Токуо Ј. Матн. Vol. 19, No. 1, 1996

On Normal Bases of Some Ring Extensions in Number Fields I

Fuminori KAWAMOTO

Gakushuin University

1. Introduction.

Let k be a number field and K/k a finite Galois extension with Galois group G = Gal(K/k). For a number field N, o_N denotes the ring of integers in N. Let S be a finite set of prime ideals of o_k that contains all prime ideals which are wildly ramified in K/k. For a finite extension N/k, we simply denote by $o_N(S)$ the ring of elements a in N with $\operatorname{ord}_{\mathfrak{P}}(a) \ge 0$ for all prime ideals \mathfrak{P} of o_N , not lying above S. The field K can be regarded as a module over the group ring kG of G over k by the action $\alpha^{\lambda} = \sum_{s \in G} a_s \alpha^s$ for $\alpha \in K$ and $\lambda = \sum_{s \in G} a_s s \in kG$. We say that a ring extension $o_K(S)/o_k(S)$ has a normal basis if $o_K(S)$ is a free $o_k(S)[G]$ -module, that is, there exists some α in $o_K(S)$ such that $\{\alpha^s\}_{s \in G}$ is a free $o_k(S)$ -basis of $o_K(S)$. The extension $o_K(S)/o_k(S)$ is called *ramified* if there exists some prime ideal of o_k , not belonging to S, which is ramified in K/k (this means that such prime ideal of o_k is ramified in the Dedekind ring extension o_K/o_k , as usual). If not so, then it is called *unramified*.

We remark the following fact on the existence of normal bases of extensions of the rings of S-integers which was pointed out by H. Suzuki and whose proof is due to him. It says that we can take a sufficiently large set $U \cup S$, keeping the ramification of primes outside S, such that $\mathfrak{o}_{\kappa}(U \cup S)/\mathfrak{o}_{k}(U \cup S)$ has a normal basis.

PROPOSITION 1.1. Let the notations be as above and $T(\neq \emptyset)$ a finite set of prime ideals of \mathfrak{o}_k that contains all prime ideals, not belonging to S, which are ramified in K/k. Then there exists a finite set U of prime ideals of \mathfrak{o}_k such that $U \cap T = \emptyset$ and $\mathfrak{o}_K(U \cup S)/\mathfrak{o}_k(U \cup S)$ has a normal basis.

PROOF. Let $V := \mathfrak{o}_k - \bigcup_{\mathfrak{p} \in T} \mathfrak{p}$ be a multiplicative subset of \mathfrak{o}_k and $V^{-1}\mathfrak{o}_k$ a ring of quotients of \mathfrak{o}_k . Then $V^{-1}\mathfrak{o}_k$ is a semi-local ring with maximal ideals $\{\mathfrak{p} \cdot (V^{-1}\mathfrak{o}_k)\}_{\mathfrak{p} \in T}$ and $V^{-1}\mathfrak{o}_K$ is a $(V^{-1}\mathfrak{o}_k)[G]$ -module. Since all primes in T are tamely ramified, there exists some α in \mathfrak{o}_K such that $1 \otimes \alpha$ is a free generator of $\mathfrak{o}_{k_p} \otimes_{\mathfrak{o}_k} \mathfrak{o}_k$ over $\mathfrak{o}_{k_p} G$ for each $\mathfrak{p} \in T$ (Cf. [8, Lemma 2.6]), where \mathfrak{o}_{k_p} denotes the valuation ring of the completion of

Received October 17, 1994

k with respect to p. Therefore α is also a free generator of $V^{-1}\mathfrak{o}_K$ over $(V^{-1}\mathfrak{o}_k)[G]$. Put $M := \mathfrak{o}_K/(\mathfrak{o}_k G \cdot \alpha)$. Then M has a finite number of generators over \mathfrak{o}_k , say m_1, \dots, m_r . Since $V^{-1}M = 0$, there is some u_i in V for each i such that $u_i m_i = 0$. If we put $u = \prod_{i=1}^r u_i$, then we have $\langle u \rangle^{-1}M = 0$ where $\langle u \rangle$ denotes a multiplicative subset of \mathfrak{o}_k , generated by u. Let U be a set of prime divisors of u. Then $U \cap T = \emptyset$ and $\mathfrak{o}_k(U) \otimes_{\mathfrak{o}_k} M = \mathfrak{o}_k(U) \otimes_{\langle u \rangle^{-1}\mathfrak{o}_k} \langle u \rangle^{-1} M = 0$. So $\mathfrak{o}_K(U) = \mathfrak{o}_k(U)[G] \cdot \alpha$. This proves our proposition. \Box

From now on, assume that K/k is abelian and let \hat{G} be the group of characters of G. In the previous paper [8], for each $\chi \in \hat{G}$, an ideal $b(\chi)$ was defined by resolvents of elements of K (for its definition, see Section 2) and we gave a necessary and sufficient condition for $o_{\kappa}(S)/o_{k}(S)$ to have a normal basis in terms of these ideals. Since resolvents are connected with Gauss sums, Stickelberger's theorem gives an information on ideals $b(\chi)$. For this, we study a property of $b(\chi)$ in Section 2. After Section 3, we assume that k is a totally real number field or a CM-field, i.e., a totally imaginary quadratic extension of a totally real number field. In comparison with Proposition 1.1, we can give also sequences $\{S_n\}$ of finite sets of prime ideals of \mathfrak{o}_k with $S_n \subsetneq S_{n+1}$, such that $\mathfrak{o}_{K}(S_{n})/\mathfrak{o}_{k}(S_{n})$ does not have a normal basis for each positive integer n (Propositions 4.3 and 4.5). This fact follows from results of Section 3 (Proposition 3.3 and Lemma 3.5) and a sufficient condition for the non-existence of normal basis of ramified ring extension $o_K(S)/o_k(S)$ which is given in Section 4 (Theorem 4.1). In Section 5, let K be an abelian field with prime conductor over the field Q of rational numbers. Then using Proposition 4.3, we discuss a normal basis of $\mathfrak{o}_K/\mathfrak{o}_k$ (S = \emptyset) (Theorem 5.3). When K is the pth cyclotomic field, p being an odd prime, and [K:k] is a prime, a normal basis of o_{κ}/o_{k} was studied by Cougnard [4, 5] and Brinkhuis [2]. Theorem 5.3 generalizes their result. It should be noted that our results in Section 4, 5 are a development of Brinkhuis' idea [2].

Throughout this paper, the above and following notations are used. For a number field N and each $\chi \in \hat{G}$, $N(\chi)$ denotes the field generated by the values of χ on G over N. For a ring R and a group Γ , we denote by $R\Gamma$ (or $R[\Gamma]$) the group ring of Γ over R and by R^{\times} the group of units in R. For a set R, |R| denotes the cardinal of R. For a positive integer n, ζ_n denotes a primitive *n*th root of unity. We denote by Z and R the ring of rational integers and the field of real numbers, respectively. For a number field N, we denote by N^+ the maximal real subfield of $N: N^+ := N \cap \mathbb{R}$. For an integral divisor n of k, k(n) denotes the ray class field of k mod n. Specially $\tilde{k}:=k(1)$ is the Hilbert class field of k. Let n_0 and n_{∞} denote the finite and infinite components of n, respectively.

ACKNOWLEDGMENTS. The author would like to thank Dr. Suzuki for pointing out Proposition 1.1 and a certain person for his/her useful suggestion to Section 2.

2. Properties of ideals $b(\chi)$.

For $\alpha \in K$ and each $\chi \in \hat{G}$, we define the resolvent of α with values in $K(\chi)$ by

$$\langle \alpha, \chi \rangle = \langle \alpha, \chi \rangle_{K/k} := \sum_{s \in G} \chi(s^{-1}) \alpha^s.$$

For each $\chi \in \hat{G}$, let $L(\chi)$ be the $\mathfrak{o}_{k(\chi)}(S)$ -module of rank one generated by all $\langle \alpha, \chi \rangle$ with $\alpha \in \mathfrak{o}_K(S)$. Let $\beta \in \mathfrak{o}_K$ be a free generator of K over kG. Then there exists a fractional ideal $\mathfrak{b}(\chi)$ of $\mathfrak{o}_{k(\chi)}(S)$ such that

(2.1)
$$L(\chi) = \mathfrak{b}(\chi) \langle \beta, \chi \rangle,$$

and we have

(2.2)
$$b(\chi^{\omega}) = b(\chi)^{\omega},$$

for all $\omega \in Gal(k(\chi)/k)$, where we define $\chi^{\omega}(s) := \chi(s)^{\omega}$ for each $s \in G$ so that $\chi^{\omega} \in \hat{G}$.

In [8], we have chosen $\beta \in \mathfrak{o}_K$ such that $1 \otimes \beta$ is a free generator of $\mathfrak{o}_{k_p} \bigotimes_{\mathfrak{o}_k} \mathfrak{o}_K$ over $\mathfrak{o}_{k_p}G$ for each prime ideal p of \mathfrak{o}_k , dividing the order of G and not belonging to S. Then we have proved that $\mathfrak{o}_K(S)/\mathfrak{o}_k(S)$ has a normal basis if and only if for each $\chi \in \hat{G}$, $\mathfrak{b}(\chi)$ (depending on this β) is a principal ideal of $\mathfrak{o}_{k(\chi)}(S)$ and its generators satisfy some congruence conditions and some conditions (as in (2.2)) for Galois actions (See [8, Theorem 2.10 and Remark 2.11]). We have to use these results in this paper. In this section, we study the properties of these ideals in the ramified case (For the unramified case, see [8, Lemma 3.2]).

Let $g = g_{\chi}$ be the order of χ in \hat{G} and $a(\chi)$ the module generated by the products $\prod_{i=1}^{g} \alpha_i$ with $\alpha_i \in L(\chi)$ so that $a(\chi)$ is an ideal of $\mathfrak{o}_{k(\chi)}(S)$ and it follows from (2.1) that (2.3) $(\langle \beta, \chi \rangle^{g_{\chi}})\mathfrak{o}_{k(\chi)}(S) = a(\chi)b(\chi)^{-g_{\chi}}$.

Let $V(\chi)$ be the one dimensional $k(\chi)$ -vector space of elements α of $K(\chi)$ with $\alpha^s = \chi(s)\alpha$ for all $s \in Gal(K(\chi)/k(\chi)) \subset G$. Let $\tilde{L}(\chi) := V(\chi) \cap \mathfrak{o}_{K(\chi)}(S)$ so that this is also a $\mathfrak{o}_{k(\chi)}(S)$ module of rank one. Therefore there exists a fractional ideal $\tilde{\mathfrak{b}}(\chi)$ of $\mathfrak{o}_{k(\chi)}(S)$ such that $\tilde{L}(\chi) = \tilde{\mathfrak{b}}(\chi) \langle \beta, \chi \rangle$. Similarly we define an ideal $\tilde{\mathfrak{a}}(\chi)$ of $\mathfrak{o}_{k(\chi)}(S)$. Then the formulas (2.2) and (2.3) for these also hold. Since $\mathfrak{b}(\chi) \subset \tilde{\mathfrak{b}}(\chi)$, there exists an ideal $\mathfrak{c}(\chi)$ of $\mathfrak{o}_{k(\chi)}(S)$ such that

(2.4)
$$b(\chi) = \tilde{b}(\chi)c(\chi) .$$

Now we consider the gap $c(\chi)$ between $b(\chi)$ and $\tilde{b}(\chi)$ and it gives a position of $b(\chi)$ in the decomposition (2.3) of a resolvent into ideals (See Proposition 2.1, Example 2.2 and Proposition 2.3). It follows from (2.4) and the formulas (2.3) for $L(\chi)$ and $\tilde{L}(\chi)$ that $a(\chi) = \tilde{a}(\chi)c(\chi)^g$. Let $f(\chi)$ be the Artin conductor of χ in K/k which is an ideal of o_k . By Fröhlich's result, $L(\chi)L(\bar{\chi}) = f(\chi)$, where let $\bar{\chi} := \chi^{-1}$ (See [8, Lemma 3.1]), hence $a(\chi)a(\bar{\chi}) = f(\chi)^g$. So,

(2.5)
$$\tilde{\mathfrak{a}}(\chi)\tilde{\mathfrak{a}}(\bar{\chi})\{\mathfrak{c}(\chi)\mathfrak{c}(\bar{\chi})\}^g = \mathfrak{f}(\chi)^g \mathfrak{o}_{k(\chi)}(S) .$$

From now on, let χ be a non-trivial character of G and k_{χ} the fixed field of Ker χ in K/k so that k_{χ}/k is a cyclic extension of degree g. Let

$$l = l_{\chi} := [k_{\chi}(\chi) : k(\chi)] \ (>1)$$

so that l|g. Recall that $k_{\chi}(\chi)/k(\chi)$ is a cyclic Kummer extension of degree *l* with primitive element $\langle \beta, \chi \rangle$ (See [8, Section 3]). So there are an *l*-power free ideal A_{χ} and an ideal B_{χ} of $\mathfrak{o}_{k(\chi)}(S)$ such that

(2.6)
$$(\langle \beta, \chi \rangle^l) \mathfrak{o}_{k(\chi)}(S) = A_{\chi} B_{\chi}^l.$$

Since $\tilde{a}(\chi)$ is g-power free by [8, Lemma 2.8, (i)], it follows from the formula (2.3) for $\tilde{L}(\chi)$ that

(2.7)
$$\tilde{\mathfrak{a}}(\chi) = A_{\chi}^{g/l} \qquad (\tilde{\mathfrak{b}}(\chi)^{-1} = B_{\chi}) .$$

Let ζ be a fixed primitive gth root of unity and $\Omega = \Omega_{\chi} := Gal(k(\chi)/k)$. Then there exists a group injection ι from Ω into $(\mathbb{Z}/g\mathbb{Z})^{\times}$ such that

$$\zeta^{\omega} = \zeta^{\iota(\omega)}$$
 for all $\omega \in \Omega$.

If 1 < d | g, we write ι_d for the composition of ι and the canonical quotient map $(\mathbb{Z}/g\mathbb{Z})^{\times} \to (\mathbb{Z}/d\mathbb{Z})^{\times}$. For each $\omega \in \Omega/\text{Ker } \iota_d$, let $t_d(\omega)$ be the integer satisfying

$$\iota_d(\omega) = t_d(\omega) \mod d$$
, $0 < t_d(\omega) < d$,

and put

(2.8)
$$\theta := \sum_{\omega \in \Omega} t_{g_{\chi}}(\omega) \omega^{-1} ,$$

which is in ZQ. As $k_{\chi}(\chi)/k$ is an abelian extension, $A_{\chi}^{\omega-t_{l}(\omega)}$ is the *l*th power of a fractional ideal of $\mathfrak{o}_{k(\chi)}(S)$ for each $\omega \in \Omega$. Hence

(2.9)
$$\operatorname{ord}_{\mathfrak{P}}(A_{\gamma}) = \operatorname{ord}_{\mathfrak{P}^{\omega}}(A_{\gamma}^{\omega}) \equiv t_{l}(\omega) \operatorname{ord}_{\mathfrak{P}^{\omega}}(A_{\gamma}) \pmod{l},$$

for any prime ideal \mathfrak{P} of $\mathfrak{o}_{k(\chi)}$, not lying above S, and any $\omega \in \Omega$.

DEFINITION. For a prime ideal \mathfrak{p} of \mathfrak{o}_k , we denote by $e_{\mathfrak{p}}$ and $Z_{\mathfrak{p}}$ the ramification index and the decomposition group of \mathfrak{p} in $k(\chi)/k$ respectively. Let $\mathscr{U} = \mathscr{U}_{\chi}$ be the set of prime ideals of \mathfrak{o}_k , not belonging to S, which are ramified in k_{χ}/k , and $\mathscr{V} = \mathscr{V}_{\chi}$ the set of prime ideals \mathfrak{p} of \mathfrak{o}_k , not belonging to S, such that $\mathfrak{P}|\mathfrak{p}$ and $\mathfrak{P}|A_{\chi}$ with some prime ideal \mathfrak{P} of $\mathfrak{o}_{k(\chi)}$.

We claim that $\mathscr{V} \subset \mathscr{U}$. If $\mathfrak{p} \in \mathscr{V}$, then $\mathfrak{P}|\mathfrak{p}$ and $\mathfrak{P}|A_{\chi}$ with some prime ideal \mathfrak{P} of $\mathfrak{o}_{k(\chi)}$. Since A_{χ} is *l*-power free, \mathfrak{P} is ramified in $k_{\chi}(\chi)/k(\chi)$. Therefore \mathfrak{p} is ramified in k_{χ}/k so that $\mathfrak{p} \in \mathscr{U}$. Next we claim that

(2.10)
$$\tilde{\mathfrak{a}}(\chi)\tilde{\mathfrak{a}}(\bar{\chi}) = \prod_{\mathfrak{p} \in \mathscr{V}} \prod_{\omega \in \Omega/Z_{\mathfrak{p}}} \mathfrak{P}^{g\omega}$$

where \mathfrak{P} is any prime ideal of $\mathfrak{o}_{k(\chi)}$ lying above p. By (2.7) and noting that $l = l_{\chi} = l_{\bar{\chi}}$, it is sufficient to prove that

(2.11)
$$A_{\chi}A_{\bar{\chi}} = \prod_{\mathfrak{p} \in \mathscr{V}} \prod_{\omega \in \Omega/Z_{\mathfrak{p}}} \mathfrak{P}^{l\omega}.$$

This is equivalent to the three statements: for all prime ideals \mathfrak{P} of $\mathfrak{o}_{k(\chi)}$, not lying above S,

(2.12)
$$\operatorname{ord}_{\mathfrak{P}}(A_{\chi}A_{\bar{\chi}})=0 \text{ or } l,$$

(2.13)
$$\operatorname{ord}_{\mathfrak{P}}(A_{\chi}A_{\bar{\chi}}) > 0 \Longrightarrow \forall \omega \in \Omega : \operatorname{ord}_{\mathfrak{P}^{\omega}}(A_{\chi}A_{\bar{\chi}}) > 0,$$

(2.14)
$$\mathscr{V} = \{ \mathfrak{P} \cap k \mid \mathfrak{P} \text{ is a prime divisor of } A_{\chi} A_{\bar{\chi}} \}.$$

It follows from (2.6) for χ and for $\overline{\chi}$ that

$$A_{\chi}A_{\bar{\chi}} = (\langle \beta, \chi \rangle \langle \beta, \bar{\chi} \rangle B_{\chi}^{-1}B_{\bar{\chi}}^{-1})^l.$$

Since $\langle \beta, \chi \rangle \langle \beta, \bar{\chi} \rangle$ is in $k(\chi)$ (Cf. [8, Lemma 2.3, (iv)]), we have

$$l \left| (\operatorname{ord}_{\mathfrak{P}}(A_{\chi}) + \operatorname{ord}_{\mathfrak{P}}(A_{\bar{\chi}}) \right|.$$

So the fact that A_{χ} and $A_{\bar{\chi}}$ are *l*-power free implies (2.12) and also that

(2.15)
$$\operatorname{ord}_{\mathfrak{g}}(A_{\chi}) > 0 \iff \operatorname{ord}_{\mathfrak{g}}(A_{\chi}A_{\bar{\chi}}) > 0.$$

It follows from (2.9) that $\operatorname{ord}_{\mathfrak{P}}(A_{\chi}) > 0 \Rightarrow \operatorname{ord}_{\mathfrak{P}^{\omega}}(A_{\chi}) > 0$. This fact, together with (2.15) for \mathfrak{P} and for \mathfrak{P}^{ω} , gives (2.13). (2.14) follows from (2.15) and the definition of \mathscr{V} . Thus we have proved the claim (2.11), hence (2.10). By the definition of Artin conductors, $\mathfrak{f}(\chi)$ becomes the Artin conductor of the character of $\operatorname{Gal}(k_{\chi}/k)$ associated with χ . So by the assumed tameness outside S,

(2.16)
$$f(\chi)\mathfrak{o}_k(S) = \prod_{\mathfrak{p} \in \mathscr{Y}} \mathfrak{p} .$$

By the definition of $e_{\mathfrak{p}}$ and $Z_{\mathfrak{p}}$, we have $\mathfrak{p} = \prod_{\omega \in \Omega/Z_{\mathfrak{p}}} \mathfrak{P}^{e_{\mathfrak{p}}\omega}$. Hence (2.5), (2.10) and (2.16) yield the following proposition:

PROPOSITION 2.1. Let $\beta \in \mathfrak{o}_K$ be a free generator of K over kG and $\chi(\neq 1) \in \hat{G}$. Let the ideal $\mathfrak{c}(\chi)$ of $\mathfrak{o}_{k(\chi)}(S)$ be as in (2.4). Then under the above notations, we have

$$\mathfrak{c}(\chi)\mathfrak{c}(\bar{\chi}) = \prod_{\mathfrak{p} \in \mathscr{U}_{\chi} - \mathscr{V}_{\chi}} \mathfrak{p} \cdot \prod_{\mathfrak{p} \in \mathscr{V}_{\chi}} \left(\prod_{\omega \in \Omega_{\chi}/Z_{\mathfrak{p}}} \mathfrak{P}^{\omega} \right)^{e_{\mathfrak{p}} - 1}$$

where \mathfrak{P} is any prime ideal of $\mathfrak{o}_{k(\chi)}$ lying above $\mathfrak{p} \in \mathscr{V}_{\chi}$. In particular, if $\mathscr{U}_{\chi} = \emptyset$ or k contains a primitive g_{χ} th root of unity (i.e., $k = k(\chi)$, therefore $\mathscr{U}_{\chi} = \mathscr{V}_{\chi}$ and $e_{\mathfrak{p}} = 1$ for all \mathfrak{p} in \mathscr{V}_{χ}),

then we have $c(\chi) = (1)$ so that $b(\chi) = \tilde{b}(\chi)$ and $a(\chi) = \tilde{a}(\chi)$.

EXAMPLE 2.2. We shall give an abelian extension K/k with $\mathscr{V}_{\chi} \subsetneq \mathscr{U}_{\chi}$ for a certain χ in \hat{G} . Then we have $c(\chi) \neq (1)$ by Proposition 2.1 so that $b(\chi) \neq \tilde{b}(\chi)$. Let p_1, p_2 be odd prime numbers such that $p_2 \equiv 1 \mod p_1$. Let K be a subfield of $\mathbf{Q}(\zeta_{p_1p_2})$ with $\mathbf{Q}(\zeta_{p_2}) \subset K$ and $[K: \mathbf{Q}(\zeta_{p_2})] > 1$ and k the unique subfield of $\mathbf{Q}(\zeta_{p_2})$ with $[\mathbf{Q}(\zeta_{p_2}) : k] = p_1$. Assume that the set S does not contain any prime ideal of \mathfrak{o}_k lying above p_1 or p_2 . Let F be the unique subfield of $\mathbf{Q}(\zeta_{p_1})$ with $[F: \mathbf{Q}] = [K: \mathbf{Q}(\zeta_{p_2})]$, so that $Gal(K/\mathbf{Q}(\zeta_{p_2})) \cong Gal(Fk/k) \cong Gal(F/\mathbf{Q})$. Let ψ_1 be a non-trivial character of Gal(Fk/k) of order m and ψ_2 a character of $Gal(\mathbf{Q}(\zeta_{p_2})/k)$ of order p_1 . Let χ be the character of G corresponding to (ψ_1, ψ_2) by the canonical isomorphism:

$$\hat{G} \cong Gal(Fk/k) \times Gal(\mathbf{Q}(\zeta_{p_2})/k)),$$

so that $g_{\chi} = mp_1$ by $(p_1, m) = 1$. Since $(p_2, mp_1) = 1$, we have $k \cap \mathbf{Q}(\chi) = \mathbf{Q}$. Also $\mathbf{Q}(\zeta_{p_2}) \subset k_{\chi} \subset K$, $[k_{\chi} : \mathbf{Q}(\zeta_{p_2})] = m$. Therefore

$$\mathscr{U} = \{\mathfrak{p}; \text{ prime in } \mathfrak{o}_k; \mathfrak{p} | p_1 \text{ or } \mathfrak{p} | p_2 \}.$$

Since a prime ideal of $\mathfrak{o}_{k(\chi)}$ lying above p_2 is the only ramified ideal in $k_{\chi}(\chi)/k(\chi)$ and it is tamely ramified, a prime divisor of the ideal A_{χ} divides p_2 . Hence

 $\mathscr{V} = \{\mathfrak{p}; \text{ prime in } \mathfrak{o}_k; \mathfrak{p} | p_2 \}.$

So $\mathscr{V} \subsetneq \mathscr{U}$. (Note that $e_p = 1$ for all p in \mathscr{V} now.)

The following proposition is a generalization of Sodaïgui [9, Théorème 2.2]:

PROPOSITION 2.3. Let β , χ be as in Proposition 2.1 and $b(\chi)$ (resp. $a(\chi)$) a fractional ideal of $o_{k(\chi)}(S)$ depending on β as in (2.1) (resp. (2.3)). Suppose that $\mathcal{U}_{\chi} \neq \emptyset$.

(i) Assume that (A1): $\mathfrak{p} \in \mathscr{U}_{\chi} \Rightarrow \mathfrak{p} \nmid g_{\chi}$. Then $\mathfrak{a}(\chi)$ is g_{χ} -power free.

(ii) Assume that the map ι is an isomorphism (i.e., $k \cap Q(\chi) = Q$) and (A2): for all \mathfrak{p} in \mathscr{U}_{χ} , \mathfrak{p} is totally ramified in k_{χ}/k . Then any \mathfrak{p} in \mathscr{U}_{χ} is completely decomposed in $k(\chi)/k$ and we have

$$(\langle \beta, \chi \rangle^{g_{\chi}}) \mathfrak{o}_{k(\chi)}(S) = \prod_{\mathfrak{p} \in \mathscr{U}_{\chi}} \mathfrak{P}^{\theta} \mathfrak{b}(\chi)^{-g_{\chi}},$$

where \mathfrak{P} is some prime ideal of $\mathfrak{o}_{k(\mathbf{x})}$ lying above \mathfrak{p} and θ is defined in (2.8).

REMARK 2.4. If g_{χ} is a prime power, then the assumption (A1) holds, because any p in \mathscr{U} is tamely ramified in k_{χ}/k .

PROOF OF PROPOSITION 2.3. (i) By (A1), we have $e_p = 1$ for all $p \in \mathcal{U}$. Let $p \in \mathcal{U}$ and \mathfrak{P} be a prime ideal of $\mathfrak{o}_{k(\chi)}$ with $\mathfrak{P}|\mathfrak{p}$. Since $e_p = 1$, \mathfrak{P} is ramified in $k_{\chi}(\chi)/k(\chi)$. Also $\mathfrak{P} \nmid l$. Therefore by Kummer theory, $\mathfrak{P}|A_{\chi}$ so that $\mathfrak{p} \in \mathscr{V}$. Thus $\mathscr{U} = \mathscr{V}$. Hence $\mathfrak{c}(\chi) = (1)$ by Proposition 2.1. So by (2.4), $\mathfrak{b}(\chi) = \tilde{\mathfrak{b}}(\chi)$ so that $\mathfrak{a}(\chi) = \tilde{\mathfrak{a}}(\chi)$. This proves the assertion (i).

(ii) By (A2), the assumption (A1) holds so that the assertion (i) is true. For $p \in \mathcal{U}$,

since $e_p = 1$ and p is totally ramified, we have $k_{\chi} \cap k(\chi) = k$, therefore l = g. Consequently $a(\chi) = \tilde{a}(\chi) = A_{\chi}$ by (2.7). We define a subset \mathscr{V}_1 of \mathscr{V} by

 $\mathscr{V}_1 := \{ \mathfrak{P} \cap k \mid \mathfrak{P} \text{ is a prime ideal of } \mathfrak{o}_{k(\chi)} \text{ with } \operatorname{ord}_{\mathfrak{P}}(A_{\chi}) = 1 \}.$

Claim that $\mathscr{U} = \mathscr{V}_1$. Let $\mathfrak{p} \in \mathscr{U}$ and \mathfrak{P} be a prime ideal of $\mathfrak{o}_{k(\chi)}$ with $\mathfrak{P}|\mathfrak{p}$. Then $i:= \operatorname{ord}_{\mathfrak{P}}(A_{\chi}) \geq 1$ (i.e., $\mathfrak{p} \in \mathscr{V}$) as seen above. Since g is the ramification index of \mathfrak{P} in $k_{\chi}(\chi)/k(\chi)$, we have g = g/(i, g) from Kummer theory ([3, p. 92]). So (i, g) = 1. Since ι is surjective, there is some ω in Ω such that $i = t_g(\omega)$, therefore $1 \equiv t_g(\omega^{-1})i \equiv \operatorname{ord}_{\mathfrak{P}}\omega(A_{\chi})$ mod g by (2.9). As $0 < \operatorname{ord}_{\mathfrak{P}}\omega(A_{\chi}) < g$, we have $\operatorname{ord}_{\mathfrak{P}}\omega(A_{\chi}) = 1$. Hence $\mathfrak{p} = \mathfrak{P}^{\omega} \cap k \in \mathscr{V}_1$. Thus $\mathscr{U} = \mathscr{V}_1$. For $\mathfrak{p} \in \mathscr{U}$, let $\omega \in Z_{\mathfrak{p}}$ and \mathfrak{P} a prime ideal of $\mathfrak{o}_{k(\chi)}$ with $\mathfrak{P}|\mathfrak{p}$. Since $\mathfrak{P}^{\omega} = \mathfrak{P}$ and $\mathfrak{p} \in \mathscr{V}_1$, $1 \equiv t_g(\omega) \mod g$ by (2.9), therefore $\omega = 1$; \mathfrak{p} is completely decomposed in $k(\chi)/k$. Since $\mathscr{U} = \mathscr{V}_1$, we can define a square free ideal C of $\mathfrak{o}_{k(\chi)}(S)$ by $C := \prod_{\mathfrak{p} \in \mathscr{U}} \mathfrak{P}^{\omega}$, where \mathfrak{P} is some prime ideal of $\mathfrak{o}_{k(\chi)}$ with $\mathfrak{P}|\mathfrak{p}$ and $\operatorname{ord}_{\mathfrak{P}}(A_{\chi}) = 1$. Then (2.9) and the assumption that ι is surjective imply $A_{\chi} = C^{\theta}$. Thus the assertion (ii) is proved.

3. Decomposition of prime ideals.

In this section, suppose that k is a totally real number field or a CM-field. Let l be an odd prime or l=4, and p a prime ideal of o_k such that $p \nmid l$. We assume that

(3.1) k/\mathbf{Q} is Galois and $F := k \cap \mathbf{Q}(\zeta_l) \subset k^+$,

so that k/F is Galois and F is totally real. Since l is an odd prime or l=4, $Gal(\mathbf{Q}(\zeta_l)/F)$ is cyclic. By $\mathfrak{p} \nmid l, \mathfrak{p} \cap \mathfrak{o}_F$ is unramified in $\mathbf{Q}(\zeta_l)/F$. Now we wish to discuss the following problem:

(#): For any prime ideal \mathfrak{P} of $\mathfrak{o}_{k(\zeta_l)}$ with $\mathfrak{P}|\mathfrak{p}, \mathfrak{P}$ is not decomposed in $k(\zeta_l)/k(\zeta_l)^+$?

So we need the following proposition:

PROPOSITION 3.1. Let F be a totally real number field and K_i/F (i=1, 2) a finite Galois extension with Galois group G_i such that $K_1 \cap K_2 = F$. Assume that K_1 is a totally real number field or a CM-field, and K_2 is a CM-field, so that $|G_2| > 1$. Suppose that G_2 has only an element of order two (For example, this is true when G_2 is cyclic). Put $L := K_1K_2$ which is a CM-field. Let \mathfrak{P} be a prime ideal of \mathfrak{o}_L , $\mathfrak{p}_i := \mathfrak{P} \cap \mathfrak{o}_{K_i}$ (i=1, 2) and $p := \mathfrak{P} \cap \mathfrak{o}_F$. Suppose that p is unramified in K_2/F . f_i (i=1, 2) denotes the residue degree of p in K_i/F . Then we have the following:

(I) The case where K_1 is totally real.

 \mathfrak{P} is not decomposed in $L/L^+ \Leftrightarrow \operatorname{ord}_2(f_1) + 1 \leq \operatorname{ord}_2(f_2)$.

(II) The case where K_1 is a CM-field.

- (i) If \mathfrak{p}_1 is decomposed in K_1/K_1^+ , then \mathfrak{P} is decomposed in L/L^+ .
- (ii) If \mathfrak{p}_1 is ramified in K_1/K_1^+ , then \mathfrak{P} is not decomposed in $L/L^+ \Leftrightarrow \operatorname{ord}_2(f_1) + 1 \leq 1$

 $\operatorname{ord}_2(f_2).$

(iii) If \mathfrak{p}_1 is inert in K_1/K_1^+ , then \mathfrak{P} is not decomposed in $L/L^+ \Leftrightarrow \operatorname{ord}_2(f_1) = \operatorname{ord}_2(f_2)$ (>0).

PROOF. Let σ_i (i=1, 2) be a Frobenius automorphism of \mathfrak{p}_i in K_i/F , and T_i and Z_i the inertia and decomposition groups of \mathfrak{p}_i in K_i/F , respectively. Let θ be a Frobenius automorphism of \mathfrak{P} in L/F, and T and Z the inertia and decomposition groups of \mathfrak{P} in L/F, respectively. As $K_1 \cap K_2 = F$, Gal(L/F) is identified with $G_1 \times G_2$. Since $|T| = |T_1|$ by $T_2 = \{1\}$, $T \subset T_1 \times T_2$ implies $T = T_1 \times \{1\}$. If θ_i (i=1, 2) is the restriction of θ to K_i , then $\theta = (\theta_1, \theta_2)$ and θ_i is a Frobenius automorphism of \mathfrak{p}_i in K_i/F . Therefore $\theta_1 T_1 = \sigma_1 T_1$ and furthermore $\theta_2 = \sigma_2$ by $T_2 = \{1\}$. Hence

(3.2)
$$Z = \bigcup_{m} \theta^{m} T = \bigcup_{m} (\sigma_{1}, \sigma_{2})^{m} \cdot (T_{1} \times \{1\}),$$

where *m* ranges over all integers. Let ρ_i (i=1, 2) be the restriction of the complex conjugation to K_i . Since *F* is real, $\rho_i \in G_i$ and furthermore the order of ρ_2 in G_2 is two since K_2 is a *CM*-field. Let $H := \langle (\rho_1, \rho_2) \rangle$, where note that $\rho_1 = 1$ when K_1 is real. Then L^+ is the fixed field of *H* in L/F. So,

(3.3)
$$\mathfrak{P}$$
 is not decomposed in $L/L^+ \iff H \subset Z$,

because $H \cap Z$ is the decomposition group of \mathfrak{P} in L/L^+ . If \mathfrak{P} is not decomposed in L/L^+ , then $\rho_1 \in Z_1$ from (3.3) and $Z \subset Z_1 \times Z_2$, so that $\langle \rho_1 \rangle \cap Z_1 = \langle \rho_1 \rangle$, hence \mathfrak{p}_1 is not decomposed in K_1/K_1^+ . This proves the assertion (II-i). For each i=1, 2, let $t_i := \operatorname{ord}_2(f_i)$.

The cases (I) and (II-ii). Since $\langle \rho_1 \rangle \cap T_1$ is the inertia group of \mathfrak{p}_1 in K_1/K_1^+ , \mathfrak{p}_1 is ramified in $K_1/K_1^+ \Leftrightarrow \rho_1 \in T_1$. So $\rho_1 T_1 = T_1$ by the assumptions. By (3.2) and (3.3), we may show that $t_1 + 1 \leq t_2 \Leftrightarrow$ there exists an integer *m* such that $T_1 = \sigma_1^m T_1$ and $\rho_2 = \sigma_2^m$. If such *m* exists, then we have $f_1 | m, f_2$ is even, $(f_2/2) | m$ and $m/(f_2/2)$ is odd, because f_1 is the order of $\sigma_1 T_1$ in Z_1/T_1 and f_2 is the order of σ_2 in G_2 . Let *a* be the least common multiple of f_1 and $f_2/2$. Since a | m, we have

$$Max(t_1, t_2 - 1) = ord_2(a) \le ord_2(m) = ord_2(f_2/2) = t_2 - 1$$
.

Therefore $t_1 + 1 \le t_2$. Conversely, assume that this holds. So f_2 is even. Let *a* be the same meaning as above. Then $T_1 = \sigma_1^a T_1$. Since $t_1 \le t_2 - 1$, $\operatorname{ord}_2(a) = \operatorname{ord}_2(f_2/2)$ so that the order of σ_2^a is two. Since G_2 has only an element of order two, we have $\rho_2 = \sigma_2^a$. This proves the assertions.

The case (II-iii). Now the order of ρ_1 in G_1 is two. Since \mathfrak{p}_1 is inert in K_1/K_1^+ , $t_1 > 0$, $\langle \rho_1 \rangle \cap Z_1 = \langle \rho_1 \rangle$ and $\langle \rho_1 \rangle \cap T_1 = \{1\}$. So $\rho_1 \in Z_1$ and $\rho_1 \notin T_1$. Therefore $\rho_1 T_1$ is the element of order two in the cyclic group Z_1/T_1 . By (3.2) and (3.3), we may show that $t_1 = t_2 \Leftrightarrow$ there exists an integer *m* such that $\rho_1 T_1 = \sigma_1^m T_1$ and $\rho_2 = \sigma_2^m$. This is similarly proved as in the above cases (e.g., let *a* be the least common multiple of $f_1/2$

and $f_2/2$ in this case).

Return to the situation as before Proposition 3.1. Considering (II-i) of its proposition, we distinguish two cases:

(C1) k is totally real or "k is a CM-field and p is ramified in k/k^+ ".

(C2) k is a CM-field and p is inert in k/k^+ .

Let $p := p \cap \mathbb{Z}$. We denote by a and b the residue degrees of p in k/\mathbb{Q} and $\mathbb{Q}(\zeta_l)/\mathbb{Q}$, respectively. Let f, f_1 and f_2 be the residue degrees of $p \cap \mathfrak{o}_F$ in F/\mathbb{Q} , k/F and $\mathbb{Q}(\zeta_l)/F$, respectively. So $a = ff_1, b = ff_2$, therefore

(3.4)
$$\operatorname{ord}_2(a) = \operatorname{ord}_2(f) + \operatorname{ord}_2(f_1), \quad \operatorname{ord}_2(b) = \operatorname{ord}_2(f) + \operatorname{ord}_2(f_2).$$

Note that $F = \mathbf{Q}$, $a = f_1$ and $b = f_2$ hold under the assumption (3.1) when l = 4.

LEMMA 3.2. Let *l* be an odd prime or l=4, and \mathfrak{p} a prime ideal of \mathfrak{o}_k such that $\mathfrak{p} \nmid l$. Put $N\mathfrak{p} := |\mathfrak{o}_k/\mathfrak{p}|$. Then under the assumption (3.1) and the above notations, we have

(i) If l is an odd prime and $l \mid (Np-1)$, then (#) does not hold in the case (C1).

(ii) When l=4, (\ddagger) holds $\Leftrightarrow N\mathfrak{p} \equiv 3 \mod 4$ in the case (C1), and "ord₂(a)=1 and $p \equiv 3 \mod 4$ " in the case (C2).

PROOF. (i) By l|(Np-1), $p^a = Np \equiv 1 \mod l$. Since b is the order of $p \mod l$, we have b|a so that $\operatorname{ord}_2(b) \leq \operatorname{ord}_2(a)$. It follows from (3.4) that $\operatorname{ord}_2(f_2) \leq \operatorname{ord}_2(f_1) < \operatorname{ord}_2(f_1) + 1$. Hence (#) does not hold by Proposition 3.1, (I), (II-ii) (more precisely, any prime ideal \mathfrak{P} of $\mathfrak{o}_{k(\zeta_l)}$ with $\mathfrak{P}|\mathfrak{p}$ is decomposed in $k(\zeta_l)/k(\zeta_l)^+$).

(ii) Now $\mathbf{Q}(\zeta_l) = \mathbf{Q}(\sqrt{-1})$ and p is an odd prime. So,

 $p \equiv 1 \mod 4 \Leftrightarrow p$ is decomposed in $\mathbf{Q}(\zeta_1)/\mathbf{Q} \Leftrightarrow b = 1 \Leftrightarrow \operatorname{ord}_2(b) = 0$,

 $p \equiv 3 \mod 4 \Leftrightarrow p$ is inert in $\mathbf{Q}(\zeta_l)/\mathbf{Q} \Leftrightarrow b = 2 \Leftrightarrow \operatorname{ord}_2(b) = 1$.

Hence $\operatorname{ord}_2(a) + 1 = (\leq)\operatorname{ord}_2(b) \Leftrightarrow "p \equiv 3 \mod 4$ and $\operatorname{ord}_2(a) = 0" \Leftrightarrow \operatorname{Np} = p^a \equiv 3 \mod 4$. In (C2), we have $\operatorname{ord}_2(a) > 0$. Since $\operatorname{ord}_2(b) \leq 1$, $\operatorname{ord}_2(a) = \operatorname{ord}_2(b) \Leftrightarrow \operatorname{ord}_2(a) = 1$ and $p \equiv 3 \mod 4$. Now the assertions follow from Proposition 3.1.

For a prime ideal \mathfrak{p} of \mathfrak{o}_k with $\mathfrak{p} \nmid l$, putting $p := \mathfrak{p} \cap \mathbb{Z}$, let $a_\mathfrak{p}$ (resp. $b_\mathfrak{p}$) be the residue degree of p in k/\mathbb{Q} (resp. $\mathbb{Q}(\zeta_l)/\mathbb{Q}$). When l is an odd prime (resp. l=4), we define the sets of prime ideals of \mathfrak{o}_k as follows.

 $\mathfrak{S}_{1,l} := \{ \mathfrak{p} \mid \mathfrak{p} \nmid l \text{ and } \operatorname{ord}_2(a_\mathfrak{p}) + 1 \leq \operatorname{ord}_2(b_\mathfrak{p}) \text{ (resp. N}\mathfrak{p} \equiv 3 \mod 4) \},\$

if k is totally real, and

 $\operatorname{ord}_2(a_p) = \operatorname{ord}_2(b_p) \text{ (resp. } \operatorname{ord}_2(a_p) = 1 \text{ and } p \equiv 3 \mod 4) \},$

Π

if k is a CM-field. Then Proposition 3.1 and Lemma 3.2, (ii) yield:

PROPOSITION 3.3. Let l be an odd prime or l=4. Under the above notations and the assumption (3.1), suppose that S is a subset of the set $\mathfrak{S}_{1,l}$ (resp. $\mathfrak{S}_{21,l} \cup \mathfrak{S}_{22,l}$), if k is totally real (resp. a CM-field). Then for any prime ideal \mathfrak{P} of $\mathfrak{o}_{k(\zeta_l)}$ lying above S, \mathfrak{P} is not decomposed in $k(\zeta_l)/k(\zeta_l)^+$.

Now we discuss the cardinal of sets $\mathfrak{S}_{1,l}$ and $\mathfrak{S}_{22,l}$.

LEMMA 3.4. Let *l* be an odd prime and $e := \operatorname{ord}_2(l-1)(\geq 1)$. For a prime *p* such that $p \nmid l$, let b_p be the residue degree of *p* in $\mathbf{Q}(\zeta_l)/\mathbf{Q}$. Then for each *i* $(1 \leq i \leq e)$, there are infinitely many primes *p* such that $i = \operatorname{ord}_2(b_p)$ and $p \nmid l$.

PROOF. Let r be a primitive root mod l and c a divisor of $(l-1)/2^e$. By Dirichlet's density theorem, there are infinitely many primes p such that

$$(3.5) p \equiv r^{2^{e^{-i}c}} \mod l.$$

For such primes p, we have $b_p = (l-1)/(2^{e-i}c)$, therefore $i = \operatorname{ord}_2(b_p)$. This proves our lemma.

LEMMA 3.5. Let l be an odd prime or l=4. Assume that k/Q is an abelian extension with the discriminant d. Then under the above notations, we have

- (i) $[k: \mathbf{Q}]$ is not a power of 2 and $(d, l) = 1 \Rightarrow |\mathfrak{S}_{1,l}| = \infty$.
- (ii) $l \equiv 1 \mod 4$ and $(d, l) = 1 \Rightarrow |\mathfrak{S}_{1,l}| = \infty$.
- (iii) Let k be a CM-field. If we put

$$\mathfrak{S}_{2,l} := \{ \mathfrak{p} \mid \mathfrak{p} \text{ is inert in } k/k^+ \text{ and } p^{a_{\mathfrak{p}}/2} \equiv -1 \mod l \},\$$

then $\mathfrak{S}_{2,l} \subset \mathfrak{S}_{22,l}$ and $|\mathfrak{S}_{2,l}| = \infty$.

PROOF. (i) Since $[k : \mathbf{Q}]$ is not a power of 2, there is an element σ of $Gal(k/\mathbf{Q})$ of odd prime order. By Tchebotarev's density theorem, there are infinitely many primes p_0 with $p_0 \nmid d$, whose Frobenius automorphism in k/\mathbf{Q} is equal to σ . Take such a prime p_0 . Let $m \in \mathbf{Z}$ be the conductor of k/\mathbf{Q} so that $Gal(k/\mathbf{Q})$ is isomorphic to the quotient group of $(\mathbf{Z}/m\mathbf{Z})^{\times}$. Since (d, l) = 1, (m, l) = 1. By Dirichlet's density theorem, there are infinitely many primes p such that $p \equiv p_0 \mod m$, and (3.5) for i = 1 (resp. $p \equiv 3 \mod 4$) holds if l is odd (resp. l = 4). Let p be a prime ideal of σ_k lying above such a prime p. Then $\operatorname{ord}_2(b_p) = 1$ by Lemma 3.4 and the proof of Lemma 3.2, (ii). Furthermore $\operatorname{ord}_2(a_p) = 0$, because σ is also the Frobenius automorphism of p in k/\mathbf{Q} and a_p is the order of σ . Hence $p \in \mathfrak{S}_{1,l}$. This proves the assertion.

(ii) Now *l* is odd and, by (i), we may assume that $[k : \mathbf{Q}]$ is a power of 2. So there is an element σ of $Gal(k/\mathbf{Q})$ of order two. Then the same argument as in (i) proves the assertion. (Since $l \equiv 1 \mod 4$, use (3.5) for i=2. Then we obtain $\operatorname{ord}_2(b_p)=2$, $\operatorname{ord}_2(a_p)=1$.)

(iii) Let $p \in \mathfrak{S}_{2,l}$. Since b_p is the order of $p \mod l$ and $p^{a_p/2} \equiv -1 \mod l$, we have

ord₂ $(a_p) = \text{ord}_2(b_p)$ (resp. ord₂ $(a_p) = 1$ and $p \equiv 3 \mod 4$) when *l* is odd (resp. l=4). Hence $p \in \mathfrak{S}_{22,l}$ so that $\mathfrak{S}_{2,l} \subset \mathfrak{S}_{22,l}$. By Dirichlet's density theorem, there are infinitely many primes *p* such that $p \equiv -1 \mod ml$. Let p be a prime ideal of \mathfrak{o}_k lying above such a prime *p*. Since $p \equiv -1 \mod ml$, the complex conjugation ρ ($\neq 1$) on *k* is the Frobenius automorphism of *p* in k/\mathbb{Q} . So $a_p = 2$ and p is inert in k/k^+ . Hence $p \in \mathfrak{S}_{2,l}$. This proves our lemma.

4. A sufficient condition for the non-existence.

We assume that k/\mathbb{Q} is a Galois extension of even degree and K/k is a finite abelian extension with conductor m. And we write the finite component \mathfrak{m}_0 of m as the form $\mathfrak{m}_0 = \mathfrak{m}_1\mathfrak{m}_2$, satisfying that " $\mathfrak{p} | \mathfrak{m}_1 \Rightarrow \operatorname{ord}_{\mathfrak{p}}(\mathfrak{m}_0) = 1$ " and " $\mathfrak{p} | \mathfrak{m}_2 \Rightarrow \operatorname{ord}_{\mathfrak{p}}(\mathfrak{m}_0) \ge 2$ ". Let l be a fixed odd prime such that $k \cap \mathbb{Q}(\zeta_l) = \mathbb{Q}$. Put $\mathfrak{S}_l := \mathfrak{S}_{1,l}$ (resp. $\mathfrak{S}_{21,l} \cup \mathfrak{S}_{22,l}$), when kis totally real (resp. a *CM*-field), where the set $\mathfrak{S}_{*,l}$ is defined before Proposition 3.3. Suppose that $S = S_l$ is a finite subset of \mathfrak{S}_l such that $\{\mathfrak{p} ; \mathfrak{p} | \mathfrak{m}_2\} \subset S$. So S contains all prime ideals of \mathfrak{o}_k which are wildly ramified in K/k, by the conductor-discriminant theorem. For a prime ideal \mathfrak{p} of \mathfrak{o}_k , $e_{\mathfrak{p}}$ denotes the ramification index of \mathfrak{p} in k/\mathbb{Q} . We define the finite set of prime ideals of \mathfrak{o}_k as follows.

$$\mathfrak{T}_l := \{\mathfrak{p}; 2 | e_{\mathfrak{p}}, \operatorname{ord}_2(b_{\mathfrak{p}}) = 0\},\$$

where $b_{\mathfrak{p}}$ is the residue degree of $\mathfrak{p} \cap \mathbb{Z}$ in $\mathbb{Q}(\zeta_l)/\mathbb{Q}$. Then note that $\mathfrak{T}_l \cap \mathfrak{S}_{1,l} = \mathfrak{T}_l \cap \mathfrak{S}_{21,l} = \emptyset$.

THEOREM 4.1. Under the above assumptions and notations, suppose that $Gal(K \cap \tilde{k}/k)$ is a 2-group and that there exists some \mathfrak{p} with $\mathfrak{p} \nmid 2$ in \mathfrak{T}_l , not belonging to S, such that $l \mid [K \cap k(\mathfrak{p}) : k]$. Then $\mathfrak{o}_K(S)/\mathfrak{o}_k(S)$ does not have a normal basis.

REMARK 4.2. As seen below, note that $\mathfrak{p} \nmid l$. And note that $l \mid [k(\mathfrak{p}) : k] = (N\mathfrak{p} - 1)h_k/w_{\mathfrak{p}}$, where $w_{\mathfrak{p}} := |(\mathfrak{o}_k^{\times} + \mathfrak{p})/\mathfrak{p}|$ and $h_k := [\tilde{k} : k]$.

PROOF OF THEOREM 4.1. Let $L := K \cap k(\mathfrak{p})$. Since $l \mid [L : k]$, there exists some χ in $Gal(L/k)^{\sim}$ such that $g_{\chi} = l$. Let k_{χ} be the fixed field of Ker χ in L/k. Then \mathfrak{p} is ramified in k_{χ}/k . If not so, then $k_{\chi} \subset \tilde{k}$ so that $k_{\chi} \subset K \cap \tilde{k}$. This contradicts that $Gal(K \cap \tilde{k}/k)$ is a 2-group. Consequently since $k_{\chi} \subset k(\mathfrak{p})$, \mathfrak{p} is tamely ramified in k_{χ}/k so that $\mathfrak{p} \nmid g_{\chi}$.

Assume that $\mathfrak{o}_{K}(S)/\mathfrak{o}_{k}(S)$ has a normal basis; therefore so does $\mathfrak{o}_{L}(S)/\mathfrak{o}_{k}(S)$. By the assumed tameness in K/k outside S, there is some γ in $\mathfrak{o}_{L}(S)$ such that $\operatorname{Tr}_{L/k}(\gamma) = \langle \gamma, 1 \rangle_{L/k} = 1$. This yields that there is some α in $\mathfrak{o}_{L}(S)$ such that α is a generator of normal basis of $\mathfrak{o}_{L}(S)/\mathfrak{o}_{k}(S)$ with $\langle \alpha, 1 \rangle = 1$. If $\mathfrak{b}(\chi)$ is the fractional ideal of $\mathfrak{o}_{k(\chi)}(S)$ depending on α as in (2.1), then we have $\mathfrak{b}(\chi) = (1)$ by [8, Lemma 2.8, (ii)]. Furthermore \mathfrak{p} is totally ramified in k_{χ}/k and $k \cap \mathbf{Q}(\chi) = \mathbf{Q}$ by the assumption. So by Proposition 2.3, (ii),

(4.1)
$$(\langle \alpha, \chi \rangle^{g_{\chi}}) \mathfrak{o}_{k(\chi)}(S) = \mathfrak{P}^{\theta},$$

where θ is defined in (2.8) and \mathfrak{P} is some prime ideal of $\mathfrak{o}_{k(\chi)}$ lying above \mathfrak{p} . Put $p := \mathfrak{p} \cap \mathbf{Q}$ and $P := \mathfrak{P} \cap \mathbf{Q}(\chi)$. Let $b := b_{\mathfrak{p}}$ and q be the cardinal of $\mathfrak{o}_{\mathbf{Q}(\chi)}/P$ so that $q = p^b$ and $\mathfrak{o}_{\mathbf{Q}(\chi)}/P$ is identified with the field \mathbf{F}_q of q elements. Let T be the trace map from \mathbf{F}_q to \mathbf{F}_p . Define

$$\psi: \mathbf{F}_q \longrightarrow \mathbf{C}^{\times}, \qquad \psi(x) = \zeta_p^{\mathbf{T}(x)}$$

Let $\left(\frac{x}{P}\right)_{g_{\chi}}$ be the g_{χ} th power residue symbol mod P in $\mathbf{Q}(\chi)$. Define the Gauss sum

$$\tau:=-\sum_{x\in \mathbf{F}_{q}^{\times}}\left(\frac{x}{P}\right)_{q_{\chi}}^{-1}\psi(x).$$

Let $\Omega := Gal(k(\chi)/k)$. Since $p \nmid g_{\chi}$, note that there is a canonical isomorphism:

$$\Omega \cong Gal(\mathbf{Q}(\chi)/\mathbf{Q}) \cong Gal(\mathbf{Q}(\zeta_p)(\chi)/\mathbf{Q}(\zeta_p)) .$$

By Stickelberger's theorem,

(4.2)
$$(\tau^{g_{\chi}})\mathfrak{o}_{\mathbf{0}(\chi)} = P^{\theta}.$$

Now we establish some relation between Gauss sum τ and the resolvent $\langle \alpha, \chi \rangle$. As $p \nmid g_{\chi}$, p is unramified in $\mathbf{Q}(\chi)/\mathbf{Q}$. So $e := e_p$ is the ramification index of \mathfrak{P} in $k(\chi)/\mathbf{Q}(\chi)$. Let Z be the decomposition group of \mathfrak{P} in $k(\chi)/\mathbf{Q}(\chi)$ and put $\mathscr{G} := Gal(k(\chi)/\mathbf{Q}(\chi))$. Then elements of Ω and \mathscr{G} are commutative. So by (4.2) and (4.1),

(4.3)
$$(\tau^{g_{\chi}})\mathfrak{o}_{k(\chi)}(S) = \left(\prod_{\sigma \in \mathscr{G}/Z} \mathfrak{P}^{\sigma}\right)^{\theta e} = \prod_{\sigma \in \mathscr{G}/Z} (\mathfrak{P}^{\theta})^{e\sigma}$$
$$= \left(\prod_{\sigma \in \mathscr{G}/Z} \langle \alpha, \chi \rangle^{g_{\chi}e\sigma}\right) \mathfrak{o}_{k(\chi)}(S) .$$

As g_{χ} is odd, there is some ω in Ω such that $\zeta^{\omega} = \zeta^2$, where ζ is a primitive g_{χ} th root of unity. Let $J := \tau^{2-\omega}$ (Jacobi sum) in $\mathbf{Q}(\chi)$. Then we have

$$J\overline{J}=q$$
, $J\equiv -1 \mod (\zeta-1)$,

where the bar denotes the complex conjugation. Let $A := \langle \alpha, \chi \rangle^{2-\tilde{\omega}}$ in $k(\chi)$ where $\tilde{\omega}$ is an extension of ω to $L(\chi)$, and put $B := \prod_{\sigma \in \mathscr{G}/Z} A^{\sigma}$. Then since $\langle \alpha, \chi \rangle \equiv \langle \alpha, 1 \rangle = 1 \mod (\zeta - 1)$, we have $B \equiv 1 \mod (\zeta - 1)$. Furthermore it follows from (4.3) that $(J)\mathfrak{o}_{k(\chi)}(S) = (B^e)\mathfrak{o}_{k(\chi)}(S)$. Hence there exists some ε in $\mathfrak{o}_{k(\chi)}(S)^{\times}$ such that

$$(4.4) B^e = \varepsilon J .$$

By the definition of S and Proposition 3.3, the complex conjugation acts trivially on S; therefore $\varepsilon \in o_{k(\chi)}(S)^{\times}$ implies $\overline{\varepsilon} \in o_{k(\chi)}(S)^{\times}$ and $\operatorname{ord}_{\mathfrak{P}}(\varepsilon/\overline{\varepsilon}) = 0$ for any prime ideal \mathfrak{P} of $o_{k(\chi)}$ lying above S. Since k is a totally real number field or a CM-field, $k(\chi)$ is a CM-field. Hence $\varepsilon/\overline{\varepsilon}$ is a root of unity by the generalized Dirichlet's unit theorem. Let $2^{a}w$ be the

number of roots of unity in $k(\chi)$ where w is odd. Since $J/\overline{J} = J^2/q$, it follows from (4.4) that

$$(B/\overline{B})^{we} = (J^w/q^{w/2})^2 \cdot (\varepsilon/\overline{\varepsilon})^w$$

Since e is even, there is some 2-power root of unity ξ such that

$$(B/\overline{B})^{we/2} = \pm J^w/(q^{w/2}\xi)$$
.

It follows from $B \equiv 1$, $J \equiv -1 \mod (\zeta - 1)$ and $(q, q_y) = 1$ that

(4.5) $q^{w/2}\xi \equiv \pm 1 \mod (\zeta - 1)$.

Let $F := \mathbf{Q}(\chi)(q^{1/2}, \xi)$. As *b* is odd, we have $q^{1/2} \notin \mathbf{Q}$. Since $(2q, g_{\chi}) = 1$, $Gal(\mathbf{Q}(q^{1/2}, \xi)/\mathbf{Q})$ is identified with $Gal(F/\mathbf{Q}(\chi))$. Therefore by (2, q) = 1, there is an isomorphism φ of $F/\mathbf{Q}(\chi)$ such that $\varphi(\xi) = \xi$ and $\varphi(q^{1/2}) = -q^{1/2}$. Applying φ to (4.5), since *w* is odd, we have $1 \equiv -1 \mod (\zeta - 1)$, hence $l = g_{\chi} = 2$. This is a contradiction. Thus our theorem is proved.

PROPOSITION 4.3. Assume that $\mathbf{Q} \subset k \subset K \subset \mathbf{Q}(\zeta_p)$, p being an odd prime, and $[k : \mathbf{Q}]$ is even. Suppose that there exists an odd prime l such that $l \mid [K : k]$. Then for any finite subset S (or $S = \emptyset$) of \mathfrak{S}_l , $\mathfrak{o}_K(S)/\mathfrak{o}_k(S)$ does not have a normal basis.

REMARK 4.4. If we assume that $l \equiv 1 \mod 4$ in the case where k is totally real and $[k: \mathbf{Q}]$ is a power of 2, then the set \mathfrak{S}_l is always infinite by Lemma 3.5.

PROOF OF PROPOSITION 4.3. By (p, l) = 1, we have $k \cap \mathbf{Q}(\zeta_l) = \mathbf{Q}$. Let p be the unique prime ideal of \mathfrak{o}_k lying above p. Since p is totally ramified in K/k, we have $K \cap \tilde{k} = k$. Furthermore since p is tamely ramified and only a prime ideal of \mathfrak{o}_k which is ramified in K/k, the conductor of K/k is of the form \mathfrak{pm}_{∞} (therefore $\mathfrak{m}_2 = 1$). So $l \mid [K \cap k(\mathfrak{p}) : k]$, because $[k(\mathfrak{pm}_{\infty}) : k(\mathfrak{p})]$ is a power of 2 by class field theory. Now $e_p = [k : \mathbf{Q}] \Rightarrow 2|e_p$ and $p \equiv 1 \mod l \Rightarrow b_p = 1$; therefore $\operatorname{ord}_2(b_p) = 0$, so that $p \in \mathfrak{T}_l$. Claim that $p \notin S$. This follows from $\mathfrak{T}_l \cap \mathfrak{S}_{1,l} = \emptyset$ when k is totally real. When k is a CM-field, if $p \in S$, then we have $p \in \mathfrak{S}_{22,l}$ ($\mathfrak{T}_l \cap \mathfrak{S}_{21,l} = \emptyset$), so that p is inert in k/k^+ . This contradicts that pis totally ramified in k/\mathbf{Q} . Hence $\mathfrak{o}_K(S)/\mathfrak{o}_k(S)$ does not have a normal basis by Theorem 4.1.

PROPOSITION 4.5. Let k be a quadratic field such that $[\tilde{k}:k]$ is a power of 2 and p a prime ideal of \mathfrak{o}_k which is ramified in k/\mathbb{Q} . Put $p := \mathfrak{p} \cap \mathbb{Z}$. Suppose that there exists an odd prime l such that $l|((p-1)/w_p)$, where w_p is defined in Remark 4.2. Then for any finite subset S (or $S = \emptyset$) of $\mathfrak{S}_l, \mathfrak{o}_{k(p)}(S)/\mathfrak{o}_k(S)$ does not have a normal basis.

REMARK 4.6. By Lemma 3.5, the set \mathfrak{S}_l is always infinite, if we assume that $l \equiv 1 \mod 4$ and l is prime to the discriminant of k/\mathbf{Q} when k is a real quadratic field.

PROOF OF PROPOSITION 4.5. Now $e_p = 2$, Np = p and $b_p = 1$ hold. Since $p \neq l$, $k \cap Q(\zeta_l) = Q$. And we have $p \notin S$ by the same reason as in the proof of Proposition 4.3.

Hence Theorem 4.1 implies our assertion.

5. Normal integral bases in abelian fields with prime conductors.

Let p be an odd prime. In this section, we let K be a subfield of the pth cyclotomic field $\mathbf{Q}(\zeta_p)$, and k a subfield of K. Let n := [K : k](>1) and $m := [k : \mathbf{Q}]$. If m = 1, then it is well known that o_K/o_k has a normal basis. So we assume that m > 1 throughout this section. Our goal is Theorem 5.3.

Let $\Gamma := Gal(K/\mathbb{Q})$. Since Γ is cyclic, so is the group $\hat{\Gamma}$ of its characters; let ψ_0 be a fixed generator of $\hat{\Gamma}$. There exists a natural surjective group homomorphism:

$$\hat{\Gamma} \longrightarrow \hat{G}, \qquad \psi \longmapsto \psi|_G.$$

For a positive integer *i*, we put $\psi_i := \psi_0^i$ and $\chi_i := \psi_i|_G$. Let $l_i := (i/d, m)$ where $d = d_i$ is the greatest common divisor of *i* and *n*. Then

(5.1)
$$g_{\psi_i} = \frac{m}{l_i} g_{\chi_i},$$

where g_{ψ_i} (resp. g_{χ_i}) is the order of ψ_i (resp. χ) in $\hat{\Gamma}$ (resp. \hat{G}). For a number field Nand each $\psi \in \hat{\Gamma}$, $N(\psi)$ denotes the field generated by the value of ψ on Γ over N. Let $\Omega_i := Gal(k(\psi_i)/k)$ and ξ_i be a fixed primitive g_{ψ_i} th root of unity. Since $k \cap \mathbf{Q}(\psi_i) = \mathbf{Q}$ by $(p, g_{\psi_i}) = 1$, there exists a group isomorphism ι_i of Ω_i into $(\mathbf{Z}/g_{\psi_i}\mathbf{Z})^{\times}$ such that $\xi_i^{\omega} = \xi_i^{\iota_i(\omega)}$ for all $\omega \in \Omega_i$. For each $\omega \in \Omega_{\psi_i}$, let $t_i(\omega)$ be the integer satisfying $\iota_i(\omega) = t_i(\omega) \mod g_{\psi_i}$, $0 < t_i(\omega) < g_{\psi_i}$ and put

$$\eta_i := \sum_{\omega \in \Omega_i} \left[l_i t_i(\omega) / g_{\chi_i} \right] \omega^{-1} ,$$

where [x] denotes the greatest integer $\leq x$ as usual for a real number x. For each $\psi \in \hat{\Gamma}$, we define the group homomorphism det_{ψ} by

$$\det_{\psi}: k\Gamma^{\times} \longrightarrow k(\psi)^{\times}, \qquad \sum_{s \in \Gamma} a_s s \longmapsto \sum_{s \in \Gamma} \psi(s) a_s.$$

PROPOSITION 5.1. Let $\beta \in \mathfrak{o}_K$ be a free generator of K over kG. Then there exists some λ in $k\Gamma^{\times}$ such that for any positive integer i with $i \neq 0 \mod n$, we have

(5.2)
$$\mathbf{b}(\chi_i)^{-1} = (\det_{\psi_i}(\lambda)) \mathfrak{P}_i^{\eta_i},$$

where \mathfrak{P}_i is some prime ideal of $\mathfrak{o}_{k(\psi_i)}$ lying above p and, taking $S = \emptyset$, $\mathfrak{b}(\chi_i)$ is the fractional ideal of $\mathfrak{o}_{k(\chi_i)}$ depending on β as in (2.1).

PROOF. Let $\alpha := \operatorname{Tr}_{\mathbf{Q}(\zeta_p)/K}(\zeta_p)$. Since α is a free generator of K over $\mathbf{Q}\Gamma$, we can prove the following in the same way as in Fröhlich [7, Lemma 6.2 and Theorem 25, (ii) of Chapter III]: there exists some λ in $k\Gamma^{\times}$ such that

142

(5.3)
$$\langle \beta, \psi |_G \rangle_{K/k} = \det_{\psi}(\lambda) \langle \alpha, \psi \rangle_{k/\mathbf{Q}},$$

for all $\psi \in \hat{\Gamma}$. Let $\tilde{\psi}_i$ be the character of $Gal(\mathbf{Q}(\zeta_p)/\mathbf{Q})$ of order g_{ψ_i} , defined by $\tilde{\psi}_i(s) := \psi_i(s|_K)$ for all $s \in Gal(\mathbf{Q}(\zeta_p)/\mathbf{Q})$. Then it follows from the definition of α that

$$\langle \alpha, \psi_i \rangle_{K/\mathbf{Q}} = \sum_{s \in Gal(\mathbf{Q}(\zeta_p)/\mathbf{Q})} \widetilde{\psi}_i(s^{-1}) \zeta_p^s.$$

Let P be any prime ideal of $\mathfrak{o}_{\mathbf{Q}(\psi_i)}$ lying above p. Since $p \equiv 1 \mod g_{\psi_i}$, p is completely decomposed in $\mathbf{Q}(\psi_i)/\mathbf{Q}$ so that $\mathfrak{o}_{\mathbf{Q}(\psi_i)}/P$ is identified with the field \mathbf{F}_p of p elements. Since $i \not\equiv 0 \mod n$, $g_{\chi_i} > 1$ so that $g_{\psi_i} > 1$. Let $\left(\frac{x}{P}\right)_{g_{\psi_i}}$ be the g_{ψ_i} th power residue symbol mod P in $\mathbf{Q}(\psi_i)$ which can be regarded as a character of \mathbf{F}_p^{\times} of order g_{ψ_i} . Since $Gal(\mathbf{Q}(\zeta_p)/\mathbf{Q})$ is identified with \mathbf{F}_p^{\times} , $\tilde{\psi_i}$ is also a character of \mathbf{F}_p^{\times} of order g_{ψ_i} . Consequently there is some δ in $\Omega_i \cong (\mathbf{Z}/g_{\psi_i}\mathbf{Z})^{\times}$ such that $\tilde{\psi_i} = \left(\frac{-P}{P}\right)_{q_{\psi_i}}^{\delta}$. Define the Gauss sum

$$\tau := -\sum_{x \in \mathbf{F}_p^{\times}} \left(\frac{x}{P}\right)_{g_{\psi_i}}^{-1} \zeta_p^x.$$

As $(p, g_{\psi_i}) = 1$, Ω_i can be identified with $Gal(\mathbf{Q}(\zeta_p)(\psi_i)/\mathbf{Q}(\zeta_p))$. Hence we have $\langle \alpha, \psi_i \rangle_{K/\mathbf{Q}} = -\tau^{\delta}$. Since P is totally ramified in $k(\psi_i)/\mathbf{Q}(\psi_i)$, $P = \mathfrak{P}^m$ with some prime ideal \mathfrak{P} of $\mathfrak{o}_{k(\psi_i)}$. Let $\mathfrak{P}_i := \mathfrak{P}^{\delta}$. Then we have by Stickelberger's theorem

$$(\langle \alpha, \psi_i \rangle_{K/\mathbf{O}}^{g_{\psi_i}}) = \mathfrak{P}_i^{m\theta_i},$$

where we put $\theta_i := \sum_{\omega \in \Omega_i} t_i(\omega) \omega^{-1}$. Hence it follows from (5.3) that

(5.4)
$$(\langle \beta, \chi_i \rangle_{K/k}^{g_{\psi_i}}) = (\det_{\psi_i}(\lambda)^{g\psi_i}) \mathfrak{P}_i^{m\theta_i} .$$

Let p be the unique prime ideal of o_k lying above p. Since $p \nmid g_{\chi_i}$, we have by (2.3) and Proposition 2.3, (i),

(5.5)
$$(\langle \beta, \chi_i \rangle_{K/k}^{g_{\chi_i}}) = \mathfrak{a}(\chi_i) \mathfrak{b}(\chi_i)^{-g_{\chi_i}}$$

and $a(\chi_i)$ is a g_{χ_i} -power free ideal of $o_{k(\chi_i)}$. Hence (5.2) follows from (5.1), (5.4), (5.5) and the definition of η_i . This proves our proposition.

PROPOSITION 5.2. Let *i* be a positive integer with $i \neq 0 \mod n$ and β , $\mathfrak{b}(\chi_i)$ as in Proposition 5.1. Under the above notations, assume that $(l_i, g_{\psi_i}) = 1$, $l_i > 1$ and one of the following conditions is satisfied:

(i) l_i is odd and $g_{\chi_i} > 2$,

(ii) l_i is even, $l_i \ge 4$ and " $l_i \ne 6$ or $g_{\chi_i} \ne 5$ ". Then $\mathfrak{b}(\chi_i)$ is not a principal ideal of $\mathfrak{o}_{k(\chi_i)}$.

PROOF. Since $l_i | m$, there exists the unique subfield F of k with $[k:F] = l_i$. Let $\mathscr{G} := Gal(k(\psi_i)/F(\psi_i))$ and \mathfrak{P}_i be as in Proposition 5.1. Assume that $\mathfrak{b}(\chi_i)$ is a principal

ideal of $\mathfrak{o}_{k(\chi_i)}$. So by Proposition 5.1, there is some A in $k(\psi_i)^{\times}$ such that $\mathfrak{P}_i^{\eta_i} = (A)$. Let $\omega_0 \in \Omega_i$ such that $\xi_i^{\omega_0} = \xi_i^{-1}$. Since \mathfrak{P}_i is totally ramified in $k(\psi_i)/\mathbb{Q}(\psi_i)$, we have $\overline{\mathfrak{P}_i} = \mathfrak{P}_i^{\omega_0}$ so that $\overline{\mathfrak{P}_i^{\eta_i}} = \mathfrak{P}_i^{\eta_i\omega_0}$, since $k(\psi_i)/\mathbb{Q}$ is abelian, where the bar denotes the complex conjugation. It is easy to see that $\eta_i - \eta_i \omega_0 = \sum_{\omega \in \Omega_i} \{2[l_i t_i(\omega)/g_{\chi_i}] + 1 - m\} \omega^{-1}$. Hence we have

(5.6)
$$\operatorname{ord}_{\mathfrak{B}_i}(A/\overline{A}) = 2[l_i/g_{r_i}] + 1 - m.$$

For a Dedekind domain \mathfrak{o} , we denote by $P(\mathfrak{o})$ the group of principal ideals of \mathfrak{o} . The group $P(\mathfrak{o}_{F(\psi_i)})$ can be regarded as a subgroup of $P(\mathfrak{o}_{k(\psi_i)})$ by the extension of ideals. Then $P(\mathfrak{o}_{k(\psi_i)})^{\mathscr{G}}/P(\mathfrak{o}_{F(\psi_i)})$ is isomorphic to the cohomology group $H^1(\mathscr{G}, \mathfrak{o}_{k(\psi_i)}^{\times})$, where $P(\mathfrak{o}_{k(\psi_i)})^{\mathscr{G}}$ denotes the group of elements of $P(\mathfrak{o}_{k(\psi_i)})$, fixed by \mathscr{G} . Furthermore since \mathscr{G} is cyclic, this cohomology group is isomorphic to $N(\mathfrak{o}_{k(\psi_i)}^{\times})/(\mathfrak{o}_{k(\psi_i)}^{\times})^{\sigma-1}$, where σ is a generator of \mathscr{G} , $N(\mathfrak{o}_{k(\psi_i)}^{\times}) := \{u \in \mathfrak{o}_{k(\psi_i)}^{\times} | N(u) = 1\}$ and N is the norm map from $k(\psi_i)$ to $F(\psi_i)$. Let $(x) \in P(\mathfrak{o}_{k(\psi_i)})^{\mathscr{G}}$. Then under this group isomorphism, the class of (x) corresponds to the class of $x^{\sigma-1}$, and the class of (x/\bar{x}) corresponds to the class of $x^{\sigma-1}/\bar{x^{\sigma-1}}$, since $k(\psi_i)$ is a *CM*-field.

Since \mathfrak{P}_i is totally ramified in $k(\psi_i)/F(\psi_i)$ and $k(\psi_i)/F$ is abelian, $\mathfrak{P}_i^{n_i}$ is now fixed by \mathscr{G} . So $(A) \in P(\mathfrak{o}_{k(\psi_i)})^{\mathscr{G}}$. We claim that (A/\overline{A}) belongs to $P(\mathfrak{o}_{F(\psi_i)})$ if l_i is odd, and to $\langle (\sqrt{a}) \mod P(\mathfrak{o}_{F(\psi_i)}) \rangle$ if l_i is even, where \sqrt{a} $(a \in F(\psi_i)^{\times})$ is a primitive element of the quadratic subextension of $k(\psi_i)/F(\psi_i)$. Put indeed $u := A^{\sigma-1}$. Since $k(\psi_i)$ is a CM-field, u/\overline{u} is a root of unity by Dirichlet's unit theorem. As $k \subseteq \mathbb{Q}(\zeta_p)$, the group of roots of unity in $k(\psi_i)$ is generated by $\pm \xi_i$. So $u/\overline{u} = (-\xi_i)^v$ with some integer v. Taking the norm N, we see $1 = (-\xi_i)^{vl_i}$, therefore $2g_{\psi_i}|vl_i$. Since $(l_i, g_{\psi_i}) = 1$, we have $2g_{\psi_i}|v$ (resp. $g_{\psi_i}|v)$, hence $u/\overline{u} = 1$ (resp. ± 1) when l_i is odd (resp. even). Thus our claim is proved since $\sqrt{a}^{\sigma-1} = -1$. Hence there are some ε in $\mathfrak{o}_{k(\psi_i)}^{\times}$ and some b in $F(\psi_i)^{\times}$ such that $A/\overline{A} = \sqrt{a}^{j}b\varepsilon$, where j=0 or 1, and if l_i is odd, then we put j=0. So

$$\operatorname{ord}_{\mathfrak{P}_i}(A/\overline{A}) \equiv j \frac{l_i}{2} \operatorname{ord}_{P_i}(a) \mod l_i$$
,

where let $P_i := \mathfrak{P}_i \cap F(\psi_i)$. It follows from (5.6) that

(5.7)
$$2[l_i/g_{\chi_i}] + 1 \equiv j \frac{l_i}{2} \operatorname{ord}_{P_i}(a) \mod l_i.$$

(i) The case where l_i is odd. As $g_{\chi_i} > 2$, $2[l_i/g_{\chi_i}] + 1 \le 2(l_i-1)/2 + 1 = l_i$. So it follows from j=0 and (5.7) that $2[l_i/g_{\chi_i}] + 1 = l_i$. Since $(l_i, g_{\chi_i}) = 1$, we can write $l_i = g_{\chi_i}q + r$ with some non-negative integer q and $0 < r < g_{\chi_i}$. Therefore $(2-g_{\chi_i})q=r-1$, so q=0, r=1. Hence we have $l_i = 1$. This is a contradiction.

(ii) The case where l_i is even. Then it follows from (5.7) that j (=1), $l_i/2$ and ord_{P_i}(a) are all odd. So we have $2[l_i/g_{\chi_i}] + 1 \equiv l_i/2 \mod l_i$. Since $(l_i, g_{\chi_i}) = 1$ and $g_{\chi_i} > 1$, we have $g_{\chi_i} > 2$, hence $2[l_i/g_{\chi_i}] + 1 = l_i/2$. We write $l_i = g_{\chi_i}q + r$ with some non-negative integer q and $0 < r < g_{\chi_i}$. Then

$$(4-g_{\chi_i})q=r-2.$$

If r>2, then $g_{\chi_i}<4$ from (5.8). Since g_{χ_i} is odd, $g_{\chi_i}=3$ so that 2 < r < 3. This is a contradiction. Therefore r=1 or 2. If r=2, then q=0 by (5.8) so that $l_i=2$. This contradicts $l_i \ge 4$. If r=1, then $g_{\chi_i}=5$ and $l_i=6$ from (5.8). This is a contradiction. Thus our proposition is proved.

THEOREM 5.3. Under the above notations, we have the following:

(I) $\mathfrak{o}_K/\mathfrak{o}_k$ does not have a normal basis, except for the following four cases:

(i) m is even and not a power of 2, and n=2.

(ii) *m* and *n* are both powers of 2.

(iii) *m* is a power of q and n is a power of q or $2 \times (a \text{ power of } q)$, with some odd prime q.

(iv) m is odd and n=2.

(II) In the case (I-iv), $\mathfrak{o}_K/\mathfrak{o}_k$ has a normal basis. (For the other cases, see the remark below.)

PROOF. Let $\beta \in \mathfrak{o}_K$ be a free generator of $\mathfrak{o}_{k_p} \otimes_{\mathfrak{o}_k} \mathfrak{o}_k$ over $\mathfrak{o}_{k_p} G$ for each prime ideal \mathfrak{p} of \mathfrak{o}_k , dividing the order of G.

(1) By Proposition 4.3, we need prove when (A): m is even and n is a power of 2, or (B): m is odd.

The case (A). Let $v := \operatorname{ord}_2(m)$ and $i := m/2^v$. Then $l_i = i$, $g_{\chi_i} = n/(i, n) = n$ so that $(l_i, g_{\psi_i}) = 1$ by (5.1). Since we make exceptions of the cases (ii) and (i), we have $l_i > 1$ so that $g_{\chi_i} > 2$. Therefore it follows from Proposition 5.2, (i) that $b(\chi_i)$ is not a principal ideal of $\mathfrak{o}_{k(\chi_i)}$. Hence $\mathfrak{o}_K/\mathfrak{o}_k$ does not have a normal basis by [8, Theorem 2.10, (ii)].

The case (B). If *n* is not a power of 2, then there is some odd prime *q* with *q*|*n*. Let $v := \operatorname{ord}_q(m) (\geq 0)$. When $m/q^v > 1$, putting $i := mn/q^{v+1}$, we have $l_i = m/q^v > 1$, $g_{\chi_i} = q > 2$, $(l_i, g_{\psi_i}) = 1$ so that $b(\chi_i)$ is not principal by Proposition 5.2, (i). When $m = q^v$, let $w := \operatorname{ord}_q(n)$ and $i := q^{v+w}$. Then $l_i = m > 1$, $g_{\chi_i} = n/q^w$, $(l_i, g_{\psi_i}) = 1$. Since we make exception of the case (iii), $n/q^w > 2$ so that $g_{\chi_i} > 2$. Hence $b(\chi_i)$ is not principal by Proposition 5.2, (i). If *n* is a power of 2, then we put i := m. So $l_i = m > 1$, $g_{\chi_i} = n$, $(l_i, g_{\psi_i}) = 1$. Since we make exception of the case (iv), n > 2 so that $g_{\chi_i} > 2$. Hence $b(\chi_i)$ is not principal by Proposition 5.2, (i). Thus $\mathfrak{o}_K/\mathfrak{o}_k$ does not have a normal basis by [8, Theorem 2.10, (ii)].

(II) Let i:=m. Then $g_{\chi_i}=g_{\psi_i}=2$, $l_i=m$, $\Omega_i=\{1\}$. So $\hat{G}=\{1,\chi_i\}$. Put $\pi:=N_{\mathbf{O}(\zeta_n)/k}(1-\zeta_n)$ so that $\mathfrak{P}_i=(\pi)$. As $\eta_i=(m-1)/2$, it follows from (5.2) that

$$b(\chi_i)^{-1} = (\pi^{(m-1)/2} \det_{\psi_i}(\lambda))$$
.

From (5.3), $\langle \beta, 1 \rangle_{K/k} = \det_1(\lambda) \operatorname{Tr}_{\mathbb{Q}(\zeta_p)/\mathbb{Q}}(\zeta_p) = -\det_1(\lambda)$. Since $\mathfrak{b}(1)^{-1} = (\langle \beta, 1 \rangle_{K/k})$ by [8, Remark 2.12], we have

$$b(1)^{-1} = (\det_1(\lambda))$$
.

It follows from the definition of β and [8, Lemma 2.8, (ii)] that any prime divisor of

(5.8)

b(1) and b(χ_i) does not divide two. Let $u := \zeta_p + \zeta_p^{-1}$ which is a unit in $\mathbf{Q}(\zeta_p)^+$. Since *m* is odd, $k \subset \mathbf{Q}(\zeta_p)^+$. As $u \equiv N_{\mathbf{Q}(\zeta_p)/\mathbf{Q}(\zeta_p)^+}(1-\zeta_p) \mod 2$, we have $N_{\mathbf{Q}(\zeta_p)^+/k}(u) \equiv \pi \mod 2$. Let $\varepsilon := N_{\mathbf{Q}(\zeta_p)^+/k}(u)^{-(m-1)/2} \in \mathfrak{o}_k^{\times}$. So we have $\varepsilon \pi^{(m-1)/2} \equiv 1 \mod 2$. Since det₁(λ) $\equiv det_{\psi_i}(\lambda) \mod 2$ by $g_{\psi_i} = 2$,

$$\det_1(\lambda) - \varepsilon \pi^{(m-1)/2} \det_{\psi_i}(\lambda) \equiv 0 \mod 2.$$

Hence by [8, Remark 2.11], $\mathfrak{o}_K/\mathfrak{o}_k$ has a normal basis. Thus our theorem is proved.

REMARK 5.4. Let $K := \mathbf{Q}(\zeta_p)$ and $k := \mathbf{Q}(\zeta_p)^+$ with $p \equiv 1 \mod 4$. So n = 2 and m is even. Then it is well known that ζ_p is a generator of normal basis of $\mathfrak{o}_K/\mathfrak{o}_k$ (in the cases (I-i, ii)). In the case (I-ii), if n = 2, then we can prove that $\mathfrak{o}_K/\mathfrak{o}_k$ has a normal basis. In the case (I-iii), $\mathfrak{o}_K/\mathfrak{o}_k$ does not have a normal basis by Brinkhuis [1, Theorem 4.1], because a sequence of Galois extension $\mathbf{Q} \subset k \subset K$ does not split and $[k : \mathbf{Q}]$ is odd. The question is still open as to other cases.

Let S be any finite set of prime ideals of o_k which contains the unique prime ideal of o_k lying above p and assume that (m, n) = 1. Then it is easy to see that $o_K(S)/o_k(S)$ has a normal basis.

References

- [1] J. BRINKHUIS, Normal integral bases and embedding problems, Math. Ann. 264 (1983), 537-543.
- [2] ——, Normal integral bases and complex conjugation, J. Reine Angew. Math. 375 (1987), 157–166.
- [3] J. Cassels and A. Fröhlich (ed.), Algebraic Number Theory, Academic Press (1967).
- [4] J. COUGNARD, Quelques extensions modérément ramifiées sans base normale, J. London Math. Soc. 31 (1985), 200-204.
- [5] ——, Bases normales relatives dans certaines extensions cyclotomiques, J. Number Theory 23 (1986), 336–346.
- [6] A. FRÖHLICH, Stickelberger without Gauss sums, Algebraic Number Fields (Proceedings of The Durham Symposium 1975), Academic Press (1977), 589–607.
- [7] ——, Galois Module Structure of Algebraic Integers, Springer (1983).
- [8] F. KAWAMOTO and K. KOMATSU, Normal bases and \mathbb{Z}_p -extensions, J. Algebra 163 (1994), 335–347.
- [9] B. SODAÏGUI, Structure galoisienne relative des anneaux d'entiers, J. Number Theory 28 (1988), 189–204.

Present Address:

DEPARTMENT OF MATHEMATICS, GAKUSHUIN UNIVERSITY, MEJIRO, TOSHIMA-KU, TOKYO, 171 JAPAN.