Noetherian Rings Graded by an Abelian Group

Yuji KAMOI
Tokyo Metropolitan University
(Communicated by M. Sakai)

Dedicated to Professor Takeshi Ishikawa on his 60th birthday

Introduction.

Throughout this paper, all rings are assumed to be commutative with identity.
Let G be an Abelian group. We say that a ring R is a G-graded ring, if there exists a family $\left\{R_{g}\right\}_{g \in G}$ of additive subgroups of R such that $R=\oplus_{g \in G} R_{g}$ and $R_{g} R_{h} \subset R_{g+h}$ for every $g, h \in G$. Similarly, a G-graded R-module is an R-module M for which there is given a family $\left\{\boldsymbol{M}_{\boldsymbol{g}}\right\}_{g \in G}$ of additive subgroups of \boldsymbol{M} such that $\boldsymbol{M}=\oplus_{g \in G} \boldsymbol{M}_{\boldsymbol{g}}$ and $R_{g} M_{h} \subset M_{g+h}$ for every $g, h \in G$.

The investigation of the ring-theoretic property of graded rings started with the following question of Nagata [13].

If G is the ring of integers Z, then is Cohen-Macaulay property of R determined by their local data at graded prime ideals?

As is well-known, Matijevic-Roberts [12] and Hochster-Ratliff [8] gave an affirmative answer to the conjecture as above. Similarly Aoyama-Goto [1] and Matijevic [11] showed that the same as above is also true for Gorenstein property. Furthermore Goto-Watanabe developed a theory of Z^{n}-graded rings and modules in their papers [5] and [6] and proved the relation between Bass numbers of graded modules at nongraded prime ideals and Bass numbers at graded prime ideals.

In this paper, we study G-graded rings and G-graded modules for an arbitrary Abelian group G.

Some homological properties of a G-graded ring R depend only on their local data at graded prime ideals, when $G=\boldsymbol{Z}^{n}$. But, for an arbitrary Abelian group G, informations about graded prime ideals are not enough to determine homological properties. For example, the hypersurface $k[X] /\left(X^{2}-1\right)$ is a Z_{2}-graded ring by $\operatorname{deg}(X)=1 \in Z_{2}$ and has no graded prime ideals. Here $\boldsymbol{Z}_{2}=\boldsymbol{Z} / 2 \boldsymbol{Z}$. Therefore we introduce the notion of G-prime ideals as follows and improve Goto-Watanabe's arguments using this notion.

Definition 1.2. A G-graded ideal \mathfrak{p} of R is said to be a G-prime ideal, if it satisfies the following condition: for any G-homogeneous elements $a, b \in R$ such that $a b \in \mathfrak{p}$, eigher $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.
(Of course, if G is torsion free, G-prime ideals are prime ideals (cf. chap.III, §1, no. 4 of [3]). In section 4, we give a necessary and sufficient condition for a G-prime ideal to be a prime ideal when G is an arbitrary Abelian group.)

Then we have the following.
Theorem 2.13. Let M be a finitely generated G-graded module over a Noetherian G-graded ring R and \mathfrak{p} be a G-prime ideal of R. Then the following conditions are equivalent.
(1) $M_{(p)}$ is a Cohen-Macaulay (resp. Gorenstein) $R_{(p)}$-module.
(2) M_{P} is a Cohen-Macaulay (resp. Gorenstein) R_{P}-module for every $P \in \operatorname{Ass}_{R}(R / p)$.
(3) M_{P} is a Cohen-Macaulay (resp. Gorenstein) R_{P}-module for some $P \in \operatorname{Ass}_{R}(R / p)$.
(4) There exists $P \in \operatorname{Spec}(R)$ such that $P^{*}=\mathfrak{p}$ and M_{P} is a Cohen-Macaulay (resp. Gorenstein) \boldsymbol{R}_{P}-module.
Here $M_{(p)}$ is the module of fractions of M with respect to the set of all homogeneous elements of $R \backslash \mathfrak{p}$ and P^{*} is the maximal graded ideal which is contained in P.

Furthermore, we define the i-th G-Bass number $\nu^{i}(p, M)$ of a G-graded module M as

$$
v^{i}(\mathfrak{p}, M)=\operatorname{rank}_{R_{(\mathfrak{p})} / \mathfrak{p} R_{(p)}} \operatorname{Ext}_{R_{(\mathfrak{p})}}^{i}\left(R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}, M_{(\mathfrak{p})}\right)
$$

where \mathfrak{p} is a G-prime ideal of R (see (2.9)). The following theorem will play important roles in proving Theorem 2.13.

Theorem 2.11. Let M be a G-graded module over a Noetherian G-graded ring R and P be a prime ideal of R. We put $d=\operatorname{dim}\left(R_{P} / P^{*} R_{P}\right)$. Then

$$
\mu^{i}(P, M)=\left\{\begin{array}{cc}
v^{i-d}\left(P^{*}, M\right) & \text { if } i \geq d \\
0 & \text { if } i<d
\end{array}\right.
$$

where $\mu^{i}(P, M)=\operatorname{dim}_{R_{P} / P_{P}}\left(\operatorname{Ext}_{R_{P}}^{i}\left(R_{P} / P R_{P}, M_{P}\right)\right)$ is the i-th Bass number of M at P.

1. Preliminaries.

In this section, we recall some definitions and basic facts about graded rings and graded modules (cf. [5], [6] and [14]).

Let G be an Abelian group. We say that a ring R is a G-graded ring, if there exists a family $\left\{R_{g}\right\}_{g \in G}$ of additive subgroups of R such that $R=\oplus_{g \in G} R_{g}$ and $R_{g} R_{h} \subset R_{g+h}$ for every $g, h \in G$. Similarly, a G-graded R-module is an R-module M for which there is given a family $\left\{M_{g}\right\}_{g \in G}$ of addtive subgroups of M such that $M=\bigoplus_{g \in G} M_{g}$ and $R_{g} M_{h} \subset M_{g+h}$ for every $g, h \in G$. A homomorphism $f: M \rightarrow N$ of G-graded R-modules is an R-linear map such that $f\left(M_{g}\right) \subset N_{g}$ for all $g \in G$. We denote by $M_{G}(R)$ the category consisting of all G-graded R-modules and their homomorphisms.

Let R be a G-graded ring and M be a G-graded R-module. For $g \in G$, we define a G-graded R-module $M(g)$ by $M=M(g)$ as the underlying R-module and graded by $[M(g)]_{h}=M_{g+h}$ for all $h \in G$. We say that M is free, if it is isomorphic to a direct sum of G-graded R-modules of the form $R(g)(g \in G)$. The elements $\bigcup_{g \in G} M_{g}$ are called homogeneous elements of M, a nonzero element $x \in M_{g}$ is said to be homogeneous of degree g, and we denote $\operatorname{deg}(x)=g$. For a subset $N \subset M$, we set $h(N)=\bigcup_{g \in G}\left(N \cap M_{g}\right)$. Any non-zero element $x \in M$ has a unique expression as a sum of homogeneous elements, $x=\sum_{g \in G} x_{g}$ where $x_{g} \in M_{g}$ and $x_{g}=0$ for almost all $g \in G$. With this notation, we call nonzero x_{g} the homogeneous component (of degree g) of x.

Let H be a subgroup of G and $g \in G$. We define $R^{(H)}=\oplus_{h \in H} R_{h}$ and $M^{(g, H)}=\oplus_{h \in H} M_{g+h}$. Then $R^{(H)}$ is a subring of R and $M^{(g, H)}$ is an $R^{(H)}$-submodule of M. We define a G-grading on $M^{(g, H)}$ as

$$
\left[M^{(g, H)}\right]_{g^{\prime}}=\left\{\begin{array}{ccc}
M_{g^{\prime}} & \text { if } \quad g-g^{\prime} \in H \\
(0) & \text { if } & g-g^{\prime} \notin H
\end{array}\right.
$$

for all $g^{\prime} \in G$. If $g-g^{\prime} \in H$, then we have $M^{(g, H)}=M^{\left(g^{\prime}, H\right)}$ as G-graded $R^{(H)}$-modules. Hence M has the following decomposition as a G-graded $R^{(H)}$-module

$$
M=\bigoplus_{i \in I} M^{\left(g_{i}, H\right)}
$$

where $\left\{g_{i}\right\}_{i \in I}$ is a system of representatives of $G \bmod H$. Also, we have $R^{\left(g_{i}, H\right)} M^{\left(g_{j}, H\right)} \subset M^{\left(\boldsymbol{g}_{i}+\boldsymbol{g}_{j}, H\right)}$ for all $i, j \in I$. Hence a G-graded ring R (resp. G-graded R-module M) can be regarded as a G / H-graded ring (resp. G / H-graded R-module).

Definition 1.1. (1) We say that R is a G-domain, if every nonzero G-homogeneous element of R is a nonzero divisor of R. That is to say, if $a b=0$, then $a=0$ or $b=0$ for G-homogeneous elements $a, b \in h(R)$.
(2) We say that R is G-simple, if every nonzero G-homogeneous element is a unit of R. Or, equivalently, if R has no proper G-graded ideals except (0).

If R is a G-simple graded ring and H is a subgroup of G, then H-graded ring $R^{(H)}$ is H-simple.

Definition 1.2. (1) A G-graded ideal \mathfrak{p} of R is said to be a G-prime ideal, if the G-graded ring R / \mathfrak{p} is a G-domain. Or, equivalently, for any G-homogeneous elements $a, b \in h(R)$, if $a b \in \mathfrak{p}$, then $a \in \mathfrak{p}$ or $b \in \mathfrak{p}$.
(2) A G-graded ideal \mathfrak{m} of R is said to be a G-maximal ideal, if the G-graded ring R / \mathfrak{m} is G-simple.

Note that a G-prime (resp. G-maximal) ideal of R is not necessarily a prime (resp. maximal) ideal. For example, let $k[X]$ be a polynomial ring over a field k. We consider a ring $k[X] /\left(X^{2}-1\right)$ and regard it as a Z_{2}-graded ring. Then $k[X] /\left(X^{2}-1\right)$ is a Z_{2}-domain and also \boldsymbol{Z}_{2}-simple but it is not a domain. Thus the zero ideal of $k[X] /\left(X^{2}-1\right)$ is
Z_{2}-prime and not a prime ideal.
We denoty by $V_{G}(R)$ the set of all G-prime ideals of R. For $\mathfrak{p} \in V_{G}(R)$, we denote by $M_{(p)}$ the module of fractions of M with respect to the multiplicatively closed subset $h(R \backslash \mathfrak{p})$ and call it the homogeneous localization of M at \mathfrak{p}. We set $V_{G}(M)=\{\mathfrak{p} \in$ $\left.V_{G}(R) \mid M_{(p)} \neq(0)\right\}$. For an ideal P of R, we denote by P^{*} the maximal graded ideal of R contained in P (or the graded ideal generated by $h(P)$). If P is a prime ideal of R, then P^{*} is a G-prime ideal of R. Furthermore, for a G-graded R-module M and $P \in \operatorname{Spec}(R), P \in \operatorname{Supp}_{R}(M)$ if and only if $P^{*} \in V_{G}(M)$.

Definition 1.3. We say that R is a G-local graded ring, if it has the unique G-maximal ideal m . Often we use the notation (R, m) to say that R is G-local with the unique G-maximal ideal m.

In the rest of this section, we develop some standard techniques of G-graded rings which will be used freely in this paper.

Proposition 1.4. (1) For $g \in G$, if $a \in R_{g}$ is a unit of R, then $a^{-1} \in R_{-g}$ and $R_{g}=a R_{0}$.
(2) R is G-simple if and only if every G-graded R-module is free.
(3) Suppose that (R, m) is G-local and M is a finitely generated G-graded R-module. Then $M=\mathfrak{m} M$ implies $M=(0)$. Thus, if $x_{1}, \cdots, x_{n} \in h(M)$ and if their images in $M / \mathrm{m} M$ form a free R / m-basis, then M is generated by x_{1}, \cdots, x_{n}.
(4) Let (R, m) be G-local and H be a subgroup of G such that $\mathfrak{m}^{(H)} R=m$. Let $\left\{g_{i}\right\}_{i \in I}$ be a system of representatives of $G \bmod H$. Assume that $R^{\left(g_{i}, H\right)}$ is a finitely generated $R^{(H)}$-module for every $i \in I$. Then the following statements hold.
(a) If $R^{\left(g_{i}, H\right)} \neq 0$ for $i \in I$, then there exists a unit $u_{i} \in R_{g_{i}+h}$ of R for some $h \in H$. Thus R is free over $R^{(H)}$ which has a free basis consisting of G-homogeneous units of R.
(b) For $\mathfrak{q} \in V_{H}\left(R^{(H)}\right)$ and $\mathfrak{p} \in V_{G}(R)$, we have $\mathfrak{q} R \in V_{G}(R)$ and $\mathfrak{p}^{(H)} \in V_{H}\left(R^{(H)}\right)$. This gives a bijective correspondence between $V_{H}\left(R^{(H)}\right)$ and $V_{G}(R)$.
(c) For $\mathfrak{p} \in V_{G}(R), M_{(\mathfrak{p})}=M \otimes_{R^{(H)}}\left(R^{(H)}\right)_{\left(p^{(H)}\right)}$.

Proof. Assertions (1) and (2) are the same as Theorem 1.1.4 of Goto-Watanabe [6] and the assertion (3) is a graded version of Nakayama's lemma. We only need to show the assertion (4).
(a) If $R^{\left(g_{i}, H\right)} \neq(0)(i \in I)$, then there exists $u_{i} \in h\left(R^{\left(g_{i}, H\right)}\right)$ such that $u_{i} \notin \mathrm{~m}^{(H)} R^{\left(g_{i}, H\right)}$ by (3). Since $\mathfrak{m}^{(H)} R=\mathfrak{m}, u_{i} \notin \mathfrak{m}$ and, since (R, \mathfrak{m}) is G-local, u_{i} is a unit of R.
(b) Clearly, $\mathfrak{p}^{(H)} \in V_{H}\left(R^{(H)}\right)$ for every $\mathfrak{p} \in V_{G}(R)$. Let $T=\left\{u_{i} \mid i \in I, u_{i} \in R^{\left(\mathfrak{g}_{i}, H\right)} \neq(0)\right\}$ be the set of units of R which is obtained as in (a). Then we have $h(R)=\left\{a u_{i} \mid a \in h\left(R^{(H)}\right)\right.$, $\left.u_{i} \in T\right\}$. Hence we can verify that $q R \in V_{G}(R)$ for every $q \in V_{H}\left(R^{(H)}\right)$.
(c) By (b), we have $h(R \backslash \mathfrak{p})=\left\{a u_{i} \mid a \in h\left(R^{(H)} \backslash \mathfrak{p}^{(H)}\right)\right\}$ for every $\mathfrak{p} \in V_{G}(R)$. Hence $h\left(R_{\left(p^{(H)}\right)} / \mathfrak{p}\left(R_{\left(p^{(H)}\right)}\right)\right.$ is the set of units of $R_{\left(\boldsymbol{p}^{(H)}\right)}$ and $M_{(\mathfrak{p})}=M \otimes_{R^{(H)}}\left(R^{(H)}\right)_{\left(^{(H)}\right)}$ for every G-graded R-module M.

Example 1.5. Let \mathfrak{p} be a finitely generated G-prime ideal of a G-graded ring R and H be a finitely generated subgroup of G which contains degrees of (finite) homogeneous generators of \mathfrak{p}. Then $\mathfrak{p}^{(H)} R=\mathfrak{p}$. Namely, $\left(R_{(\mathfrak{p})}, \mathfrak{p} R_{(\mathfrak{p})}\right)$ and H staisfy the first assumption of (1.4), (4).

Theorem 1.6. Let G be a finitely generated Abelian group and R be a ring. Then the following conditions are equivalent.
(1) R is a G-simple graded ring.
(2) R contains a field k and

$$
R \cong \frac{k\left[X_{1}, \cdots, X_{m}, Y_{1}^{ \pm 1}, \cdots, Y_{n}^{ \pm 1}\right]}{\left(X_{1}^{q_{1}}-u_{1}, \cdots, X_{m}^{q_{m}}-u_{m}\right)}
$$

where $m, n \geq 0, u_{1}, \cdots, u_{m} \in k^{*}, X_{1}, \cdots, X_{m}, Y_{1}, \cdots, Y_{n}$ are variables and each q_{i} $(i=1, \cdots, m)$ is a power of a prime integer.

Proof. (2) \Rightarrow (1) Put $G=\oplus_{i=1}^{m} Z /\left(q_{i}\right) \oplus Z^{n}$. Then R is G-simple.
(1) \Rightarrow (2) It is clear that $k=R_{0}$ is a field. We suppose that $R \neq k$ and put $G^{\prime}=\left\{g \in G \mid R_{g} \neq(0)\right\}$. Then G^{\prime} is a nonzero subgroup of G. Thus we can write

$$
G^{\prime}=\bigoplus_{i=1}^{m} C\left(q_{i}\right) \oplus Z^{n}
$$

where q_{i} is a power of a prime number and $C\left(q_{i}\right)$ is a cyclic group of order q_{i} for $1 \leq i \leq m$. Let e_{i} be a generator of $C\left(q_{i}\right)(1 \leq i \leq m)$ and let $e_{1}^{\prime}, \cdots, e_{n}^{\prime}$ be free basis of Z^{n}. Then there exist unit elements $x_{i} \in R_{e_{i}}(1 \leq i \leq m)$ and $y_{j} \in R_{e_{j}^{\prime}}(1 \leq j \leq n)$ by our choice of G^{\prime}. By (1.4), (1), we have $R=k\left[x_{1}, \cdots, x_{m}, y_{1}^{ \pm 1}, \cdots, y_{n}^{ \pm}\right]_{j}$.

Next, we define a k-algebra $\operatorname{map} \varphi: k\left[X_{1}, \cdots, X_{m}, Y_{1}^{ \pm 1}, \cdots, Y_{n}^{ \pm 1}\right] \rightarrow R$ by $\varphi\left(X_{i}\right)=x_{i}(1 \leq i \leq m)$, and $\varphi\left(Y_{j}^{ \pm 1}\right)=y_{j}^{ \pm 1}(1 \leq j \leq n)$ where $X_{1}, \cdots, X_{m}, Y_{1}, \cdots, Y_{n}$ are variables. Then φ is surjective and $\operatorname{ker}(\varphi)=\left(X_{1}^{q_{1}}-u_{1}, \cdots, X_{m}^{q_{m}}-u_{m}\right)\left(u_{j}=x_{j}^{q_{j}} \in k^{*}\right)$, by the choice of $\left\{x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{n}\right\}$.

The proof of (1.6) is now complete.
As a consequence, we get the following.
Corollary 1.7. A Noetherian G-simple graded ring R is locally a complete intersection. In particular, $\operatorname{Ass}_{R}(R)=\operatorname{Min}(R)$ and if G is a torsion group, then R is Artinian.

Proof. Let R be a Noetherian G-simple graded ring. We shall show that a local ring R_{Q} is a complete intersection for every maximal ideal Q of R. Since R is Noetherian, Q is finitely generated. Let H be the subgroup of G generated by degrees of all homogeneous components of (finite) generators of Q. By (1.4), (2), R is free over $R^{(H)}$, since $R^{(H)}$ is H-simple. Also, by the choice of $H, R /\left(Q \cap R^{(H)}\right) R=R / Q$. Hence, by (1.6) and Avramov's criterion [2], R_{Q} is complete intersection of the same dimension as that of $\left(R^{(H)}\right)_{Q_{\cap} R^{(H)}}$. If G is torsion, then so is H. By the proof of (1.6), we have $\operatorname{dim}\left(R^{(H)}\right)=0$.

Hence R is Artinian.
Example 1.8. Let A be a Noetherian ring and $R=A[G]$ be a Noetherian group ring. Then $\operatorname{Max}(A)=\{Q \cap A \mid Q \in \operatorname{Max}(R)\}$ and $V_{G}(R)=\{\mathfrak{p} R \mid \mathfrak{p} \in \operatorname{Spec}(A)\}$. Thus R is Cohen-Macaulay (resp. Gorenstein, locally complete intersection) if and only if so is A.

Definition 1.9. R is said to be a G-Noetherian graded ring, if it satisfies the following equivalent conditions.
(1) Every strict ascending chain of G-graded ideals of R is finite.
(2) Every nonempty family of G-graded ideals of R has a maximal element.
(3) Every G-graded ideal of R is finitely generated.

Remark 1.10. (1) Suppose that R is G-Noetherian. Then for every subgroup $H \subset G$ and every $g \in G, R^{(H)}$ is G-Noetherian and $R^{(g, H)}$ is finitely generated as an $\boldsymbol{R}^{(H)}$-module.
(2) (Theorem 1.1 of Goto-Yamagishi [4]) Suppose that G is a finitely generated Abelian group. Then the following conditions are equivalent.
(a) R is a Noetherian graded ring.
(b) R is a G-Noetherian graded ring.
(c) R_{0} is Noetherian and R is a finitely generated R_{0}-algebra.

In general, a G-Noetherian ring is not a Noetherian ring. For example, $\boldsymbol{Z}^{(I)}$-simple graded ring $Q\left[\left\{X_{i}, X_{i}^{-1}\right\}_{i \in I}\right]$ is $Z^{(I)}$-Noetherian but it is not Noetherian, if I is infinite. Also, there exists a Noetherian graded ring R which is not a finitely generated R_{0}-algebra (e.g. Proposition 3.1 of Goto-Yamagishi [4]).

2. Dimension and Bass numbers of \boldsymbol{G}-graded modules.

Let M be a G-graded module over a G-graded ring R. A G-prime ideal \mathfrak{p} is said to be associated with M, if $\mathfrak{p}=[0: x]_{R}$ for some $x \in h(M)$. We denote by $\operatorname{Ass}_{R}(M)$ the set of all G-prime ideals associated with M.

The followings will be proved in the same way as in the non graded case (cf. chap.IV, $\S 1$, no. 1 of [3]).

Proposition 2.1. Let M be a G-graded module over a G-graded ring R.
(1) If M is the union of a family $\left\{M_{i}\right\}_{i \in I}$ of G-graded submodules of M, then $\operatorname{Ass}_{R}(M)=\bigcup_{i \in I} \underline{\operatorname{Ass}}\left(M_{i}\right)$.
(2) Every maximal element of $\{[0: x] \mid x \in h(M), x \neq 0\}$ belongs to $\underline{A s s}_{R}(M)$. Thus $\operatorname{Ass}_{R}(M) \neq \varnothing$ is equivalent to $M \neq 0$, provided R is G-Noetherian.
(3) Let N be a G-graded submodule of M. Then $\underline{\operatorname{Ass}_{R}(N) \subset \underline{\operatorname{Ass}_{R}}(M) \subset}$ $\operatorname{Ass}_{R_{R}}(N) \cup \operatorname{Ass}_{\boldsymbol{R}}(M / N)$.
(4) Every G-prime ideal of R containing an element of Ass $_{R}(M)$ belongs to $V_{G}(M)$. Conversely, if R is G-Noetherian, then every $\mathfrak{p} \in V_{G}(M)$ contains an element of $\operatorname{Ass}_{R}(M)$.
(5) If R is G-Noetherian, then Ass $_{R}(M)$ and $V_{G}(M)$ have the same minimal elements.
(6) If R is G-Noetherian and M is a finitely generated R-module, then there exists a chain $(0)=M_{n} \subset M_{n-1} \subset \cdots \subset M_{0}=M$ of G-graded submodules of M such that, for $1 \leq i \leq n, M_{i} / M_{i-1} \cong\left(R / \mathfrak{p}_{i}\right)\left(g_{i}\right)$, where $\mathfrak{p}_{i} \in V_{G}(R)$ and $g_{i} \in G$. In this case $\underline{\operatorname{Ass}_{R}(M) \subset}$ $\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{n}\right\} \subset V_{G}(M)$ and therefore Ass $_{\boldsymbol{R}}(M)$ is finite.

Next, we relate $\underline{A s s}_{R}(M)$ to Ass $_{R}(M)$.
Proposition 2.2. Let M be a G-graded module over a G-graded ring R.
(1) If $P \in \operatorname{Ass}_{R}(M)$, then $P^{*} \in \operatorname{Ass}_{R}(M)$.
(2) If $\mathfrak{p} \in V_{G}(R)$ and $P \in \operatorname{Ass}_{R}(R / \mathfrak{p})$, then $P^{*}=\mathfrak{p}$.
(3) $\quad \operatorname{Ass}_{R}(M)=\bigcup_{\mathfrak{p} \in \operatorname{Ass}_{R}(M)} \operatorname{Ass}_{R}(R / \mathfrak{p})$.

Proof. (1) For $P \in \operatorname{Ass}_{R}(M)$, we put $P=\left[0: \sum_{g \in G} x_{g}\right]$ where $x_{g} \in M_{g}$ and $x_{g}=0$ for almost all $g \in G$. Then the G-graded ideal $\bigcap_{g \in G, x_{g} \neq 0}\left[0: x_{g}\right]$ is contained in P. Thus $\bigcap_{g \in G, x_{g} \neq 0}\left[0: x_{g}\right] \subset P^{*}$. Let $a \in h(P)$. Since $a \sum_{g \in G} x_{g}=0$, we have $a x_{g}=0$ for every $g \in G$. Hence $a \in\left[0: x_{g}\right]$ for every $g \in G$. Namely $P^{*}=\bigcap_{g \in G, x_{g} \neq 0}\left[0: x_{g}\right]$. Since P^{*} is a G-prime ideal, this implies that $P^{*}=\left[0: x_{g}\right]$ for some $g \in G$.
(2) Let $P \in \operatorname{Ass}_{R}(R / \mathfrak{p})$. It is clear that $\mathfrak{p} \subset P^{*}$. Conversely, by (1), there exists a G-homogeneous element a of $R \backslash \mathfrak{p}$ such that $P^{*}=[\mathfrak{p}: a]$. Hence $a P^{*} \subset \mathfrak{p}$. Since \mathfrak{p} is a G-prime ideal and $a \notin \mathfrak{p}$, we have $P^{*} \subset \mathfrak{p}$.
(3) Clearly, we have $\operatorname{Ass}_{R}(M) \supset \bigcup_{p \in \operatorname{Ass}_{R}(M)} \operatorname{Ass}_{R}(R / p)$ and we shall show the converse inclusion.

Let $P \in \operatorname{Ass}_{R}(M)$ and $\mathfrak{p}=P^{*}$. Then, by (1), $\mathfrak{p} \in \operatorname{Ass}_{R}(M)$. Thus it suffices to show that $P \in A s s_{R}(R / \mathfrak{p})$. We assume the contrary (i.e. $\left.P \notin A s s_{R}(R / \mathfrak{p})\right)$. By the aid of Zorn's lemma, we can show that there exists a maximal G-graded submodule $N \subset M$ such that $\underline{A s s}_{R}(N)=\{p\}$ and $P \notin \operatorname{Ass}_{R}(N)$. Since $P \notin A s s_{R}(N), P \in \operatorname{Ass}_{R}(M / N)$ and, by (1), $P^{*}=\mathfrak{p} \in \operatorname{Ass}_{R}(M / N)$. Hence there exists a G-graded submodule $L \subset M$ such that $N \subset L$ and $L / N \cong(R / p)(g)(g \in G)$. Then, by (2.1), (3), $\operatorname{Ass}_{R}(L)=\{\mathfrak{p}\}$ and $P \notin \operatorname{Ass}_{R}(L)$ since $\operatorname{Ass}_{R}(L) \subset \operatorname{Ass}_{R}(N) \cup \operatorname{Ass}_{R}(R / \mathfrak{p})$. This contradicts the maximality of N. Hence we have $P \in \operatorname{Ass}_{R}(R / p)$.

Definition 2.3. Let M be a G-graded module over a G-graded ring R. We denote by $\operatorname{dim}(M)$ the largest length of the chains of G-prime ideals in $V_{G}(M)$ and call it G-dimension of M.

We have the following dimension theorem for G-graded modules.
Theorem 2.4. Let R be a Noetherian G-graded ring and M be $a \operatorname{G}$-graded R-module. If $\mathfrak{p} \in V_{G}(M)$, then we have $\underline{\operatorname{dim}}\left(M_{(\mathfrak{p})}\right)=\operatorname{dim}\left(M_{P}\right)$ for every $P \in \operatorname{Ass}_{R}(R / \mathfrak{p})$.

First we show a lemma.
Lemma 2.5. Let R be a Noetherian G-gradedring and M be a G-graded R-module.
(1) $\operatorname{Ass}_{R}(R / \mathfrak{p})=\operatorname{Min}_{R}(R / \mathfrak{p})$ for $\mathfrak{p} \in V_{G}(R)$.
(2) Let $\mathfrak{p} \in V_{G}(R)$. Then $\mathfrak{p} \in V_{G}(M)$ if and only if $\operatorname{Ass}_{R}(R / \mathfrak{p}) \subset \operatorname{Supp}_{R}(M)$.
(3) Let $P, Q \in \operatorname{Supp}_{R}(M)$ such that $P \supset Q$. If $\operatorname{dim}\left(M_{P}\right)=\operatorname{dim}\left(R_{P} / Q R_{P}\right)$, then $\operatorname{dim}\left(R_{P} / Q^{*} R_{P}\right)=\operatorname{dim}\left(M_{P}\right)$. In this case, Q^{*} is a minimal element of $V_{G}(M)$.

Proof. (1) By (2.2), (2), $\operatorname{Ass}_{R_{(p)}}\left(R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}\right)=\left\{P R_{(p)} \mid P \in \operatorname{Ass}_{R}(R / \mathfrak{p})\right\}$. Also, by (1.7), $\operatorname{Ass}_{R_{(\mathfrak{p})}}\left(R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}\right)=\operatorname{Min}_{R_{(p)}}\left(R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}\right)$. Hence $\operatorname{Ass}_{R}(R / \mathfrak{p})=\operatorname{Min}_{R}(R / \mathfrak{p})$.
(2) The assertion follows from (2.2), (2).
(3) It is clear that $\operatorname{dim}\left(M_{P}\right)=\operatorname{dim}\left(R_{P} / Q R_{P}\right) \leq \operatorname{dim}\left(R_{P} / Q^{*} R_{P}\right)$. Conversely, since $\operatorname{Ass}_{R}\left(R / Q^{*}\right) \subset \operatorname{Supp}_{R}(M), \operatorname{dim}\left(M_{P}\right) \geq \operatorname{dim}\left(R_{P} / Q^{*} R_{P}\right)$. The second assertion follows from (1) and (2).

Proof of (2.4). Let $\mathfrak{p}, \mathfrak{q} \in V_{G}(M)$ such that $\mathfrak{q} \subset \mathfrak{p}$ and $P \in \operatorname{Ass}_{R}(R / \mathfrak{p})$. Then, by (2.2), (2), $P^{*}=\mathfrak{p}$ and $P \notin \operatorname{Ass}_{R}(R / q)$. Thus, by (2.5), (1), there exists $Q \in \operatorname{Ass}_{R}(R / q)$ such that $Q \subset P$. Proceeding in this way, we have $\underline{\operatorname{dim}}\left(M_{(\mathfrak{p})}\right) \leq \operatorname{dim}\left(M_{P}\right)$ for every $P \in \operatorname{Ass}_{R}(M)$. Conversely, let $P \in \operatorname{Ass}_{R}(R / p)$ and $Q \in \operatorname{Supp}_{R}(M)$ such that $\operatorname{dim}\left(M_{P}\right)=\operatorname{dim}\left(R_{P} / Q R_{P}\right)$. We put $n=\operatorname{dim}\left(M_{P}\right)$ and show that $\operatorname{dim}\left(M_{(p)}\right) \geq n$ by induction on n.

If $n=0$, then $P=Q$ and $Q^{*}=\mathfrak{p}$ is a minimal element of $V_{G}(M)$. Thus $\underline{\operatorname{dim}}\left(M_{(\mathfrak{p})}\right)=0$. Therefore we assume $n>0$ and the statement holds for $n-1$. Since $n>0$ and by (2.5), (3), $\mathfrak{p \neq Q ^ { * }}$ and there exists $a \in h\left(\mathfrak{p} \backslash Q^{*}\right)$. Then $\operatorname{dim}\left(R_{P} /\left(Q^{*}, a\right) R_{P}\right)=n-1$ by (2.5), (3). Thus, by induction hypothesis, $\operatorname{dim}\left(R_{(\mathrm{p})} /\left(Q^{*}, a\right) R_{(p)}\right) \geq n-1$. Since $V_{G}\left(R /\left(Q^{*}, a\right) \subset V_{G}(M)\right.$ and $Q^{*} \subsetneq\left(Q^{*}, a\right)$, we have $\underline{\operatorname{dim}}\left(M_{(p)}\right) \geq(n-1)+1=n$. The proof is complete.

Corollary 2.6. Let M be a G-graded module over a Noetherian G-graded ring R and $P \in \operatorname{Supp}_{R}(M)$. Then $\operatorname{dim}\left(M_{P}\right)=\underline{\operatorname{dim}}\left(M_{\left(P^{*}\right)}\right)+\operatorname{dim}\left(R_{P} / P^{*} R_{P}\right)$.

Proof. We put $n=\operatorname{dim}\left(M_{P}\right), m=\underline{\operatorname{dim}}\left(M_{\left(P^{*}\right)}\right)$ and $r=\operatorname{dim}\left(R_{P} / P^{*} R_{P}\right)$. By (2.4), we have $n \geq m+r$. We show the converse inequality by induction on m.

If $m=0$, then P^{*} is a minimal element of $V_{G}(M)$. Then, for every $Q \in \operatorname{Supp}_{R}(M)$ such that $Q \subset P, Q^{*}=P^{*}$ (cf. (2.5)). Thus $n \leq r$. Suppose that $m>0$. Let $Q \in \operatorname{Supp}_{R}(M)$ such that $\operatorname{dim}\left(M_{P}\right)=\operatorname{dim}\left(R_{P} / Q R_{P}\right)$. Then $\operatorname{dim}\left(R_{P} / Q^{*} R_{P}\right)=n$ and $\operatorname{dim}\left(R_{\left(P^{*}\right)} / Q^{*} R_{\left(P^{* *}\right)}\right) \leq m$. Since P^{*} is not minimal, there exists an element $a \in h\left(P^{*} \backslash Q^{*}\right)$ by (2.5), (3). Then $\underline{\operatorname{dim}}\left(R_{\left(P^{*}\right)} /\left(Q^{*}, a\right) R_{\left(P^{*}\right)}\right)<\underline{\operatorname{dim}}\left(R_{\left(P^{*}\right)} / Q^{*} R_{\left(P^{*}\right)}\right)$ and, by induction hypothesis, $n-1=$ $\operatorname{dim}\left(R_{P} /\left(Q^{*}, a\right) R_{P}\right) \leq \underline{\operatorname{dim}}\left(R_{\left(P^{*}\right)} /\left(Q^{*}, a\right) R_{\left(P^{*}\right)}\right)+r<m+r$.

Corollary 2.7. Let M be a G-graded module over a G-Noetherian graded ring R. Then $\underline{\operatorname{dim}\left(M_{(p)}\right)}$ is finite for every $\mathfrak{p} \in V_{G}(M)$.

Proof. It suffices to show the case $M=R$. Let $\mathfrak{p} \in V_{G}(R)$. After the homogeneous localization at \mathfrak{p}, we may assume that (R, \mathfrak{p}) is G-local. We denote by H the subgroup of G generated by the degrees of a finite system of homogeneous generators of \mathfrak{p}. Then
 $\underline{\operatorname{dim}}\left(R^{(H)}\right)$ is finite.

Our next goal is to establish an equality similar to (2.4) (or (2.6)) for the Bass numbers of a G-graded module over a Noetherian G-graded ring.

Let R be a G-Noetherian graded ring. For G-graded R-modules M, N, we denote by $\operatorname{Hom}_{R}(M, N)_{g}$ the Abelian group of all the G-graded homomorphisms from M to $N(g)$. We put $\operatorname{Hom}_{R}(M, N)=\oplus_{g \in G} \operatorname{Hom}_{R}(M, N)_{g}$ and consider it as a G-graded R-module. We denote by $\operatorname{Ext}_{R}^{i}(-,-)$ the i-th derived functor of $\operatorname{Hom}_{R}(-,-)$. If M is finitely generated, then $\operatorname{Ext}_{R}^{i}(M, N)=\operatorname{Ext}_{R}^{i}(M, N)$ as underlying R-modules, for every $i \geq 0$.

Since R is G-Noetherian, there exists injective hull of a G-graded R-module M in $M_{G}(R)$ uniquely determined by M. We denote it by $E_{R}(M)$.

In their papers [5] and [6], Goto-Watanabe proved that some objects of a category of Z^{n}-graded modules can be treated as the same as in the nongraded case. The following proposition is G-graded version of one of Goto-Watanabe's arguments (cf. chap.1, §2 of [5]).

Proposition 2.8. (1) Let M be a G-graded R-module. Then Ass $_{R}(M)=$ $\operatorname{Ass}_{R}\left(E_{R}(M)\right.$). In particular, $\operatorname{Ass}_{R}(M)=\operatorname{Ass}_{R}\left(E_{R}(M)\right)$, if R is Noetherian.
(2) $A G$-graded R-module E is an indecomposable injective object of $M_{G}(R)$ if and only if $E \cong \underline{E}_{R}(R / \mathfrak{p})(g)$ for some $\mathfrak{p} \in V_{G}(R)$ and for some $g \in G$. In this case, \mathfrak{p} is uniquely determined for E.
(3) Every injective object E of $M_{G}(R)$ can be decomposed into a direct sum of indecomposable injective objects of $M_{G}(R)$. This decomposition is uniquely determined by E up to isomorphisms.

Let M be a G-graded R-module and \mathfrak{p} be a G-prime ideal of R. For $i \geq 0$, a G-graded
 graded ring $R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}$. Hence it is a free $R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}$-module (cf. (1.4)).

Definition 2.9. We set

$$
\nu^{i}(\mathfrak{p}, M)=\operatorname{rank} \underline{\operatorname{Ext}}_{R_{(\mathfrak{p}}}^{i}\left(R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}, M_{(\mathfrak{p})}\right)
$$

and call it the i-th G-Bass number of M at \mathfrak{p}.
Proposition 2.10. Let M be a G-graded R-module. We denote by

$$
0 \rightarrow M \rightarrow \underline{E}_{R}^{0}(M) \rightarrow \cdots \rightarrow \underline{E}_{R}^{i}(M) \xrightarrow{d^{i}} \underline{E}_{R}^{i+1}(M) \rightarrow \cdots
$$

the minimal injective resolution of M in $M_{G}(R)$. Then, for every G-prime graded ideal \mathfrak{p} and for every integer $i \geq 0, \nu^{i}(\mathfrak{p}, M)$ is equal to the number of the G-graded R-module of the form $\underline{E}_{R}(R / p)(g)(g \in G)$ which appears in $\underline{E}_{R}^{i}(M)$ as direct summands.

The proof is the same as Theorem 1.3.4 of Goto-Watanabe [6].
Finally, we describe ordinary Bass numbers in terms of G-Bass numbers.

Theorem 2.11. Let M be a G-graded R-module and P be a prime ideal of R. We suppose that R is Noetherian and put $d=\operatorname{dim}\left(R_{P} / P^{*} R_{P}\right)$. Then

$$
\mu^{i}(P, M)=\left\{\begin{array}{cc}
v^{i-d}\left(P^{*}, M\right) & \text { if } i \geq d \\
0 & \text { if } i<d
\end{array}\right.
$$

where $\mu^{i}(P, M)=\operatorname{dim}_{R_{P} / P R_{P}}\left(\operatorname{Ext}_{R_{P}}^{i}\left(R_{P} / P R_{P}, M_{P}\right)\right)$ is the ordinary Bass number of M at P.
Proof. After the homogeneous localization at P^{*}, we may assume that (R, P^{*}) is G-local and put $S=R / P^{*}$. We consider the following spectral sequence

$$
E_{2}^{p, q}=\operatorname{Ext}_{S_{p}}^{p}\left(k(P), \operatorname{Ext}_{R_{P}}^{q}\left(S_{P}, M_{P}\right)\right) \Rightarrow \operatorname{Ext}_{R_{P}}^{p+q}\left(k(P), M_{P}\right)
$$

where $k(P)=R_{P} / P R_{P}$. Note that $\operatorname{Ext}_{R_{P}}^{q}\left(S_{P}, M_{P}\right) \simeq \operatorname{Ext}_{R}^{q}(S, M)_{P} \cong\left(S_{P}\right)^{\oplus v\left(P^{*}, M\right)}$ for every $q \geq 0$. We put $\nu^{q}\left(P^{*}, M\right)=0$ for $q<0$. Then we have $E_{2}^{p, q}=0$ for every $p \neq d$, since S_{P} is a d-dimensional Gorenstein ring (cf. (1.7)). Hence we have the following isomorphism

$$
\begin{aligned}
\operatorname{Ext}_{R_{P}}^{d+q}\left(k(P), M_{P}\right) & \cong \operatorname{Ext}_{S_{P}}^{d}\left(k(P), \operatorname{Ext}_{R_{P}}^{q}\left(S_{P}, M_{P}\right)\right) \\
& \cong \operatorname{Ext}_{S_{P}}^{d_{P}}\left(k(P), S_{P}\right)^{\oplus v\left(P^{*}, M\right)} \\
& \cong k(P)^{\oplus v q\left(P^{*}, M\right)}
\end{aligned}
$$

Thus $\mu^{i}(P, M)=\nu^{i-d}\left(P^{*}, M\right)$ for all $i \geq 0$.
Corollary 2.12. Let M be a G-graded R-module and \mathfrak{p} be a G-prime graded ideal of R. If R is Noetherian, then $\nu^{i}(\mathfrak{p}, M)=\mu^{i}(P, M)$ for every $P \in \operatorname{Ass}_{R}(R / \mathfrak{p})$ and for every $i \geq 0$.

As a consequence of (2.11) and (2.12), we have the following.
Theorem 2.13. Let M be a finitely generated G-graded R-module and $\mathfrak{p} \in V_{G}(R)$. If R is Noetherian, then the following conditions are equivalent.
(1) $M_{(p)}$ is a Cohen-Macaulay (resp. Gorenstein) $R_{(p)}$-module.
(2) M_{P} is a Cohen-Macaulay (resp. Gorenstein) R_{P}-module for every $P \in \operatorname{Ass}_{R}(R / p)$.
(3) M_{P} is a Cohen-Macaulay (resp. Gorenstein) R_{P}-module for some $P \in \operatorname{Ass}_{R}(R / p)$.
(4) There exists $P \in \operatorname{Spec}(R)$ such that $P^{*}=p$ and M_{P} is a Cohen-Macaulay (resp. Gorenstein) $\boldsymbol{R}_{\boldsymbol{P}}$-module.

Definition 2.14. A G-Noetherian graded ring R is said to be G-Cohen-Macaulay graded ring, if $v^{i}(\mathfrak{m}, R)=0$ for every G-maximal ideal \mathfrak{m} of R and every $i<\underline{\operatorname{dim}}\left(R_{(m)}\right)$.

A G-Noetherian graded ring R is said to be G-Gorenstein graded ring, if it satisfies the condition that, for every G-maximal ideal m, there exists an integer $n \geq 0$ such that $\nu^{m}(m, R)=0$ for every $m \geq n$.

Corollary 2.15. Let R be a G-Noetherian graded ring.
(1) R is G-Cohen-Macaulay if and only if so is $R_{(p)}$ for every $p \in V_{G}(R)$.
(2) The following are equivalent.
(a) R is G-Gorenstein.
(b) $\quad R_{(\mathfrak{p})}$ is G-Gorenstein for every $\mathfrak{p} \in V_{G}(R)$.
(c) For every G-maximal ideal \mathfrak{m} of $R, v^{i}(\mathfrak{m}, R)=\delta_{i d}$ where $d=\underline{\operatorname{dim}}\left(R_{(m)}\right)$.
(d) For every G-prime ideal \mathfrak{p} of $R, v^{i}(\mathfrak{p}, R)=\delta_{\text {id }}$ where $d=\underline{\operatorname{dim}}\left(R_{(\mathfrak{p})}\right)$.

Proof. Let $\mathfrak{p} \in V_{G}(R)$. Then there exists a finitely generated subgroup H of G such that $\mathfrak{p}^{(H)} R=\mathfrak{p}$ (cf. (1.5)). Then, by (1.4), $R_{(\mathfrak{p})}$ is free over $\left(R^{(H)}\right)_{\left(p^{(H)}\right)}$ and $v^{i}(\mathfrak{p}, R)=$ $v^{i}\left(\mathfrak{p}^{(H)}, R^{(H)}\right)$. Hence our assertions follow from (1.10) and (2.13).

Corollary 2.16. Let \mathfrak{p} be a G-prime graded ideal of R. If R is Noetherian, then a minimal injective resolution of $\underline{E}_{R}(R / \mathfrak{p})$ as the underlying R-module is of the form

$$
0 \rightarrow E_{R}(R / p) \rightarrow \bigoplus_{P \in V^{0}(p)} E_{R}(R / P) \rightarrow \underset{P \in V^{1}(\mathfrak{p})}{ } E_{R}(R / P) \rightarrow \cdots \rightarrow \bigoplus_{P \in V^{n}(\mathfrak{p})} E_{R}(R / P) \rightarrow \cdots,
$$

where $V^{i}(\mathfrak{p})=\left\{P \in \operatorname{Spec}(R) \mid P^{*}=\mathfrak{p}, \operatorname{dim}\left(R_{P} / \mathfrak{p} R_{P}\right)=i\right\}$.
This is a direct consequence of (2.11).
Corollary 2.17. Suppose that R is Noetherian and G is torsion. Then every injective object of $M_{G}(R)$ is an injective module as the underlying R-module.

Proof. By (1.7), $R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}$ is Artinian for every $\mathfrak{p} \in V_{G}(R)$. Thus $P \in \operatorname{Ass}_{R}\left(R / P^{*}\right)$ for every $P \in \operatorname{Spec}(R)$ and the assertion follows from (2.16).

3. The canonical module of a G-Noetherian graded ring.

Let (R, m) be a G-local G-Noetherian graded ring of $d=\underline{\operatorname{dim}}(R)$. In this section, we define the canonical module of R and state some properties of this module.

For every G-graded R-module M and every integer $n \geq 0$, we put

$$
\underline{H}_{m}^{n}(M)=\underline{\lim } \operatorname{Ext}_{R}^{n}\left(R / \mathfrak{m}^{t}, M\right)
$$

and call it the n-th local cohomology module of M. Note that $\underline{H}_{m}^{n}(M)=H_{m}^{n}(M)$ as underlying R-modules.

REMARK 3.1. Let us recall the following basic properties of $\underline{H}_{m}^{i}(-)$ (cf. [7]).
(1) $\underline{H}_{m}^{0}(-)$ is a left exact covariant additive functor from $M_{G}(R)$ to $M_{G}(R)$ and $\underline{H}_{m}^{n}(-)$ is the n-th derived functor of $\underline{H}_{m}^{0}(-)$.
(2) Let \mathfrak{q} be a G-graded ideal of R such that $\sqrt{\mathfrak{q}}=\sqrt{\mathfrak{m}}$. Then, for every $n \geq 0$, there is a natural isomorphism $\underline{H}_{q}^{n}(-)=\underline{H}_{m}^{n}(-)$ of functors.
(3) Let $\varphi: R \rightarrow S$ be a ring homomorphism of G-Noetherian graded rings. Then there is a natural isomorphism $\underline{H}_{m}^{n}\left([-]_{\varphi}\right) \cong\left[H_{m S}^{n}(-)\right]_{\varphi}$ of functors where $[M]_{\varphi}=M$, regarded as a G-graded R-module via φ for a G-graded S-module M.

We define a G-graded S-module structure of $\underline{H}_{m}^{n}\left([M]_{\varphi}\right)$, for a G-graded S-module M, in the following way.

Let $a \in S$. The multiplication $M \xrightarrow{a} M$ can be regarded as the R-linear map. Then we have an R-linear map $H_{\mathrm{m}}^{n}(a): H_{\mathrm{m}}^{n}(M) \rightarrow H_{\mathrm{m}}^{n}(M)$. We define the S-module structure of $H_{m}^{n}(M)$ by $a x=H_{m}^{n}(a)(x)$ for $x \in H_{m}(M)$. In particular, if $a \in S_{g}$, then an R-linear map $\underline{H}_{\mathrm{m}}^{n}(a): \underline{H}_{\mathrm{m}}^{n}(M) \rightarrow \boldsymbol{H}_{\mathrm{m}}^{n}(M)(g)$ preserves the G-grading. Thus, since $\underline{H}_{\mathrm{m}}^{n}(a)=H_{\mathrm{m}}^{n}(a)$ and $\underline{H}_{\mathrm{m}}^{n}(M)=H_{\mathrm{m}}^{n}(M)$ as the underlying R-module, $\underline{H}_{\mathrm{m}}^{n}(M)$ can be regarded as G-graded S module. Hence, by naturality of the isomorphism in (3.1), (3), we have $\underline{H}_{m}^{n}(M) \cong \underline{\boldsymbol{H}_{m S}^{n}}(M)$ as G-graded S-modules.

Proposition 3.2. Let H be a subgroup of G with a system $\left\{g_{i}\right\}_{i \in I}$ of representatives of G mod H such that $\sqrt{\mathfrak{m}^{(H)} R}=\sqrt{\mathfrak{m}}$ and M be a G-graded R-module. Then, for every $n \geq 0$, we have

$$
\begin{aligned}
& \left.\underline{H}_{\mathrm{m}}^{n}(M) \cong \bigoplus_{i \in I} \underline{H}_{\mathrm{m}}^{(H)}, M^{\left(g_{i}, H\right)}\right) \quad \text { as } \quad G \text {-graded } R \text {-modules, and } \\
& \underline{H}_{\mathrm{m}(H)}^{n}\left(M^{\left(g_{i}, H\right)}\right) \cong \underline{H}_{\mathrm{m}}^{n}(M)^{\left(g_{i}, H\right)} \quad \text { as } \quad G \text {-graded } R^{(H)} \text {-modules . }
\end{aligned}
$$

In particular, $\underline{H}_{\mathrm{m}^{(H)}}^{\boldsymbol{H}}\left(\boldsymbol{R}^{(\boldsymbol{H})}\right) \cong \underline{H}_{\mathrm{m}}^{\boldsymbol{n}}(R)^{(\boldsymbol{H})}$.
Proof. Apply (3.1), (3) to $R^{(H)} \hookrightarrow R$.
Remark 3.3. For a subgroup $H \subset G$, if G / H is torsion, then $\sqrt{\mathfrak{m}^{(H)} R}=\sqrt{\mathfrak{m}}$.
Corollary 3.4. If G is torsion, then $\underline{H}_{m}^{n}(M) \cong \bigoplus_{g \in G} \underline{H}_{m_{0}}^{n}\left(M_{g}\right)$, for every G-graded R-module M and every $n \geq 0$.

Corollary 3.5. $\left.\quad \underline{\operatorname{dim}}(R)=\sup \left\{n \mid \underline{H}_{\mathrm{m}}^{n}(R) \neq 0\right)\right\}$ and $\operatorname{grade}(m, R)=\inf \left\{n \mid \underline{H}_{\mathrm{m}}^{n}(R) \neq\right.$ (0) $\}$.

Proof. Since R is G-Noetherian, there exists a finitely generated subgroup H of G such that $\mathrm{m}^{(H)} R=\mathrm{m}$. Then $R^{(g, H)}=0$ or $R^{(g, H)} \cong R^{(H)}$ for $g \in G$ (cf. (1.4)), and $\underline{H}_{\mathrm{m}}^{n}(R) \neq(0)$ if and only if $\underline{H}_{\mathrm{m}}^{\boldsymbol{n}}{ }^{(H)}\left(R^{(H)}\right) \neq(0)$. Thus we may assume that G is finitely generated. In this case, R is Noetherian (cf. (1.10)). Since $\otimes_{R} R_{m}$ is a faithfully flat functor on $M_{G}(R)$, the assertion follows from (2.4) and (2.12) (where R_{m} is a ring of fractions with respect to the multiplicatively closed subset $\left.R \backslash \bigcup_{P \in A_{s s_{R}(R / m)}} P\right)$.

Corollary 3.6. R is G-Cohen-Macaulay if and only if $\underline{H}_{m}^{n}(R)=(0)$ for every $n \neq d$. In particular, if G is torsion, then R is G-Cohen-Macaulay if and only if R_{g} is a Cohen-Macaulay R_{0}-module of dimension d for every $g \in G$.

Next, we state Matlis duality theorem for G-graded R-modules. The proof is similar to the nongraded case (cf. chap. 1, $\S 2$ of Goto-Watanabe [5]).
R is said to be G-complete, if (R_{0}, m_{0}) is a complete local ring.
Proposition 3.7. Suppose that (R, m) is G-complete. We denote by M^{\vee} the G-graded R-module $\operatorname{Hom}_{R_{0}}\left(M, E_{R_{0}}\left(R_{0} / m_{0}\right)\right)$.
(1) $(-)^{\vee}: M_{G}(R) \rightarrow M_{G}(R)$ is a contravariant, faithfull, exact, additive functor.
(2) For every finitely generated G-graded R-module $M, M^{\vee \vee} \cong M$.
(3) $\quad R^{\vee} \cong E_{R}(R / m)$.
(4) For every G-graded R-module $M, M^{\vee} \cong \operatorname{Hom}_{R}\left(M, R^{\vee}\right)$.
(5) A G-graded R-module M is G-Artinian if and only if there exist $g_{1}, \cdots, g_{n} \in G$ such that $M \subset \bigoplus_{i=1}^{n} R^{\vee}\left(g_{i}\right)$. (We call $M G$-Artinian if it satisfies $D C C$ for G-graded submodules.)
(6) If we denote by \mathscr{F} (resp. A) the full subcategory consisting of all finitely generated G-graded R-modules (resp. G-Artinian modules) of $M_{G}(R)$, then
(a) for $M \in \mathscr{F}$ and $N \in \mathscr{A}, M^{\vee} \in \mathscr{A}$ and $N^{\vee} \in \mathscr{F}$,
(b) the functor $(-)^{\vee}: \mathscr{F} \rightarrow \mathscr{A}$ establishes an anti-equivalence.

For a G-graded R-module M, we set $\hat{M}=M \otimes_{R_{0}} \hat{R}_{0}$.
Definition 3.8. We call a G-graded R-module K_{R} a G-canonical module of R, if $\left(K_{R}\right)^{\wedge} \cong \underline{H}_{\hat{m}}^{d}(\hat{R})^{\vee}$.

Using our previous results, we can show the following (cf. chap.2, §1 and §2 of Goto-Watanabe [5]).

Proposition 3.9. (1) If a G-canonical module \underline{K}_{R} of R exists, then \underline{K}_{R} is a finitely generated R-module and uniquely determined up to isomorphism.
(2) If (R, m) is G-complete, then $\underline{H}_{m}^{d}(M)^{\vee} \cong \underline{\operatorname{Hom}}_{R}\left(M, \underline{K}_{R}\right)$ for every finitely generated G-graded R-module M.
(3) If (R, m) is G-complete and $\underline{H}_{m}^{d-n}(R)=0$ for $0<n \leq s$, then $\underline{H}_{m}^{d-n}(M)^{\vee} \cong$ $\operatorname{Ext}_{R}^{n}\left(M, \underline{K}_{R}\right)$ for every finitely generated G-graded R-module M and for every $0 \leq n \leq s$.
(4) Let $\varphi:(R, \mathfrak{m}) \rightarrow(S, n)$ be a homomorphism of G-local graded ring such that $\varphi(\mathfrak{m}) \subset \mathfrak{n}$ and S is finitely generated as R-module. We put $t=\operatorname{dim}(R)-\operatorname{dim}(S)$. Suppose that $\underline{H}_{m}^{d-n}(R)=0$ for $0<n \leq d-t$ and there exists a G-canonical module \underline{K}_{R} of R. Then there exists a G-canonical module \underline{K}_{S} of S and $K_{S} \cong \operatorname{Ext}_{R}^{i}\left(S, \underline{K}_{R}\right)$.
(5) If (R, m) is G-Cohen-Macaulay and if \underline{K}_{R} exists, then, for a nonzero divisor $a \in R_{g}(g \in G), \underline{K}_{R / a R} \cong\left(K_{R} / a \underline{K}_{R}\right)(g)$.
(6) If (R, \mathfrak{m}) is G-Cohen-Macaulay and if \underline{K}_{R} exists, then $v^{n}\left(m, \underline{K}_{R}\right)=\delta_{i d}$ and the minimal number of homogeneous generators of \underline{K}_{R} is equal to $v^{d}(\mathrm{~m}, R)$.
(7) The following conditions are equivalent.
(a) R is G-Gorenstein.
(b) R is G-Cohen-Macaulay and there exists a G-canonical module \underline{K}_{R} of R such that $\underline{K}_{R} \cong R(g)$ for some $g \in G$.
(8) If R is a homomorphic image of a G-Gorenstein G-local graded ring (S, n), then there exists a G-canonical module \underline{K}_{R} of R and $\underline{K}_{R} \cong \operatorname{Ext}_{s}^{t}(R, S)(g)$ where $t=\underline{\operatorname{dim}}(S)-$ $\underline{\operatorname{dim}(R)}$.

Theorem 3.10. Let H be a subgroup of G such that $\sqrt{\mathfrak{m}^{(H)} R}=\sqrt{\mathfrak{m}}$.
(1) If (R, m) is G-complete, then $\underline{K}_{R} \cong \underline{H o m}_{R^{(H)}}\left(R, \underline{K}_{R^{(H)}}\right)$ as G-graded R-modules.
(2) Then the following conditions are equivalent.
(a) There exists a G-canonical module K_{R} of R.
(b) There exists a G-canonical module $\underline{K}_{R^{(H)}}$ of $R^{(H)}$.

In this case, we have

$$
\begin{array}{ll}
\underline{K}_{R} \cong \underline{\operatorname{Hom}}_{R^{(H)}}\left(R, \underline{K}_{R^{(H)}}\right) & \text { as } G \text {-graded } R \text {-modules, and } \\
\operatorname{Hom}_{R^{(H)}\left(R^{\left(-g_{i}, H\right)}, \underline{K}_{\left.R^{(H)}\right)} \cong\left(\underline{K}_{R}\right)^{\left(q_{i}, H\right)}\right.} \text { as } G \text {-graded } R^{(H)} \text {-modules }
\end{array}
$$

where $\left\{g_{i}\right\}_{i \in I}$ is a system of representatives of $G \bmod H$. In particular, $\underline{K}_{R}(H) \cong\left(K_{R}\right)^{(H)}$.
Proof. (1) By (3.2) and (3.9), (2), there is the following isomorphism of G-graded R-modules:

$$
\underline{\operatorname{Hom}}_{R^{(H)}}\left(R, \underline{K}_{R^{(H)}}\right)=\bigoplus_{i \in I} \underline{\operatorname{Hom}}_{R^{(H)}}\left(R^{\left(-g_{i}, H\right)}, \underline{K}_{R^{(H)}}\right) \cong \bigoplus_{i \in I} \underline{H}_{m^{(H)}}^{d}\left(R^{\left(-\boldsymbol{g}_{i}, H\right)}\right)^{\vee}=\underline{H}_{\mathrm{m}}(R)^{\vee} .
$$

(Note that it is not necessary $\operatorname{Hom}_{R^{(H)}}\left(R, \underline{K}_{R^{(H)}}\right)=\operatorname{Hom}_{R^{(H)}}\left(R, K_{\left.R^{(H)}\right)}\right)$)
The assertion (2) follows from (1).
Corollary 3.11. If R_{0} is a homomorphic image of a Gorenstein local ring, then there exists a G-canonical module \underline{K}_{R} of R.

Proof. There exists a finitely generated subgroup H of G such that $\sqrt{\mathrm{m}^{(H)} R}=\sqrt{\mathfrak{m}}$ (cf. (1.5)). Hence, by (3.10), we may assume that G is finitely generated. In this case, R is a finitely generated R_{0}-algebra by (1.10) and it is a homomorphic image of a polynomial ring S over a Gorenstein local ring R_{0}. Note that the G-grading on R induces a G-grading on S. (It is not necessary $S_{0}=R_{0}$.) Then R is also homomorphic image of the Gorenstein G-local ring and the assertion follows from (3.9), (8).

Until the end of this section, we assume that $\left(R_{0}, m_{0}\right)$ is a homomorphic image of a Gorenstein local ring.

We can show that \underline{K}_{R} is actually a canonical module of R in usual sense.
Corollary 3.12. If R is Noetherian, then $\left(K_{R}\right)_{P} \cong K_{\left(R_{P}\right)}$ for every $P \in \operatorname{Supp}_{R}\left(K_{R}\right)$.
Proof. We shall prove the assertion in the following steps.
Step (1) If G is finitely generated, then the assertion follows from (3.9). If G is not finitely generated, we need a sublemma.

Sublemma. We denote $A=R_{0}$. Assume that $m_{0} R=m$ and $m \in \operatorname{Spec}(R)$. Then we have $\left(K_{R}\right)_{m} \cong K_{R_{m}}$.

Proof of Sublemma. For every finite G-graded R-module M, the m-adic completion of M is equal to $\hat{M}=M \otimes_{A} \hat{A}$ by our assumption. Thus $\left(R_{m}\right)^{\wedge} \cong\left(R \otimes_{A} \hat{A}\right)_{m}$ and it is a local ring. This implies that $E_{\left(R_{m}\right)^{\wedge}}\left((R m)^{\wedge} / \mathfrak{m}(R m)^{\wedge}\right) \cong \underline{E}_{\hat{R}}(\hat{R} / \mathrm{m} \hat{R})_{m}(\mathrm{cf} .(2.16))$.

Hence we have the following isomorphism

$$
\begin{aligned}
{\left[\left(K_{R}\right)_{\mathrm{m}}\right]^{\wedge} } & \cong\left[\left[\left(\underline{K}_{R}\right)_{\mathrm{m}}\right]^{\wedge}\right]^{\vee v} \\
& \cong\left[\operatorname{Hom}_{\left(R_{m}\right)^{\wedge}}\left(\left[\left(K_{R}\right)_{m}\right]^{\wedge}, \quad E_{\left(R_{m}\right)} \wedge\left(\left(R_{\mathfrak{m}}\right)^{\wedge} / \mathfrak{m}\left(R_{\mathfrak{m}}\right)^{\wedge}\right)\right)^{\vee}\right. \\
& \cong\left[\operatorname{Hom}_{(\hat{R})_{m}}\left(\left(K_{\hat{R}}\right)_{m} \underline{E}_{\hat{R}}(\hat{R} / \hat{\mathfrak{m}})_{\mathfrak{m}}\right)\right]^{\vee} \\
& \cong\left[\operatorname{Hom}_{\hat{R}}\left(\underline{K}_{\hat{R}}, \underline{E}_{\hat{R}}(\hat{R} / \hat{\mathrm{m}})\right)_{\mathrm{m}}\right]^{\vee} \\
& \cong\left[H_{\hat{m}}^{d}(\hat{R})_{\mathfrak{m}}\right]^{\vee} \\
& \cong H_{\mathfrak{m}\left(R_{m}\right)^{\wedge}}\left(\left(R_{\mathrm{m}}\right)^{\wedge}\right)^{\vee} .
\end{aligned}
$$

Hence $\left(K_{R}\right)_{\mathrm{m}} \cong K_{R_{\mathrm{m}}}$. We complete the proof of Sublemma.
Step (2) Let $P \in \operatorname{Supp}_{R}\left(K_{R}\right)$. Since P is finitely generated, there exists a finitely generated subgroup H of G such that $\left(P \cap R^{(H)}\right) R=P$ (cf. the proof of (1.7)). Let $\left\{g_{i}\right\}_{i \in I}$ be a system of representatives of $G \bmod H$ and $p=P \cap R^{(H)}$. We consider the G / H-graded ring $R_{\mathfrak{p}}=\oplus_{i \in I}\left(R^{\left(g_{i}, H\right)}\right)_{\mathfrak{p}}$. Then, by Step (1), $K_{\left(R^{(H)}\right)_{\mathfrak{p}}}=\left(\underline{K}_{\left.R^{(H)}\right)}\right)_{\mathfrak{p}}=\left[\left(K_{R}\right)^{(H)}\right]_{p}$ and, by (3.10), [$\left.K_{R}\right]_{\mathfrak{p}}$ is a G / H-canonical module of $R_{\mathfrak{p}}$. On the other hand, $\left(R_{\mathfrak{p}}, P R_{\mathfrak{p}}\right)$ is G / H-local such that $\mathfrak{p} R_{\mathfrak{p}}=P R_{\mathfrak{p}}$ and $P R_{\mathfrak{p}} \in \operatorname{Spec}\left(R_{\mathfrak{p}}\right)$ by the choice of H. Hence, by the Sublemma, we have $\left(\underline{K}_{R}\right)_{P} \cong\left[\left(K_{R}\right)_{p}\right]_{P} \cong\left(K_{R_{p}}\right)_{P R_{p}} \cong K_{R_{P}}$.

Corollary 3.13. (1) $\left(\underline{K}_{R}\right)_{(\mathfrak{p})} \cong \underline{K}_{R_{(\mathfrak{p})}}$ for every $\mathfrak{p} \in V_{G}\left(K_{R}\right)$.
(2) $\quad \operatorname{Ass}_{R}\left(K_{R}\right)=\left\{\mathfrak{p} \in V_{G}(R) \mid \underline{\operatorname{dim}}(R / \mathfrak{p})=d\right\}$.
(3) $R \cong \underline{\operatorname{Hom}}_{R}\left(\underline{K}_{R}, \underline{K}_{R}\right)$ if and only if $\operatorname{grade}\left(\mathfrak{p} R_{(\mathfrak{p})}, R_{(\mathfrak{p})}\right) \geq \inf \left\{2, \underline{\operatorname{dim}}\left(R_{(\mathfrak{p})}\right)\right\}$ for every $\mathfrak{p} \in V_{G}\left(K_{R}\right)$.

Proof. We can reduce to the case where G is finitely generated (cf. (1.4) and (2.15)). In this case, the proof is similar to the nongraded case.

Example 3.4. Let (A, m) be a Noetherian local normal domain with $K=Q(A)$ and L be a finite Abelian extension of K with $G=\operatorname{Gal}(L / K)$. Let R be the integral closure of A in L and $\hat{G}=\operatorname{Hom}(G, U(A))$, where $U(A)$ is the multiplicative group of units of A. Assume that $n=|G| \in U(A)$ and A contains a primitive n-th root of unity. Then R can be regarded as \hat{G}-graded ring in the following sense. For $g \in \hat{G}$, we set $R_{g}=\left\{a \in R \mid \sigma(a)=g(\sigma) a\right.$ for $\left.{ }^{\forall} \sigma \in G\right\}$. Then
(1) $R_{0}=R^{G}=A$.
(2) $R_{g} R_{h} \subset R_{g+h}$ for every $g, h \in \hat{G}$.
(3) $R=\sum_{g \in \hat{G}} R_{g}=\oplus_{g \in \hat{G}} R_{g}$.
(See §2 of Itoh [9].)
Assume that A is UFD. Since R_{g} is isomorphic to a divisorial ideal of A, there exists $e_{g} \in R_{g}$ such that $R_{g}=A e_{g} \cong A(g)$. Hence, by (3.6), A is Cohen-Macaulay if and only if so is R (Theorem of Roberts [15] and Corollary 3 of Itoh [9]).

We denote by $a\left(g, g^{\prime}\right)$ an element of A satisfying $e_{g} e_{g^{\prime}}=a\left(g, g^{\prime}\right) e_{g+g^{\prime}}$ for $g, g^{\prime} \in \hat{G}$. Then $\underline{H o m}_{A}(R, A) \cong R(g)(g \in \hat{G})$ as G-graded R-module if and only if $a\left(g^{\prime}+g, g^{\prime \prime}\right)=$
$a\left(-g^{\prime}-g^{\prime \prime}, g^{\prime \prime}\right)$ for any $g^{\prime}, g^{\prime \prime} \in \hat{G}$. Hence, by (3.9), R is Gorenstein if and only if A is Gorenstein and there exists $g \in \hat{G}$ such that, for any $g^{\prime}, g^{\prime \prime} \in \hat{G}, a\left(g^{\prime}+g, g^{\prime \prime}\right)=$ $a\left(-g^{\prime}-g^{\prime \prime}, g^{\prime \prime}\right)$.

4. A criterion.

In this paragraph, we consider a condition for a G-prime ideal to be a prime ideal. First, we show the following lemma.

Lemma 4.1. Let R be a G-graded ring and $\mathfrak{p} \in V_{G}(R)$. Then the following are euivalent.
(1) \mathfrak{p} is a prime (resp. radical) ideal.
(2) $R_{(p) / p} R_{(p)}$ is an integral domain (resp. reduced).
(3) For every finitely generated subgroup $H \subset G,\left(R_{(p)} / \mathfrak{p} R_{(p)}\right)^{(H)}$ is an integral domain (resp. reduced).
(4) For every finite subgroup $H \subset G,\left(R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}\right)^{(H)}$ is an integral domain (resp. reduced).

Proof. Implications $(1) \Leftrightarrow(2) \Rightarrow(3) \Rightarrow(4)$ are trivial and $(4) \Rightarrow(3)$ follows from (1.6).
(3) \Rightarrow (2) Suppose that $R_{(p)} / \mathfrak{p} R_{(\mathfrak{p})}$ is not an integral domain (resp. reduced). Let $x, y \in R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}\left(\right.$ resp. $\left.z \in R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}\right)$ such that $x y=0$ (resp. $\left.z^{n}=0\right)$. Then there exists a finitely generated subgroup $H \subset G$ such that $x, y \in\left(R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}\right)^{(\boldsymbol{H})}\left(\right.$ resp. $\left.z \in\left(R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}\right)^{(H)}\right)$ (cf. the proof of (1.7)). Hence $\left(R_{(\mathfrak{p}} / \mathfrak{p} R_{(\mathfrak{p})}\right)^{(H)}$ is not an integral domain (resp. reduced).

Therefore, we consider a simple graded ring R graded by a finite Abelian group. Then, by the proof of (1.6), R is isomorphic to $k\left[X_{1}, \cdots, X_{m}\right] /\left(X_{1}^{q_{1}}-u_{1}, \cdots, X_{m}^{q_{m}}-u_{m}\right)$ where $m \geq 0, X_{1}, \cdots, X_{m}$ are variables and each q_{1}, \cdots, q_{m} is a power of a prime number.

Proposition 4.2. Let $R \cong k\left[X_{1}, \cdots, X_{m}\right] /\left(X_{1}^{q_{1}}-u_{1}, \cdots, X_{m}^{q_{m}}-u_{m}\right)$.
(1) R is an integral domain if and only if it satisfies the following condition (D):
(D): \quad for every $1 \leq t \leq m,\left(u_{t}\right)^{1 / p} \notin k\left[X_{1}, \cdots, X_{t-1}\right] /\left(X_{1}^{q_{1}}-u_{1}, \cdots, X_{t-1}^{q_{t-1}}-u_{t-1}\right)$, furthermore, when $\operatorname{char}(k) \neq 2$ and q_{t} is divisible by 4 ,

$$
\left(-u_{t} / 4\right)^{1 / 4} \notin k\left[X_{1}, \cdots, X_{t-1}\right] /\left(X_{1}^{q_{1}}-u_{1}, \cdots, X_{t-1}^{q_{t-1}}-u_{t-1}\right) .
$$

(2) R is reduced if and only if it satisfies the following condition (R):
(R): \quad if $\operatorname{char}(k)=p>0$ and $\left\{q_{i_{1}}, \cdots, q_{i_{t}}\right\}=\left\{q_{i}|1 \leq i \leq m, p| q_{i}\right\}$ then
$\left(u_{i_{s}}\right)^{1 / p} \notin k\left[X_{i_{1}}, \cdots, X_{i_{s-1}}\right] /\left(X_{i_{1}}^{q_{i_{1}}}-u_{i_{1}}, \cdots, X_{i_{z-1}}^{q_{i_{z}-1}}-u_{i_{z-1}}\right)$ for every $1 \leq s \leq t$.

Proof. (1) The assertion follows from the following fact.
(Lang, Theorem 16, $\S 9$, ch. VIII of [10]) Let K be a field and $a \in K^{*}$. For a prime number p and an integer $n>0$, the polynomial $X^{p^{n}}-a \in K[X]$ is irreducible over K if and only if $a^{1 / p} \notin K$ and, furthermore, $(-a / 4)^{1 / 4} \notin K, \operatorname{char}(K) \neq 2$ and $4 \mid p^{n}$.
(2) Clearly, if R does not satisfy condition (R), then it is not reduced. We will show the converse. Suppose R satisfies condition (R). If $\operatorname{char}(k)=p>0$ and p divides $q_{i_{1}}, \cdots, q_{i_{t}}$, then, by (1), $k\left[X_{i_{1}}, \cdots, X_{i_{t}}\right] /\left(X_{i_{1}}^{q_{i_{1}}}-u_{i_{1}}, \cdots, X_{k_{t}}^{q_{i_{t}}}-u_{i_{t}}\right)$ is a field. Hence we may assume that p does not divide q_{1}, \cdots, q_{m}, if $\operatorname{char}(k)=p>0$.

We put $A_{0}=k$ and $A_{i}=k\left[X_{1}, \cdots, X_{i}\right] /\left(X_{1}^{q_{1}}-u_{1}, \cdots, X_{i}^{q_{i}}-u_{i}\right)$ for $1 \leq i \leq m$. We show that if A_{i} is reduced then so is $A_{i+1}(i<m)$.

Since A_{i} is Artinian, $\left(A_{i}\right)_{P}$ is a field for every $P \in \operatorname{Max}\left(A_{i}\right)$, and $A_{i} \cong \bigoplus_{P \in \operatorname{Max}\left(A_{i}\right)}\left(A_{i}\right)_{P}$. Thus $A_{i+1}=A_{i}\left[X_{i+1}\right] /\left(X_{i+1}^{q_{i+1}}-u_{i+1}\right) \cong \oplus_{P \in \operatorname{Max}\left(A_{i}\right)}\left(A_{i}\right)_{P}\left[X_{i+1}\right] /\left(X_{i+1}^{q_{i+1}}-u_{i+1}\right)$. Hence it suffices to show that $\left(A_{i}\right)_{P}\left[X_{i+1}\right] /\left(X_{i+1}^{q_{i+1}}-u_{i+1}\right)$ is reduced for every $P \in \operatorname{Max}\left(A_{i}\right)$. Since $\operatorname{char}(k)=\operatorname{char}\left(\left(A_{i}\right)_{P}\right), q_{i+1}$ is not a multiple of $\operatorname{char}\left(\left(A_{i}\right)_{P}\right)$, if $\operatorname{char}\left(\left(A_{i}\right)_{P}\right)>0$. Thus the splitting field of $X_{i+1}^{q_{i+1}-u_{i+1}}$ over $\left(A_{i}\right)_{P}$ is a separable extension of $\left(A_{i}\right)_{P}$. This implies that $\left(A_{i}\right)_{P}\left[X_{i+1}\right] /\left(X_{i+1}^{q_{i+1}}-u_{i+1}\right)$ is reduced and the proof is complete.

Combining (4.1) and (4.2), we have the following.
Theorem 4.3. Let \mathfrak{p} be a G-prime ideal of a G-graded ring R. Then \mathfrak{p} is a prime (resp. radical) ideal if and only if $\left(R_{(\mathfrak{p})} / \mathfrak{p} R_{(\mathfrak{p})}\right)^{(\boldsymbol{H})}$ satisfies condition (D) (resp. (R)) for every finite subgroup $H \subset G$.

Corollary 4.4 (chap. III, §1, no. 4 of Bourbaki [3]). If G is torsion free, then every G-prime ideal is a prime ideal.

Corollary 4.5. Let R be a G-graded ring such that R_{0} contains a field k. Suppose that either $\operatorname{char}(k)=0$ or char $(k)=p>0$ and G does not have a torsion of order p. Then every G-prime ideal is a radical ideal.

Example 4.6. In Example (3.14), every G-prime ideal of R is a radical ideal and, thus the ramification index is determined by G-prime ideals.

Acknowledgment. This author would like to express his appreciation to Professor Shiro Goto for stimulating discussion. Thanks are also due to Professor Kei-ichi Watanabe and Doctor Kazuhiko Kurano for several useful suggestions.

References

[1] Y. Aoyama and S. Goto, On the type of graded Cohen-Macaulay rings, J. Math. Kyoto Univ. 15 (1975), 19-23.
[2] L. Avramov, Flat morphisms of complete intersections, Soviet Math. Dokl. 16 (1975), 1413-1417.
[3] N. Bourbaki, Algèbre Commutative, Hermann (1965).
[4] S. Goto and K. Yamagishi, Finite generation of Noetherian graded rings, Proc. Amer. Math. Soc. 89 (1983), 41-43.
[5] S. Goto and K. Watanabe, On graded rings, J. Math. Soc. Japan 30 (1978), 172-213.
[6] S. Goto and K. Watanabe, On graded rings, II, Tokyo J. Math. 1 (1978), 237-261.
[7] A. Grothendieck, Local Cohomology, Lecture Notes in Math. 41 (1967), Springer.
[8] M. Hochster and L. J. Ratliff, Jr., Five theorems on Macaulay rings, Pacific J. Math. 44 (1973), 147-172.
[9] S. Iтон, Cyclic Galois extensions of regular local rings, Hiroshima Math. J. 19 (1989), 309-318.
[10] S. Lang, Algebra, Addison-Wesley (1965).
[11] J. Mativevic, Three local conditions on a graded ring, Trans. Amer. Math. Soc. 205(1975), 275-284.
[12] J. Matijevic and P. Roberts, A conjecture of Nagata on graded Cohen-Macaulay rings, J. Math. Kyoto Univ. 14 (1974), 125-128.
[13] M. Nagata, Some questions on Cohen-Macaulay rings, J. Math. Kyoto Univ. 13 (1973), 123-128.
[14] C. NǍstäsescu and F. Van Oystaeyen, Graded Ring Theory, North-Holland (1982).
[15] P. Roberts, Abelian extensions of regular local rings, Proc. Amer. Math. Soc. 78 (1980), 307-310.

Present Address:

Department of Mathematics, Massey University, Private Bag 11222, Palmerston North, New Zealand.
e-mail: Y.Kamoi@massey.ac.nz

