R}(M))$ . In particular, Ass$R(M)=Ass_{R}GE(M))$ , if $R^{\urcorner}$ is Noetherian.
(2) A G-graded R-module $E$ is an indecomposable injective object of $M_{G}(R)$ if and

only if $E\cong\underline{E}_{R}(R/\mathfrak{p}Xg)$ for some $p\in V_{G}(R)$ andfor some $g\in G$ . In this case, $p$ is uniquely
determinedfor $E$.

(3) Every injective object $E$ of $M_{G}(R)$ can be decomposed into a direct sum of
indecomposable injective objects of $M_{G}(R)$ . This decomposition is uniquely determined by
$E$ up to isomorphisms. $\square $

Let $M$ be a G-graded R-module and $\mathfrak{p}$ be a G-prime ideal of $R$ . For $i\geq 0$ , a G-graded
R-module $\underline{Ext}_{R_{(p)}}^{i}(R_{\langle p)}/\mathfrak{p}R_{\langle p)}, M_{(p)})$ can be regarded as G-graded module over a G-simple
graded ring $R_{\langle p}\sqrt \mathfrak{p}R_{(p)}$ . Hence it is a free $R_{(p)}/pR_{(p)}$-module (cf. (1.4)).

DEFINITION 2.9. We set

$v^{i}(\mathfrak{p}, M)=rank\underline{Ext}_{R_{(’)}}^{i}(R_{\langle p)}/\mathfrak{p}R_{(p)}, M_{(p)})$

and call it the i-th G-Bass number of $M$ at $\mathfrak{p}$ .
PROPOSITION 2.10. Let $M$ be a G-graded R-module. We denote by

$ 0\rightarrow M\rightarrow\underline{E}_{R}^{0}(M)\rightarrow\cdots\rightarrow\underline{E}_{R}^{i}(M)\rightarrow\underline{E}_{R}^{i+1}(M)\rightarrow d^{i}\ldots$

the minimal injective resolution of $M$ in $M_{G}(R)$ . Then, for every G-prime graded ideal $\mathfrak{p}$

andfor every integer $i\geq 0,$ $v^{i}(p, M)$ is equal to the number of the G-graded R-module of
the form $\underline{E}_{R}(R/\mathfrak{p}Xg)(g\in G)$ which appears in $\underline{E}_{R}^{i}(M)$ as direct summands.

The proof is the same as Theorem 1.3.4 of Goto-Watanabe [6]. $\square $

Finally, we describe ordinary Bass numbers in terms of G-Bass numbers.
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THEOREM 2.11. Let $M$ be a G-graded R-module and $P$ be a prime ideal of R. $We$

suppose that $R$ is Noetherian and put $d=\dim(R_{P}/P^{*}R_{P})$ . Then

$\mu^{i}(P, M)=\left\{\begin{array}{ll}v^{i-d}(P^{*}, M) & if i\geq d\\0 & if i<d\end{array}\right.$

where $\mu^{i}(P, M)=\dim_{R_{P}’ PR_{P}}(Ext_{R_{P}}^{i}(R_{P}/PR_{P}, M_{P}))$ is the ordinary Bass number of$M$at $P$.
$PR\infty F$ . After the homogeneous localization at $p*$ we may assume that $(R, P^{*})$

is G-local and put $S=R/P^{*}$ . We consider the following spectral sequence

$E_{2}^{p.q}=Ext\S_{p}(k(P), Ext_{R_{P}}^{q}(S_{P}, M_{P}))\Rightarrow Ext_{R_{P}}^{p+q}(k(P), M_{P})$

where $k(P)=R_{P}/PR_{P}$ . Note that $Ext_{R_{P}}^{q}(S_{P}, M_{P})\simeq Ext^{\underline{q}}(S, M)_{P}\cong(S_{P})^{\oplus v^{q}(P.M)}$ for every
$q\geq 0$ . We put $v^{q}(P^{*}, M)=0$ for $q<0$ . Then we have $E_{2}^{p.q}=0$ for every $p\neq d$, since $S_{P}$ is
a d-dimensional Gorenstein ring (cf. (1.7)). Hencewe have the following isomorphism

$Ext_{R_{P}}^{d+q}(k(P), M_{P})\cong Ext_{S_{P}}^{d}(k(P), Ext_{R_{P}}^{q}(S_{P}, M_{P}))$

$\cong Ext_{S_{P}}^{d}(k(P), S_{P})^{\oplus\nu^{q}(p*,\mu)}$

$\cong k(P)^{\oplus v^{q}(P.M)}$ .
Thus $\mu^{i}(P, M)=v^{i-d}(P^{*}, M)$ for all $i\geq 0$ .

COROLLARY 2.12. Let $M$ be a $G$-gra&dR-module and $p$ be a G-prime graded ideal
of R. If $R$ is Noetherian, then $v^{i}(\mathfrak{p}, M)=\mu^{i}(P, M)$ for every $P\in Ass_{R}(R/\mathfrak{p})$ andfor every
$i\geq 0$ . $\square $

As a consequence of (2.11) and (2.12), we have the following.

THEOREM 2.13. Let $M$ be a finitely generated G-graded R-module and $\mathfrak{p}\in V_{G}(R)$ .
If $R$ is Noetherian, then the fouowing conditions are equivalent.

(1) $M_{\langle p)}$ is a Cohen-Macaulay (resp. Gorenstein) $R_{\langle p)}$-module.
(2) $M_{P}isaCohen- Macaulay$ ($resp$ . Gorenstein) $R_{P}- moduleforeveryP\in Ass_{R}(R/\mathfrak{p})$ .
(3) $M_{P}isaCohen- Macaulay$ ($resp$ . Gorenstein) $R_{P}- moduleforsomeP\in Ass_{R}(R/\mathfrak{p})$ .
(4) There exists $P\in SpeqR$) such that $p*=p$ and $M_{P}$ is a Cohen-Macaulay (resp.

Gorenstein) $R_{P}$-module. $\square $

$DEFINr\Gamma ION2.14$ . A G-Noetherian graded ring $R$ is said to be G-Cohen-Macaulay
graded ring, if $v^{i}(\mathfrak{m}, R)=0$ for every G-maximal ideal $\mathfrak{m}$ of $R$ and every $i<\underline{\dim}(R_{(\mathfrak{m})})$ .

A G-Noetherian graded ring $R$ is said to be G-Gorenstein graded ring, if it satisfies
the condition that, for every G-maximal ideal $\mathfrak{m}$ , there exists an integer $n\geq 0$ such that
$v(\mathfrak{m}, R)=0$ for every $m\geq n$ .

COROLLARY 2.15. Let $R$ be a G-Noetherian gra&d ring.
(1) $RisG- Cohen- MacaulayifandonlyifsoisR_{(p)}foreveryp\in V_{G}(R)$ .
(2) The following are equivalent.
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(a) $R$ is G-Gorenstein.
(b) $R_{\langle p)}$ is G-Gorenstein for every $p\in V_{G}(R)$ .
(c) $ForeveryG- maximalideal\mathfrak{m}ofR,$ $v^{i}(\mathfrak{m}, R)=\delta_{id}whered=\underline{\dim}(R_{\langle \mathfrak{m})})$ .
(d) For every G-prime idealp of R, $v^{i}(p, R)=\delta_{u}whered=\underline{\dim}(R_{\langle p)})$ .
$PR\infty F$ . Let $\mathfrak{p}\in V_{G}(R)$ . Then there exists a finitely generated subgroup $H$ of $G$ such

that $\mathfrak{p}^{\langle H)}R=p$ (cf. (1.5)). Then, by (1.4), $R_{\langle p)}$ is free over $(R^{(H)})_{\{p^{(H)})}$ and $v^{i}(p, R)=$

$v^{i}(\mathfrak{p}^{(H)}, R^{\langle H)})$ . Hence our assertions follow from (1.10) and (2.13). $\square $

COROLLARY 2.16. Let $p$ be a G-prime graded ideal of R. If $R$ is Noetherian, then
a minimal injective resolution $of\underline{E}_{R}(R/\mathfrak{p})$ as the underlying R-module is of the form

$ 0\rightarrow\underline{E}_{R}(R/\mathfrak{p})\rightarrow\bigoplus_{P\in V^{O}\langle p)}E_{R}(R/P)\rightarrow\bigoplus_{P\in V^{1}\langle p)}E_{R}(R/P)\rightarrow\cdots\rightarrow\bigoplus_{P\in V^{n}\langle p)}E_{R}(R/P)\rightarrow\cdots$ ,

where $V^{i}(p)=\{P\in Spec\langle R)|P^{*}=p, \dim(R_{P}/pR_{P})=i\}$ .
This is a direct consequence of (2.11).

COROLLARY 2.17. Suppose that $R$ is Noetherian and $G$ is torsion. Then every
injective object of $M_{G}(R)$ is an injective module as the underlying R-module.

$PR\infty F$ . By (1.7), $R_{\langle p)}/pR_{(p)}$ is Artinian for every $p\in V_{G}(R)$ . Thus $P\in Ass_{R}(R/P^{*})$

for every $P\in SpeqR$) and the assertion follows from (2.16).

3. The canonical module of a G-Noetherian graded ring.

Let $(R, \mathfrak{m})$ be a G-local G-Noetherian graded ring of $d=\underline{\dim}(R)$ . In this section, we
define the canonical module of $R$ and state some properties of this module.

For every G-graded R-module $M$ and every integer $n\geq 0$ , we put

$\underline{H}_{\mathfrak{m}}^{n}(M)=\lim_{\rightarrow}Ext_{R}^{n}(R/\mathfrak{m}^{t}, M)$

and call it the n-th local cohomology module of $M$. Note that $\underline{H}_{m}^{n}(M)=H_{\mathfrak{m}}^{n}(M)$ as
underlying R-modules.

REMARK 3.1. Let us recall the following basic properties of $\underline{H}_{\mathfrak{m}}^{i}(-)$ (cf. [7]).
(1) $\underline{H}_{\mathfrak{m}}^{0}(-)$ is a left exact covariant additive functor from $M_{G}(R)$ to $M_{G}(R)$ and

$\underline{H}_{\mathfrak{m}}^{n}(-)$ is the n-th derived functor $of\underline{H}_{\mathfrak{m}}^{0}(-)$ .
(2) Let $q$ be a G-graded ideal of $R$ such that $\sqrt{\mathfrak{q}}=\sqrt{\mathfrak{m}}$ . Then, for every $n\geq 0$ ,

there is a natural isomorphism $\underline{H}_{q}^{n}(-)=\underline{H}_{\mathfrak{m}}^{n}(-)$ of functors.
(3) Let $\varphi:R\rightarrow S$ be a ring homomorphism of G-Noetherian graded rings. Then

there is a natural isomorphism $\underline{H}_{\mathfrak{m}}^{n}([-]_{\varphi})\cong LH_{\mathfrak{m}S}^{n}(-)]_{\varphi}$ of functors where $[M].=M$,
regarded as a G-graded R-module via $\varphi$ for a G-graded S-module $M$.

We define a G-graded S-module structure $of\underline{H}_{\mathfrak{m}}^{n}([M]_{\varphi})$, for a G-graded S-module
$M$, in the following way.
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Let $a\in S$. The multiplication $M_{\rightarrow}^{a}M$ can be regarded as the R-linear map. Then
we have an R-linear map $H_{\mathfrak{m}}^{n}(a):H_{\mathfrak{m}}^{n}(M)\rightarrow H_{\mathfrak{m}}^{n}(M)$ . We define the S-module structure
of $H_{\mathfrak{m}}^{n}(M)$ by $ax=H_{\mathfrak{m}}^{n}(aXx)$ for $x\in H.(M)$ . In particular, if $a\in S_{g}$, then an R-linear map
$\underline{H}_{\mathfrak{m}}^{n}(a):\underline{H}_{\mathfrak{m}}^{n}(M)\rightarrow H_{\mathfrak{m}}^{n}(MXg)$ preserves the G-grading. Thus, sinoe $\underline{H}_{\mathfrak{m}}^{n}(a)=H_{\mathfrak{m}}^{n}(a)$ and
$\underline{H}_{\mathfrak{m}}^{n}(M)=H_{\mathfrak{m}}^{n}(M)$ as the underlying R-module, $\underline{H}_{\mathfrak{m}}^{n}(M)$ can be regarded as G-graded S-
module. Hence, by naturality of the isomorphism in (3.1), (3), we have $\underline{H}_{\mathfrak{m}}^{n}(M)\cong\underline{H}_{\mathfrak{m}S}^{n}(M)$

as G-graded S-modules.

PROPOSmON 3.2. Let $H$ be a subgroup of $G$ with a system $\{g_{i}\}_{i\in I}$ ofrepresentatives
of $G$ mod $H$ such that $\sqrt{\mathfrak{m}^{\langle H)}R}=\sqrt{\mathfrak{m}}$ and $M$ be a $G$-gra&d R-module. Then, for every
$n\geq 0$, we have

$\underline{H}_{\mathfrak{m}}^{n}(M)\cong\bigoplus_{i\in I}\underline{H}_{\mathfrak{m}^{(H)}}^{n}(M^{\omega_{l}.H)})$ as $G$-gra&d R-modules, and

$\underline{H}_{\mathfrak{m}^{(H)}}^{n}(M^{(g_{t}.H)})\cong\underline{H}_{\mathfrak{m}}^{n}(M)^{(g_{i}.H)}$ as $G$-gra&d $R^{(H)}$-modules.

In particular, $\underline{H}_{\mathfrak{m}^{(H)}}^{n}(R^{(H)})\cong\underline{H}_{\mathfrak{m}}^{n}(R)^{(H)}$ .
$PR\infty F$ . Apply (3.1), (3) to $R^{(H)}G*R.$ $[]$

REMARK 3.3. For a subgroup $H\subset G$, if $G/H$ is torsion, then $\sqrt{\mathfrak{m}R}=\sqrt{\mathfrak{m}}$ .
COROLLARY 3.4. If $G$ is torsion, then $\underline{H}_{\mathfrak{m}}^{n}(M)\cong\oplus_{g\in G}\underline{H}_{m_{0}}^{n}(M_{g})$, for every G-graded

R-module $M$ and every $n\geq 0$ . $\square $

COROLLARY 3.5. $\underline{\dim}(R)=\sup\{n|\underline{H}_{\mathfrak{m}}^{n}(R)\neq 0)\}$ and $grad\triangleleft \mathfrak{m},$ $R$) $=\inf\{n|\underline{H}_{\mathfrak{m}}^{n}(R)\neq$

(0)}.

$PR\infty F$. Since $R$ is G-Noetherian, there exists a finitely generated subgroup $H$ of
$G$ such that $\mathfrak{m}^{\langle H)}R=m$ . Then $R^{\{g,H)}=0$ or $R^{(g,H)}\cong R^{(H)}$ for $g\in G$ (cf. (1.4)), and
$\underline{H}_{\mathfrak{m}}^{n}(R)\neq(0)$ if and only if $\underline{H}_{\mathfrak{m}^{(1I)}}^{\hslash}(R^{(H)})\neq(0)$ . Thus we may assume that $G$ is finitely
generated. In this case, $R$ is Noetherian (cf. (1.10)). Sinoe $\otimes_{R}R_{\mathfrak{m}}$ is a faithfully flat functor
$onM_{G}(R)$, the assertion follows from (2.4) and (2.12) ($whereR_{\mathfrak{m}}$ isaring of fractions
with respect to the multiplicatively closed subset $R\backslash \bigcup_{P\in A\cdot*\langle R’ \mathfrak{m})}RP$). $\square $

COROLLARY 3.6. $R$ is G-Cohen-Macaulay ifand only $if\underline{H}_{\mathfrak{m}}^{n}(R)=(0)$for every $n\neq d$.
In particular, if $G$ is torsion, then $R\dot{i}$ G-Cohen-Macaulay $\iota f$ and only if $R_{g}$ is a
Cohen-Macaulay $R_{0}$-module of dimension $d$for every $g\in G$ . $\square $

Next, we state Matlis duality theorem for G-graded R-modules. The proof is similar
to the nongraded case (cf. chap. 1, \S 2 of Goto-Watanabe [5]).

$R$ is said to be G-complete, if $(R_{0}, m_{0})$ is a complete local ring.

PROPOSmON 3.7. Suppose that $(R, \mathfrak{m})$ is G-complete. We &note by $M^{v}$ the
$G$-gra&d R-module Hom $o(M, E_{R_{0}}(R_{O}/\mathfrak{m}_{0}))$ .

(1) $(-)^{v}$ : $M_{G}(R)\rightarrow M_{G}(R)$ is a contravariant, faithfull, exact, additive functor.
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(2) For every finitely generated G-graded R-module $M,$ $M^{\vee\vee}\cong M$.
(3) $R^{\vee}\cong\underline{E}_{R}(R/\mathfrak{m})$ .
(4) For every G-graded R-module $M,$ $M^{\vee}\cong\underline{Hom}_{R}(M, R^{\vee})$ .
(5) A G-graded R-module $M$ is G-Artinian if and only $\iota f$ there exist $g_{1},$ $\cdots,$ $g_{n}\in G$

such that $M\subset\rightarrow\oplus_{i=1}^{n}R^{v}(g_{\iota})$ . (We call M G-Artinian $\iota f$ it satisfies DCC for G-graded
submodules.)

(6) $Ifwedenoteby\mathscr{F}$ (resp. $\mathscr{A}$) thefull subcategory consisting ofallfinitely generated
G-graded R-modules (resp. G-Artinian modules) of $M_{G}(R)$ , then

(a) for $M\in \mathscr{F}$ and $N\in \mathscr{A},$ $M^{v}\in \mathscr{A}$ and $N^{v}\in \mathscr{F}$,
(b) the functor $(-)^{\vee}:$ $\mathscr{F}\rightarrow \mathscr{A}$ establishes an anti-equivalence. $\square $

For a G-graded R-module $M$, we set $\hat{M}=M\otimes_{Ro}\hat{R}_{0}$ .
DEFINITION 3.8. We call a G-graded R-module $\underline{K}_{R}$ a G-canonical module of $R$, if

$LK_{R})^{A}\cong\underline{H}_{\hslash}^{d}(\hat{R})^{v}$ .
Using our previous results, we can show the following (cf. chap.2, \S 1 and \S 2 of

Goto-Watanabe [5]).

PROPOSITiON 3.9. (1) Ifa G-canonica $l$ module $\underline{K}_{R}$ of $R$ exists, then $\underline{K}_{R}$ is afinitely
generated R-module and uniquely determined up to isomorphism.

(2) If $(R, \mathfrak{m})$ is G-complete, then $\underline{H}_{\mathfrak{m}}^{d}(M)^{v}\cong\underline{Hom}_{R}(M, \underline{K}_{R})$ for every finitely gen-
erated G-graded R-module $M$.

(3) If $(R, \mathfrak{m})$ is G-complete and $\underline{H}_{\mathfrak{m}}^{d-n}(R)=0$ for $0<n\leq s$, then $\underline{H}_{m}^{d-n}(M)^{v}\cong$

$\underline{Ext}_{R}^{n}(M, \underline{K}_{R})$ for every finitely generated G-graded R-module $M$ andfor every $0\leq n\leq s$ .
(4) Let $\varphi:(R, \mathfrak{m})\rightarrow(S, \mathfrak{n})$ be a homomorphism of G-local graded ring such that

$\varphi(m)\subset \mathfrak{n}$ and $S$ is finitely generated as R-module. We put $t=\underline{\dim}(R)-\underline{\dim}(S)$ . Suppose
that $\underline{H}_{\mathfrak{m}}^{d-n}(R)=0$ for $0<n\leq d-t$ and there exists a G-canonical module $\underline{K}_{R}$ of R. ’Then
there exists a G-canonical module $\underline{K}_{S}$ of $S$ $and-K_{B}\cong Ext^{\underline{i}}(S, \underline{K}_{R})$ .

(5) If $(R, \mathfrak{m})$ is G-Cohen-Macaulay and if $\underline{K}_{R}$ exists, then, for a nonzero divisor
$a\in R_{g}(g\in G),$ $\underline{K}_{R/aR}\cong LK_{R}/a\underline{K}_{R}Xg$).

(6) If $(R, \mathfrak{m})$ is G-Cohen-Macaulay and if $\underline{K}_{R}$ exists, then $v^{n}(\mathfrak{m}, \underline{K}_{R})=\delta_{u}$ and the
minimal number of homogeneous generators $of\underline{K}_{R}$ is equal to $v^{d}(\mathfrak{m}, R)$ .

(7) The following conditions are equivalent.
(a) $R$ is G-Gorenstein.
(b) $R$ is G-Cohen-Macaulay and there exists a G-canonical module $\underline{K}_{R}$ of $R$ such

that,$\underline{K}_{R}\cong R(g)$ for some $g\in G$ .
(8) If $R$ is a homomorphic image ofa G-Gorenstein G-local graded ring $(S, \mathfrak{n})$, then

there exists a G-canonical module $\underline{K}_{R}$ of $R$ and $\underline{K}_{R}\cong Ext^{t}(R, SXg)$ where $t=\underline{\dim}(S)-$

$\underline{\dim}(R)$ . $\square $

THEOREM 3.10. Let $H$ be a subgroup of $G$ such that $\sqrt{\mathfrak{m}^{(H)}R}=\sqrt{\mathfrak{m}}$ .
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(1) If $(R, \mathfrak{m})\dot{i}$ G-complete, then $\underline{K}\cong\underline{H}om(H)(R, \underline{K}_{R^{(1i)}})$ as G-graded R-modules.
(2) Then the following conditions are equivalent.
(a) There exists a G-canonical module $\underline{K}_{R}$ of $R$ .
(b) There exists a G-canonical module $\underline{K}_{R^{(H)}}$ of $R^{(H)}$ .
In this case, we have

$\underline{K}_{R}\cong\underline{H}om(H)(R, \underline{K}_{R^{(H)}})$ as $G$-gra&d R-modules, and

$\underline{Hom}_{R^{(li)}}(R^{(-g_{i}.H)}, -K_{X^{(H)}})\cong LK_{R})^{0\iota\cdot H)}$ as $G$-gra&d $R^{(H)}$-modules

where $\{g_{i}\}_{i\in I}\dot{i}$ a system of representatives of $G$ mod H. In particular, $\underline{K}_{J^{(H)}}\cong K\omega^{(H)}$

$PR\infty F$ . (1) By (3.2) and (3.9), (2), there is the following isomorphism ofG-graded
R-modules:

$\underline{H}om\{H)(R, \underline{K}_{R^{(H)}})=\bigoplus_{ieI}\underline{Hom}_{R^{(H)}}(R^{\langle-g_{i}.H)}, \underline{K}_{R^{(H)}})\cong\bigoplus_{i\in I}\underline{H}_{\mathfrak{m}^{(H)}}^{d}(R^{(-g_{t}.H)})^{v}=\underline{H}_{\mathfrak{m}}(R)^{v}$

(Note that it is not necessary Hom $(H)(R,$ $\underline{K}_{R^{(H)}})=Hom_{R^{(r)}}(R,$ $K_{R^{(ff)}}).$)
The assertion (2) follows from (1). a
COROLLARY 3.11. $\dot{I}fR_{0}$ is a homomorphic image of a Gorenstein local ring, then

there exists a G-canonical module $\underline{K}_{R}$ of $R$ .
$PR\infty F$. There exists a finitely generated subgroup $H$ of $G$ such that $\sqrt{\mathfrak{m}^{(H)}R}=\sqrt{\mathfrak{m}}$

(cf. (1.5)). Hence, by (3.10), we may assume that $G$ is finitely generated. In this case, $R$

is a finitely generated $R_{O}$-algebra by (1.10) and it is a homomorphic image ofa polynomial
ring $S$ over a Gorenstein local ring $R_{0}$ . Note that the G-grading on $R$ induces a G-grading
on S. (It is not necessary $S_{0}=R_{0}.$) Then $R$ is also homomorphic image of the Gorenstein
G-local ring and the assertion follows from (3.9), (8).

Until the end of this section, we assume that $(R_{0}, \mathfrak{m}_{0})$ is a homomorphic image of
a Gorenstein local ring.

We can show that $\underline{K}$ is actually a canonical module of $R$ in usual sense.

COROLLARY 3.12. If $R$ is Noetherian, then $LK_{R})_{P}\cong K_{(Rp)}$ for every $P\in Supp_{R}LK_{R}$).

$PR\infty F$ . We shall prove the assertion in the following steps.
Step (1) If $G$ is finitely generated, then the assertion follows from (3.9). If $G$ is not

finitely generated, we need a sublemma.

SUBLEMMA. We denote $A=R_{O}$ . Assume that $\mathfrak{m}_{0}R=\mathfrak{m}$ and $\mathfrak{m}\in SMR$). Then we
have $LK_{R})_{\mathfrak{m}}\cong K_{R_{m}}$ .

$PR\infty F$ OF SUBLEMMA. For every finite G-graded R-module $M$, the m-adic
completion of $M$ is equal to $\hat{M}=M\otimes_{A}\hat{A}$ by our assumption. Thus $(R_{\mathfrak{m}})^{A}\cong(R\otimes_{A}\hat{A}),,1$

and it is alocal ring. This implies that $E_{(R_{*\theta^{A}}}((R\mathfrak{m})^{A}/\mathfrak{m}(R\mathfrak{m})^{A})\cong\underline{E}A\hat{R}/\mathfrak{m}\hat{R})_{\mathfrak{m}}$ (cf. (2.16)).

Hence we have the following isomorphism
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$[CK_{R})_{\mathfrak{m}}]^{A}\cong[[CK_{R})_{\mathfrak{m}}]^{A}]^{\vee\vee}$

$\cong[Hom_{(R_{\mathfrak{m}})^{A}}([(\underline{K}_{R})_{m}]^{A}, E_{\langle R_{m})^{A}}((R_{m})^{A}/\mathfrak{m}(R_{\mathfrak{m}})^{A}))]^{v}$

$\cong[Hom_{\langle R)_{m}}((\underline{K}fi)_{\mathfrak{m}}\underline{E}fi(\hat{R}/\hat{\mathfrak{m}})_{\mathfrak{m}})]^{v}$

$\cong\mapsto Hom_{R}(\underline{K}_{R}, \underline{E}fi(\hat{R}/\hat{m}))_{\mathfrak{m}}]^{\vee}$

$\cong[\underline{H}_{\hat{\mathfrak{m}}}^{d}(\hat{R})_{\mathfrak{m}}]^{\vee}$

$\cong H_{\mathfrak{m}\langle R_{m})^{A}}^{d}((R_{\mathfrak{m}})^{A})^{v}$

Hence $LK_{R})_{\mathfrak{m}}\cong K_{R_{\mathfrak{m}}}$ . We complete the proof of Sublemma.

Step (2) Let $P\in Supp_{R}(\underline{K}_{R})$ . Since $P$ is finitely generated, there exists a finitely
generated subgroup $H$ of $G$ such that $(P\cap R^{\langle H)})R=P$ (cf. the proof of (1.7)). Let $\{g_{i}\}_{i\in I}$

be a system of representatives of $G$ mod $H$ and $p=P\cap R^{(H)}$ . We consider the $G/H$-graded
ring $R_{p}=\oplus_{i\in I}(R^{\langle g_{1}.H)})_{p}$ . Then, by Step (1), $K_{\langle R^{(H)})_{\mathfrak{p}}}=CK_{R^{(H)}})_{p}=[LK_{R})^{(H)}]_{p}$ and, by (3.10),
$LK_{R}]_{p}$ is a $G/H$-canonical module of $R_{p}$ . On the other hand, $(R_{p}, PR_{p})$ is $G/H$-local such
that $pR_{p}=PR_{p}$ and $PR_{p}\in Spec(R_{p})$ by the choice of $H$. Hence, by the Sublemma, we
have $CK_{R})_{P}\cong[CK_{R})_{p}]_{P}\cong CK_{R_{\mathfrak{p}}})_{PR_{\mathfrak{p}}}\cong K_{R_{P}}$ . $\square $

COROLLARY 3.13. (1) $LK_{R})_{\langle p)}\cong\underline{K}_{R_{t\nu)}}$ for every $\mathfrak{p}\in V_{G}CK_{R}$).
(2) ,Ass $(\underline{K}_{R})=\{p\in V_{G}(R)|\underline{\dim}(R/\mathfrak{p})=d\}$ .
(3) $R\cong\underline{H}omCK_{R},$ $\underline{K}_{R}$) if and only if grade$(pR_{\langle p)}, R_{\langle p)})\geq\inf\{2, \underline{\dim}(R_{(p)})\}$ for every

$\mathfrak{p}\in V_{G}CK_{R})$ .
$PR\infty F$ . We can reduce to the case where $G$ is finitely generated (cf. (1.4) and

(2.15)). In this case, the proof is similar to the nongraded case. $\square $

EXAMPLE 3.4. Let $(A, \mathfrak{m})$ be a Noetherian local normal domain with $K=Q(A)$

and $L$ be a finite Abelian extension of $K$ with $G=Gal(L/K)$ . Let $R$ be the integral closure
of $A$ in $L$ and $\hat{G}=Hom(G, U(A))$ , where $U(A)$ is the multiplicative group of units of $A$ .
Assume that $n=|G|\in U(A)$ and $A$ contains a primitive n-th root of unity. Then $R$ can
be regarded as $\hat{G}$-graded ring in the following sense. For $g\in\hat{G}$, we set
$R_{g}=$ { $a\in R|\sigma(a)=g(\sigma)a$ for $\forall\sigma\in G$ }. Then

(1) $R_{0}=R^{G}=A$ .
(2) $R_{g}R_{h}\subset R_{g+h}$ for every $g,$

$h\in\hat{G}$ .
(3) $R=\sum_{g\in G}R_{g}=\oplus_{g\in G}R_{g}$ .

(See \S 2 of Itoh [9].)
Assume that $A$ is UFD. Since $R_{g}$ is isomorphic to a divisorial ideal of $A$ , there

exists $e_{g}\in R_{g}$ such that $R_{g}=Ae_{g}\cong A(g)$ . Hence, by (3.6), $A$ is Cohen-Macaulay if and
only if so isR(Theorem of Roberts [15] and Corollary3of Itoh [9]).

We denote by $a(g, g^{\prime})$ an element of $A$ satisfying $e_{g}e_{g’}=a(g, g^{\prime})e_{g+g’}$ for $g,$
$g^{\prime}\in\hat{G}$ .

Then Hom $(R, A)\cong R(g)(g\in\hat{G})$ as G-graded R-module if and only if $4g^{\prime}+g,$ $g^{\prime\prime}$) $=$
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$\triangleleft-g^{\prime}-g^{\prime\prime},$ $g^{\prime\prime}$) for any $g^{\prime},$
$g^{\prime\prime}\in\hat{G}$ . Hence, by (3.9), $R$ is Gorenstein if and only if $A$ is

Gorenstein and there exists $g\in\hat{G}$ such that, for any $g^{\prime},$
$g^{\prime\prime}\in\hat{G},$ $a(g^{\prime}+g, g^{\prime\prime})=$

$\triangleleft-g^{\prime}-g^{\prime\prime},$ $g^{\prime\prime}$).

4. A criterion.

In this paragraph, we consider a condition for a G-prime ideal to be a prime ideal.
First, we show the following lemma.

LEMMA 4.1. Let $R$ be a G-graded ring and $p\in V_{G}(R)$ . Then the following are
euivalent.

(1) $p$ is a prime (resp. radical) i&al.
(2) $R_{\langle p}\sqrt \mathfrak{p}R_{(p)}$ is an integral domain (resp. reduced).
(3) For everyfinitely generated subgroup $H\subset G,$ $(R_{\{p)}/\mathfrak{p}R_{(p)})^{(H)}$ is an integral domain

(resp. reduced).
(4) For every finite subgroup $H\subset G,$ $(R_{\langle p)}/pR_{\langle p)})^{\{H)}$ is an integral domain (resp.

reduced).

$PR\infty F$ . Implications (1) $\Leftrightarrow(2)\Rightarrow(3)\Rightarrow(4)$ are trivial $a\dot{n}d(4)\Rightarrow(3)$ follows from
(1.6).

(3) $\Rightarrow(2)$ Suppose that $R_{\langle p}\sqrt \mathfrak{p}R_{\langle p)}$ is not an integral domain (resp. reduced). Let
$x,$ $y\in R_{(p)}/\mathfrak{p}R_{\{p)}$ (resp. $z\in R_{(p)}/pR_{\{p}j$ such that $xy=0$ (resp. $z^{n}=0$). Then there exists a
finitely generated subgroup $H\subset G$ such that $x,$ $y\in(R_{\{p)}/\mathfrak{p}R_{\langle p)})^{(H)}$ (resp. $z\in(R_{(p)}/pR_{(\mathfrak{p})})^{(H)}$)
(cf. the proof of (1.7)). Hence $(R_{\langle p}\sqrt \mathfrak{p}R_{(p)})^{\langle H)}$ is not an integral domain (resp. reduced).

$\square $

Therefore, we consider a simple graded ring $R$ graded by a finite Abelian group.
Then, by the proof of (1.6), $R$ is isomorphic to $k[X_{1}, \cdots, X_{m}]/(X_{1^{1}}^{q}-u_{1}, \cdots, X_{m^{m}}^{q}-u_{m})$

where $m\geq 0,X_{1},$ $\cdots,$ $X_{m}$ are variables and each $q_{1},$ $\cdots,$ $q_{m}$ is apower ofaprime number.

PROPOSmON 4.2. Let $R\cong k[X_{1}, \cdots, X_{m}]/(X_{1^{1}}^{q}-u_{1},$ $\cdots,$ $X_{m^{n}}^{q}\cdot-u_{m}J$ .
(1) $R$ is an integral domain if and only if it satisfies the following condition (D):

(D): for every $1\leq t\leq m,$ $(u_{t})^{1/p}\not\in k[X_{1}, \cdots, X_{t-1}]/(X_{1^{1}}^{q}-u_{1}, \cdots, X_{t-1}^{q_{t-1}}-u_{t-1})$ ,

furthermore, when $chark$) $\neq 2$ and $q_{t}$ is divisible by 4 ,
$(-u_{t}/4)^{1/4}\not\in k[X_{1}, \cdots, X_{t-1}]/(X_{1^{1}}^{q}-u_{1}, \cdots, X_{t-1^{1}}^{q_{t-}}-u_{t-1})$ .

(2) $R$ is reduced if and only if it satisfies the following condition (R):

(R): if char$(k)=p>0$ and $\{q_{t_{1}}, \cdots, q_{i_{t}}\}=\{q_{i}|1\leq i\leq m,p|q_{i}\}$ then
$(u_{i}.)^{1/p}\not\in k[X_{i_{1}}, \cdots, X_{i.- 1}]/(Xf_{1}^{t_{1}}-u_{i_{1}}, \cdots, \chi f_{-1}^{t.-1}-u_{i.- 1})$

for every $1\leq s\leq t$ .
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$PR\infty F$ . (1) The assertion follows from the following fact.

(Lang, Theorem 16, \S 9, ch. VIII of [10]) Let $K$ be a field and $a\in K^{*}$ . For a prime
number $p$ and an integer $n>0$ , the polynomial $X^{p^{n}}-a\in K[X]$ is irreducible over $K$ if
and only if $a^{1/p}\not\in K$ and, furthermore, $(-a/4)^{1/4}\not\in K,$ $char(K)\neq 2$ and $4|p^{n}$ .

(2) Clearly, if $R$ does not satisfy condition (R), then it is not reduced. We will
show the converse. Suppose $R$ satisfies condition (R). If char$(k)=p>0$ and $p$ divides
$q_{i_{1}},$ $\cdots,$ $q_{i_{t}}$ , then, by (1), $k[X_{i_{1}}, \cdots, X_{i_{t}}]/(X_{i_{1}^{t_{1}}}^{q}-u_{i_{1}}, \cdots, X_{\iota^{t}}^{q\iota}-u_{i_{t}})$ is a field. Hence we
may assume that $p$ does not divide $q_{1},$ $\cdots,$ $q_{m}$ , if char$(k)=p>0$ .

We put $A_{0}=k$ and $A_{i}=k[X_{1}, \cdots, X_{i}]/(X_{1^{1}}^{q}-u_{1}, \cdots, X_{i^{l}}^{q}-u_{i})$ for $1\leq i\leq m$ . We
show that if $A_{i}$ is reduced then so is $A_{i+1}(t<m)$ .

Since $A_{i}$ is Artinian, $(A_{i})_{P}$ is a field for every $P\in{\rm Max}(A_{i})$, and $A_{i}\cong\oplus_{P\in{\rm Max}(A_{1})}(A_{i})_{P}$ .
Thus $ A_{i+1}=A_{i}[X_{i+1}]/(X_{i+1}^{q_{i+1}}-u_{i+1})\cong\oplus_{P\in{\rm Max}\langle 4_{i})}(A_{i})_{P}[X_{i+1}]/(X_{i+1}^{q_{i+1}}-u_{i+1})\lrcorner$ Hence it
suffices to show that $(A_{i})_{P}[X_{i+1}]/(X_{i+1}^{q_{i+1}}-u_{i+1})$ is reduced for every $P\in{\rm Max}(A_{t})$ . Since
char$(k)=char((A_{i})_{P}),$ $q_{i+1}$ is not a multiple of char$((A_{i})_{P})$ , if char$((A_{i})_{P})>0$ . Thus the
splitting field of $X_{i+1}^{q_{i+1}}-u_{i+1}$ over $(A_{i})_{P}$ is a separable extension of $(A_{i})_{P}$ . This implies
that $(A_{i})_{P}[X_{i+1}]/(X_{i+1}^{q_{i+1}}-u_{i+1})$ is reduced and the proof is complete. $\square $

Combining (4.1) and (4.2), we have the following.

THEOREM 4.3. Let $\mathfrak{p}$ be a G-prime ideal of a G-graded ring R. Then $\mathfrak{p}$ is a prime
(resp. radical) ideal if and only if $(R_{\langle p)}/\mathfrak{p}R_{(p)})^{\langle H)}$ satisfies condition (D) (resp. $(R)$) for every
finite subgroup $H\subset G$ .

COROLLARY 4.4 (chap. III, \S 1, no. 4 of Bourbaki [3]). If $G$ is torsion free, then
every G-prime ideal is a prime ideal.

COROLLARY 4.5. Let $R$ be a G-graded ring such that $R_{0}$ contains afield $k$ . Suppose
that either char$(k)=0$ or char$(k)=p>0$ and $G$ does not have a torsion of order $p$ . Then
every G-prime ideal is a radical ideal. $\square $

EXAMPLE 4.6. In Example (3.14), every G-prime ideal of $R$ is a radical ideal and,
thus the ramification index is determined by G-prime ideals.
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