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1. Introduction.

Let $k$ be a number field and $K/k$ a finite Galois extension with Galois group
$G=Gal(K/k)$ . For a number field $N,$ $\mathfrak{o}_{N}$ denotes the ring of integers in $N$. Let $S$ be a
finite set of prime ideals of $\mathfrak{o}_{k}$ that contains all prime ideals which are wildly ramified
$inK/k$ . Fora $finiteextensionN/k$ , we simply denote by $\mathfrak{o}_{N}(S)$ the ring of elementsa in
$N$ with $ord_{\mathfrak{P}}(a)\geq 0$ for all prime ideals $\mathfrak{P}$ of $\mathfrak{o}_{N}$ , not lying above $S$ . The field $K$ can be
regarded asamodule over the group ring kG ofG overk by the action $\alpha^{\lambda}=\sum_{s\in G}a_{s}\alpha^{s}$

for $\alpha\in K$ and $\lambda=\sum_{s\in G}a_{s}s\in kG$ . We say that a ring extension $o_{K}(S)/\mathfrak{o}_{k}(S)$ has a normal
basis if $\mathfrak{o}_{K}(S)$ is a free $\mathfrak{o}_{k}(S)[G]$ -module, that is, there exists some $\alpha$ in $\mathfrak{o}_{K}(S)$ such that
$\{\alpha^{S}\}_{s\in G}$ is afree $\mathfrak{o}_{k}(S)$-basis of $\mathfrak{o}_{K}(S)$ . The extension $\mathfrak{o}_{K}(S)/\mathfrak{o}_{k}(S)$ is called ramified if there
exists some prime ideal of $0_{k}$ , not belonging to $S$, which is ramified in $K/k$ (this means
that such prime ideal of $\mathfrak{o}_{k}$ is ramified in the Dedekind ring extension $\mathfrak{o}_{K}/\mathfrak{o}_{k}$ , as usual).
If not so, then it is called unramified.

We remark the following fact on the existence of normal bases of extensions of
the rings of S-integers which was pointed out by H. Suzuki and whose proof is due to
him. It says that we can take a sufficiently large set $U\cup S$ , keeping the ramification of
primes outside $S$, such that $\mathfrak{o}_{K}(UuS)/\mathfrak{o}_{k}(UuS)$ has a normal basis.

PROPOSITION 1.1. Let the notations be as above and $T(\neq\emptyset)$ a finite set ofprime
ideals of $\mathfrak{o}_{k}$ that contains all prime ideals, not belonging to $S$, which are ramified in $K/k$ .
Then there exists a finite set $U$ ofprime ideals of $\mathfrak{o}_{k}$ such that $ U\cap T=\emptyset$ and $\mathfrak{o}_{K}(U\cup S)/$

$\mathfrak{o}_{k}(U\cup S)$ has a normal basis.

PROOF. Let $V:=\mathfrak{o}_{k}-\bigcup_{p\in T}\mathfrak{p}$ be a multiplicative subset of $\mathfrak{o}_{k}$ and $V^{-1}\mathfrak{o}_{k}$ a ring
of quotients of $\mathfrak{o}_{k}$ . Then $V^{-1}\mathfrak{o}_{k}$ is a semi-local ring with maximal ideals $\{\mathfrak{p}\cdot(V^{-1}\mathfrak{o}_{k})\}_{p\in T}$

and $V^{-1}\mathfrak{o}_{K}$ is a $(V^{-1}o_{k})[G]$-module. Since all primes in $T$ are tamely ramified, there
exists some $\alpha$ in $\mathfrak{o}_{K}$ such that $ 1\otimes\alpha$ is a free generator of $\mathfrak{o}_{k_{p}}\otimes_{\mathfrak{v}_{k}}\mathfrak{o}_{k}$ over $\mathfrak{o}_{k_{p}}G$ for each
$p\in T$ (Cf. [8, Lemma 2.6]), where $\mathfrak{o}_{k_{p}}$ denotes the valuation ring of the completion of
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$k$ with respect to $p$ . Therefore $\alpha$ is also a free generator of $V^{-1}\mathfrak{o}_{K}$ over $(V^{-1}\mathfrak{o}_{k})[G]$ . Put
$M:=\mathfrak{o}_{K}/(o_{k}G\cdot\alpha)$ . Then $M$ has a finite number of generators over $\mathfrak{o}_{k}$ , say $m_{1},\cdots,$ $m_{r}$ .
Since $V^{-1}M=0$ , there is some $u_{i}$ in $V$ for each $i$ such that $u_{i}m_{i}=0$ . If we put $u=$

$\prod_{i=1}^{r}u_{i}$ , then we have $\langle u\rangle^{-1}M=0$ where $\langle u\rangle$ denotes a multiplicative subset of $\mathfrak{o}_{k}$ ,
generated by $u$ . Let $U$ be a set ofprime divisors of $u$ . Then $ U\cap T=\emptyset$ and $\mathfrak{o}_{k}(U)\otimes_{o_{lc}}M=$

$\mathfrak{o}_{k}(U)\otimes_{\langle u\rangle^{-1}0_{k}}\langle u\rangle^{-1}M=0$ . So $\mathfrak{o}_{K}(U)=\mathfrak{o}_{k}(U)[G]\cdot\alpha$ . This proves our proposition. $\square $

From now on, assume that $K/k$ is abelian and let $\hat{G}$ be the group of characters of
$G$ . In the previous paper [8], for each $\chi\in\hat{G}$ , an ideal $b(\chi)$ was defined by resolvents
of elements of $K$ (for its definition, see Section 2) and we gave a necessary and sufficient
condition for $o_{K}(S)/o_{k}(S)$ to have a normal basis in terms of these ideals. Since resolvents
are connected with Gauss sums, Stickelberger’s theorem gives an information on ideals
$b(\chi)$ . For this, we study a property of $b(\chi)$ in Section 2. After Section 3, we assume
that $k$ is a totally real number field or a CM-field, i.e., a totally imaginary quadratic
extension of a totally real number field. In comparison with Proposition 1.1, we can
give also sequences $\{S_{n}\}$ of finite sets of prime ideals of $\mathfrak{o}_{k}$ with $S_{n}\subsetneq S_{n+1}$ , such that
$\mathfrak{o}_{K}(S_{n})/\mathfrak{o}_{k}(S_{n})$ does not have a normal basis for each positive integer $n$ (Propositions 4.3
and 4.5). This fact follows from results of Section 3 (Proposition 3.3 and Lemma 3.5)

and a sufficient condition for the non-existence of normal basis of ramified ring exten-
sion $\mathfrak{o}_{K}(S)/\mathfrak{o}_{k}(S)$ which is given in Section 4 (Theorem 4.1). In Section 5, let $K$ be an
abelian field with prime conductor over the field $Q$ of rational numbers. Then using
Proposition 4.3, we discuss anormal basis of $\mathfrak{o}_{K}/\mathfrak{o}_{k}(S=\emptyset)$ (Theorem 5.3). When $K$ is
the pth cyclotomic field, $p$ being an odd prime, and $[K : k]$ is a prime, a normal basis of
$\mathfrak{o}_{K}/\mathfrak{o}_{k}$ was studied by Cougnard $[4, 5]$ and Brinkhuis [2]. Theorem 5.3 generalizes their
result. It should be noted that our results in Section 4, 5 are a development of Brinkhuis’
idea [2].

Throughout this paper, the above and following notations are used. For a number
field $N$ and each $\chi\in\hat{G},$ $N(\chi)$ denotes the field generated by the values of $\chi$ on $G$ over
$N$. For a ring $R$ and a group $\Gamma$ , we denote by $ R\Gamma$ (or $R[\Gamma]$) the group ring of $\Gamma$ over
$R$ and by $R^{x}$ the group of units in $R$ . For a set $R,$ $|R|$ denotes the cardinal of $R$ . For
a positive integer $n,$ $\zeta_{n}$ denotes a primitive nth root of unity. We denote by $Z$ and $R$

the ring of rational integers and the field of real numbers, respectively. For a number
field $N$, we denote by $N^{+}$ the maximal real subfield of $N:N^{+}$ $:=N\cap R$ . For an integral
divisor $\mathfrak{n}$ of $k,$ $k(\mathfrak{n})$ denotes the ray class field of $k$ mod $\mathfrak{n}$ . Specially $f_{:}=k(1)$ is the
Hilbert class field of $k$ . Let $\mathfrak{n}_{O}$ and $\mathfrak{n}_{\infty}$ denote the finite and infinite components of $\mathfrak{n}$ ,

respectively.

ACKNOWLEDGMENTS. The author would like to thank Dr. Suzuki for pointing out
Proposition 1.1 and a certain person for $his/her$ useful suggestion to Section 2.
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2. Properties of ideals $b(\chi)$ .
For $\alpha\in Kandeach\chi\in\hat{G}$ , we define the resolvent of $\alpha withvaluesinK(\chi)$ by

$\langle\alpha, \chi\rangle=\langle\alpha, \chi\rangle_{K/k}$
$:=\sum_{s\in G}\chi(s^{-1})\alpha^{s}$

For each $\chi\in\hat{G},$ $1etL(\chi)$ be the $\mathfrak{o}_{k\langle\chi)}(S)$-module of rank one generated by all $\langle\alpha, \chi\rangle$ with
$\alpha\in \mathfrak{o}_{K}(S)$ . Let $\beta\in 0_{K}$ be a free generator of $K$ over $kG$ . Then there exists a fractional
ideal $b(\chi)$ of $\mathfrak{o}_{k\langle\chi)}(S)$ such that

(2.1) $ L(\chi)=b(\chi)\langle\beta, \chi\rangle$ ,

and we have

(2.2) $b(\chi^{\omega})=b(\chi)^{\omega}$ ,

for all $\omega\in Gal(k(\chi)/k)$ , where we define $\chi^{\omega}(s):=\chi(s)^{\omega}$ for each $s\in G$ so that $\chi^{\omega}\in\hat{G}$ .
In [8], we have chosen $\beta\in \mathfrak{o}_{K}$ such that $ 1\otimes\beta$ is a free generator of $0_{k_{\mathfrak{p}}}\otimes_{o_{k}}\mathfrak{o}_{K}$ over

$\mathfrak{o}_{k_{p}}G$ for each prime ideal $p$ of $\mathfrak{o}_{k}$ , dividing the order of $G$ and not belonging to S. Then
we have proved that $\mathfrak{o}_{K}(S)/\mathfrak{o}_{k}(S)$ has a normal basis if and only if for each $\chi\in\hat{G},$ $b(\chi)$

(depending on this $\beta$) is a principal ideal of $o_{k\langle\chi)}(S)$ and its generators satisfy some
congruence conditions and some conditions (as in (2.2)) for Galois actions (See [8,
Theorem 2.10 and Remark 2.11]). We have to use these results in this paper. In this
section, we study the properties of these ideals in the ramified case (For the unramified
case, see [8, Lemma 3.2]).

Let $g=g_{\chi}$ be the order of $\chi$ in $\hat{G}$ and $\mathfrak{a}(\chi)$ the module generated by the products
$\prod_{i=1}^{g}\alpha_{i}$ with $\alpha_{i}\in L(\chi)$ so that $\mathfrak{a}(\chi)$ is an ideal of $\mathfrak{o}_{k\langle\chi)}(S)$ and it follows from (2.1) that

(2.3) $(\langle\beta, \chi\rangle^{g_{\chi}})o_{k\langle\chi)}(S)=\mathfrak{a}(\chi)b(\chi)^{-g_{\chi}}$ .

Let $V(\chi)$ be the one dimensional $k(\chi)$-vector space of elements $\alpha$ of $K(\chi)$ with $\alpha^{s}=\chi(s)\alpha$

for all $s\in Gal(K(\chi)/k(\chi))\subset\rightarrow G$ . Let $\tilde{L}(\chi):=V(\chi)\cap \mathfrak{o}_{K\langle\chi)}(S)$ so that this is also a $\mathfrak{o}_{k\langle\chi)}(S)-$

module of rank one. Therefore there exists a fractional ideal $6(\chi)$ of $\mathfrak{v}_{k\langle\chi)}(S)$ such that
$\tilde{L}(\chi)=6(\chi)\langle\beta, \chi\rangle$ . Similarly we define an ideal $\tilde{\mathfrak{a}}(\chi)$ of $\mathfrak{o}_{k\langle\chi)}(S)$ . Then the formulas (2.2)
and (2.3) for these also hold. Since $b(\chi)\subset 6(\chi)$ , there exists an ideal $\mathfrak{c}(\chi)$ of $\mathfrak{o}_{k\langle\chi)}(S)$

such that

(2.4) $b(\chi)=6(\chi)c(\chi)$ .
Now we consider the gap $\mathfrak{c}(\chi)$ between $b(\chi)$ and $6(\chi)$ and it gives aposition of $b(\chi)$ in
the decomposition (2.3) of a resolvent into ideals (See Proposition 2.1, Example 2.2
and Proposition 2.3). It follows from (2.4) and the formulas (2.3) for $L(\chi)$ and $\tilde{L}(\chi)$ that
$\mathfrak{a}(\chi)=\tilde{\mathfrak{a}}(\chi)\mathfrak{c}(\chi)^{g}$ . Let $\mathfrak{f}(\chi)$ be the Artin conductor of $\chi$ in $K/k$ which is an ideal of $\mathfrak{o}_{k}$ .
By Fr\"ohlich’s result, $L(\chi)L(\overline{\chi})=\mathfrak{s}(\chi)$ , where let $\overline{\chi}:=\chi^{-1}$ (See [8, Lemma 3.1]), hence
$\mathfrak{a}(\chi)\mathfrak{a}(\overline{\chi})=\mathfrak{f}(\chi)^{g}$ . So,
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(2.5) $\tilde{\mathfrak{a}}(\chi)\tilde{\mathfrak{a}}(\overline{\chi})\{\mathfrak{c}(\chi)\mathfrak{c}(\overline{\chi})\}^{g}=\mathfrak{f}(\chi)^{g}o_{k\langle\chi)}(S)$ .

From now on, let $\chi$ be anon-trivial character of $G$ and $k_{\chi}$ the fixed field of $Ker\chi$

in $K/k$ so that $k_{\chi}/k$ is a cyclic extension of degree $g$ . Let

$l=l_{\chi}$ $:=[k_{\chi}(\chi):k(\chi)](>1)$

so that $l|g$ . Recall that $k_{\chi}(\chi)/k(\chi)$ is a cyclic Kummer extension of degree $l$ with primitive
element $\langle\beta, \chi\rangle$ (See [8, Section 3]). So there are an l-power free ideal $A_{\chi}$ and an ideal
$B_{\chi}$ of $o_{k(\chi)}(S)$ such that

(2.6) $(\langle\beta, \chi\rangle^{i})\mathfrak{o}_{k(\chi)}(S)=A_{\chi}B_{\chi}^{l}$ .
Since $\tilde{\mathfrak{a}}(\chi)$ is g-power free by [8, Lemma 2.8, $(i)$], it follows from the formula (2.3) for
$\tilde{L}(\chi)$ that

(2.7) $\tilde{\mathfrak{a}}(\chi)=A_{\chi}^{g/l}$ $(6(\chi)^{-1}=B_{\chi})$ .
Let $\zeta$ bea fixed primitive gth root of unity and $\Omega=\Omega_{\chi}$ $:=Gal(k(\chi)/k)$ . Then there exists
a group injection $\iota$ from $\Omega$ into $(Z/gZ)^{x}$ such that

$\zeta^{\omega}=\zeta^{\iota\langle\omega)}$ for all $\omega\in\Omega$ .
If $1<d|g$ , we write $\iota_{d}$ for the composition of $\iota$ and the canonical quotient map
$(Z/gZ)^{x}\rightarrow(Z/dZ)^{x}$ . For each $\omega\in\Omega/Ker\iota_{d}$ , let $t_{d}(\omega)$ be the integer satisfying

$\iota_{d}(\omega)=t_{d}(\omega)$ mod $d$ , $0<t_{d}(\omega)<d$ ,

and put

(2.8) $\theta:=\sum_{\omega\in\Omega}t_{g_{\chi}}(\omega)\omega^{-1}$ ,

which is in $Z\Omega$ . As $k_{\chi}(\chi)/k$ is an abelian extension, $A_{\chi}^{\omega-t_{l}\langle\omega)}$ is the lth power of a fractional
ideal of $o_{k(\chi)}(S)$ for each $\omega\in\Omega$ . Hence

(2.9) $ord_{\mathfrak{P}}(A_{\chi})=ord_{\mathfrak{P}^{\omega}}(A_{\chi}^{\omega})\equiv t_{l}(\omega)ord_{\mathfrak{P}^{\omega}}(A_{\chi})(mod l)$ ,

for any prime ideal $\mathfrak{P}$ of $\mathfrak{o}_{k\langle\chi)}$ , not lying above $S$, and any $\omega\in\Omega$ .
DEFINITION. For a prime ideal $p$ of $\mathfrak{o}_{k}$ , we denote by $e_{p}$ and $Z_{p}$ the ramification

index and the decomposition group of $p$ in $k(\chi)/k$ respectively. Let $\mathcal{U}=\mathcal{U}_{\chi}$ be the set
of prime ideals of $0_{k}$ , not belonging to $S$, which are ramified in $k_{\chi}/k$, and $\gamma=\parallel_{\chi}^{\sim}$ the
set of prime ideals $p$ of $\mathfrak{o}_{k}$ , not belonging to $S$, such that $\mathfrak{P}|p$ and $\mathfrak{P}$ I $A_{\chi}$ with some
prime ideal $\mathfrak{P}$ of $\mathfrak{o}_{k\{\chi)}$ .

We claim that $\parallel^{\sim}\subset \mathcal{U}$ If $\mathfrak{p}\in\gamma$ then $\mathfrak{P}|p$ and $\mathfrak{P}|A_{\chi}$ with some prime ideal $\mathfrak{P}$ of
$\mathfrak{o}_{k\langle\chi)}$ . Since $A_{\chi}$ is l-power free, $\mathfrak{P}$ is ramified in $k_{\chi}(\chi)/k(\chi)$ . Therefore $p$ is ramified in $k_{\chi}/k$

so that $p\in \mathcal{U}$. Next we claim that
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(2.10)
$\tilde{\mathfrak{a}}(\chi)\tilde{\mathfrak{a}}(\overline{\chi})=\prod_{p\in\gamma_{\omega}}\prod_{\in\Omega/Z_{p}}\mathfrak{P}^{g\omega}$

,

where $\mathfrak{P}$ is any prime ideal of $\mathfrak{o}_{k\langle\chi)}$ lying above $p$ . By (2.7) and noting that $l=l_{\chi}=l_{\overline{\chi}}$ , it
is sufficient to prove that

(2.11)
$A_{\chi}A_{\overline{\chi}}=\prod_{p\in r}\prod_{\omega\in\Omega/Z_{p}}\mathfrak{P}^{l\omega}$

This is equivalent to the three statements: for all prime ideals $\mathfrak{P}$ of $\mathfrak{o}_{k\langle\chi)}$ , not lying
above $S$,

(2.12) $ord_{\mathfrak{P}}(A_{\chi}A_{\overline{\chi}})=0$ or $l$ ,

(2.13) $ord_{\mathfrak{P}}(A_{\chi}A_{\overline{\chi}})>0\Rightarrow\forall\omega\in\Omega:ord_{\mathfrak{P}^{\omega}}(A_{\chi}A_{\overline{\chi}})>0$ ,

(2.14) $\parallel^{-}=\{\mathfrak{P}\cap k|\mathfrak{P}isaprimedivisorofA_{\chi}A_{\overline{\chi}}\}$ .
It follows from (2.6) for $\chi$ and for $\overline{\chi}$ that

$A_{\chi}A_{\overline{\chi}}=(\langle\beta, \chi\rangle\langle\beta,\overline{\chi}\rangle B_{\chi}^{-1}B_{\overline{\chi}}^{-1})^{l}$

Since $\langle\beta, \chi\rangle\langle\beta,\overline{\chi}\rangle$ is in $k(\chi)$ (Cf. [8, Lemma 2.3, (iv)]), we have

$l|(ord_{\mathfrak{P}}(A_{\chi})+ord_{\mathfrak{P}}(A_{\overline{\chi}}))$ .

So the fact that $A_{\chi}$ and $A_{\overline{\chi}}$ are l-power free implies (2.12) and also that

(2.15) $ord_{\mathfrak{P}}(A_{\chi})>0=ord_{\mathfrak{P}}(A_{\chi}A_{\overline{\chi}})>0$ .

It follows from (2.9) that $ord_{\mathfrak{P}}(A_{\chi})>0\Rightarrow ord_{\mathfrak{P}^{\omega}}(A_{\chi})>0$ . This fact, together with (2.15)
for $\mathfrak{P}$ and for $\mathfrak{P}^{\omega}$ , gives (2.13). (2.14) follows from (2.15) and the definition of $\gamma$ Thus
we have proved the claim (2.11), hence (2.10). By the definition of Artin conductors,
$\mathfrak{f}(\chi)$ becomes the Artin conductor of the character of $Gal(k_{\chi}/k)$ associated with $\chi$ . So by
the assumed tameness outside $S$,

(2.16)
$f(\chi)o_{k}(S)=\prod_{p\in l}p$

.

By the definition of $e_{p}$ and $Z_{p}$ , we have $p=\prod_{\omega\in\Omega/Zp}\mathfrak{P}^{e_{p}\omega}$ . Hence (2.5), (2.10) and (2.16)
yield the following proposition:

PROPOSITION 2.1. Let $\beta\in \mathfrak{o}_{K}$ be a free generator of $K$ over $kG$ and $\chi(\neq 1)\in\hat{G}$ . Let
the ideal $\mathfrak{c}(\chi)$ of $\mathfrak{o}_{k\langle\chi)}(S)$ be as in (2.4). Then under the above notations, we have

$\mathfrak{c}(\chi)\mathfrak{c}(\overline{\chi})=$
$\prod_{-,p\in\%\gamma_{\chi}}p\cdot\prod_{p\in r_{\chi}}(\prod_{\omega\in\Omega_{\chi}/Z_{\mathfrak{p}}}\mathfrak{P}^{\omega})^{e_{\mathfrak{p}}-1}$ ,

where $\mathfrak{P}$ is any prime ideal of $\mathfrak{o}_{k\langle\chi)}$ lying above $p\in\parallel_{\chi}\wedge$ . In particular, if $\mathcal{U}_{\chi}=\emptyset$ or $k$ contains
a primitive $g_{\chi}th$ root of unity (i.e., $k=k(\chi)$ , therefore $\mathcal{U}_{\chi}=\mathscr{V}_{\chi}$ and $e_{p}=1$ for all $p$ in $\gamma_{\chi}$),
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then we have $\mathfrak{c}(\chi)=(1)$ so that $b(\chi)=6(\chi)$ and $\mathfrak{a}(\chi)=\tilde{\mathfrak{a}}(\chi)$ .

EXAMPLE 2.2. We shall give an abelian extension $K/k$ with $\gamma_{\chi}\subsetneq \mathcal{U}_{\chi}$ for a certain
$\chi$ in $\hat{G}$ . Then we have $c(\chi)\neq(1)$ by Proposition 2.1 so that $b(\chi)\neq 6(\chi)$ . Let $p_{1},$ $p_{2}$ be odd
prime numbers such that $p_{2}\equiv 1$ mod $p_{1}$ . Let $K$ be a subfield of $Q(\zeta_{p_{1}p_{2}})$ with $Q(\zeta_{p_{2}})\subset K$

and $[K:Q(\zeta_{p_{2}})]>1$ and $k$ the unique subfield of $Q(\zeta_{p_{2}})$ with $[Q(\zeta_{p_{2}}):k]=p_{1}$ . Assume
that the set $S$ does not contain any prime ideal of $\mathfrak{o}_{k}$ lying above $p_{1}$ or $p_{2}$ . Let $F$ be
the unique subfield of $Q(\zeta_{p_{1}})$ with $[F:Q]=[K:Q(\zeta_{p_{2}})]$ , so that $ Gal(K/Q(\zeta_{p_{2}}))\cong$

$Gal(Fk/k)\cong Gal(F/Q)$ . Let $\psi_{1}$ be a non-trivial character of $Gal(Fk/k)$ of order $m$ and
$\psi_{2}$ a character of $Gal(Q(\zeta_{p_{2}})/k)$ of order $p_{1}$ . Let $\chi$ be the character of $G$ corresponding
to $(\psi_{1}, \psi_{2})$ by the canonical isomorphism:

$\hat{G}\cong Gal(Fk/k)^{\wedge}\times Gal(Q(\zeta_{p_{2}})/k)^{\wedge},$

so that $g_{\chi}=mp_{1}$ by $(p_{1}, m)=1$ . Sinoe $(p_{2}, mp_{1})=1$ , we have $k\cap Q(\chi)=Q$ . Also $Q(\zeta_{p_{2}})\subset$

$k_{\chi}\subset K,$ $[k_{\chi} : Q(\zeta_{p_{2}})]=m$ . Therefore
$\mathcal{U}=$ { $p$ ; prime in $\mathfrak{o}_{k}$ ; $p|p_{1}$ or $\mathfrak{p}|p_{2}$ }.

Since a prime ideal of $\mathfrak{o}_{k\langle\chi)}$ lying above $p_{2}$ is the only ramified ideal in $k_{\chi}(\chi)/k(\chi)$ and
it is tamely ramified, a prime divisor of the ideal $A_{\chi}$ divides $p_{2}$ . Hence

$\gamma=$ { $p$ ; prime in $\mathfrak{o}_{k}$ ; $p|p_{2}$ }.
So $\gamma\subsetneq \mathcal{U}$. (Note that $e_{p}=1$ for all $p$ in $\gamma$ now.)

The following proposition is a generalization of Sodaigui [9, Th\’eor\‘eme 2.2]:

PROPOSITION 2.3. Let $\beta,$
$\chi$ be as in Proposition 2.1 and $b(\chi)$ (resp. $\mathfrak{a}(\chi)$) afractional

ideal of $0_{k\langle\chi)}(S)$ depending on $\beta$ as in (2.1) (resp. (2.3)). Suppose that $\mathcal{U}_{\chi}\neq\emptyset$ .
(i) Assume that (A1): $\mathfrak{p}\in \mathcal{U}_{\chi}\Rightarrow p\{/g_{\chi}$ . Then $\mathfrak{a}(\chi)$ is $g_{\chi}$-power free.
(ii) Assume that the map $\iota$ is an isomorphism (i.e., $k\cap Q(\chi)=Q$) and (A2): for all

$p$ in $\mathcal{U}_{\chi},$ $p$ is totally ramified in $k_{\chi}/k$ . Then any $p$ in $\mathcal{U}_{\chi}$ is completely decomposed in $k(\chi)/k$

and we have

$(\langle\beta, \chi\rangle^{g_{\chi}})o_{k\langle\chi)}(S)=\prod_{p\in\%}\mathfrak{P}^{\theta}b(\chi)^{-g_{\chi}}$
,

where $\mathfrak{P}$ is some prime ideal of $\mathfrak{o}_{k\{\chi)}$ lying above $p$ and $\theta$ is defined in (2.8).

REMARK 2.4. If $g_{\chi}$ is a prime power, then the assumption (A1) holds, because
any $p$ in $\mathcal{U}$ is tamely ramified in $k_{\chi}/k$ .

$PR\infty F$ OF PROPOSITION 2.3. (i) By (A1), we have $e_{p}=1$ for all $p\in \mathcal{U}$ Let $p\in \mathcal{U}$

and $\mathfrak{P}$ be a prime ideal of $\mathfrak{o}_{k(\chi)}$ with $\mathfrak{P}|p$ . Since $e_{p}=1,$ $\mathfrak{P}$ is ramified in $k_{\chi}(\chi)/k(\chi)$ . Also $\mathfrak{P}\ell l$.
Therefore by Kummer theory, $\mathfrak{P}|A_{\chi}$ so that $p\in Y$ Thus $\mathcal{U}=Y$ Hence $\mathfrak{c}(\chi)=(1)$ by
Proposition 2.1. So by (2.4), $b(\chi)=6(\chi)$ so that $\mathfrak{a}(\chi)=\tilde{\mathfrak{a}}(\chi)$ . This proves the assertion (i).

(ii) By (A2), the assumption (A1) holds so that the assertion (i) is true. For $\mathfrak{p}\in \mathcal{U}$,
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since $e_{p}=1$ and $\mathfrak{p}$ is totally ramified, we have $k_{\chi}\cap k(\chi)=k$, therefore $l=g$ . Consequently
$\mathfrak{a}(\chi)=\tilde{\mathfrak{a}}(\chi)=A_{\chi}$ by (2.7). We define a subset $\gamma_{1}$ of $\gamma$ by

$\gamma_{1}$ $:=$ { $\mathfrak{P}\cap k|\mathfrak{P}$ is a prime ideal of $\mathfrak{o}_{k\langle\chi)}$ with $ord_{\mathfrak{P}}(A_{\chi})=1$ }.
Claim that $\mathcal{U}=r_{1}$ . Let $\mathfrak{p}\in \mathcal{U}$ and $\mathfrak{P}$ be a prime ideal of $\mathfrak{o}_{k\langle\chi)}$ with $\mathfrak{P}|\mathfrak{p}$ . Then $i:=$

$ord_{\mathfrak{P}}(A_{\chi})\geq 1$ (i.e., $p\in\gamma$) as seen above. Since $g$ is the ramification index of $\mathfrak{P}$ in
$k_{\chi}(\chi)/k(\chi)$ , we have $g=g/(i, g)$ from Kummer theory ([3, p. 92]). So $(i, g)=1$ . Since $\iota$ is
surjective, there is some $\omega$ in $\Omega$ such that $i=t_{g}(\omega)$ , therefore $1\equiv t_{g}(\omega^{-1})i\equiv ord_{\mathfrak{P}^{\omega}}(A_{\chi})$

mod $g$ by (2.9). As $0<ord_{\mathfrak{P}^{\omega}}(A_{\chi})<g$ , we have $ord_{\mathfrak{P}^{\omega}}(A_{\chi})=1$ . Hence $p=\mathfrak{P}^{\omega}\cap k\in\gamma_{1}$ .
Thus $\mathcal{U}=\gamma_{1}$ . For $p\in \mathcal{U}$, let $\omega\in Z_{p}$ and $\mathfrak{P}$ a prime ideal of $0_{k\langle\chi)}$ with $\mathfrak{P}|p$ . Since $\mathfrak{P}^{\omega}=\mathfrak{P}$

and $\mathfrak{p}\in\parallel_{1}^{\wedge},1\equiv t_{g}(\omega)$ mod $g$ by (2.9), therefore $\omega=1;\mathfrak{p}$ is completely decomposed in
$k(\chi)/k$ . Since $\mathcal{U}=\mathscr{V}_{1}$ , we can define a square free ideal $C$ of $\mathfrak{o}_{k\langle\chi)}(S)$ by $C:=\prod_{p\in\%}\mathfrak{P}^{\omega}$ ,
where $\mathfrak{P}$ is some prime ideal of $\mathfrak{o}_{k\langle\chi)}$ with $\mathfrak{P}|p$ and $ord_{\mathfrak{P}}(A_{\chi})=1$ . Then (2.9) and the
assumption that $\iota$ is surjective imply $A_{\chi}=C^{\theta}$ . Thus the assertion (ii) is proved. $\square $

3. Decomposition of prime ideals.

In this section, suppose that $k$ is a totally real number field or a CM-field. Let $l$

be an odd prime or $l=4$ , and $p$ a prime ideal of $\mathfrak{o}_{k}$ such that $p1^{\prime}l$. We assume that

(3.1) $k/Q$ is Galois and $F:=k\cap Q(\zeta_{l})\subset k^{+}$ ,

so that $k/F$ is Galois and $F$ is totally real. Since $l$ is an odd prime or $l=4,$ $Gal(Q(\zeta_{l})/F)$

is cyclic. By $p1^{\prime}l,$
$p\cap \mathfrak{o}_{F}$ is unramified in $Q(\zeta_{l})/F$. Now we wish to discuss the following

problem:

$(\#)$ : For any prime ideal $\mathfrak{P}$ of $\mathfrak{o}_{k\langle\zeta_{l})}$ with $\mathfrak{P}|p,$ $\mathfrak{P}$ is not decomposed in
$k(\zeta_{l})/k(\zeta_{l})^{+}?$

So we need the following proposition:

PROPOSITION 3.1. Let $F$ be a totally real number field and $K_{i}/F(i=1,2)$ a finite
Galois extension with Galois group $G_{i}$ such that $K_{1}\cap K_{2}=F$. Assume that $K_{1}$ is a totally
real numberfield or a CM-field, and $K_{2}$ is a CM-field, so that $|G_{2}|>1$ . Suppose that $G_{2}$

has only an element of order two (For example, this is true when $G_{2}$ is cyclic). Put
$L:=K_{1}K_{2}$ which is a CM-field. Let $\mathfrak{P}$ be a prime ideal of $\mathfrak{o}_{L},$ $p_{i}$ $:=\mathfrak{P}\cap \mathfrak{o}_{K_{i}}(i=1,2)$ and
$p:=\mathfrak{P}\cap \mathfrak{o}_{F}$ . Suppose that $p$ is unramified in $K_{2}/F.f_{i}(i=1,2)$ denotes the residue degree
of $p$ in $K_{i}/F$. Then we have the following:

(I) The case where $K_{1}$ is totally real.
$\mathfrak{P}$ is not decomposed in $L/L^{+}\Leftrightarrow ord_{2}(f_{1})+1\leq ord_{2}(f_{2})$ .

(II) The case where $K_{1}$ is a CM-field.
(i) If $p_{1}$ is decomposed in $K_{1}/K_{1}^{+}$ , then $\mathfrak{P}$ is decomposed in $L/L^{+}$ .
(ii) If $p_{1}$ is ramified in $K_{1}/K_{1}^{+}$ , then $\mathfrak{P}$ is not decomposed in $ L/L^{+}\Leftrightarrow ord_{2}(f_{1})+1\leq$
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$ord_{2}(f_{2})$ .
(iii) If $p_{1}$ is inert in $K_{1}/K_{1}^{+}$ , then $\mathfrak{P}$ is not decomposed in $L/L^{+}\Leftrightarrow ord_{2}(f_{1})=ord_{2}(f_{2})$

$(>0)$ .
$PR\infty F$ . Let $\sigma_{i}(i=1,2)$ be a Frobenius automorphism of $P\iota$ in $K_{i}/F$ , and $T_{i}$ and

$Z_{i}$ the inertia and decomposition groups of $P\iota$ in $K_{i}/F$ , respectively. Let $\theta$ be a Frobenius
automorphism of $\mathfrak{P}$ in $L/F$, and $T$ and $Z$ the inertia and decomposition groups of $\mathfrak{P}$

in $L/F$, respectively. As $K_{1}\cap K_{2}=F,$ $Gal(L/F)$ is identified with $G_{1}\times G_{2}$ . Since $|T|=|T_{1}|$

by $T_{2}=\{1\},$ $T\subset T_{1}\times T_{2}$ implies $T=T_{1}\times\{1\}$ . If $\theta_{i}(i=1,2)$ is the restriction of $\theta$ to $K_{i}$ ,
then $\theta=(\theta_{1}, \theta_{2})$ and $\theta_{i}$ is aFrobenius automorphism of $P\iota$ in $K_{i}/F$. Therefore $\theta_{1}T_{1}=$

$\sigma_{1}T_{1}$ and furthermore $\theta_{2}=\sigma_{2}$ by $T_{2}=\{1\}$ . Hence

(3.2) $Z=\bigcup_{m}\theta^{m}T=\bigcup_{m}(\sigma_{1}, \sigma_{2})^{m}\cdot(T_{1}\times\{1\})$ ,

where $m$ ranges over all integers. Let $\rho_{i}(i=1,2)$ be the restriction of the complex
conjugation to $K_{i}$ . Since $F$ is real, $\rho_{i}\in G_{i}$ and furthermore the order of $\rho_{2}$ in $G_{2}$ is two
since $K_{2}$ is a CM-field. Let $ H:=\langle(\rho_{1}, \rho_{2})\rangle$ , where note that $\rho_{1}=1$ when $K_{1}$ is real.
Then $L^{+}$ is the fixed field of $H$ in $L/F$. So,

(3.3) $\mathfrak{P}$ is not decomposed in $L/L^{+}\Leftrightarrow H\subset Z$ ,

because $H\cap Z$ is the decomposition group of $\mathfrak{P}$ in $L/L^{+}$ . If $\mathfrak{P}$ is not decomposed in
$L/L^{+}$ , then $\rho_{1}\in Z_{1}$ from (3.3) and $Z\subset Z_{1}\times Z_{2}$ , so that $\langle\rho_{1}\rangle\cap Z_{1}=\langle\rho_{1}\rangle$ , hence $p_{1}$ is
not decomposed in $K_{1}/K_{1}^{+}$ . This proves the assertion (II-i). For each $i=1,2$, let
$t_{i}$ $;=ord_{2}(f_{i})$ .

The cases (I) and (II-ii). Since $\langle\rho_{1}\rangle\cap T_{1}$ is the inertia group of $p_{1}$ in $K_{1}/K_{1}^{+},$ $p_{1}$

is ramified in $K_{1}/K_{1}^{+}\Leftrightarrow\rho_{1}\in T_{1}$ . So $\rho_{1}T_{1}=T_{1}$ by the assumptions. By (3.2) and (3.3),
we may show that $t_{1}+1\leq t_{2}\Leftrightarrow there$ exists an integer $m$ such that $T_{1}=\sigma_{1}^{m}T_{1}$ and $\rho_{2}=\sigma_{2}^{m}$ .
If suchm exists, $thenwehavef_{1}|m,f_{2}$ is even, $(f_{2}/2)|mandm/(f_{2}/2)$ is odd, because

$f_{1}$ is the order of $\sigma_{1}T_{1}$ in $Z_{1}/T_{1}$ and $f_{2}$ is the order of $\sigma_{2}$ in $G_{2}$ . Let $a$ be the least
common multiple of $f_{1}$ and $f_{2}/2$ . Since $a|m$ , we have

${\rm Max}(t_{1}, t_{2}-1)=ord_{2}(a)\leq ord_{2}(m)=ord_{2}(f_{2}/2)=t_{2}-1$ .
Therefore $t_{1}+1\leq t_{2}$ . Conversely, assume that this holds. So $f_{2}$ is even. Let $a$ be the
same meaning as above. Then $T_{1}=d_{1}T_{1}$ . Since $t_{1}\leq t_{2}-1,$ $ord_{2}(a)=ord_{2}(f_{2}/2)$ so that
the order of $\sigma_{2}^{a}$ is two. Since $G_{2}$ has only an element of order two, we have $\rho_{2}=\sigma_{2}^{a}$ .
This proves the assertions.

The case (II-iii). Now the order of $\rho_{1}$ in $G_{1}$ is two. Since $p_{1}$ is inert in $K_{1}/K_{1}^{+}$ ,
$t_{1}>0,$ $\langle\rho_{1}\rangle\cap Z_{1}=\langle\rho_{1}\rangle$ and $\langle\rho_{1}\rangle\cap T_{1}=\{1\}$ . So $\rho_{1}\in Z_{1}$ and $\rho_{1}\not\in T_{1}$ . Therefore $\rho_{1}T_{1}$ is
the element of order two in the cyclic group $Z_{1}/T_{1}$ . By (3.2) and (3.3), we may show
that $t_{1}=t_{2}\Leftrightarrow there$ exists an integer $m$ such that $p_{1}T_{1}=\sigma_{1}^{m}T_{1}$ and $\rho_{2}=\sigma_{2}^{m}$ . This is
similarly proved as in the above cases (e.g., let $a$ be the least common multiple of $f_{1}/2$
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and $f_{2}/2$ in this case). $\square $

Retum to the situation as before Proposition 3.1. Considering (II-i) of its pro-
position, we distinguish two cases:

(C1) kistotally real or “kisaCM-field and $pisramifiedink/k^{+}’$ .
(C2) kisaCM-field and $pisinertink/k^{+}$ .

Let $p:=p\cap Z$ . We denote by $a$ and $b$ the residue degrees of $p$ in $k/Q$ and $Q(\zeta_{l})/Q$ ,

respectively. Let $f,f_{1}$ and $f_{2}$ be the residue degrees of $p\cap \mathfrak{o}_{F}$ in $F/Q,$ $k/F$ and $Q(\zeta_{l})/F$,

respectively. So $a=ff_{1},$ $b=ff_{2}$ , therefore

(3.4) $ord_{2}(a)=ord_{2}(f)+ord_{2}(f_{1})$ , $ord_{2}(b)=ord_{2}(f)+ord_{2}(f_{2})$ .

Note that $F=Q,$ $a=f_{1}$ and $b=f_{2}$ hold under the assumption (3.1) when $l=4$ .

LEMMA 3.2. Let $l$ be an oddprime or $l=4$ , and $p$ a prime ideal of $\mathfrak{v}_{k}$ such that $p|^{\prime}l$.
Put Np $:=|\mathfrak{o}_{k}/p|$ . Then under the assumption (3.1) and the above notations, we have

(i) If $l$ is an odd prime and $1|$ (Np–1), then $(\#)$ does not hold in the case (C1).
(ii) When $l=4,$ $(\#)holds\Leftrightarrow Np\equiv 3$ mod4 in the case (C1), and $ord_{2}(a)=1$ and

$p\equiv 3$ mod4” in the case (C2).

PROOF. (i) By $1|$ (Np-l), $p^{a}=Np\equiv 1$ mod 1. Since $b$ is the order of $p$ mod $l$,
we have $b|a$ so that $ord_{2}(b)\leq ord_{2}(a)$ . It follows from (3.4) that $ord_{2}(f_{2})\leq ord_{2}(f_{1})<$

$ord_{2}(f_{1})+1$ . Hence $(\#)$ does not hold by Proposition 3.1, (I), (II-ii) (more precisely, any
prime ideal $\mathfrak{P}$ of $\mathfrak{o}_{k\langle\zeta_{l})}$ with $\mathfrak{P}|p$ is decomposed in $k(\zeta_{l})/k(\zeta_{l})^{+})$ .

(ii) Now $Q(\zeta_{l})=Q(\sqrt{-1})$ and $p$ is an odd prime. So,

$p\equiv 1mod 4\Leftrightarrow p$ is decomposed in $Q(\zeta_{l})/Q\Leftrightarrow b=1\Leftrightarrow ord_{2}(b)=0$ ,

$p\equiv 3mod 4\Leftrightarrow p$ is inert in $Q(\zeta_{l})/Q\Leftrightarrow b=2\Leftrightarrow ord_{2}(b)=1$ .
Hence $ord_{2}(a)+1=(\leq)ord_{2}(b)\Leftrightarrow p\equiv 3$ mod4 and $ord_{2}(a)=0’\Leftrightarrow Np=p^{a}\equiv 3$ mod4. In
(C2), we have $ord_{2}(a)>0$ . Since $ord_{2}(b)\leq 1,$ $ord_{2}(a)=ord_{2}(b)\Leftrightarrow ord_{2}(a)=1$ and $p\equiv 3$

mod4. Now the assertions follow from Proposition 3.1. $\square $

For a prime ideal $p$ of $\mathfrak{o}_{k}$ with $p1^{\prime}l$, putting $p:=\mathfrak{p}\cap Z$ , let $a_{p}$ (resp. $b_{p}$) be the
residue degree of $p$ in $k/Q$ (resp. $Q(\zeta_{l})/Q$). When 1 is an odd prime (resp. $l=4$), we
define the sets of prime ideals of $\mathfrak{o}_{k}$ as follows.

$\mathfrak{S}_{1,l}$ $:=$ { $p|p\rho l$ and $ord_{2}(a_{p})+1\leq ord_{2}(b_{p})$ (resp. $Np\equiv 3$ mod4)} ,

if $k$ is totally real, and

$\mathfrak{S}_{21,l}$ $:=\{p|p1^{\prime}l,$
$\mathfrak{p}$ is ramified in $k/k^{+}$ and

$ord_{2}(a_{p})+1\leq ord_{2}(b_{p})$ (resp. $Np\equiv 3$ mod4)} ,

$\mathfrak{S}_{22,l}$ $:=\{p|p1^{\prime}l,$ $p$ is inert in $k/k^{+}$ and
$ord_{2}(a_{p})=ord_{2}(b_{p})$ (resp. $ord_{2}(a_{p})=1$ and $p\equiv 3$ mod4)} ,
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if $k$ is a CM-field. Then Proposition 3.1 and Lemma 3.2, (ii) yield:

PROPOSITION 3.3. Let $l$ be an odd prime or $1=4$ . Under the above notations ana
the assumption (3.1), suppose that $S$ is a subset of the set $\mathfrak{S}_{1,l}$ (resp. $\mathfrak{S}_{21,l}\cup \mathfrak{S}_{22,l}$), if $k$

is totally real (resp. a CM-field). Then for any prime ideal $\mathfrak{P}$ of $\mathfrak{o}_{k\langle\zeta_{l})}$ lying above $S,$ $\mathfrak{P}$ is
not decomposed in $k(\zeta_{l})/k(\zeta_{l})^{+}$ .

Now we discuss the cardinal of sets $\mathfrak{S}_{1,l}$ and $\mathfrak{S}_{22,l}$ .
LEMMA 3.4. Let $l$ be an odd prime and $e:=ord_{2}(l-1)(\geq 1)$ . For a prime $p$ such

that $ptl$, let $b_{p}$ be the residue degree of $p$ in $Q(\zeta_{l})/Q$ . Then for each $i(1\leq i\leq e)$, there are
infinitely many primes $p$ such that $i=ord_{2}(b_{p})$ and $p\ell l$.

$PR\infty F$ . Let $r$ be a primitive root mod $l$ and $c$ a divisor of $(1-1)/2^{e}$ . By Dirichlet’s
density theorem, there are infinitely many primes $p$ such that

(3.5) $p\equiv r^{2^{e-i}c}$ mod $l$ .
For such primes $p$ , we have $b_{p}=(l-1)/(2^{e-i}c)$ , therefore $i=ord_{2}(b_{p})$ . This proves our
lemma. $\square $

LEMMA 3.5. Let $l$ be an oddprime or $1=4$ . Assume that $k/Q$ is an abelian extension
with the discriminant $d$. Then under the above notations, we have

(i) $[k:Q]$ is not a power of 2 and $(d, l)=1\Rightarrow|\mathfrak{S}_{1,l}|=\infty$ .
(ii) $l\equiv 1$ mod4 and $(d, l)=1\Rightarrow|\mathfrak{S}_{1,l}|=\infty$ .
(iii) Let $k$ be a CM-field. If we put

$\mathfrak{S}_{2,l}$ $:=$ {$p|p$ is inert in $k/k^{+}$ and $p^{a_{p}/2}\equiv-1$ mod $l$},
then $\mathfrak{S}_{2,l}\subset \mathfrak{S}_{22,l}and|\mathfrak{S}_{2,l}|=\infty$ .

$PR\infty F$ . (i) Since $[k:Q]$ is nota power of2, there is an element $\sigma ofGal(k/Q)$

of odd prime order. By Tchebotarev’s density theorem, there are infinitely many primes
$p_{0}$ with $p_{0}1^{\prime}d$, whose Frobenius automorphism in $k/Q$ is equal to $\sigma$ . Take such a prime
$p_{0}$ . Let $m(\in Z)$ be the conductor of $k/Q$ so that $Gal(k/Q)$ is isomorphic to the quotient
group of $(Z/mZ)^{x}$ . Since $(d, f)=1,$ $(m, l)=1$ . By Dirichlet’s density theorem, there are
infinitely many primes $p$ such that $p\equiv p_{0}$ mod $m$ , and (3.5) for $i=1$ (resp. $p\equiv 3$ mod4)
holds if $l$ is odd (resp. $l=4$). Let $p$ be a prime ideal of $\mathfrak{o}_{k}$ lying above such a prime
$p$ . Then $ord_{2}(b_{p})=1$ by Lemma 3.4 and the proof of Lemma 3.2, (ii). Furthermore
$ord_{2}(a_{p})=0$ , because $\sigma$ is also the Frobenius automorphism of $p$ in $k/Q$ and $a_{p}$ is the
order of $\sigma$ . Hence $p\in \mathfrak{S}_{1,l}$ . This proves the assertion.

(ii) Now $l$ is odd and, by (i), we may assume that $[k:Q]$ is a power of 2. So
there is an element $\sigma$ of $Gal(k/Q)$ of order two. Then the same argument as in (i) proves
the assertion. (Since $l\equiv 1$ mod4, use (3.5) for $i=2$ . Then we obtain $ord_{2}(b_{p})=2$ ,
$ord_{2}(a_{p})=1.)$

(iii) Let $p\in \mathfrak{S}_{2,l}$ . Since $b_{p}$ is the order of $p$ mod $l$ and $p^{a,/2}\equiv-1$ mod $l$, we have
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$ord_{2}(a_{p})=ord_{2}(b_{p})$ (resp. $ord_{2}(a_{p})=1$ and $p\equiv 3$ mod4) when $I$ is odd (resp. $l=4$). Hence
$p\in \mathfrak{S}_{22,l}$ so that $\mathfrak{S}_{2,l}\subset \mathfrak{S}_{22,l}$ . By Dirichlet’s density theorem, there are infinitely many
primes $p$ such that $p\equiv-1$ mod $ml$ . Let $\mathfrak{p}$ be a prime ideal of $\mathfrak{o}_{k}$ lying above such a
prime $p$ . Since $p\equiv-1$ mod $m$ , the complex conjugation $\rho(\neq 1)$ on $k$ is the Frobenius
automorphism of $p$ in $k/Q$ . So $a_{p}=2$ and $p$ is inert in $k/k^{+}$ . Hence $p\in \mathfrak{S}_{2,l}$ . This proves
our lemma. $\square $

4. A sufficient condition for the non-existence.

We assume that $k/Q$ is a Galois extension of even degree and $K/k$ is a finite abelian
extension with conductor $\mathfrak{m}$ . And we write the finite component $\mathfrak{m}_{0}$ of $\mathfrak{m}$ as the form
$\mathfrak{m}_{0}=\mathfrak{m}_{1}\mathfrak{m}_{2}$ , satisfying that $p|\mathfrak{m}_{1}\Rightarrow ord_{p}(\mathfrak{m}_{0})=1$

’ and ‘
$p|\mathfrak{m}_{2}\Rightarrow ord_{p}(\mathfrak{m}_{0})\geq 2’$ . Let $l$ be

a fixed odd prime such that $k\cap Q(\zeta_{l})=Q$ . Put $\mathfrak{S}_{l}$ $:=\mathfrak{S}_{1,l}$ (resp. $\mathfrak{S}_{21,l}u\mathfrak{S}_{22,l}$), when $k$

is totally real (resp. a CM-field), where the set $\mathfrak{S}_{*,l}$ is defined before Proposition 3.3.
Suppose that $S=S_{l}$ is a finite subset of $\mathfrak{S}_{l}$ such that $\{p;p|\mathfrak{m}_{2}\}\subset S$. So $S$ contains all
prime ideals of $\mathfrak{o}_{k}$ which are wildly ramified in $K/k$ , by the conductor-discriminant
theorem. For a prime ideal $p$ of $\mathfrak{o}_{k},$ $e_{p}$ denotes the ramification index of $p$ in $k/Q$ . We
define the finite set of prime ideals of $\mathfrak{o}_{k}$ as follows.

$\mathfrak{T}_{l}$ $:=\{p;2|e_{p}, ord_{2}(b_{p})=0\}$ ,

where $b_{p}$ is the residue degree of $p\cap Z$ in $Q(\zeta_{l})/Q$ . Then note that $\mathfrak{T}_{l}\cap \mathfrak{S}_{1,l}=\mathfrak{T}_{l}\cap$

$\mathfrak{S}_{21,l}=\emptyset$ .

THEOREM 4.1. Under the above assumptions and notations, suppose that $ Gal(K\cap$

$\tilde{k}/k)$ is a 2-group and that there exists some $p$ with $pt2$ in $\mathfrak{T}_{l}$ , not belonging to $S$, such
that $l|[K\cap k(p):k]$ . Then $o_{K}(S)/o_{k}(S)$ does not have a normal basis.

REMARK 4.2. As seen below, note that $p\uparrow l$. And note that $l|[k(p):k]=(N\mathfrak{p}-$

$1)h_{k}/w_{p}$ , where $w_{p}$
$:=|(\mathfrak{o}_{k}^{x}+p)/p|$ and $h_{k}$ $:=[\tilde{k}:k]$ .

PROOF OF THEOREM 4.1. Let $L:=K\cap k(p)$ . Since $l|[L:k]$ , there exists some $\chi$

in $Gal(L/k)^{\wedge}$ such that $g_{\chi}=l$ . Let $k_{\chi}$ be the fixed field of Ker $\chi$ in $L/k$ . Then $p$ is ramified
in $k_{\chi}/k$ . If not so, then $k_{\chi}\subset k$ so that $k_{\chi}\subset K\cap ff$. This contradicts that $Gal(K\cap k/k)$ is
a 2-group. Consequently since $k_{\chi}\subset k(p),$ $p$ is tamely ramified in $k_{\chi}/k$ so that $p|^{\prime}g_{\chi}$ .

Assume that $\mathfrak{o}_{K}(S)/o_{k}(S)$ has a normal basis; therefore so does $\mathfrak{o}_{L}(S)/\mathfrak{o}_{k}(S)$ . By the
assumed tameness in $K/k$ outside $S$, there is some $\gamma$ in $\mathfrak{o}_{L}(S)$ such that $Tr_{L/k}(\gamma)=$

$\langle\gamma, 1\rangle_{L/k}=1$ . This yields that there is some $\alpha$ in $\mathfrak{o}_{L}(S)$ such that $\alpha$ is a generator of normal
basis of $\mathfrak{o}_{L}(S)/\mathfrak{o}_{k}(S)$ with $\langle\alpha, 1\rangle=1$ . If $b(\chi)$ is the fractional ideal of $\mathfrak{o}_{k\langle\chi)}(S)$ depending
on $\alpha$ as in (2.1), then we have $b(\chi)=(1)$ by [8, Lemma 2.8, (ii)]. Furthermore $p$ is totally
ramified in $k_{\chi}/k$ and $k\cap Q(\chi)=Q$ by the assumption. So by Proposition 2.3, (ii),

(4.1) $(\langle\alpha, \chi\rangle^{g_{\chi}})o_{k\langle\chi)}(S)=\mathfrak{P}^{\theta}$ ,
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where $\theta$ is defined in (2.8) and $\mathfrak{P}$ is some prime ideal of $\mathfrak{o}_{k\langle\chi)}$ lying above $p$ . Put $p:=$
$p\cap Q$ and $P:=\mathfrak{P}\cap Q(\chi)$ . Let $b:=b_{p}$ and $q$ be the cardinal of $\mathfrak{o}_{0tx)}/P$ so that $q=p^{b}$ and
$\mathfrak{o}_{0\langle x)^{/}}P$ is identified with the field $F_{q}$ of $q$ elements. Let $T$ be the trace map from $F_{q}$ to
$F_{p}$ . Define

$\psi:F_{q}\rightarrow C^{x}$ , $\psi(x)=\zeta_{p}^{T\langle x)}$ .

Let $(\frac{X}{P})_{g_{\chi}}$ be the $g_{\chi}th$ power residue symbol mod $P$ in $Q(\chi)$ . Define the Gauss sum

$\tau:=-\sum_{x\in F_{q}^{x}}(\frac{x}{P})_{g_{\chi}}^{-1}\psi(x)$ .

Let $\Omega:=Gal(k(\chi)/k)$ . Sinoe $p\{/g_{\chi}$ , note that there is a canonical isomorphism:

$\Omega\cong Gal(Q(\chi)/Q)\cong Gal(Q(\zeta_{p})(\chi)/Q(\zeta_{p}))$ .
By Stickelberger’s theorem,

(4.2) $(\tau^{g_{\chi}})\mathfrak{o}_{0tx)}=P$ .
Now we establish some relation between Gauss sum $\tau$ and the resolvent $\langle\alpha, \chi\rangle$ . As
$p\{/g_{\chi},$ $p$ is unramified in $Q(\chi)/Q$ . So $e:=e_{p}$ is the ramification index of $\mathfrak{P}$ in $k(\chi)/Q(\chi)$ .
Let $Z$ be the decomposition group of $\mathfrak{P}$ in $k(\chi)/Q(\chi)$ and put $\mathscr{G}:=Gal(k(\chi)/Q(\chi))$ . Then
elements of $\Omega$ and $\mathscr{G}$ are commutative. So by (4.2) and (4.1),

$(\tau^{g_{\chi}})\mathfrak{o}_{k\langle\chi)}(S)=(\prod_{\sigma\in l/z}\mathfrak{P}^{\sigma})^{\theta e}=\prod_{\sigma\in l/z}(\mathfrak{P}^{\theta})^{e\sigma}$

(4.3)

$=(\prod_{\sigma\in l/Z}\langle\alpha, \chi\rangle^{g_{\chi}e\sigma})\mathfrak{o}_{k\langle\chi)}(S)$ .

As $g_{\chi}$ is odd, there is some $\omega$ in $\Omega$ such that $\zeta^{\omega}=\zeta^{2}$ , where $\zeta$ is a primitive $g_{\chi}th$ root
of unity. Let $J:=\tau^{2-\omega}$ (Jacobi sum) in $Q(\chi)$ . Then we have

$J\overline{J}=q$ , $J\equiv-1$ mod $(\zeta-1)$ ,

where the bar denotes the complex conjugation. Let $A:=\langle\alpha, \chi\rangle^{2-\overline{\omega}}$ in $k(\chi)$ where $\tilde{\omega}$

is an extension of $\omega$ to $L(\chi)$ , and put $B:=\prod_{\sigma\in C/Z}A^{\sigma}$ . Then since $\langle\alpha, \chi\rangle\equiv\langle\alpha, 1\rangle=$

$1$ mod $(\zeta-1)$ , we have $B\equiv 1$ mod $(\zeta-1)$ . Furthermore it follows from (4.3) that
$(J)\mathfrak{o}_{k\langle\chi)}(S)=(B^{e})\mathfrak{o}_{k(\chi)}(S)$ . Hence there exists some $\epsilon$ in $\mathfrak{o}_{k\langle\chi)}(S)^{x}$ such that

(4.4) $B^{e}=\epsilon J$ .

By the definition of $S$ and Proposition 3.3, the complex conjugation acts trivially on
$S$; therefore $\epsilon\in \mathfrak{o}_{k\langle\chi)}(S)^{x}$ implies $\overline{\epsilon}\in o_{k(\chi)}(S)^{x}$ and $ord_{\mathfrak{P}}(\epsilon/\overline{\epsilon})=0$ for any prime ideal $\mathfrak{P}$ of
$\mathfrak{o}_{k\langle\chi)}$ lying above $S$. Since $k$ is a totally real number field or a CM-field, $k(\chi)$ is a CM-field.
Hence $\epsilon/\overline{\epsilon}$ is a root of unity by the generalized Dirichlet’s unit theorem. Let $2^{a}w$ be the
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number of roots of unity in $k(\chi)$ where $w$ is odd. Since $J/\overline{J}=J^{2}/q$ , it follows from
(4.4) that

$(B/\overline{B})^{we}=(J^{w}/q^{w/2})^{2}\cdot(\epsilon/\overline{\epsilon})^{w}$

Since $e$ is even, there is some 2-power root of unity $\xi$ such that

$(B/\overline{B})^{we/2}=\pm J^{w}/(q^{w/2}\xi)$ .
It follows from $B\equiv 1,$ $J\equiv-1$ mod $(\zeta-1)$ and $(q, g_{\chi})=1$ that

(4.5) $q^{w/2}\xi\equiv\pm 1$ mod $(\zeta-1)$ .

Let $F:=Q(\chi)(q^{1/2}, \xi)$ . As $b$ is odd, we have $q^{1/2}\not\in Q$ . Since $(2q, g_{\chi})=1,$ $Gal(Q(q^{1/2}, \xi)/Q)$

is identified with $Gal(F/Q(\chi))$ . Therefore by $(2, q)=1$ , there is an isomorphism $\varphi$ of
$F/Q(\chi)$ such that $\varphi(\xi)=\xi$ and $\varphi(q^{1/2})=-q^{1/2}$ . Applying $\varphi$ to (4.5), since $w$ is odd, we
have $1\equiv-1$ mod $(\zeta-1)$ , hence $l=g_{\chi}=2$ . This is a contradiction. Thus our theorem is
proved. $\square $

PROPOSITION 4.3. Assume that $Q\subset k\subset K\subset Q(\zeta_{p}),$ $p$ being an odd prime, and
$[k:Q]$ is even. Suppose that there exists an odd prime 1 such that $l|[K:k]$ . Then for
any finite subset $S$ (or $ S=\emptyset$) of $\mathfrak{S}_{l},$ $\mathfrak{o}_{K}(S)/\mathfrak{o}_{k}(S)$ does not have a normal basis.

REMARK 4.4. If we assume that $l\equiv 1$ mod4 in the case where $k$ is totally real and
$[k:Q]$ is a power of 2, then the set $\mathfrak{S}_{l}$ is always infinite by Lemma 3.5.

PROOF OF PROPOSITION 4.3. By $(p, T)=1$ , we have $k\cap Q(\zeta_{l})=Q$ . Let $p$ be the unique
prime ideal of $\mathfrak{o}_{k}$ lying above $p$ . Since $p$ is totally ramified in $K/k$ , we have $K\cap k=k$ .
Furthermore since $p$ is tamely ramified and only a prime ideal of $\mathfrak{o}_{k}$ which is ramified
in $K/k$ , the conductor of $K/k$ is of the form $pm_{\infty}$ (therefore $\mathfrak{m}_{2}=1$ ). So $l|[K\cap k(p):k]$ ,
because $[k(p\mathfrak{m}_{\infty}):k(p)]$ is a power of 2 by class field theory. Now $e_{p}=[k:Q]\Rightarrow 2|e_{p}$

and $p\equiv 1$ mod $l\Rightarrow b_{p}=1$ ; therefore $ord_{2}(b_{p})=0$ , so that $p\in \mathfrak{T}_{l}$ . Claim that $p\not\in S$. This
follows from $\mathfrak{T}_{l}\cap \mathfrak{S}_{1,l}=\emptyset$ when $k$ is totally real. When $k$ is aCM-field, if $p\in S$, then
we have $p\in \mathfrak{S}_{22,l}(. \mathfrak{T}_{l}\cap \mathfrak{S}_{21,l}=\emptyset)$ , so that $\mathfrak{p}$ is inert in $k/k^{+}$ . This contradicts that $p$

is totally ramified in $k/Q$ . Hence $\mathfrak{o}_{K}(S)/\mathfrak{o}_{k}(S)$ does not have a normal basis by Theorem
4.1. $\square $

PROPOSITION 4.5. Let $k$ be a quadratic field such that $[k:k]\sim$ is a power of 2 and
$p$ a prime ideal of $\mathfrak{o}_{k}$ which is ramified in $k/Q$ . Put $p:=p\cap Z$ . Suppose that there exists
an odd prime 1 such that $l|((p-1)/w_{p})$ , where $w_{p}$ is defined in Remark 4.2. Then for any
finite subset $S$ (or $ S=\emptyset$) of $\mathfrak{S}_{l},$ $\mathfrak{o}_{k\langle p)}(S)/\mathfrak{o}_{k}(S)$ does not have a normal basis.

REMARK 4.6. By Lemma 3.5, the set $\mathfrak{S}_{l}$ is always infinite, if we assume that
$1\equiv 1$ mod4 and $l$ is prime to the discriminant of $k/Q$ when $k$ is a real quadratic field.

PROOF OF PROPOSITION 4.5. Now $e_{p}=2$ , Np $=p$ and $b_{p}=1$ hold. Since $p\neq l,$ $ k\cap$

$Q(\zeta_{l})=Q$ . And we have $p\not\in S$ by the same reason as in the proof of Proposition 4.3.
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Hence Theorem 4.1 implies our assertion. $\square $

5. Normal integral bases in abelian fields with prime conductors.

Let $p$ be an odd prime. In this section, we let $K$ be a subfield of the pth cyclotomic
field $Q(\zeta_{p})$ , and $k$ a subfield of $K$. Let $n:=[K:k](>1)$ and $m:=[k:Q]$ . If $m=1$ , then
it is well known that $0_{K}/\mathfrak{o}_{k}$ has a normal basis. So we assume that $m>1$ throughout
this section. Our goal is Theorem 5.3.

Let $\Gamma:=Gal(K/Q)$ . Since $\Gamma$ is cyclic, so is the group $\hat{\Gamma}$ of its characters; let $\psi_{0}$ be
a fixed generator of $\hat{\Gamma}$ . There exists a natural surjective group homomorphism:

$\hat{\Gamma}\rightarrow\hat{G}$ , $\psi-\psi|_{G}$ .

For a positive integer $i$, we put $\psi_{i}$ $:=\psi_{0}^{i}$ and $\chi_{i}$
$:=\psi_{i}|_{G}$ . Let $l_{i}$ $:=(i/d, m)$ where $d=d_{i}$ is

the greatest common divisor of $i$ and $n$ . Then

(5.1) $g_{\psi_{i}}=\frac{m}{l_{i}}g_{\chi}$ . ,

where $g_{\psi_{i}}$ (resp. $g_{\chi_{i}}$) is the order of $\psi_{i}$ (resp. $\chi$) in $\hat{\Gamma}$ (resp. $\hat{G}$). For a number field $N$

and each $\psi\in\hat{\Gamma},$ $N(\psi)$ denotes the field generated by the value of $\psi$ on $\Gamma$ over $N$. Let
$\Omega_{i}$ $:=Gal(k(\psi_{i})/k)$ and $\xi_{i}$ be a fixed primitive $g_{\psi_{i}}th$ root of unity. Since $k\cap Q(\psi_{i})=Q$ by
$(p, g_{\psi_{i}})=1$ , there exists a group isomorphism $\iota_{i}$ of $\Omega_{i}$ into $(Z/g_{\psi_{i}}Z)^{x}$ such that $\xi_{i}^{\omega}=\xi_{i^{i}}^{\iota\langle\omega)}$

for all $\omega\in\Omega_{i}$ . For each $\omega\in\Omega_{\psi_{i}}$ , let $t_{i}(\omega)$ be the integer satisfying $\iota_{i}(\omega)=t_{i}(\omega)$ mod $g_{\psi_{i}}$ ,
$0<t_{i}(\omega)<g_{\psi_{i}}$ and put

$\eta_{i}$

$:=\sum_{\omega\in\Omega_{i}}[l_{i}t_{i}(\omega)/g_{x\iota}]\omega^{-1}$ ,

where $[x]$ denotes the greatest integer $\leq x$ as usual for a real number $x$ . For each $\psi\in\hat{\Gamma}$ ,
we define the group homomorphism $\det_{\psi}$ by

$\det_{\psi}$ : $k\Gamma^{x}\rightarrow k(\psi)^{x}$ , $\sum_{s\in\Gamma}a_{s}s\mapsto\sum_{s\in\Gamma}\psi(s)a_{s}$ .

PROPOSITION 5.1. Let $\beta\in \mathfrak{o}_{K}$ be a free generator of $K$ over $kG$ . Then there exists
some $\lambda$ in $k\Gamma^{x}$ such that for any positive integer $i$ with $i\not\equiv O$ mod $n$ , we have

(5.2) $b(\chi_{i})^{-1}=(\det_{\psi_{i}}(\lambda))\mathfrak{P}_{i^{i}}^{\eta}$

where $\mathfrak{P}_{i}$ is some prime ideal of $\mathfrak{o}_{k\langle\psi_{i})}$ lying above $p$ and, taking $S=\emptyset,$ $b(\chi_{i})$ is thefractional
ideal of $\mathfrak{o}_{k\langle\chi_{i})}$ depending on $\beta$ as in (2.1).

$PR\infty F$ . Let $\alpha:=Tr_{Q\langle\zeta_{p})/K}(\zeta_{p})$ . Since $\alpha$ is a free generator of $K$ over $Q\Gamma$ , we can
prove the following in the same way as in Fr\"ohlich [7, Lemma 6.2 and Theorem 25,
(ii) of Chapter III]: there exists some $\lambda$ in $k\Gamma^{x}$ such that
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(5.3) $\langle\beta, \psi|_{G}\rangle_{K/k}=\det_{\psi}(\lambda)\langle\alpha, \psi\rangle_{k/Q}$ ,

for all $\psi\in\hat{\Gamma}$ . Let $\tilde{\psi}_{i}$ be the character of $Gal(Q(\zeta_{p})/Q)$ of order $g_{\psi_{i}}$ , defined by $\tilde{\psi}_{i}(s):=$

$\psi_{i}(s|_{K})$ for all $s\in Gal(Q(\zeta_{p})/Q)$ . Then it follows from the definition of $\alpha$ that

$\langle\alpha, \psi_{i}\rangle_{K/0}=\sum_{s\in Gal\langle Q\langle\zeta_{p})/0)}\tilde{\psi}_{i}(s^{-1})\zeta_{p}^{s}$
.

Let $P$ be any prime ideal of $\mathfrak{o}_{Q\langle\psi_{i})}$ lying above $p$ . Since $p\equiv 1$ mod $g_{\psi_{i}},$ $p$ is completely
decomposed in $Q(\psi_{i})/Q$ so that $\mathfrak{o}_{Q\langle\psi_{i})}/P$ is identified with the field $F_{p}$ of $p$ elements.

Since $i\not\equiv O$ mod $n,$ $g_{\chi\iota}>1$ so that $g_{\psi_{i}}>1$ . Let $(\frac{X}{P})_{g\psi_{i}}$ be the $g_{\psi_{i}}$th power residue symbol

mod $P$ in $Q(\psi_{i})$ which can be regarded as a character of $F_{p}^{x}$ of order $g_{\psi_{i}}$ . Since $Gal(Q(\zeta_{p})/$

Q) is identified with $F_{p}^{x},\tilde{\psi}_{i}$ is also a character of $F_{p}^{x}$ of order $g_{\psi_{i}}$ . Consequently there

is some $\delta$ in $\Omega_{i}\cong(Z/g_{\psi_{i}}Z)^{x}$ such that $\tilde{\psi}_{i}=(P-)_{g\psi_{i}}^{\delta}$ . Define the Gauss sum

$\tau:=-\sum_{x\in F_{p}^{x}}(\frac{X}{P})_{g\psi_{i}}^{-1}\zeta_{p}^{x}$ .

As $(p, g_{\psi_{i}})=1,$ $\Omega_{i}$ can be identified with $Gal(Q(\zeta_{p})(\psi_{i})/Q(\zeta_{p}))$ . Hence we have $\langle\alpha, \psi_{i}\rangle_{K/Q}=$

$-\tau^{\delta}$ . Since $P$ is totally ramified in $k(\psi_{i})/Q(\psi_{i}),$ $P=\mathfrak{P}^{m}$ with some prime ideal $\mathfrak{P}$ of $\mathfrak{o}_{k\langle\psi_{i})}$ .
Let $\mathfrak{P}_{i}$ $:=\mathfrak{P}^{\delta}$ . Then we have by Stickelberger’s theorem

$(\langle\alpha, \psi_{i}\rangle_{K/0}^{g\psi_{i}})=\mathfrak{P}_{i}^{m\theta_{i}}$ ,

where we put $\theta_{i}$ $:=\sum_{\omega\in\Omega_{i}}t_{i}(\omega)\omega^{-1}$ . Hence it follows from (5.3) that

(5.4) $(\langle\beta, \chi_{i}\rangle_{K/k}^{g\psi}:)=(\det_{\psi_{i}}(\lambda)^{g\psi_{i}})\mathfrak{P}_{i}^{m\theta_{i}}$ .

Let $p$ be the unique prime ideal of $\mathfrak{o}_{k}$ lying above $p$ . Since $p\ell g_{\chi_{i}}$ , we have by (2.3) and
Proposition 2.3, (i),

(5.5) $(\langle\beta, \chi_{i}\rangle_{K/k}^{g_{\chi_{i}}})=\mathfrak{a}(\chi_{i})b(\chi_{i})^{-g_{\chi_{j}}}$

and $\mathfrak{a}(\chi_{i})$ is a $g_{\chi_{i}}$-power free ideal of $\mathfrak{o}_{k\langle\chi_{i})}$ . Hence (5.2) follows from (5.1), (5.4), (5.5)
and the definition of $\eta_{i}$ . This proves our proposition. $\square $

PROPOSITION 5.2. Let $i$ be a positive integer with $i\not\equiv O$ mod $n$ and $\beta,$ $b(\chi_{i})$ as in
Proposition 5.1. Under the above notations, assume that $(l_{i}, g_{\psi_{i}})=1,$ $l_{i}>1$ and one of the
following conditions is satisfied:

(i) $l_{i}$ is odd and $g_{\chi\iota}>2$ ,
(ii) $l_{i}$ is even, $l_{i}\geq 4$ and $l_{i}\neq 6$ or $g_{Xi}\neq 5’$ .

Then $b(\chi_{i})$ is not a principal ideal of $\mathfrak{o}_{k\langle\chi_{i})}$ .

PROOF. Since $l_{i}|m$ , there exists the unique subfield $F$ of $k$ with $[k:F]=l_{i}$ . Let
$\mathscr{G}:=Gal(k(\psi_{i})/F(\psi_{i}))$ and $\mathfrak{P}_{i}$ be as in Proposition 5.1. Assume that $b(\chi_{i})$ is a principal
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ideal of $\mathfrak{o}_{k\langle\chi_{i})}$ . So by Proposition 5.1, there is some $A$ in $k(\psi_{i})^{x}$ such that $\mathfrak{P}_{i}^{\eta\iota}=(A)$ . Let
$\omega_{0}\in\Omega_{i}$ such that $\xi_{i}^{\omega_{O}}=\xi_{i}^{-1}$ . Since $\mathfrak{P}_{i}$ is totally ramified in $k(\psi_{i})/Q(\psi_{i})$ , we have $\overline{\mathfrak{P}_{i}}=\mathfrak{P}_{i}^{\omega_{O}}$

so that $\overline{\mathfrak{P}_{i^{i}}^{\eta}}=\mathfrak{P}_{i^{i}}^{\eta\omega_{0}}$ , since $k(\psi_{i})/Q$ is abelian, where the bar denotes the complex con-
jugation. It is easy to see that $\eta_{i}-\eta_{i}\omega_{0}=\sum_{\omega\in\Omega_{i}}\{2[l_{i}t_{i}(\omega)/g_{\chi_{i}}]+1-m\}\omega^{-1}$ . Hence we
have

(5.6) $ord_{\mathfrak{P}_{i}}(A/\overline{A})=2[l_{i}/g_{\chi_{i}}]+1-m$ .

For a Dedekind domain $\mathfrak{o}$ , we denote by $P(\mathfrak{o})$ the group of principal ideals of $\mathfrak{o}$ .
The group $P(0_{F(\psi_{i})})$ can be regarded as a subgroup of $P(0_{k(\psi_{i})})$ by the extension of ideals.
Then $P(0_{k\langle\psi_{i})})^{g}/P(\mathfrak{o}_{F\langle\psi_{l})})$ is isomorphic to the cohomology group $H^{1}(\mathscr{G}, \mathfrak{o}_{k\langle\psi_{i})}^{x})$ , where
$P(\mathfrak{o}_{k\langle\psi_{i})})^{g}$ denotes the group of elements of $P(\mathfrak{o}_{k\langle\psi_{i})})$ , fixed by $\mathscr{G}$. Furthermore since $\mathscr{G}$ is
cyclic, this cohomology group is isomorphic to $N(\mathfrak{o}_{k\langle\psi_{i})}^{x})/(\mathfrak{o}_{k\langle\psi_{i})}^{x})^{\sigma-1}$ , where $\sigma$ is a gener-
ator of $\mathscr{G},$ $N(\mathfrak{o}_{k\langle\psi_{i})}^{x}):=\{u\in \mathfrak{o}_{k(\psi_{i})}^{x}|N(u)=1\}$ and $N$ is the norm map from $k(\psi_{i})$ to $F(\psi_{i})$ .
Let $(x)\in P(\mathfrak{o}_{k\langle\psi_{i})})^{q}$ . Then under this group isomorphism, the class of $(x)$ corresponds to
the class of $x^{\sigma-1}$ , and the class of $(x/\overline{x})$ corresponds to the class of $x^{\sigma-1}/\overline{x^{\sigma-1}}$ , since
$k(\psi_{i})$ is a CM-field.

Since $\mathfrak{P}_{i}$ is totally ramified in $k(\psi_{i})/F(\psi_{i})$ and $k(\psi_{i})/F$ is abelian, $\mathfrak{P}_{i^{i}}^{\eta}$ is now fixed
by $\mathscr{G}$. So $(A)\in P(\mathfrak{o}_{k\{\psi_{i})})^{q}$ . We claim that $(A/\overline{A})$ belongs to $P(\mathfrak{o}_{F\langle\psi_{i})})$ if $l_{i}$ is odd, and to
$\langle(\sqrt{a})mod P(0_{F\langle\psi_{i})})\rangle ifl_{i}$ is even, where $\sqrt{a}(a\in F(\psi_{i})^{x})$ isaprimitive element of the
quadratic subextension of $k(\psi_{i})/F(\psi_{i})$ . Put indeed $u:=A^{\sigma-1}$ . Since $k(\psi_{i})$ is a CM-field,
$u/\overline{u}$ is a root of unity by Dirichlet’s unit theorem. As $k\subsetneq Q(\zeta_{p})$ , the group of roots of
unity in $k(\psi_{i})$ is generated by $\pm\xi_{i}$ . So $u/\overline{u}=(-\xi_{i})^{v}$ with some integer $v$ . Taking the
norm $N$ , we see $1=(-\xi_{i})^{vl_{i}}$ , therefore $2g_{\psi_{i}}|vl_{i}$ . Sinoe $(l_{i}, g_{\psi_{i}})=1$ , we have $2g_{\psi_{i}}|v$ (resp.
$g_{\psi_{i}}|v)$ , hence $u/\overline{u}=1$ (resp. $\pm 1$ ) when $l_{i}$ is odd (resp. even). Thus our claim is proved
since $\sqrt{a}^{\sigma-1}=-1$ . Hence there are some $\epsilon$ in $\mathfrak{o}_{k\langle\psi_{i})}^{x}$ and some $b$ in $F(\psi_{i})^{x}$ such that
$ A/\overline{A}=\sqrt{a}^{j}b\epsilon$ , where $j=0$ or 1, and if $l_{i}$ is odd, then we put $j=0$ . So

$ord_{\mathfrak{P}_{i}}(A/\overline{A})\equiv j\frac{l_{i}}{2}ord_{P_{i}}(a)$ mod $l_{i}$ ,

where let $P_{i}$ $:=\mathfrak{P}_{i}\cap F(\psi_{i})$ . It follows from (5.6) that

(5.7) 2 $[l_{i}/g_{\chi_{i}}]+1\equiv j\frac{l_{i}}{2}ord_{P_{i}}(a)$ mod $l_{i}$ .

(i) $Thecasewherel_{i}$ is odd. $Asg_{x\iota}>2,2[l_{i}/g_{x:}]+1\leq 2(l_{i}-1)/2+1=l_{i}$ . So it fol-
lows from $j=0$ and (5.7) that $2[l_{i}/g_{\chi_{i}}]+1=l_{i}$ . Since $(l_{i}, g_{Xi})=1$ , we can write $l_{i}=g_{Xi}q+r$

with some non-negative integer $q$ and $0<r<g_{\chi\iota}$ . Therefore $(2-g_{\chi_{i}})q=r-1$ , so $q=0$,
$r=1$ . Hence we have $l_{i}=1$ . This is a contradiction.

(ii) The case where $l_{i}$ is even. Then it follows from (5.7) that $j(=1),$ $l_{i}/2$ and
$ord_{P_{i}}(a)$ are all odd. So we have $2[l_{i}/g_{Xi}]+1\equiv l_{i}/2$ mod $l_{i}$ . Since $(l_{i}, g_{\chi_{i}})=1$ and $g_{\chi_{i}}>1$ ,
we have $g_{Xi}>2$ , hence $2[l_{i}/g_{Xi}]+1=l_{i}/2$ . We write $l_{i}=g_{x\iota}q+r$ with some non-negative
integer $q$ and $0<r<g_{\chi_{i}}$ . Then
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(5.8) $(4-g_{\chi_{i}})q=r-2$ .

If $r>2$ , then $g_{Xt}<4$ from (5.8). Since $g_{\chi_{i}}$ is odd, $g_{\chi_{i}}=3$ so that $2<r<3$ . This is a
contradiction. Therefore $r=1$ or 2. If $r=2$ , then $q=0$ by (5.8) so that $l_{i}=2$ . This
contradicts $l_{i}\geq 4$ . If $r=1$ , then $g_{Xi}=5$ and $l_{i}=6$ from (5.8). This is a contradiction.
Thus our proposition is proved. $\square $

THEOREM 5.3. Under the above notations, we have the following:
(I) $\mathfrak{o}_{K}/\mathfrak{o}_{k}$ does not have a normal basis, except for the following four cases:

(i) $m$ is even and not apower of 2, and $n=2$ .
(ii) mandn are both powers of2.
(iii) $misapowerofqandnisapowerofqor2\times(apowerofq)$ , with some oddprime q.
(iv) $m$ is odd and $n=2$ .

(II) In the case (I-iv), $\mathfrak{o}_{K}/\mathfrak{o}_{k}$ has a normal basis. (For the other cases, see the remark
below.)

PROOF. Let $\beta\in \mathfrak{o}_{K}$ be a free generator of $0_{k_{\mathfrak{p}}}\otimes_{0_{k}}\mathfrak{o}_{k}$ over $\mathfrak{o}_{k_{\mathfrak{p}}}G$ for each prime ideal
$\mathfrak{p}$ of $\mathfrak{o}_{k}$ , dividing the order of $G$ .

(I) $ByProposition4.3$ , we need prove when (A): miseven andn isapower of
2, or (B): $m$ is odd.

The case (A). Let $v:=ord_{2}(m)$ and $i:=m/2^{v}$ . Then $l_{i}=i,$ $g_{x\iota}=n/(i, n)=n$ so that
$(l_{i}, g_{\psi_{i}})=1$ by (5.1). Since we make exceptions of the cases (ii) and (i), we have $l_{i}>1$ so
that $g_{Xi}>2$ . Therefore it follows from Proposition 5.2, (i) that $b(\chi_{i})$ is not a principal
ideal of $\mathfrak{o}_{k\langle\chi_{i})}$ . Henoe $\mathfrak{o}_{K}/\mathfrak{o}_{k}$ does not havea normal basis by [8, Theorem2.10, (ii)].

The case (B). Ifn is nota power of2, $thenthereissomeoddprimeqwithq|n$ .
Let $v:=ord_{q}(m)(\geq 0)$ . When $m/q^{v}>1$ , putting $i;=mn/q^{v+1}$ , we have $l_{i}=m/q^{v}>1$ ,
$g_{\chi_{i}}=q>2,$ $(l_{i}, g_{\psi_{i}})=1$ so that $b(\chi_{i})$ is not principal by Proposition 5.2, (i). When $m=q^{v}$ ,
let $w:=ord_{q}(n)$ and $i:=q^{v+w}$ . Then $l_{i}=m>1,$ $g_{x\iota}=n/q^{w},$ $(l_{i}, g_{\psi_{i}})=1$ . Sinoe we make
exception of the case (iii), $n/q^{w}>2$ so that $g_{\chi_{i}}>2$ . Hence $b(\chi_{i})$ is not principal by
Proposition 5.2, (i). If $n$ is a power of 2, then we put $i;=m$ . So $l_{i}=m>1,$ $g_{\chi_{i}}=n$,
$(l_{i}, g_{\psi_{i}})=1$ . Since we make exception of the case (iv), $n>2$ so that $g_{\chi_{i}}>2$ . Henoe $b(\chi_{i})$

is not principal by Proposition 5.2, (i). Thus $\mathfrak{o}_{K}/\mathfrak{o}_{k}$ does not have a normal basis by [8,

Theorem 2.10, (ii)].
(II) Let $i;=m$ . Then $g_{Xi}=g_{\psi_{i}}=2,$ $l_{i}=m,$ $\Omega_{i}=\{1\}$ . So $\hat{G}=\{1, \chi_{i}\}$ . Put $\pi:=$

$N_{Q\langle\zeta_{p})/k}(1-\zeta_{p})$ so that $\mathfrak{P}_{i}=(\pi)$ . As $\eta_{i}=(m-1)/2$ , it follows from (5.2) that

$b(\chi_{i})^{-1}=(\pi^{\langle m-1)/2}\det_{\psi_{i}}(\lambda))$ .

From (5.3), $\langle\beta, 1\rangle_{K/k}=\det_{1}(\lambda)Tr_{0\langle\zeta_{p})/Q}(\zeta_{p})=-\det_{1}(\lambda)$ . Since $b(1)^{-1}=(\langle\beta, 1\rangle_{K/k})$ by [8,

Remark 2.12], we have

$b(1)^{-1}=(\det_{1}(\lambda))$ .

It follows from the definition of $\beta$ and [8, Lemma 2.8, (ii)] that any prime divisor of
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$b(1)$ and $b(\chi_{i})$ does not divide two. Let $u:=\zeta_{p}+\zeta_{p}^{-1}$ which is a unit in $Q(\zeta_{p})^{+}$ . Sinoe $m$

is odd, $k\subset Q(\zeta_{p})^{+}$ . As $u\equiv N_{Q\langle\zeta_{p})/0\langle\zeta_{p})^{+}}(1-\zeta_{p})$ mod2, we have $N_{\Phi\{\zeta_{p})^{+}/k}(u)\equiv\pi$ mod2.
Let $\epsilon:=N_{O\langle\zeta_{p})^{+}/k}(u)^{-\langle m}$

“ $1$ )
$/2\in \mathfrak{o}_{k}^{x}$ . So we have $\epsilon\pi^{\langle m-1)/2}\equiv 1$ mod 2. Sinoe $\det_{1}(\lambda)\equiv\det_{\psi_{i}}(\lambda)$

mod2 by $g_{\psi_{i}}=2$ ,

$\det_{1}(\lambda)-\epsilon\pi^{\langle m-1)/2}\det_{\psi_{i}}(\lambda)\equiv 0$ mod 2.

Henoe by [8, Remark 2.11], $\mathfrak{o}_{K}/\mathfrak{o}_{k}$ has a normal basis. Thus our theorem is proved. $\square $

REMARK 5.4. Let $K:=Q(\zeta_{p})$ and $k:=Q(\zeta_{p})^{+}$ with $p\equiv 1$ mod4. So $n=2$ and $m$

is even. Then it is well known that $\zeta_{p}$ is a generator of normal basis of $\mathfrak{o}_{K}/\mathfrak{o}_{k}$ (in the
cases (I-i, ii)). In the case (I-ii), if $n=2$, then we can prove that $\mathfrak{o}_{K}/\mathfrak{o}_{k}$ has a normal
basis. In the case (I-iii), $0_{K}/0_{k}$ does not have a normal basis by Brinkhuis [1, Theorem
4.1], because a sequenoe of Galois extension $Q\subset k\subset K$ does not split and $[k:Q]$ is
odd. The question is still open as to other cases.

Let $S$ be any finite set of prime ideals of $\mathfrak{o}_{k}$ which contains the unique prime ideal
of $\mathfrak{o}_{k}$ lying above $p$ and assume that $(m, n)=1$ . Then it is easy to see that $o_{K}(S)/\mathfrak{o}_{k}(S)$ has
a normal basis.
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