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1. Introduction.

We have as a defining equation of the modular curve $X_{0}(N)$ the modular equation
of level $N$, which has many good properties; e.g. it reflects the properties of $X_{0}(N)$ that
is the coarse moduli space of the isomorphism classes of the generalized elliptic curves
with a cyclic subgroup of order $N$. But its degree and coefficients are too large for its
application to practical calculation on $X_{O}(N)$ . While it is an important problem to
determine the algebraic points on $X_{0}(N)$ , we need a handier form of defining equation,
which will also serve to solve other related problems.

In the present paper, we give a general method to explicitly calculate a system of
defining equations of an arbitrary modular curve $X_{0}(N)$ . In case of a hyperelliptic
modular curve of genus two, a kind of normal form of defining equations is given by
Murabayashi (cf. [M]). We generalize his method. We list defining equations of all
modular curves $X_{0}(N)$ of genus two to six. One should note that our algorithm works
for $X_{0}(N)$ of genus greater than six.

The form of our defining equations is as follows. If $X_{O}(N)$ is hyperelliptic or of
genus three, then the number of our defining equations is one. If $X_{0}(N)$ is non-
hyperelliptic and of genus greater than three, then our system of defining equations
is given as the intersection of some quadratic and cubic hypersurfaces on $P^{g-1}$ . In
particular, we list the defining equations of $X_{0}(N)(N=34,43,45,64)$ which are non-
hyperelliptic of genus three. We note that $X_{0}(64)$ is the Fermat curve of degree four.

In our method, we cannot have defining equations of modular curves of genus
zero or one. But defining equations of some modular curves of genus one (i.e. $X_{0}(N)$ ,

$N=14,20,24)$ can be obtained by means of a covering from some $X_{0}(N)$ . We can
explicitly give covering maps between modular curves.

To get our equations, we use the Fourier expansions of certain cusp forms of
weight 2 on $\Gamma_{O}(N)$ . Their Fourier coefficients can be given by the Brandt matrix (cf.
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[P]) and the trace formula.
We will use the following notation throughout this paper.
$\bullet$ $N$ : a positive integer ( $=the$ level of a modular curve)

$\bullet$ $\Gamma_{0}(N):=\{\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\dot{S}L_{2}(Z)|c\equiv 0mod N\}$

$\bullet \mathfrak{H}:=\{z\in C|{\rm Im}(z)>0\}$

$\bullet \mathfrak{H}^{*}:$ $=\mathfrak{H}\cup Qu\{i\infty\}$

$\bullet$ $X_{0}(N):=\Gamma_{0}(N)\backslash \mathfrak{H}^{*}$ , a modular curve of level $N$

$\bullet$ $g=genus(X_{O}(N))$

$\bullet$ $S_{2}(\Gamma_{0}(N))$ : the Q-vector space of cusp forms of weight 2 on $\Gamma_{O}(N)$

Let $f_{1},$ $\cdots,$ $f_{g}$ be a basis of $S_{2}(\Gamma_{0}(N)),$ $z$ the natural coordinate on $\mathfrak{H},$ $q=e^{2\pi iz}$

and let the Fourier expansion of $f_{i}$ be
$f_{i}=a_{i,1}q+a_{i,2}q^{2}+\cdots,$ $(a_{i.j}\in Z, 1\leq i\leq g,j=1,2, \cdots)$ .

(These Fourier coefficients can be taken in $Z$ (cf. [S]).)

I wish to express my sincere thanks to N. Murabayashi who helped me with his
works of normal forms and modular curves, and to Professor Hashimoto for
his valuable suggestions and encouragement.

2. Computation of defining equations.

If $X_{O}(N)$ is a hyperelliptic curve, its normal form can be obtained by Murabayashi’s
method. If $X_{0}(N)$ is a non-hyperelliptic curve, a system of its defining equations can be
obtained by means of canonical map. The hyperelliptic modular curves of type $X_{0}(N)$

have been classified by Ogg (cf. [O]).

THEOREM 1 (Ogg). There are exactly nineteen values oflevel $N$ which makes $X_{0}(N)$

hyperelliptic. They are given as follows ($g=genus(X_{O}(N))$ :

$g=2;N=22,23,26,28,29,31,37,50$ ,

$g=3;N=30,33,35,39,40,41,48$ ,

$g=4;N=47$ ,

$g=5;N=46,59$ ,

$g=6;N=71$ .
The next lemma is well known.

LEMMA 1. Let $\Omega^{1}$ be the sheafofholomorphic l-forms on $X_{O}(N)$ . Then thefollowing
map $\Psi$ is an isomorphism of $S_{2}(\Gamma_{0}(N))\otimes C$ to $H^{0}(X_{0}(N), \Omega^{1})$ :



DEFINING EQUATIONS OF MODULAR CURVES 445

$\Psi:S_{2}(\Gamma_{O}(N))\otimes C\rightarrow^{\sim}H^{0}(X_{O}(N), \Omega^{1})$

$f\mapsto 2\pi ifdz$ .

By this lemma, the relations of the holomorphic l-forms on $X_{0}(N)$ can be reduced
to those of $S_{2}(\Gamma_{0}(N))$ .

2.1. Hyperelliptic case. Let $\overline{i\infty}$ denote the point of $X_{0}(N)$ which is represented
by $ i\infty$ . If 766 is not a Weierstrass point of $X_{0}(N)$ , then $X_{O}(N)$ can be described by the
following normal form:

$y^{2}=f(x)$ , $f(x)\in Q[x]$ , deg$f=2g+2$ ,

where $x$ is a covering map of degree two from $X_{0}(N)$ to $P^{1}$ . (Here, the normal form
means a defining equation of type $y^{2}=f(x),$ $f(x)\in C[x]$ and $C(x, y)$ is isomorphic to

the function field of the curve.)
First of all, we calculate some divisors with respect to the normal form

$y^{2}=f(x)=\prod_{j=1}^{2g+2}(x-\alpha_{j})$ $(\alpha_{j}\in C)$ ,

$\underline{(x-\alpha_{j})^{k}dx}\in H^{0}(X_{0}(N), \Omega^{1})$ , $k=0,$ $\cdots,$ $g-1$ .
$y$

Let $P_{j}$ be the Weierstrass point corresponding to $\alpha_{j}$ (i.e. $P_{j}=(\alpha_{j},$ $0)$), $Q_{1}=\overline{i\infty}$ and let
$Q_{2}$ be the image of $Q_{1}$ by the hyperelliptic involution.

$\left\{\begin{array}{ll}(x-\alpha_{j})=2P_{j}-Q_{1}-Q_{2} & \\(y)=P_{1}+P_{2}+\cdots+P_{2g+2}-(g+1)Q_{1}-(g+1)Q_{2} & \\(dx)=P_{1}+P_{2}+\cdots+P_{2g+2}-2Q_{1}-2Q_{2} & \\(\frac{(x-\alpha_{j})^{k}dx}{y})=2kP_{j}+(g-1-k)Q_{1}+(g-1-k)Q_{2} & (0\leq k\leq g-1).\end{array}\right.$

If $\overline{i\infty}$ is not a Weierstrass point, the gap sequence at $\overline{i\infty}$ is

$\{1, 2, \cdots, g\}$

(cf. [ACGH]). Then there exists $h_{j}\in H^{0}(X_{0}(N), \Omega^{1})$ such that the degree of $h_{j}$ at $\overline{i\infty}$ is
$j-1(j=1, \cdots, g)$ . Therefore, using a linear combination of $f_{1},$ $\cdots,$ $f_{g}$ , we can take
$g_{1},$ $\cdots,$ $g_{9}$ with the following Fourier expansions:

$\left\{\begin{array}{l}g_{1}(z)=q^{g}+s_{1,g+1}q^{g+1}+\cdots+s_{1,g+i}q^{g+i}+\cdots\\ g_{2}(z)=q^{g-1}+s_{2,g}q^{g}+\cdots+s_{2,g+i}q^{g+i}+\cdots\\\ldots\cdots\\ g_{g}(z)=q+s_{g,2}q^{2}+\cdots+s_{g,g+\iota}q^{g+i}+\cdots\end{array}\right.$
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LEMMA 2. Let $x$ be $g_{2}(z)/g_{1}(z)$, then $x:X_{0}(N)\rightarrow P^{1}$ is of degree two.
$PR\infty F$ . Let $Y=F(X)$ be a normal form of $X_{0}(N)(\deg F(X)=2g+2)$ . By Lemma

1 and the fact that

$dX$

$X^{j}\overline{Y}$ $(j=0, \cdots, g-1)$

span $H^{0}(X_{O}(N), \Omega^{1})$, we have

$g_{i}(z)dz=\sum_{j=0}^{g-1}p_{i.j}X^{j}\frac{dX}{Y}$ $(1\leq i\leq g, p_{i,j}\in C)$ .

Comparing the order at $\overline{i\infty}$ of the divisors of both sides, $g_{i}(z)dz$ must be the following
form:

$g_{i}(z)dz=\sum_{j=0}^{i-1}p_{i,j}X^{j}\frac{dX}{Y}$ $(p_{i,i-1}\neq 0)$ .

So

$dX$ $dX$

$g_{1}(z)=p_{1,0}\overline{Y}$ $g_{2}(z)=(p_{2.0}+p_{2.1}X)\overline{Y}$

$x=\frac{g_{2}(z)}{g_{1}(z)}=\frac{p_{2,0}+p_{2.1}X}{p_{1,0}}$ .

Because $X$ is of degree two, $x$ is also of degree two. $\square $

Finally, we construct $y$ as follows: we have shown $dx/y$ has zeros of degree $g-1$

at $\overline{i\infty}$ . By Lemma 1 we have

$\underline{dx}=2\pi i(t_{1}f_{1}(z)dz+\cdots+t_{g}f_{g}(z)dz)$ , $t_{1},$ $\cdots,$ $t_{g}\in Q$ .
$y$

Considering the order at $\overline{i\infty}$, we have

$\frac{dx}{y}=c\times 2\pi ig_{1}(z)dz$ , $c\in C^{*}$

We set

$x:=\frac{g_{2}}{g_{1}}$ , $y:=\frac{q}{g_{1}}\frac{dx}{dq}$ .

(This construction of $x,$ $y$ is an extension of that of [M] to higher genus.) Thus from
the Fourier expansions of $x$ and $y$, namely

$ y^{2}=q^{-(2g+2)}+\cdots$ , $ x=q^{-1}+\cdots$ ,
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we can recursively determine the coefficients $a_{1},$ $a_{2},$
$\cdots$ ofa defining equation as follows:

$\left\{\begin{array}{l}y^{2}-x^{2g+2}=a_{1}q^{2g-1}-+\cdots\\ y^{2}-x^{2g+2}-a_{1}x^{2g+1}=a_{2}q^{-2g}+\cdots\end{array}\right.$

Thus we have a defining equation of $X_{0}(N)$ , namely

$y^{2}=x^{2g+2}+a_{1}x^{2g+1}+\cdots+a_{2g+2}$ .

REMARK 1. To get a normal form, we have only to know $\{s_{1,g+1},$ $\cdots,$ $s_{1,3g+3}$ ,

$s_{2,g},$ $\cdots,$ $s_{2,3g+2}$ }.

2.2. Non-hypereMptic case. Let $\omega_{1},$ $\cdots,$ $\omega_{g}$ be a basis of $H^{0}(X_{0}(N), \Omega^{1})$ . The
canonical map which is induced by $\omega_{1},$ $\cdots,$ $\omega_{g}$

$\Phi:X_{0}(N)\rightarrow P^{g-1}$

$z\mapsto(1, \omega_{2}/\omega_{1}, \cdots, \omega_{g}/\omega_{1})$

gives an embedding of $X_{0}(N)$ in $P^{g-1}$ , because $X_{0}(N)$ is non-hyperelliptic. The image
of this map is called a canonical curve.

By Lemma 1, we have $F_{i}:=f_{i}/f_{1}=\omega_{i}/\omega_{1}$ . It is clear that

$ L((\omega_{1}))=\langle F_{1}=1, F_{2}, \cdots, F_{g}\rangle$ .

Here, and in what follows, $L(D):=\{f\in C(C)|div(f)\geq-D\}$ and $l(D):=\dim_{C}(L(D))$ . (Let
$C$ be a complete non-singular curve of genus $g,$ $K_{C}$ be the canonical divisor of $C$ and
$D$ be any divisor on $C.$)

Let $n(>1)$ be a positive integer. To get a system of defining equations of $X_{0}(N)$ ,

we will find the relations of the monomials of degree not exceeding $n$ which are generated
by $F_{1},$ $\cdots,$ $F_{g}$ . But there are two problems. One is the number of linearly independent
monomials, and the other is the upper bound of the degree $n$ sufficient for our purpose.
Petri’s theorem solves these problems. By the proof of Petri’s theorem we find that the
rank of the monomials of degree not exceeding $n$ which are generated by $F_{1},$ $\cdots,$ $F_{g}$ is
$l(n(\omega_{1}))$ . On the other hand, it is clear that the monomials belong to $L(n(\omega_{1}))$ .

In the following, we deal with the monomials of degree $n$ which are generated by
$f_{i}’ s$ instead of the monomials of degree not exceeding $n$ which are generated by $F_{i}’ s$ . It
is obvious that

$f$ {monomials of degree $n$ which are generated by $f_{i}’ s$ } $={}_{g}H_{n}$ ,

$l(n(\omega_{1}))=n\deg(\omega_{1})+1-g=n(2g-2)+1-g=(2n-1)(g-1)$

(by the Riemann-Roch theorem).

THEOREM 2 (Petri’s Theorem) (cf. [ACGH]). Let $C$ be a canonical curve ofgenus
$\geq 4$ . Then $C$ can be given by the intersection of some quadratic hypersurfaces, unless $C$ is
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trigonal or isomorphic to a smooth plane quintic curve in these exceptional $C$ is given by
the intersection of some quadratic and cubic hypersurfaces.

By this theorem, we have only to find the quadratic and cubic relations.
$\bullet$ Quadratic relations.

$f$ {the monomials of degree $2$ } $={}_{g}H_{2}$ , $l(2(\omega_{1}))=(2\times 2-1Xg-1)$ .

So the number of quadratic relations is

${}_{g}H_{2}-(2\times 2-1Xg-1)=(g-2Xg-3)/2$ .

Let these relations be $P_{1}(f_{1}, \cdots, f_{g})=0,$ $\cdots,$ $P_{\langle g-2)(g-3)/2}(f_{1}, \cdots,f_{g})=0$ .
$\bullet$ Cubic relations.

The rank of cubic relations
$=\#$ { $the$ monomials of degree 3 generated by $f_{i}’ s$ } $-l(3(\omega_{1}))$

$-$ (the rank of cubic relations obtained by the quadratic relations),

The rank of cubic relations obtained by the quadratic relations
$=the$ rank $\langle x_{i}P_{j}(x_{1}, \cdots, x_{g})\rangle$ $(1 \leq i\leq g, 1\leq j\leq(g-2Xg-3)/2)$ .

$WeapplythesetoX_{O}(N)$ of genusg $=3,4,5,6$ .
$\bullet$ Case $g=3$ . There is no quadratic and cubic relations. The number of quartic

relations is ${}_{3}H_{4}-(2\times 4-1X3-1)=1$ . So the defining equation of $X_{O}(N)$ is obtained by
the quartic relation.

$\bullet$ Case $g=4$. The number of quadratic and cubic relations are one each.
$\bullet$ Case $g=5$ . The number of quadratic relations is three.
$\bullet$ Case $g=6$ . The number of quadratic relations is six. There are no cubic

relations: because ${}_{6}H_{3}=56,$ $l(3(\omega_{1}))=(2\times 3-1)(6-1)=25$ and the number of cubic
relations which come from quadratic relations is 31, the number of cubic relations is
$56-25-31=0$ .

When $g\geq 7$ , we can calculate the relations by the same way.

3. Covering.

If $X_{0}(N)$ has genus one, its defining equation can not be obtained by the method
in Section 2.2. But some of them can be obtained by means of a covering between
modular curves.

For example, We have a defining equation of $X_{0}(20)$ as follows. A defining equation
of $X_{0}(40)$ is

$y^{2}=x^{8}+8x^{6}-2x^{4}+8x^{2}+1=\prod_{i=1}^{4}(x+\alpha_{i}Xx-\alpha_{i})$ .
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Let

$Y^{2}=F(X)=\prod_{i=1}^{4}(X-\beta_{i})$ , deg$F(X)=4$ , $F(X)\in Q[X, Y]$

be adefining equation of $X_{0}(20)$ and

$\phi:X_{0}(40)\rightarrow X_{0}(20)$

$(x, y)\mapsto(\frac{p_{2}(x,y)}{p_{1}(x,y)},$ $\frac{q_{2}(x,y)}{q_{1}(x,y)})$

be a covering map from $X_{0}(40)$ to $X_{0}(20)$ . This map can be taken Q-rational. Moreover,
by modifying the equation of $X_{O}(20)$ we can assume $p_{1},$ $p_{2},$ $q_{1},$ $q_{2}\in Z[x, y]$ and monic.
The next diagram commutes:

$\Gamma_{O}(40)\backslash \mathfrak{H}^{*}l\downarrow\rightarrow\Gamma_{0}(20)\backslash \mathfrak{H}^{*}\downarrow l$

$X_{0}(40)$
$\rightarrow^{\phi}$

$X_{0}(20)$

$ x_{P^{1}}\downarrow$

$\rightarrow$

$P^{1}\downarrow x$

Hence $p_{1}(x, y),$ $p_{2}(x, y)\in Z[x]$ . Since $(\Gamma_{0}(20):\Gamma_{O}(40))=2$ , the degrees of $p_{1}$ and $p_{2}$ are
at most two.

The next rational function has the factor $y^{2}-f(x)$ in its numerator.

(1) $(\frac{q_{2}}{q_{1}})^{2}-F(\frac{p_{2}}{p_{1}})$ .

It leads to the following form by comparing the coefficients:

$\phi:(x, y)\mapsto(\frac{p_{2}}{p_{1}},$ $\frac{y}{p_{1}^{2}})$ , $p_{1},p_{2}\in Z[x]$ .

The Weierstrass points of $X_{0}(40)$ are sent to those of $X_{O}(20)$ by $\phi$ . $\mathfrak{g}\alpha_{i}$ )$/Q$ is of
degree eight, $q\alpha_{i}^{2}$)$/Q$ is of degree four and $q\beta_{i}$ )$/Q$ is of degree at most four. Therefore,
we see

$\frac{p_{2}(\pm\alpha_{i})}{p_{1}(\pm\alpha_{i})}=\beta_{i}$ , $i=1,2,3,4$ .

Further, $p_{1}$ and $p_{2}$ cannot have terms of degree 1.
Hence $\phi$ must be
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$\phi:(x, y)\mapsto(x^{2}, y)$ , or $\phi:(x, y)\mapsto(\frac{1}{x^{2}},$ $\frac{y}{x^{4}})$

(up to linear transformation for $X$). In both cases we have

$X_{O}(20):Y^{2}=X^{4}+8X^{3}-2X^{2}+8X+1$ .

By (1), we find $y^{2}=f(x)=F(x^{2})$ or $y^{2}=x^{8}F(1/x^{2})=f(x)$ .
There are three curves which are given in this way. They are

$X_{0}(14)$ , $X_{0}(20)$ , $X_{O}(24)$ .

The next example is a covering not between modular curves, but from a modular
curve to an elliptic curve. There exists a covering

$X_{0}(43)\rightarrow E_{43}$ : $Y^{2}+Y=X^{3}+X^{2}$

The curve $E_{43}$ is an elliptic curve with conductor 43. We will explicitly give this map
by using the main involution.

The action of the main involution to cusp forms with weight 2 is given by the
Brandt matrix (cf. [P]). The invariant part of the function field of

$X_{0}(43):2x^{3}y+\cdots=0$ (see Table 7)

under the action of the main involution is generated by

$\xi=z-\frac{x+y}{2}$ , $\eta=xy$ .

The covering will be obtained by describing the defining equation of $X_{0}(43)$ with $\xi$ and $\eta$ :

$X_{O}(43)\rightarrow E_{43}$

$(y, z)\mapsto(X, Y)$ ,

$X=\frac{y}{2}$ , $Y=\frac{4y+3y^{2}-4z-4yz+4z^{2}}{4}$ .

Here the defining equation of $X_{O}(43)$ is dehomogenized by setting $x=1$ .

4. Covering between modular curves.

Let $M,$ $N$ be positive integers such that $N$ divides $M$ and put $n=(\Gamma_{O}(N):\Gamma_{0}(M))$ .
Then there is a covering map from $X_{O}(M)$ to $X_{O}(N)$ . We will explicitly give this covering.

There are three cases according as $X_{0}(M)$ and $X_{0}(N)$ are hyperelliptic or not.

$\bullet$ Case 1: both $X_{0}(M)$ and $X_{O}(N)$ are hyperelliptic. There are only one such pair

$(M, N):M=46,$ $N=23$ .
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$X_{0}(46):y^{2}=(x^{3}-2x^{2}+3x-1)(x^{3}+x^{2}-x+7)$

$(x^{6}-x^{5}+4x^{4}-x^{3}+2x^{2}+2x+1)$ ,

$X_{0}(23):y^{2}=(x^{3}-x+1)(x^{3}-8x^{2}+3x-7)$ ,

$(x, y)\mapsto(\frac{x^{3}-x^{2}+2x}{x-1},$ $\frac{y(x^{3}-2x^{2}+x-1)}{(x-1)^{3}})$ .

This is obtained by giving a rational map which maps the Weierstrass points of $X_{0}(46)$

to those of $X_{0}(23)$ .
$\bullet$ Case 2: both $X_{0}(M)$ and $X_{0}(N)$ are non-hyperelliptic. We can take a basis

$\{f_{1}, \cdots,f_{g_{n}}, \cdots f_{g_{m}}\}$ of $S_{2}(\Gamma_{0}(M))$ , such that $\{f_{1}, \cdots, f_{g_{n}}\}$ is a basis of $S_{2}(\Gamma_{0}(N))$ .
Further, let $(x_{i})$ be the coordinate corresponding to $\{f_{i}\}$ . Then

$X_{0}(M)\rightarrow X_{0}(N)$

$(x_{1}, \cdots, x_{g_{\mathfrak{n}}}, \cdots, x_{g_{m}})\mapsto(x_{1}, \cdots, x_{g_{n}})$

is a covering, because the following diagram commutes:

$\Gamma o_{I}(M)\backslash \mathfrak{H}^{*}X_{0}(M)l\downarrow\rightarrow^{\rightarrow projproj....}\Gamma o_{I}(N)\backslash \mathfrak{H}^{*}X_{0}(N)\downarrow l$

$P^{g_{m}}$
$\rightarrow^{proj.}$

$P^{g_{n}}$ .

$\bullet$ Case 3: $X_{O}(M)$ is non-hyperelliptic, but $X_{0}(N)$ is hyperelliptic. Let $\{f_{1}, \cdots f_{g_{m}}\}$

and $(x_{i})$ be the same as in case 2 and let $f_{1}$ and $f_{2}$ be a basis of $S_{2}(\Gamma_{0}(N))$ satisfying
the following equation:

$X_{0}(N):y^{2}=f(x),$ $x=f_{2}/f_{1}$ .

If

$\phi:X_{O}(M)\rightarrow X_{O}(N)$

$(x_{1}, \cdots, x_{g_{m}})\mapsto(\frac{x_{2}}{x_{1}},$ $\frac{p_{1}(x_{1},.\cdot\cdot..’ x_{g_{m}})}{p_{2}(x_{1},,x_{g_{m}})})$

is a covering, then $\phi^{*}(dx/y)$ is a holomorphic l-form on $X_{0}(M)$ and the degree of $p_{1}$ ,
$p_{2}$ are chosen to be at most $n$ . By Lemma 1 we obtain
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$\emptyset^{*}(\frac{dx}{y})=2\pi i(a_{1}f_{1}+\cdots+a_{g_{m}}f_{g_{m}})dz$ $(a_{i}\in Q)$ ,

$(\phi^{*}yXa_{1}f_{1}+\cdots+a_{g_{m}}f_{g_{m}})=\frac{1}{2\pi i}\frac{dx}{dz}=q\frac{dx}{dq}$ ,

$p_{1}(a_{1}f_{1}+\cdots+a_{g_{m}}f_{g_{m}})$

$=\sum_{i_{1}+\cdots+i_{g_{m}}=n+1}a_{i_{1}\ldots.,i_{g_{m}}}f_{1^{1}}^{i}\cdots f_{g_{n}^{g_{m}}}^{i}=p_{2}q\frac{dx}{dq}$

$=(\sum_{j_{1}+\cdots+j_{g_{m}}=n}b_{j_{1},\cdots,j_{l_{m}}}f_{1}^{j_{1}}\cdots f_{g_{m}^{g_{m}}}^{j})q\frac{dx}{dq}$ .

We know the Fourier expansions of $f_{i}’ s$ and $dx/dq$ . Therefore we can decide $p_{1},$ $p_{2}$ by
comparing their Fourier coefficients.

Example:

$X_{0}(44)\rightarrow X_{0}(22)$

$(x, y, z, w)\mapsto(xy^{2}, xw(x+4y+8z),$ $y^{3}$) $=(y^{2}, w(x+4y+8z),$ $z(x+4y+4z))$ .

TABLE 1. Example of Fourier expansions $(X_{O}(46), g=5)$
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The following tables are our defining equations of modular curves. After Table 7,
our defining equations are given by the intersection of some hypersurfaces.

TABLE 4. ($g=4$, hyperelliptic)
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TABLE 5. ($g=5$ , hyperelliptic)

TABLE 6. ($g=6$ , hyperelliptic)

TABLE 7. ($g=3$ , non-hyperelliptic)

TABLE 8. ($g=4$ , non-hyperelliptic)
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