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$0$. Introduction

For each prime number $p\equiv 1$ (mod4), one attaches a graph without direction to
the prime field $F_{p}=Z/pZ$ by means of the Legendre symbol (cf. \S 1.1). This graph leads
naturally to a rank two reflexive sheaf, denoted $\mathfrak{E}_{p}$, on the $(p-1)$-dimensional complex
projective space $P_{p-1}(C)$ (cf. [SEK 1], [SEK 2]). If $p=5$ , then it coincides with the
Horrocks-Mumford bundle (cf. [H-M]). The sheaf is both arithmetic and com-
binatorial in nature and it is seen that invariants of the graph are useful to describe
the structure of the sheaf $\mathfrak{E}_{p}$ . As a typical example, which is our main result in [SEK
2], the fourth Chem class $c_{4}(\mathfrak{E}_{p})(\in Z)$ is given by

(C1) $c_{4}(\mathfrak{E}_{p})=-40\mathscr{N}$ ,

where (cf. \S 1.1)

$\chi=\#$ { $I\subset F_{p}|\# I=4$ and whose graph is isomorphic to the square}.
The set is related explicitly to a $K3$ surface, denoted $V$, which is defined to be the locus
of the following quadratic relations in the five dimensional projective space $P_{5}(F_{p})$ with
homogeneous coordinates $z_{a\beta}(1\leq\alpha\leq\beta\leq 4)$ (cf. [SEK 1])

(C2) $z_{\alpha\beta}^{2}+z_{\beta\gamma}^{2}=z_{\alpha\gamma}^{2}$ $(1\leq\alpha<\beta<\gamma\leq 4)$ .
Now, it is known that the Shioda elliptic modular surface $S(4)$ of level 4 is birationally
equivalent to a certain Kummer surface (cf. [Sh 3]). In \S 1 we see that $V$ is biregularly
equivalent to the Kummer surface. By a structure theorem of $S(4)$ (cf. [Sh 3]), the zeta
function of $S(4)$ (and so that of $V$) is expressed by means of the Gaussian sum. Using
this we give the following explicit form for (C1)
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(C3) $c_{4}(\mathfrak{E}_{p})=(-5/64)p(p-1)(p^{2}-6p+1+4a^{2})$ ,

where $a$ is an odd integer determined by the equation

$p=a^{2}+b^{2}$ with an even integer $b$ .

We also give an interesting graph theoretical interpretation of the formula (cf. \S 3). Next
we see that $V$ is a contraction of $S(4)$ and study the contraction closely. Define a divisor
on $S(4)$

$D=\sum_{\langle\rho,\sigma)=\langle\pm a_{4},\pm b_{4})}\tilde{r}_{\rho,\sigma}+\sum_{s_{1}=0\infty},\sum_{t_{1}=0\infty}.(\tilde{\Psi}_{P_{1}}^{-1}(s_{1})-\Theta_{s_{1}t_{1}})$ ,

where $\tilde{r}_{\rho,\sigma}$ are 4-torsion sections of the elliptic surface $\tilde{\Psi}:S(4)\rightarrow P_{1}$ and $a_{4}$ and $b_{4}$ are
the basis of the level 4 structure of a generic fibre. The surface $S(4)$ admits another
structure of an elliptic fibration $S(4)\rightarrow P_{1}$ and $t_{1}$ denotes a local coordinate of the base
space. The curve $\Theta_{s_{1}t_{1}}$ is determined by the two structures (cf. \S 2). Also we fix a sublinear
system 2 of dimension 6 of $H^{0}(S(4), \mathcal{O}_{S\langle 4)}(D))$ . In Theorem 2.5 we contract $S(4)$ to $V$

by means of 9, by making clear a combinatorial property of the contraction. Conceming
Theorem 2.5, we make the following remark. The fact that the Kummer surface is a
contraction of $S(4)$ may have been known. By the simple form of $V$ we may regard it
as a suitable projective model of the Kummer surface. This fact and the combinatorial
property of the linear system $\mathfrak{L}$ is our key point. Next, in [B-H], W. Barth and K.
Hulek discussed projective models of the Shioda modular surface $S(n)(3\leq n)$ and found
a good model for the case of $n=5$ . (See also [B-H-M] for the application to the
Horrocks-Mumford bundle.) In the case of $n=4$ , the situation is complicated (cf. $p$ .
96, [B-H]). They did not give an appropriate model. The surface $V$ may be used to
find the nice projective model of $S(4)$ .

REMARK. This note consists of arithmetic and algebro-geometric parts. In the first
part we mainly work with a prime field $F_{p},$ $p$ being a prime $\equiv 1$ (mod4) (cf. \S 1.1, \S 1.2
and \S 3). In the other parts we work with a field $k$ satisfying the following condition

(a) the characteristic of $k\neq 2$ , and $k$ contains a4-th primitive root $\zeta_{4}$ of 1.

1. Quadratic residue graph.

1.1. Quadratic residue graph. Let $p$ be a prime number $\equiv 1$ (mod4) so that

$(\frac{-1}{p})=1$ , where $(p-)$ is the Legendre symbol, and let $F_{p}$ be the prime field $Z/pZ$ . Then

we attach to $F_{p}$ a graph without direction as follows:

$F_{p}=the$ set of vertices ,

$\{(i,j)\in F_{p}\times F_{p}|(\frac{i-j}{p})=1\}=the$ set of edges.
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To each $t\in F_{p}$ , we attach subsets of $F_{p}$

$S_{i}^{+}=\{j\in F_{p}|(\frac{i-j}{p})=1\}$ , $S_{i}^{-}=\{j\in F_{p}|(\frac{i-j}{p})=-1\}$ .

Let $i_{1},$ $i_{2},$ $\cdots,$ $i_{d}$ be distinct elements of $F_{p}$ , and let $\mu_{k}\in\{\pm 1\}(1\leq k\leq d)$ . We set

(1.1) $S_{i_{1}}^{\mu_{1}}\cdots\mu i_{d}^{d}=\bigcap_{k=1}^{k=d}S_{i_{k}^{k}}^{\mu}$ .

The semidirect product $F_{p}>\triangleleft F_{p}^{x},$ $F_{p}^{x}=F_{p}-\{0\}$ , acts on $F_{p}$

$x\rightarrow ax+b$ $((b, a)\in F_{p}\times F_{p}^{x})$

and acts on the set of all subsets of $F_{p}$ . Denote by $j_{1},$ $\cdots,j_{d}$ the image of $i_{1},$ $\cdots,$ $i_{d}$ by
the action of the element $(b, a)$ . Then we have

(1.2) $(b, a)(S_{i_{1}}^{\mu_{1}}\cdots\mu i_{d}^{d})=S_{j_{1}}^{v_{1}}\cdots j_{d}^{d}v$

with $v_{k}=(\frac{a}{p})\mu_{k}(k=1, \cdot, ., d)$ , where we identify $\mu_{k}=\pm with\pm 1$ .

Next we introduce certain collections of subsets of $F_{p}$ . For each integer $d,$ $1\leq d\leq p$ ,
let $\mathscr{P}_{d}(F_{p})$ denote the collection of subsets $I$ of $F_{p}$ whose cardinality $\# I=d$. Two elements
$I,$ $J\in \mathscr{P}_{d}(F_{p})$ are equivalent or complementary (with respect to the graph) if there is a
bijection $\theta:I\rightarrow J$ so that

$(\theta(i), \theta(j))$ is an edge if and only if $(i,j)$ is an edge (resp. is not an edge).

This equivalence divides $\mathscr{P}_{d}(F_{p})$ into disjoint classes. Clearly $\mathscr{P}_{2}(F_{p})$ and $\mathscr{P}_{3}(F_{p})$

consist of two and four equivalence classes respectively. We write them $\mathscr{C}_{2:d}(d=0,1)$

and $\mathscr{C}_{3:d}(d=0,1,2,3)$ so that each representative of the class in question has exactly
$d$ edges. Next $\mathscr{P}_{4}(F_{p})$ consists of at most eleven classes. A representative $I=\{i,j, l, m\}$

ofa class is of the following shape;

$\ddagger_{--------\tau_{l}}J\backslash \backslash \prime 1-------’-\tau_{1}J^{\backslash \prime}\backslash 1\backslash ’|J^{\backslash \prime}\backslash ’\backslash ^{I}’\backslash \backslash ’|\backslash ||mji1\backslash 1’\backslash \mathfrak{l},\bigvee_{---------\iota_{l}^{m}}^{\backslash }|t\backslash |’|\kappa_{J^{\backslash \prime}\backslash }^{---------}|^{\prime}\backslash J^{\backslash }\backslash ’\backslash ’\backslash ’\backslash ’$

’

FIGURE 1
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For each equivalence class $\mathscr{C}$ we write $m_{C}$ for its cardinality. It is clear that

$m_{\varphi_{21}}.=m_{\varphi_{2:0}}=p(p-1)/4$ .

PROPOSITION 1.1. For $\mathscr{P}_{3}(F_{p})$ we have the following.

$m_{q_{33}}=m_{\varphi_{3:0}}=p(p-1)(p-5)/48$ ,

$m_{g_{32}}=m_{g_{31}}=p(p-1)^{2}/16$ .
The key point for the proof is the lemma below. In the lemma and arguments soon

below it, we use the notation
$(\mu_{1}, \mu_{2})=(+, +),$ $(+, -),$ $(-, +)$ or $(-, -)$ .

LEMMA 1.2. We have the following relation

$\# S_{0^{1}1^{2}}^{\mu\mu}=(p-5)/4$ or $(p-1)/4$ according as $(\mu_{1}, \mu_{2})=(+, +)$ or not.

Lemma 1.2 implies Proposition 1.1. Actually an element $I=\{i,j, l\}of\mathscr{C}_{3:3}$ is obtained
by taking an element $\{i,j\}\in \mathscr{C}_{2:1}$ and an element le $S_{ij}^{++}$ . Considering the action of
$F_{p}>\triangleleft F_{p}^{x}$ , we have $\# S_{ij}^{++}=\# S_{01}^{++}$ . The element $I\in \mathscr{C}_{3:3}$ is counted three times and we
have $m_{q_{3.3}}=(p(p-1)/4)((p-5)/12)$ . The other case is checked similarly.

REMARK 1.3. This lemma is well known (cf. [D-M]). In order to arrange some
data later, we give a short proof of it.

Fix a $(p-1)$-th primitive root $\rho$ of unity of $F_{p}^{x}=F_{p}-\{0\}$ and consider the following
quadratic curves

$C_{01}^{++}$ : $x^{2}=y^{2}+1$ , $C_{01}^{+-}$ : $x^{2}=\rho y^{2}+1$ ,
$C_{01}^{+}$ : $\rho x^{2}=y^{2}+1$ , $C_{01}^{-}$ : $\rho x^{2}=\rho y^{2}+1$ .

We write $C^{\prime}=C_{0^{1}1^{2}}^{\prime\mu\mu}$ for the open part of $C=C_{0^{1}1^{2}}^{\mu\mu}$ defined by

$C^{\prime}=C-\{(x, y)|xy=0\}$ .
Let rat$(C^{\prime})$ denote the set of $F_{p}$-rational points of $C^{\prime}$ . Then considering the map
rat $(C^{\prime})\rightarrow S_{0^{1}1^{2}}^{\mu\mu}$ defined by

rat $(C^{\prime})\ni(x, y)\mapsto\left\{\begin{array}{ll}x^{2}\in S_{0^{1}1^{2}}^{\mu\mu} & (\mu_{1}=+)\\px^{2}eS_{0^{1}1^{2}}^{\mu\mu} & (\mu_{1}=-),\end{array}\right.$

it is clear that
$\# S_{0^{1}1^{2}}^{\mu\mu}=\#rat(C_{0^{1}1^{2}}^{\prime\mu\mu})/4$ .

On the other hand, we set

$F_{p}^{\prime}=\left\{\begin{array}{ll}F_{p}^{x}-\{s|s^{4}=1\} & if (\mu_{1}, \mu_{2})=(+, +)\\F_{p}^{x} & otherwise ,\end{array}\right.$



SHIODA ELLIPTIC MODULAR SURFACE 267

and

(1.3) $\left\{\begin{array}{ll}x(s)=\frac{s^{2}+1}{2s} & y(s)=\frac{s^{2}-1}{2s} (\mu_{1}, \mu_{2})=(+, +)\\x(s)=\frac{\rho s^{2}+1}{\rho s^{2}-1} & y(s)=\frac{2s}{ps^{2}-1} (\mu_{1}, \mu_{2})=(+, -)\\x(s)= & y(s)=\frac{\rho^{\langle p-1)/4}(\rho s^{2}+1)}{ps^{2}-1} (\mu_{1}, \mu_{2})=(-, +)\\x(s)= & y(s)=\frac{s^{2}-\rho^{-1}}{2s} (\mu_{1}, \mu_{2})=(-, -).\end{array}\right.$

Then the correspondence

$F_{p}^{\prime}\ni s\mapsto(x(s), y(s))\in ratC_{0^{1}1^{2}}^{\prime\mu\mu}$

gives a bijection between $F_{p}^{\prime}$ and rat $C^{\prime}$ . Thus we have

(1.4) $\#rat(C^{\prime})=\left\{\begin{array}{ll}p-5 & if (\mu_{1}, \mu_{2})=(+, +)\\p-1 & otherwise ,\end{array}\right.$

and we have the lemma. (Note that, according to the nature of $(\mu_{1}, \mu_{2})$ , the function
$x(s)^{2}$ (or $\rho x(s)^{2}$ according to $(\mu_{1},$ $\mu_{2})$) is invariant by the action

(1.5) $s\rightarrow(\pm s, \pm 1/s)$ , $(\pm s, \pm 1/\rho s)$ , $(\pm s, \pm 1/\rho s)$ , or $(\pm s, \pm\rho/s)$ ,

and $S_{0^{1}1^{2}}^{\mu\mu}$ is identified with the quotient of $F_{p}^{x}$ by this action.)

Now let the set $S_{i_{1}i_{2}^{2}}^{\mu_{1}\mu}\cdots\mu i_{d}^{d}$ be as in (1.1). We assume that $3\leq d$ and generalize
Lemma 1.2 to this set. Considering the action of $F_{p}>\triangleleft F_{p}^{x}$ one can assume that the
elements $0$ and 1 appear in the indices $\{i_{1}, \cdots, i_{d}\}$ . We rewrite it (with a slice change
of presentation) as

$S_{0^{1}1^{2}i_{1}}^{\mu\mu v_{1}}\cdots i_{d}^{d}w$ $(1\leq d)$ ,

where $i_{1},$ $\cdots,$ $i_{d}$ are elements of $F_{p}-\{0,1\}$ and $\mu_{1},$ $\cdots,$ $v_{d}e\{\pm\}$ .
First we consider the simplest case where the set is of the form $S_{01i}^{+++}$ . Let $C=C_{0}^{+}\ddagger_{i}^{+}$

denote the (affine) elliptic curve
$u^{2}=(s^{2}+1)^{2}-4is^{2}$

and let $C^{\prime}=C_{01i}^{\prime+++}$ denote the open part of $C$ defined by

$C^{\prime}=C-$ { $(s,$ $u)|su=0$ or $s^{4}=1$ }.
This curve admits an action of the form

(1.6) $(s, u)\rightarrow(\pm s, \pm u),$ $(\pm 1/s, \pm u/s^{2})$ .

LEMMA 1.4. We have the relation



268 HIROTACHI ABO, NOBUO SASAKURA AND TOMOHIDE TERASOMA

$\# S_{01}^{++}$ $’’=\#rat(C_{01i}^{\prime+++})/8$ .

PROOF. Define a map from rat$(C^{\prime})$ to $S_{01}^{++}$ by (cf. (1.3))

$(s, u)\rightarrow x(s)^{2}=(s^{2}+1)^{2}/4s^{2}$

Since $x^{2}-i=u^{2}/4s^{2}$ , the right-hand side is in $S_{01i}^{+++}$ . One checks easily that the map is
surjective and unramified of degree eight. $\square $

Now we retum to the general case. Consider a $(d+1)$-dimensional affine space with
coordinates $(s, u),$ $u=(u_{1}, \cdots, u_{d})$ . Let $C_{0^{1}1^{2}i_{1}}^{\mu\mu v_{1}}\cdots i_{d}^{d}\nu=C$ denote the algebraic curve
defined by the following $d$ equations

$p^{\omega_{\alpha}}u_{\alpha}^{2}=\rho^{\omega_{\mu 1}}(f_{\mu_{1}\mu_{2}}^{\prime}(s))^{2}-i_{\alpha}(f_{\mu_{1}\mu_{2}}^{\prime\prime}(s))^{2}$ $(1\leq\alpha\leq d)$ ,

where $f_{\mu_{1}\mu_{2}}^{\prime}$ and $f_{\mu_{1}\mu_{2}}^{\prime\prime}$ are the numerator and the denominator of the rational function
$x(s)$ in (1.3). (Thus if $(\mu_{1},$ $\mu_{2})=(+,$ $+)$ , then $f^{\prime}(s)=(s^{2}+1)$ and $f^{\prime\prime}(s)=2s.$) Moreover,

$\omega_{\alpha}$ (resp. $\omega_{\mu_{1}}$ ) $=0$ or 1 according as $v_{\alpha}$ (resp. $\mu_{1}$ ) $=+or-$

REMARK 1.5. One sees readily that, by adding 2 $d$-points to $C$ we get a complete
curve of genus $1+2^{d}(d-1)$ . (Use the Hurwitz formula.)

Denote by $C^{\prime}=C_{0^{1}1^{2}i_{1}}^{\prime\mu\mu v_{1}}\cdots i_{d}^{t}v$ the open part of $C$ defined by
$C^{\prime}=C-$ { $(s,$ $u_{1},$ $\cdots,$ $u_{d})|su_{1}\cdots u_{d}=0$ or $s^{4}=1$ } if $(\mu_{1}, \mu_{2})=(+, +)$ ,

$C^{\prime}=C-\{(s, u_{1}, \cdots, u_{d})|su_{1}\cdots u_{d}=0\}$ if $(\mu_{1}, \mu_{2})\neq(+, +)$ .

LEMMA 1.6. We have the relation

$\# S_{0^{1}1^{2}i_{1}}^{\mu\mu v_{1}}\cdots\iota_{d}v_{d=(1/2^{\langle d+2)})\# C_{0^{1}1^{2}i_{1}}^{\prime\mu\mu v_{1}}}\ldots i_{d}^{d}v$ .
Using (1.4) this is checked similarly to Lemma 1.4.

REMARK 1.7. The quadratic residue graph was introduced to defime the reflexive
sheaf $\mathfrak{E}_{p}$ (cf. [SEK 1]). In spite of plausibility, we do not know if such a graph was
used already. In connection with this we point out that a similar set was considered by
Gauss for the biquadratic residue (instead of the quadratic residue) (cf. [G]).

1.2. Cocycle $K3$ surface. Now we will generalize Proposition 1.1 to $\mathscr{P}_{4}(F_{p})$ . First
we show the following fact, which is due to Enta. In the following we write the
integer $m_{q_{46}}$ as $m_{4;6}$ . The similar abbreviation is used for the other equivalence classes.

PROPOSITION 1.8. The following relations hold

$12m_{4;6}+2m_{4:5}=p(p-1)(p-5)(p-9)/4^{3}$ ,

$2m_{4:5}+m_{4;4\langle a)}=p(p-1)^{2}(p-5)/4^{3}$ , $m_{4:4\langle a)}+3m_{4:3\langle a)}=p(p-1)^{2}(p-5)/4^{3}$ ,

$2m_{4:5}+4m_{4:4\langle b)}=p(p-1)^{2}(p-5)/4^{3}$ , $4m_{4:4\langle b)}+m_{4:3\langle b)}=p(p-1)^{3}/4^{3}$



SHIODA ELLIPTIC MODULAR SURFACE 269

PROOF. The check of the first relation is as follows. Take an element $J\in \mathscr{C}_{3:3}$ and
an element $L\in \mathscr{P}_{2}(J)$ with $L=\{l_{1}, l_{2}\}$ . We write $J-L$ as $\{\alpha\}$ . An element $\beta\in S_{l_{1}l_{2}\alpha}^{+++}$

(resp. $\gamma\in S_{l_{1}l_{2}a}^{++-}$ ) defines an element

$Ju\{\beta\}\in \mathscr{C}_{4:6}$ (resp. $Ju\{\gamma\}\in \mathscr{C}_{4:5}$).

Each element of $\mathscr{C}_{4:6}$ (resp. $\mathscr{C}_{4:5}$) appears in this manner and is counted twelve times
(resp. twice). Thus we have

$12m_{4:6}+2m_{4:5}=3(\#\mathscr{C}_{3:3})((p-9)/4)$ .

This implies the first relation. (See also Proposition 1.1). For the other relations we
start with the data

$\{J\in \mathscr{C}_{3:2}, L\in \mathscr{P}_{2}(J)\}$ .

Then one gets the relations in the proposition ina similar manner to the first one. $\square $

We determine $m_{\mathscr{C}_{46}}$ . Consider the five dimensional projective space $P_{5}(F_{p})$ with
homogeneous coordinates $z_{a\beta}(1\leq\alpha<\beta\leq 4)$ and the following four quadratic relations
in it:

(1.7) $z_{\alpha\beta}^{2}+z_{\beta\gamma}^{2}=z_{\alpha\gamma}^{2}$ $(1\leq\alpha<\beta<\gamma\leq 4)$ .

One checks easily that each single relation is a consequence of the other three, and the
locus of (1.7) is a complete intersection. We see that it has 16 ordinary singular points
and the locus of (1.7) is a $K3$ surface. This surface may be called cocycle $K3$ surface
and is written as $V=V_{\mathscr{C}_{46}}$ . The singular points of $V$ are described as follows. For each
sequence $1\leq\alpha<\beta<\gamma\leq 4$ , we have four singular points with

(1.8) $z_{\alpha\beta}=z_{\beta\gamma}=z_{\alpha\gamma}=0$ .

We describe the singular points in the following manner. First note that, according to
the hature of the triple $(\alpha, \beta, \gamma)$ , there is a singular point of $V$, denoted by $P_{\alpha\beta\gamma}$ , which
is characterized by (1.8) and the following condition

$P_{123}$ : $(z_{14} : z_{24} : z_{34})=(1$ : 1 : 1 $)$ $P_{124}$ : $(z_{13} : z_{23} : z_{34})=(1$ : 1 : $\zeta_{4})$

$P_{134}$ : $(z_{12} : z_{23} : z_{24})=(\zeta_{4}$ : 1 : 1 $)$ $P_{234}$ : $(z_{12} : z_{13} : z_{23})=(1$ : 1 : 1 $)$ .

Next fix a triplet $(\alpha, \beta, \gamma)$ , and take a subset $\{\delta, \epsilon\}$ of {1, 2, 3, 4} which differs from
$\{\alpha, \beta\},$ $\{\alpha, \gamma\},$ $\{\beta, \gamma\}$ . We define a point $P_{a\beta\gamma}(\delta\epsilon)$ of $V$ from $P_{\alpha\beta\gamma}$ by changing $z_{\delta\epsilon}$ to $-z_{\delta\epsilon}$

and by leaving the other coordinates of $P_{\alpha\beta\gamma}$ unchanged. (For example $P_{123}(14)$ is
characterized by (1.8) and the condition $(z_{14} : z_{24} : z_{34})=(-1$ : 1 : 1 $)$ .) Next let
$V^{\prime}=V_{\mathscr{C}_{46}}^{\prime}$ denote the open part of $V$ :

$V^{\prime}=V-\{z|\prod_{1\leq a<\beta\leq 4}z_{a\beta}=0\}$ .

LEMMA 1.9 ([H]). We have the relation
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$m_{l_{46}^{\prime}}=(1/64\times 24)p(p-1)\#rat(V_{\acute{t}_{4;6}})$ .
$PR\infty F$ . An element $I$ of $\mathscr{C}_{4:6}$ is formed in the following manner. First take an

element $i_{1}\in F_{p}$ arbitrarily. Then find an element $z_{\alpha\beta}(1\leq\alpha<\beta\leq 4)$ in the affine cone of
V. Setting

$i_{\alpha}=i_{1}+z_{1\alpha}^{2}$ $(\alpha=2,3,4)$ ,

the element $\{i_{1}, i_{2}, i_{3}, i_{4}\}$ is in $\mathscr{C}_{4:6}$ and each element of $\mathscr{C}_{4:6}$ is formed in this manner.
The above procedure yields the term $p(p-1)\#rat(V^{\prime})$ . The term $24\times 64$ appears by
considering the action of the 4-th symmetric group and the action $of\pm toz_{\alpha\beta}$ . $\square $

1.3. Kummer surface. Hitherto in this section all the varieties are defined over
the prime field $F_{p}$ . In this subsection we work with a field $k$ satisfying the condition
(a) in Introduction. We consider the five dimensional projective space $P_{5}(k)$ with
homogeneous coordinates $z_{a\beta}(1\leq\alpha<\beta\leq 4)$ . Define a $K3$ surface, denoted also $V$, by
the same equation (1.7). The points $P_{\alpha\beta\gamma}$ and $P_{a\beta\gamma}(\delta\epsilon)$ are defined by the same equation
as in the case of $k=F_{p}$; these 16-points exhaust all singular points of $V$.

In order to investigate the surface $V$, let $P_{3}=P_{3}(k)$ be the three dimensional
projective space with homogeneous coordinates $(x_{0} : x_{1} : x_{2} : x_{3})$ . We consider an elliptic
curve $A_{0}$ in $P_{3}$

$A_{0}$ : $x_{2}^{2}=x_{1}^{2}+x_{0}^{2},$ $x_{3}^{2}=x_{1}^{2}-x_{O}^{2}$ .
To each element $\epsilon=(\epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \epsilon_{3})e(Z/2Z)^{\oplus 4}$ we attach an element of $PGL(3, k)$

$(x_{O} : x_{1} : x_{2} : x_{3})\rightarrow(\epsilon_{O}x_{O} : \epsilon_{1}x_{1} : \epsilon_{2}x_{2} : \epsilon_{3}x_{3})$ .
This defines a homomorphism from $(Z/2Z)^{\oplus 4}$ to $PGL(3, k)$ . We write the image as $G_{8}^{\prime}$

$(\simeq(Z/2Z)^{\oplus 3})$ . We use the notation $\epsilon=(\epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \epsilon_{3})$ for the corresponding element of
$G_{8}^{\prime}$ . This group acts on $A_{0}$ . An element $\epsilon$ acts freely on $A_{0}$ if and only if

(1.9) $\epsilon_{0}\epsilon_{1}\epsilon_{2}\epsilon_{3}=1$ .
Such an element is the identity or an element satisfying the condition: i-th and j-th
components of it $=-1$ and the other components $=1$ . We write this element as $\epsilon(i,j)$ .
Moreover, for each $i\in\{0,1,2,3\}$ , let $\epsilon(i)$ denote the element characterized by $\epsilon_{i}=-1$

and $\epsilon_{j}=1(i\neq j)(0\leq i\leq 3)$ . It has four fixed points characterized by $x_{i}=0$ . (If $i=2$ or 3,
then the fixed point is defined over $k(\sqrt{2}).)$ We write the set of these four fixed points
as $\mathscr{Q}_{i}$ .

$\mathscr{Q}_{0}=\{(0 : 1 : \pm 1 : \pm 1)\}$ , $\mathscr{Q}_{1}=\{(1 : 0 : \pm 1, \pm\zeta_{4})\}$ ,

$\mathscr{Q}_{2}=\{(1 : \pm\zeta_{4} : 0 : \pm\sqrt{2}\zeta_{4})\}$ , $\mathscr{Q}_{3}=\{(1 : \pm 1 : \pm\sqrt{2}\zeta_{4} : 0)\}$ .
For later convenience we set
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$Q_{0}=$ $(0$ : 1 : 1 : 1 $)$ , $Q_{1}=(1$ : $0$ : 1 : $\zeta_{4})$ ,

$Q_{2}=(1 : \zeta_{4} : 0 : \sqrt{2}\zeta_{4})$ , $Q_{3}=(1 : 1 : \sqrt{2}\zeta_{4} : 0)$ .

Consider the subgroup of $G_{8}^{\prime}$ consisting of those elements $\epsilon$ satisfying

(1.10) $\epsilon_{0}\epsilon_{1}=\epsilon_{2}\epsilon_{3}=1$ .

This is isomorphic to $Z/2Z$ . The quotient of $A_{0}$ by this group is the elliptic curve

$A_{1}$ : $t^{2}=s^{4}-1$

where the morphism $A_{O}\rightarrow A_{1}$ is given by $s=x_{1}^{\prime}$ and $t=x_{2}^{\prime}x_{3}^{\prime}$ with $x_{i}^{\prime}=x_{i}/x_{O}(i=1,2,3)$ .
(Precisely $A_{1}$ is the complete curve obtained from the above affine curve by adding two
points (cf. [Sh 2]).)

$A_{0,\downarrow}\rightarrow^{G_{8}^{\prime}}A_{0,\downarrow}$

$A_{1}\rightarrow A_{1}$

The group $G_{8}^{\prime}$ induces a group action in the second line, which is isomorphic to
$(Z/2Z)^{\oplus 2}$ :

(1.11) $(s, t)\rightarrow(\pm s, \pm t)$ .

We write an element of this group by $(\epsilon, \epsilon^{\prime})$ where

$\epsilon=(\epsilon_{0}, \epsilon_{1}, \epsilon_{2}, \epsilon_{3})$ and $\epsilon^{\prime}=(\epsilon_{\acute{O}}, \epsilon_{1}^{\prime}, \epsilon_{2}^{\prime}, \epsilon_{3}^{\prime})$ .

Form a series of subgroups of $G_{64}=G_{8}^{\prime}\oplus G_{8}^{\prime}(\simeq(Z/2Z)^{\oplus 6})$

$G_{4}\subset G_{8}\subset G_{16}$

in the following manner
$G_{16}=\{(\epsilon, \epsilon^{\prime})|\epsilon_{0}\epsilon_{1}=\epsilon_{\acute{0}}\epsilon_{1}^{\prime}, \epsilon_{2}\epsilon_{3}=\epsilon_{2}^{\prime}\epsilon_{3}^{\prime}\}$ ,

$G_{8}=\{(\epsilon, \epsilon^{\prime})|\epsilon_{0}\epsilon_{1}=\epsilon_{\acute{0}}\epsilon_{1}^{\prime}=\epsilon_{2}\epsilon_{3}=\epsilon_{2}^{\prime}\epsilon_{3}^{\prime}\}$ ,

$G_{4}=\{(\epsilon, \epsilon^{\prime})|\epsilon_{0}\epsilon_{1}=\epsilon_{\acute{0}}\epsilon_{1}^{\prime}=\epsilon_{2}\epsilon_{3}=\epsilon_{2}^{\prime}\epsilon_{3}^{\prime}=1\}$ .

More explicitly these groups are as follows:

$G_{4}=\{id\times id, id\times\epsilon(2,3), \epsilon(2,3)\times id, \epsilon(2,3)\times\epsilon(2,3)\}$ ,

$G_{8}-G_{4}=\{\epsilon(1,2)\times\epsilon(1,2), \epsilon(1,2)\times\epsilon(1,3), \epsilon(1,3)\times\epsilon(1,2), \epsilon(1,3)\times\epsilon(1,3)\}$ ,

$G_{16}-G_{8}=$ { $\epsilon(i)\times\epsilon(j)|\{i,j\}=\{0,1\}$ or {2, 3}}.
These groups act on $A_{O}\times A_{O}$ . By (1.9) the group $G_{8}$ acts freely on it. Each element
$\epsilon(i)\times\epsilon(j)\in G_{16}-G_{8}$ has sixteen fixed points $\mathscr{Q}_{i}\times \mathscr{Q}_{j}$ . This set is stable by the action of
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$G_{8}$ and consists of two orbits. We write these by $R_{ij}$ and $R_{ij}^{\prime}$ so that $R_{ij}$ contains the
point $Q_{i}\times Q_{j}$ . Next the action of $G_{4}$ is isomorphic to $(Z/2Z)\oplus(Z/2Z)$ , where the group
$(Z/2Z)$ is the one defined by (1.11). Thus $A_{1}\times A_{1}\simeq(A_{0}\times A_{O})/G_{4}$ . The action of $G_{16}/G_{4}$

on $A_{1}\times A_{1}$ is of the form

$(s, t)\times(s, t^{\prime})\rightarrow$ $(s, t)\times(s^{\prime}, t^{\prime})$ , $(-s, t)\times(-s^{\prime}, t^{\prime})$ ,
$(s, -t)\times(s^{\prime}, -t^{\prime})$ , $(-s, -t)\times(-s^{\prime}, -t^{\prime})$ .

The last element acts freely on $A_{1}\times A_{1}$ . This is the translation $T_{\langle v,v)}$ in [Sh 3] and the
quotient $(A_{1}\times A_{1})/T_{\langle v,v)}$ is an abelian surface denoted $A$ . Thus we have the isomorphism

$(A_{0}\times A_{0})/G_{8}\simeq(A_{1}\times A_{1})/T_{(\nu,\nu)}=A$ .

The generator of $G_{16}/G_{8}$ is nothing else than the involution $\iota_{A}$ of $A$ in [Sh 3] and,
therefore, $A/(G_{16}/G_{8})$ is the Kummer surface Km$(A)$ whose non-singular model is the
surface $S(4)$ ; see the following diagram

$A_{0}\times A_{0}$

$\downarrow$

$ A_{O}\times A_{0}/G_{4}\cong A_{1}\times A_{1}\cdots$ $G_{4}$

$\downarrow$ $\cap$

$ A_{0}\times A_{0}/G_{8}\cong$ $A$ . . . $G_{8}$

$\downarrow$ $\cap$

$A_{0}\times A_{0}/G_{16}\cong Km(A)$ $G_{16}$ .
Now we prove the following

LEMMA 1.10. The surface $V$ is isomorphic to $(A_{0}\times A_{0})/G_{16}$ and so is isomorphic
to the Kummer surface Km$(A)$ .

$PR\infty F$ . We form a morphism from $A_{0}\times A_{O}$ to $V$. Let us consider another three
dimensional projective space $P_{3}(k)$ with homogeneous coordinates $(y_{0} : y_{1} : y_{2} : y_{3})$ . We
think of the second factor $A_{0}$ of the product $A_{0}\times A_{0}$ as the elliptic curve in this projective
space:

$y_{2}^{2}=y_{1}^{2}-y_{0}^{2}$ , $y_{3}^{2}=y_{1}^{2}-y_{0}^{2}$ .

A morphism from $A_{0}\times A_{0}$ to $V$ is defined as follows

$z_{12}=x_{2}x_{3}y_{2}y_{3}$ , $z_{13}=x_{1}^{2}y_{1}^{2}-x_{O}^{2}y_{0}^{2}$ , $z_{14}=x_{1}^{2}y_{1}^{2}+x_{0}^{2}y_{0}^{2}$ ,

$z_{23}=x_{O}^{2}y_{1}^{2}-y_{0}^{2}x_{1}^{2}$ , $z_{24}=x_{0}^{2}y_{1}^{2}+y_{0}^{2}x_{1}^{2}$ , $z_{34}=2x_{0}x_{1}y_{0}y_{1}$ .
Noting that the polynomials in this expression are linear combinations of the monomials

$x_{0}x_{1}y_{0}y_{1}$ , $x_{2}x_{3}y_{2}y_{3}$ , $x_{0}^{2}y_{0}^{2}$ , $x_{1}^{2}y_{1}^{2}$ , $x_{0}^{2}y_{1}^{2}$ , $x_{1}^{2}y_{0}^{2}$ ,

we see that, for two points on $A_{O}\times A_{0}$ , they are mapped to the same point on $V$ if and
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only if they are equivalent under the action of $G_{16}$ . $\square $

REMARK 1.11. The fixed points on $A_{0}\times A_{0}$ by the action of $G_{16}$ is mapped to
the singular points of $V$ as follows

$Q_{i}\times Q_{i}\rightarrow z_{23}=z_{24}=z_{34}=0$ $(i=0,1)$ ,

$Q_{i}\times Q_{j}\rightarrow z_{13}=z_{14}=z_{34}=0$ $((i,j)=(0,1),$ $(1,0))$ ,

$Q_{i}\times Q_{i}\rightarrow z_{12}=z_{13}=z_{23}=0$ $(i=2,3)$ ,

$Q_{i}\times Q_{j}\rightarrow z_{12}=z_{14}=z_{24}=0$ $((i,j)=(2,3),$ $(3,2))$ .

1.4. An additional lemma. Here we again assume that $k=F_{p},$ $p$ being a $prime\equiv 1$

(mod4); the surfaces $V$ and $V^{\prime}$ are as in \S 1.2. We conclude this section by the following
fact which is used in \S 3.

LEMMA 1.12. We have the following relation

#rat(V’) $=\#rat(V)-24p+80$ .

PROOF. Set $Z=\bigcup_{1\leq\alpha<\beta\leq 4}Z(z_{\alpha\beta})$ . Clearly the relation just above is equivalent to
the one:

(1.12) $\#rat(Z)=24p-80$ .

To see this, let $(\alpha, \beta)$ denote $(1, 2)$ , $(1, 3)$ or $(1, 4)$ and denote by $W_{\alpha\beta}$ the set of eight
(smooth) points of $V$ characterized by the condition

$z_{a\beta}=z_{\gamma\delta}=0$

where $\{\gamma, \delta\}=\{1,2,3,4\}-\{\alpha, \beta\}$ . We set $W=W_{12}\cup W_{13}\cup\Psi_{14}$ . For the proof of (1.12)
it suffices to see the following:

(i) Each $Z(z_{a\beta})$ consists of four smooth rational curves, which are defined over $k$ .
(ii) For each singular point of $V$, there are exactly six irreducible components

of $Z$ passing through it.
(iii) For each point of $W$ there are exactly two irreducible components of $Z$

passing through the point.
(iv) Take two distinct irreducible components of $Z$ . Then the common points of

them are contained in Sing(V) $\cup W$ .
Actually (1.11) follows from $(i)-(iv)$ once we note that the number of the $F_{p}$-rational
point of each component of $Z$ equals $(p+1)$ . The check of $(i)-(iv)$ is as follows. First
we see that Z$(z_{34})$ consists of four smooth rational curves

(1.13) $z_{34}=0$ , $z_{13}=\pm z_{14}$ , $z_{23}=\pm z_{24}$ , $z_{12}^{2}+z_{23}^{2}=z_{13}^{2}$ .
Remarking that each element of the 4-th permutation group $\pi_{4}$ acts on $V$ through the
action on the indices $(\alpha\beta),$ $(1.13)$ leads immediately to (i). Denote by $Z_{\mu_{1}\mu_{2}}$ the rational
curve in (1.13) characterized by $z_{13}=\mu_{1}z_{14},$ $z_{23}=\mu_{2}z_{24}$ , where $\mu_{1},$ $\mu_{2}=+or-$ . We
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see readily that

(v) $\left\{\begin{array}{ll}Z_{++}\cap Z_{+-}=\{P_{234}, P_{234}(12)\}, & Z_{++}\cap Z_{-+}=\{P_{134}, P_{134}(12)\},\\Z_{++}\cap Z_{--}=Z_{+-}\cap Z_{-+}=\emptyset, & Z_{+-}\cap Z_{--}=\{P_{134}(23), P_{134}(24)\},\\Z_{-+}\cap Z_{--}=\{P_{234}(13), P_{234}(14) & .\end{array}\right.$

This implies that the set of points on $V$ which appear in the intersection of distinct
components of $Z(z_{34})$ coincides with the set of 8 singular points characterized by

$z_{23}=z_{24}=z_{34}=0$ or $z_{13}=z_{14}=z_{34}=0$ .
Next, for the singular point $P_{234}$ , we see readily that the following six curves exhaust
all irreducible components of $Z$ passing through it:

$\left\{\begin{array}{ll}z_{34}=0, & z_{13}=z_{14}, z_{23}=\pm z_{24},\\z_{24}=0, & z_{12}=z_{14}, z_{23}=\pm z_{34},\\z_{23}=0, & z_{12}=z_{13}, z_{24}=\pm z_{34}.\end{array}\right.$

Similarly to the above this leads to (ii). Take different pairs $\{\alpha, \beta\}$ and $\{\gamma, \delta\}$ of {1, 2, 3, 4}.
We see that if these pairs have a common element, say $\gamma$ , then

(vi) $Z_{\alpha\beta}\cap Z_{\gamma\delta}\subset\{z|z_{\alpha\beta}=z_{\alpha\gamma}=z_{\beta\gamma}=0\}\subset Sing(V)$ .
Assume that they do not have a common point and that $\{\alpha, \beta\}=\{1,2\}$ . Then $\nu_{12}^{\wedge}$

consists of eight points

$(z_{12} ; z_{13} : z_{14} ; z_{23} : z_{24} : z_{34})=(0:\pm 1 : \pm 1 : \pm 1 : \pm 1 : 0)$

and, for each point of $\theta_{12}^{\prime}$ , we see that (cf. (1.12))
(vii) there is exactly one irreducible component of $Z(z_{12})$ (resp. $Z(z_{34})$) passing

through it.
It is easy to see that $(v)-(vii)$ implies (iii) and (iv), and we have the lemma. $\square $

2. Shioda modular surface of level 4 and cocycle $K3$ surface.

In this section, we investigate the relation between the Shioda modular surface of
level 4 and cocycle $K3$ surface.

2.1. Shioda modular surface of level 4. Here we recall some facts on the surface
$S(4)$ from [Sh 1], [Sh 2] and [Sh 3]. As before $k$ denotes a field satisfying (a) in
Introduction. We denote by $P_{n}$ the k-projective space of dimension $n$ . Let $E$ be an
elliptic curve amd $E_{4}$ the group of the points of order 4 of $E$. Let $a_{4},$ $b_{4}$ be an ordered
basis of $E_{4}$ with $e_{4}(a_{4}, b_{4})=\zeta_{4}$ , where $e_{4}$ is the Weil pairing. The triple $(E, a_{4}, b_{4})$ is
called an elliptic curve with level 4 structure. Then there exists a unique pair $(x, y)$ of
rational functions on $E$, defined over $k$, giving an isomorphism from $E$ onto the non-
singular cubic curve
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(2.1) $y^{2}=x(x-1)(x-\frac{1}{4}(s_{1}+\frac{1}{s_{1}})^{2})$ ,

where the level 4 structure invariant $s_{1}=x(a_{4})+\zeta_{4}(x(b_{4})+1)$ of $E$ is an element of
$\Delta=P_{1}-\{0, \pm 1, \pm\zeta_{4}, \infty\}$ . (Precisely the cubic curve is the compactification of (2.1) in
$P_{2}$ :

$ZY^{2}=X(X-Z)(X-\frac{Z}{4}(s_{1}+\frac{1}{s_{1}})^{2})$ ,

where (X: $Y:Z$) are homogeneous coordinates of $P_{2}.$) We write $S(4)^{\prime}$ for the cor-
responding elliptic surface to (2.1). Let $\Psi^{\prime}$ denote the restriction of the projection
$P_{2}\times\Delta\rightarrow\Delta$ to $S(4)^{\prime}$ . Then the fibre system $\Psi^{\prime}$ : $ S(4)^{\prime}\rightarrow\Delta$ is the universal family of elliptic
curves with level 4 structure and the Shioda modular surface $S(4)$ is a suitable
compactification of $S(4)^{\prime}$ (cf. [Sh 2]). The surface $S(4)$ has the natural projection
$\tilde{\Psi}:S(4)\rightarrow P_{1}$ which is an extension of $\Psi^{\prime}$ . At each point $ s_{1}\in P_{1}-\Delta$ , the singular fibre
$\tilde{\Psi}^{-1}(s_{1})$ is of type $I_{4}$ in the notation of Kodaira (cf. [K]).

In [Sh 3] another birational model of $S(4)$ was given by using the Jacobi quartic:

(2.2) $u_{11}^{2}=(t_{1}^{2}-s_{1}^{2})(1-s_{1}^{2}t_{1}^{2})$ .

This admits a graph theoretical interpretation. Assume that $k=F_{p},$ $p$ being a prime $\equiv 1$

$(mod 4)$ . Take an element $I\in \mathscr{C}_{4:6}$ (cf. \S 1.1). Considering the action of $F_{p}>\triangleleft F_{P}^{x}$ one can
assume that $I$ is of the form $\{0,1, i,j\}$ . Since $i$ and $j$ are in $S_{01}^{++}$ one can write

$i=(s_{1}^{2}+1)^{2}/4s_{1}^{2}$ , $j=(t_{1}^{2}+1)^{2}/4t_{1}^{2}$

with elements $s_{1},$
$t_{1}\in F_{p}^{x}-\{\zeta_{4}^{a}|\alpha=0,1,2,3\}$ . The relation i-je $S_{0}^{+}$ leads to the relation

$u_{11}^{2}=t_{1}^{2}(s_{1}^{2}+1)^{2}-s_{1}^{2}(t_{1}^{2}+1)^{2}$ ,

with an element $u_{11}$ of $F_{0}^{x}$ . This coincides with (2.2).

Now we return to the general case where the field $k$ is as in the beginning of this
section. We consider an affine surface, defined over $k$ , which is defined by the same
equation (2.2). We compactify this surface in the following manner. Form a product
$P=P_{1}\times P_{1}$ . For notational reason we write $M$ and $N$, respectively, for the first and
the second factor of the product and write homogeneous coordinates of $M$ and $N$ by
$[S_{0} : S_{1}]$ and $[\mathcal{T}_{0} : \mathcal{T}_{1}]$ , respectively. Define a section $v\in H^{0}(P, \mathcal{O}_{P}(2,2)^{\otimes 2})$ by

$v=(S_{1}^{2}\mathcal{T}_{0}^{2}-S_{0}^{2}\mathcal{T}_{1}^{2})(S_{1}^{2}\mathcal{T}_{1}^{2}-S_{0}^{2}\mathcal{T}_{0}^{2})$

and denote byBthe zero locus of v. LetL be the total space of $\mathcal{O}_{p}(2,2)$ and $\mathfrak{p}$ : $L\rightarrow P$

the bundle projection. For the tautological section
$u\in H^{0}(L, \mathfrak{p}^{*}\mathcal{O}_{P}(2,2))$

we can define a 2-cyclic covering $S$ of $P$ , branched along $B$, to be the zero locus of
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$\mathfrak{p}^{*}v-u^{2}$ (cf. [B-P-V]). In fact, we denote by $U_{i},$ $V_{j}$ open sets of $M,$ $N$ determined by
the conditions $S_{i}\neq 0,$ $\mathcal{T}_{j}\neq 0(i,j=0,1)$ . Then the subvariety $S$ of $L$ is defined in
$p^{-1}(U_{i}\times V_{j})(i,j=0,1)$ to be the zero locus of the rational function

$u_{ij}^{2}-(t_{j}^{2}-s_{i}^{2})(1-s_{i}^{2}t_{j}^{2})$

on $L$ , where

$s_{1}=S_{0}/S_{1}$ , $s_{0}=S_{1}/S_{0}$ , $t_{1}^{d}=_{0}^{-}/\mathcal{T}_{1}$ , $t_{0}=\mathcal{T}_{1}/\mathcal{T}_{0}$ , $u_{ij}=uS_{i}^{-2}\mathcal{T}_{j}^{-2}$

The composition of the projection from $P$ to $M$ (resp. $N$), composed with $\mathfrak{p}$ , defines a
projection $L$ onto $M$ (resp. $N$). We denote by $\Psi_{M}$ (resp. $\Psi_{N}$) the restriction to $S$.

PROPOSITION 2.1. Let $\Delta_{M}$ denote $M-\{0, \pm 1, \pm\zeta_{4}, \infty\}$ . Then $S_{M}^{\prime}=\Psi_{M}^{-1}(\Delta_{M})$ is the
universal family of elliptic curves with level 4 structure.

PROOF. Let $(E, a, b)$ be the elliptic curve with level 4 structure defined by the
equation (2.1). For an arbitrary element $s_{1}$ of $\Delta_{M}$ , there is a unique pair $(t_{1}, u_{11})$ of
rational functions on $E$ defined over $k$ , which is characterized by

(2.3) $x=\frac{(s_{1}^{2}+1)(t_{1}-s_{1})}{2s_{1}(s_{1}t_{1}-1)}$ , $y=\frac{\zeta_{4}(s_{1}^{4}-1)u_{11}}{4s_{1}^{2}(s_{1}t_{1}-1)^{2}}$ .

The pair $(t_{1}, u_{11})$ satisfies (2.2) and gives the isomorphism onto the subvariety of the
total space of $\mathcal{O}_{N}(2)$ defined by (2.2). Therefore we get this proposition. $\square $

In this connection we remark that, by [Sh 2], the ordered basis $(a_{4}, b_{4})$ of $E_{4}$ is
expressed in terms of (2.1) by

$\left\{\begin{array}{l}a_{4}=(\frac{s_{1}^{2}+1}{2s_{1}},\frac{\zeta_{4}(s_{1}^{2}+1)(s_{1}-1)^{2}}{4s_{1}^{2}})\\b_{4}=(\frac{(s_{1}+\zeta_{4})^{2}}{2\zeta_{4}s_{1}},\frac{\epsilon(s_{1}^{2}-1)(s_{1}+\zeta_{4}^{2})}{4s_{1}^{2}})\end{array}\right.$

where the sign $\epsilon=\pm 1$ is determined by $e_{4}(a_{4}, b_{4})=\zeta_{4}$ . Moreover, in terms of (2.2), it is
wntten as

$\left\{\begin{array}{l}a_{4}=(-1, s_{1}^{2}-1)\\b_{4}=(-\zeta_{4}, \epsilon\zeta_{4}(s_{1}^{2}+1))\end{array}\right.$

REMARK 2.2. The similar fact to Proposition 2.1 holds for $S_{N}^{\prime}=\Psi_{N}^{-1}(\Delta_{N})$ .
Now the existence of the two projections $\Psi_{M}$ and $\Psi_{N}$ leads to a configuration of

12-curves; see Figure 2. Each curve $\Psi_{M}^{-1}(s_{1})$ (resp. $\Psi_{N}^{-1}(t_{1})$) consists of two rational
curves, where $s_{1},$ $t_{1}=0,$ $\pm 1,$ $\pm\zeta_{4}$ or $\infty$ . We write them by $C_{s_{1},m}(resp. C_{t_{1},m})(m=1,2)$ .
Define 12-points $P_{s_{1}t_{1}}$ by the condition

$P_{s_{1}t_{1}}\Psi_{M}^{-1}(s_{1})\cap\Psi_{N}^{-1}(t_{1})$
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FIGURE 2

where $\{s_{1}, t_{1}\}$ is one of the following three sets

$\{s_{1}, t_{1}\}=\{0, \infty\},$ $\{\pm 1\}$ or $\{\pm\zeta_{4}\}$ .

We see that these twelve points exhaust all singular points of $S$ and each of them is an
ordinary double point. Denote by $\pi:\tilde{S}\rightarrow S$ the resolution which is the blow-up of $S$

at the twelve points. We write $\tilde{\Psi}_{M}$ : $\tilde{S}\rightarrow M$ for $\Psi_{M}\circ\pi$ and $\Theta_{s_{1}t_{1}}$ for the exceptional
curve on $\tilde{S}which$ is contracted to $P_{s_{1}t_{1}}$ by $\pi$ . Moreover we write $\Theta_{s_{1},m}$ and $\Theta_{t_{1},m}(m=1,2)$ ,
respectively, for the proper transform of $C_{s_{1},m}$ and $C_{t_{1},m}$ . Then, for each point $s_{1}$ as
above, the singular fiber $\tilde{\Psi}_{M}^{-1}(s_{1})$ consists of four rational curves $\Theta_{s_{1}t_{1}}$ and $\Theta_{s_{1},m}$ ,
respectively, which are defined as above.

PROPOSITION 2.3. The elliptic surface $\tilde{\Psi}_{M}$ : $\tilde{S}\rightarrow M$ is isomorphic to the Shioda
modular surface $S(4)\rightarrow M$. (The similar fact holds for the projection $\tilde{\Psi}_{N}.$ )

PROOF. By Proposition 2.1, $S(4)$ is a suitable compactification of $S_{M}^{\prime}$ . Therefore,
by the uniqueness of a relatively minimal model, it is sufficient to check that each
singular fibre $\tilde{\Psi}_{M}^{-1}(s_{1})(s_{1}=0, \pm 1, \pm\zeta_{4}, \infty)$ of $\tilde{S}$ is of type $I_{4}$ . In order to prove this
fact we first check the following at each $s_{1}$ ,

(b) each component of $\tilde{\Psi}_{M}^{-1}$ is smooth and 4 components intersect like $\#$ .
Also we construct aglobal section of $\tilde{S}$ over $M$ to see that each singular fibre is not a
multiple fibre. This means that each singular fiber is of type $I_{4}$ .

We prepare some notations. Let $\Sigma_{s_{1}t_{1}}$ be a neighborhood of $P_{s_{1}t_{1}}$ and $\Sigma_{s_{1}t_{1}}^{\sim}\rightarrow\Sigma_{s_{1}t_{1}}$

ablowing-up of $\Sigma_{s_{1}t_{1}}$ . To see (b), we $firstblowupthesingularpointP_{00}andP_{0\infty}$ lying
on $\Psi_{M}^{-1}(0)$ . (The coordinates of them are $(u_{11}, t_{1}, s_{1})=(0,0,0)$ and $(u_{10}, t_{0}, s_{1})=$

$(0,0,0).)$ Then $\Sigma_{00}^{\sim}$ is the subvariety of $\Sigma_{00}\times P_{2}$ defined by
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(2.4) $\left\{\begin{array}{l}u_{11}X_{1}=t_{1}X_{0}\\u_{11}X_{2}=s_{1}X_{0}\\t_{1}X_{2}=s_{1}X_{1}\end{array}\right.$

where $(X_{O} : X_{1} : X_{2})$ are homogeneous coordinates of $P_{2}$ . The blowing-up at $P_{0\infty}$ is
obtained similarly by considering the transformation:

$X_{\acute{0}}=X_{0}/t_{1}^{2}$ , $X_{1}^{\prime}=X_{1}/t_{1}^{2}$ , $X_{2}^{\prime}=X_{2}$ .
The curves $\Theta_{s_{1},m}(s_{1}=0, m=1,2)$ are given by

(2.5) $X_{2}=0$ , $X_{0}+X_{1}=0$ ;

(2.6) $X_{2}=0$ , $X_{1}-X_{O}=0$

on $\Sigma_{00}^{\sim}$ , while $\Theta_{00},$ $\Theta_{0\infty}$ are given by

$(u_{11}, t_{1}, s_{1})=(0,0,0)$ , $X_{0}^{2}+X_{2}^{2}=X_{1}^{2}$ ;

$(u_{10}, t_{0}, s_{1})=(0,0,0)$ , $X_{\acute{0}}^{2}+X_{2}^{\prime 2}=X_{1^{2}}^{\prime}$

From the shape of the above curves it is clear that $\Psi_{M}^{-1}(0)$ satisfies the condition (b).
Secondly we blow up the singular points $P_{1}{}_{1}P_{1-1}$ lying on $\Psi_{M}^{-1}(1)$ . The coordinates
of $P_{11}$ are $(u_{11}, t_{1}, s_{1})=(0,1,1)$ . Then $\Sigma_{11}^{\sim}$ is the subvariety of $\Sigma_{11}\times P_{2}$ defined by

(2.7) $\left\{\begin{array}{l}u_{11}Y_{1}=(t_{1}-1)Y_{0}\\u_{11}Y_{2}=(s_{1}-1)Y_{O}\\(t_{1}-1)Y_{2}=(s_{1}-1)Y_{1}\end{array}\right.$

where $(Y_{0} : Y_{1} : Y_{2})$ are homogeneous coordinates in $P_{2}$ . If we replace $(t_{1}-1)$ by
$(t_{1}+1)$ and set

$Y_{\acute{0}}=Y_{O}$ , $Y_{1}^{\prime}=(t_{1}+1)Y_{1}/(t_{1}-1)$ , $Y_{2}^{\prime}=Y_{2}$ ,

then we get the blowing-up of $P_{1-1}$ . The curves $\Theta_{11},$ $\Theta_{1-1}$ are given by

(2.8) $(u_{11}, t_{1}, s_{1})=(0,1,1)$ , $Y_{0}^{2}+4Y_{1}^{2}=4Y_{2}^{2}$ ;

(2.9) $(u_{11}, t_{1}, s_{1})=(0, -1,1)$ , $Y_{\acute{0}}^{2}+4Y_{1}^{\prime 2}=4Y_{2}^{\prime 2}$ ,

while the curves $\Theta_{s_{1},m}(s_{1}=1, m=1,2)$ are given by

$Y_{2}=0$ , $\mathcal{T}_{1}Y_{0}=-\zeta_{4}(\mathcal{T}_{0}+\mathcal{T}_{1})T_{1}$ ;

$Y_{2}=0$ , $\mathcal{T}_{1}Y_{O}=\zeta_{4}(\mathcal{T}_{0}+\mathcal{T}_{1})Y_{1}$ .

Thus the condition (b) is also clear for the singular fiber at $s_{1}=1$ . The condition (b) is
checked for the other singular fiber similarly to the above argument (or by reducing to
the above argument by considering the suitable group action on $S.$)

Finally, we construct a global section of $\tilde{S}$ over $M$. Let $0$ be the divisor of $S$ defined
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by $S_{0}\mathcal{T}_{0}=S_{1}\mathcal{T}_{1}$ . Then $0^{\prime}=0_{|S’}$ is the unit of the group of global sections of $S^{\prime}$ . Then
the proper transform $\tilde{o}$ of $0$ is defined as the zero locus of the following equation

$\left\{\begin{array}{ll}S_{0}\mathcal{T}_{O}=S_{1}\mathcal{T}_{1}, & X_{1}^{\prime}=X_{2}^{\prime} in \Sigma_{O\infty}^{\sim}\\S_{0}\mathcal{T}_{0}=S_{1}\mathcal{T}_{1}, & Y_{1}-Y_{2}=2 in \Sigma_{11}^{\sim} ,\end{array}\right.$

in $\tilde{S}$ and $\tilde{o}$ is extended to the singular fibres at $s_{1}=0,1$ . In the same way, $\tilde{o}$ can be
extended over $s_{1}=-1,$ $\pm\zeta_{4},$ $\infty$ . This completes the proof. $\square $

By Proposition 2.3 we identify the surface $S(4)$ with $\tilde{S}$.
2.2. Contraction of $S(4)$ to $V$. In \S 1.2 and \S 2.1 we saw that $V$and $S(4)$ parametrize

the equivalence class $\mathscr{C}_{4:6}$ when the field $k$ in question is the prime field $F_{p}$ . A comparison
of these two parameterization leads to a rational map from $S$ to $V$ (cf. (1.3))

$z_{13}/z_{34}=(s_{1}^{2}-1)/2s_{1}$ , $z_{14}/z_{34}=(s_{1}^{2}+1)/2s_{1}$ ,

$z_{23}/z_{34}=(t_{1}^{2}-1)/2t_{1}$ , $z_{24}=(l_{1}^{2}+1)/2t_{1}$ and $z_{12}=u_{11}/2s_{1}t_{1}$

and we give the relation of these two parametrization by the following figure;

FIGURE 3

Now we retum to a general field $k$ satisfying the condition (a) in Introduction. Using
six sections of $p_{|S}^{*}\mathcal{O}_{p}(2,2)$

(2.10) $\left\{\begin{array}{ll}l_{0}=u/2, & \\l_{1}=(S_{1}^{2}-S_{0}^{2})\mathcal{T}_{0}\mathcal{T}_{1}/2, & l_{2}=(S_{0}^{2}+S_{1}^{2})\mathcal{T}_{0}\mathcal{T}_{1}/2,\\l_{3}=(\mathcal{T}_{1}^{2}-\mathcal{T}_{0}^{2})S_{O}S_{1}/2, l_{4} & =(\mathcal{T}_{0}^{2}+\mathcal{T}_{1}^{2})S_{0}S_{1}/2,\\l_{5}=S_{0}S_{1}\mathcal{T}_{0}\mathcal{T}_{1}, & \end{array}\right.$

we form a rational map $\Phi$ from $S$ to $V$ as follows

$(z_{12} : z_{13} : z_{14} ; z_{23} : z_{24} : z_{34})=(l_{0} : l_{1} : l_{2} : l_{3} : l_{4} : l_{5})$ .
PROPOSITION 2.4. The rational map $\Phi$ is regular on $S-\{P_{00}, P_{0\infty}, P_{\infty 0}, P_{\infty\infty}\}$ .

Moreover, it gives a biregular map between $S-Z(S_{0}S_{1}\mathcal{T}_{0}\mathcal{T}_{1})$ and $V-Z(z_{34})$ .
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$PR\infty F$ . The inverse of such a rational map is given by

$s_{1}=\frac{z_{14}-z_{13}}{z_{34}}$ , $t_{1}=\frac{z_{24}-z_{23}}{z_{34}}$ , $u_{11}=\frac{2s_{1}t_{1}z_{12}}{z_{34}}$ .

This ensures the second assertion. The first one is clear from (2.10). $\square $

To construct the birational morphism from $S(4)$ to $V$, we prepare some notation.
Let $r_{a_{4},\epsilon b_{4}},$ $r_{-a_{4},-\epsilon b_{4}},$ $r_{a_{4},-\epsilon b_{4}},$ $r_{-a_{4},\epsilon b_{4}}$ ($\epsilon=\pm 1$ is determined by $e_{4}(a_{4},$ $b_{4})=\zeta_{4}$) be divisors
of $S$ defined locally by

$t_{1}=0$ , $u_{11}-\zeta_{4}s_{1}=0$ ;

$t_{1}=0$ , $u_{11}+\zeta_{4}s_{1}=0$ ;
(2.11)

$t_{0}=0$ , $u_{10}-\zeta_{4}s_{1}=0$ ;

$t_{0}=0$ , $u_{10}+\zeta_{4}s_{1}=0$ ,

and let $\tilde{r}_{a_{4},\epsilon b_{4}},\tilde{r}_{-a_{4}.-\epsilon b_{4}},\tilde{r}_{a_{4},-\epsilon b_{4}},\tilde{r}_{-a_{4},\epsilon b_{4}}$ be the proper transform of them. From [Sh 2],
we know that divisors of $S(4)^{\prime}$ defined by

$(x, y)=(\frac{s_{1}^{2}+1}{2},$ $\frac{s_{1}^{4}-1}{4s_{1}})$ , $(\frac{s_{1}^{2}+1}{2}-\frac{s_{1}^{4}-1}{4s_{1}})$ ,

$(\frac{s_{1}^{2}+1}{2s_{1}^{2}}\frac{s_{1}^{4}-1}{4s_{1}^{3}})$ , $(\frac{s_{1}^{2}+1}{2s_{1}^{2}}\frac{-(s_{1}^{4}-1)}{4s_{1}^{3}})$

are corresponding to elements of the group of global sections of $S(4)^{\prime}$ of order 4 which
are generated by $a_{4}+\epsilon b_{4},$ $-a_{4}-\epsilon b_{4},$ $a_{4}-\epsilon b_{4},$ $-a_{4}+\epsilon b_{4}$ , where $\epsilon=\pm 1$ is determined
by $e_{4}(a_{4}, b_{4})=\zeta_{4}$ . Note that the divisors determined by such sections are mapped by
(2.3) to the ones defined by (2.11) and, therefore the proper transforms of them are
corresponding to the global sections of $S(4)\rightarrow M$. Putting

$D=\sum_{\langle\rho,\sigma)=\langle\pm a_{4},\pm b_{4})}\tilde{r}_{\rho,\sigma}+\sum_{s_{1}=0\infty},\sum_{t_{1}=0\infty},(\tilde{\Psi}_{M}^{-1}(s_{1})-\Theta_{s_{1}t_{1}})$ ,

we consider the invertible sheaf $\mathcal{O}_{S\langle 4)}(D)$ . It has six sections $l_{k}\sim(k=0,1,2,3,4,5)$ which
are the proper transform of $l_{k}$ and we denote by $\mathscr{L}$ the sublinear system of $|\mathcal{O}_{S\langle 4)}(D)|$

spanned by such six sections. Then $\mathscr{L}$ defines the birational map $\Phi_{\ovalbox{\tt\small REJECT}}$ from $S(4)$ onto $V$.
In view of the structure of the fibre system $\tilde{\Psi}_{M}$ : $S(4)\rightarrow M$, we give the main result of
this section as follows.

THEOREM 2.5. The birational map $\Phi_{\ovalbox{\tt\small REJECT}}$ : $S(4)\rightarrow V$ is the contraction which sends
the 16 rational curves of $S(4)$

$\left\{\begin{array}{ll}\Theta_{s_{1},m} & (s_{1}=0, \infty, m=1,2)\\\Theta_{s_{1}t_{1}} & ((s_{1}, t_{1})=(\pm 1, \pm 1), (\pm\zeta_{4}, \pm\zeta_{4}))\\\tilde{r}_{\rho,\sigma} & ((p, \sigma)=(\pm a, \pm b))\end{array}\right.$
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to the 16 singular points of $V$.

PROOF. By Proposition 2.4 it is sufficient to write $\Phi_{\ovalbox{\tt\small REJECT}}$ in a neighborhood of
12-exceptional curves $\Theta_{s_{1}t_{1}}$ in Figure 1. We will do it for the curves $\Theta_{00}$ and $\Theta_{s_{1}t_{1}}$ ,
where $(s_{1}, t_{1})=(\pm 1, \pm 1)$ or $(\pm\zeta_{4}, \pm\zeta_{4})$ . We use the notation in the proofofProposition
2.3. For the first curve, let $\alpha_{l}=X_{l}/X_{0}(l=1,2)$ and $\Sigma_{00}^{\sim_{0}}$ the open set of $\Sigma_{00}^{\sim}$ determined
$byX_{0}\neq 0$ . On $\Sigma_{00}^{\sim_{0}}$ , by definition ofthe linear system $\mathscr{L}$ , the rational map $\Phi_{\ovalbox{\tt\small REJECT}}$ is given by

(2.12) $\{z_{34}=\alpha_{1}\alpha_{2}u_{11}S_{1}^{2}\mathcal{T}_{1}^{2}z_{23}=(1-\alpha_{1}^{2}u_{11}^{2})\alpha_{2}S_{1}^{2}\mathcal{T}_{1}^{2}/2z_{13}=(1-\alpha_{2}^{2}u_{11}^{2})\alpha_{1}S_{1}^{2}\mathcal{T}_{1}^{2}/2z12=S^{2}1\mathcal{T}^{2}1/2$

,

$Z_{24}=(1z_{14}=(1I_{\alpha_{1}^{2}u_{11}^{2})\alpha_{2}S_{1}^{2}\mathcal{T}_{1}^{2}/2}\alpha_{2}^{2}u_{11}^{2})\alpha_{1}S_{1}^{2}\mathcal{T}_{1}^{2}/2$

,

Clearly $\Phi_{\ovalbox{\tt\small REJECT}}$ is a morphism $S(4)\cap\Sigma_{00}^{\sim}$ and sends the curve $\Theta_{00}$ , which is defined to be
$Z(u_{11})$ , to the rational curve (cf. (1.12))

$z_{34}=0$ , $z_{13}=z_{14}$ , $z_{23}=z_{24}$ , $z_{12}^{2}+z_{23}^{2}=z_{13}^{2}$

on $V$. On the other hand $\Theta_{0,1}u\Theta_{0,2}$ is defined by $X_{2}=0$ and its image by $\Phi_{\ovalbox{\tt\small REJECT}}$ is
$z_{23}=z_{24}=z_{34}=0$ .

By (2.5) and (2.6), this means that

$\Theta_{s_{1},m}(s_{1}=0, m=1,2)$ are contracted to the singular points $P_{234}(12),$ $P_{234}$ .
In the similar manner,

$\Theta_{s_{1},m}(s_{1}=\infty, m=1,2)$ are mapped to the singular points $P_{234}(14),$ $P_{234}(13)$

and the rational curves $\Theta_{0\infty},$ $\Theta_{\infty O},$ $\Theta_{\infty\infty}$ on $S(4)$ are sent to the rational curves

$z_{34}=0$ , $z_{12}^{2}+z_{23}^{2}=z_{13}^{2}$ and $\left\{\begin{array}{ll}z_{13}=z_{14}, & z_{23}=-z_{24},\\z_{13}=-z_{14} & , z_{23}=z_{24},\\z_{13}=-z_{14} & z_{23}=-z_{24}.\end{array}\right.$

Next, we consider expressions of $\Phi_{\ovalbox{\tt\small REJECT}}$ on neighborhoods of exceptional curves $\Theta_{\delta\epsilon}$ , where
$(\delta, \tau)=\sim(\pm 1, \pm 1),$ $(\pm\zeta_{4}, \pm\zeta_{4})$ . Let $\beta_{l}^{\prime}=Y_{l}/Y_{1}(l=0,2)$ and let $\Sigma_{\delta\tau}^{\sim_{1}}$ be the open set of
$\Sigma_{\delta\tau}^{1}$ defined by $Y_{1}\neq 0$ . Then, on $\Sigma_{\delta\tau}^{\sim_{1}}$ , the contraction $\Phi_{\ovalbox{\tt\small REJECT}}$ is given as follows:

(2.13) $\left\{\begin{array}{l}z_{12}=\beta_{\acute{O}}(t_{1}-\tau)\\z_{13}=\{1-(\beta_{2}^{\prime}(t_{1}-\tau)-\delta)^{2}\}t_{1}/2\\z_{23}=(1-t_{1}^{2})(\beta_{2}^{\prime}(t_{1}-\tau)+\delta)/2\\z_{34}=t_{1}(\beta_{2}^{\prime}+\delta)^{2}\end{array}\right.$ $z_{24}=(1+t_{1}^{2})(\beta_{2}(t_{1}-\tau)+\delta)/2z_{14}=\{1+(\beta_{2}^{\prime}(t_{1}-\tau)-\delta)^{2}\}t_{1}/2$

,

Since $\Theta_{s_{1}t_{1}}(s_{1}=\delta, t_{1}=\tau)$ are defined by $ t_{1}=\tau$ , they are sent to points
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$(z_{12} : z_{13} : z_{14} : z_{23} : z_{24} : z_{34})=(0:\tau-\tau\delta^{2} : \tau+\tau\delta^{2} : \delta-\delta^{3} : \delta+\delta^{3} : 2\tau\delta)$ .

Hence we have the contraction
$\Theta_{11}\rightarrow P_{123}$ , $\Theta_{1-1}\rightarrow P_{123}(24)$ , $\Theta_{-11}\rightarrow P_{123}(13)$ ,

$\Theta_{-1-1}\rightarrow P_{123}(34)$ , $\Theta_{\zeta_{4}\zeta_{4}}\rightarrow P_{124}(34)$ , $\Theta_{\zeta_{4}-\zeta_{4}}\rightarrow P_{124}(12)$ ,

$\Theta_{-\zeta_{4}\zeta_{4}}\rightarrow P_{124}(14)$ , $\Theta_{-\zeta_{4}-\zeta_{4}}\rightarrow P_{124}$ .

Finally, by (2.10), (2.12) and (2.13), we see that,

$\tilde{r}_{a_{4},\epsilon b_{4}},\tilde{r}_{-a_{4},-\epsilon b_{4}},\tilde{r}_{a_{4},-\epsilon b_{4}},\tilde{r}_{-a_{4},\epsilon b_{4}}$ are mapped to
$P_{134},$ $P_{134}(12),$ $P_{134}(23),$ $P_{134}(24)$ .

Thus we have the theorem. $\square $

REMARK 2.6. In terms of the fibre system $\tilde{\Psi}_{N}$ : $S(4)\rightarrow N$, the 16 rational curves
in Theorem 2.5 are described as follows: They consist of 12 non-singular rational curvef

$\Theta_{t_{1},m}(t_{1}=0, \infty, m=1,2)$ , $\Theta_{s_{1}t_{1}}((s_{1}, t_{1})=(\pm 1, \pm 1),$ $(\pm\zeta_{4}, \pm\zeta_{4}))$ ,

which appear in the singular fibres of $\tilde{\Psi}_{N}$ : $S(4)\rightarrow N$ and 4 sections of this fibre system
These sections have the corresponding meaning to $\tilde{r}_{a_{4},\epsilon b_{4}},\tilde{r}_{-a_{4},-\epsilon b_{4}},\tilde{r}_{a_{4},-\epsilon b_{4}}$ and $\tilde{r}_{-a_{4},\epsilon b_{4}}$

which are the sections of the fibre system in Theorem 2.5.

REMARK 2.7. Using $\Phi_{\ovalbox{\tt\small REJECT}}$ , the structure of the surface $V$ as the elliptic surface $i$

written in terms of $z_{a\beta}$ . Define a conic $M^{\prime}$ : $z_{13}^{2}+z_{34}^{2}=z_{14}^{2}$ in $P_{2}$ with homogeneoui
coordinates $(z_{13} ; z_{14} ; z_{23})$ . By the proof of Proposition 2.4, the conic is biregular tc
a projective line $M$. This implies that $\tilde{\Psi}_{M}$ : $S(4)\rightarrow M$ determines the fibre system $V\rightarrow \mathcal{M}$

whose regular fibre is defined by

$\left\{\begin{array}{l}z_{12}^{2}+z_{23}^{2}=\frac{(s_{1}^{2}+1)^{2}}{4s_{1}^{2}}z_{34}^{2}\\z_{12}^{2}+z_{24}^{2}=z_{14}^{2}\end{array}\right.$

Consider also a conic $N^{\prime}$ : $z_{23}^{2}+z_{34}^{2}=z_{24}^{2}$ in $P_{2}$ . By Remark 2.6, it is biregular to ’

projective line $N$ and the fibre system $\tilde{\Psi}_{N}$ : $S(4)\rightarrow N$ determines $V\rightarrow N$ whose regula]

fibre is defined by

$\left\{\begin{array}{l}z_{12}^{2}+\frac{(t_{1}^{2}+1)^{2}}{4t_{1}^{2}}z_{34}^{2}=z_{13}^{2}\\z_{12}^{2}+z_{24}^{2}=z_{14}^{2}\end{array}\right.$

These induce the following commutative diagram
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$\tilde{\Psi}_{N}$ $\tilde{\Psi}_{M}$

$N-S(4)\rightarrow M$

$\downarrow$ $\downarrow\Phi_{\ovalbox{\tt\small REJECT}}$ $\downarrow$

$N^{\prime}-$ $V\rightarrow M^{\prime}$

This diagram occurs by taking a pair from the following four conics

$\left\{\begin{array}{ll}z_{12}^{2}+z_{23}^{2}=z_{13}^{2}, & z_{12}^{2}+z_{24}^{2}=z_{14}^{2},\\z_{13}^{2}+z_{34}^{2}=z_{14}^{2}, & z_{23}^{2}+z_{34}^{2}=z_{24}^{2}.\end{array}\right.$

Thus, by the choice of pairs, we have $6=\left(\begin{array}{l}4\\2\end{array}\right)$ diagrams similar to the one soon above.

3. Chern class formula.

In this section, we investigate the number of the $F_{p}$-rational points of the variety
$V$ defined in \S 1.

3.1. Rational points of the surface $V$. Let $p$ be a prime congruent to 1 mod4
and $\chi_{4}$ be a multiplicative character of $F_{p}^{x}$ of order 4. The square $\chi_{4}^{2}$ of $\chi_{4}$ is denoted
by $\chi_{2}$ . We define the Jacobi sum $J=J(\chi_{2}, \chi_{4})$ as

$J(\chi_{2}, \chi_{4})=\sum_{-\xi+\eta+1=0}\chi_{2}(\xi)\chi_{4}(\eta)$ .

Since the character $\chi_{2}(y)$ is real valued, we have $\overline{J(\chi_{2},\chi_{4})}=J(\chi_{2}, \overline{\chi_{4}})$ . It is known that
$J\overline{J}=p$ (cf. [L]). Since Je $Z[\sqrt{-1}]$ , we have

(3.1) $Nm_{0t\sqrt{}\overline{-1})/O}(J)=p$ .

Let $A_{1}$ be the non-singular projective model of the curve $y^{2}-x^{4}+1=0$ and $l$ a prime
number relatively prime to 2. Using this Jacobi sum, the trace of the Frobenius action
on the \’etale cohomology group $H^{1}(\overline{A}_{1}, Q_{l})$ can be expressed as follows. Here $\overline{A}_{1}$ denotes
$A_{1}\otimes\overline{F}_{p}$ . By Grothendieck’s Lefschetz trace formula, we have

$\sum_{i=0}^{2}(-1)^{i}tr(F_{r}|H^{i}(\overline{A}_{1}, Q_{l}))=\#rat(A_{1})$ .

The number $\#rat(A_{1})$ can be computed using the result of Weil [W] as
$\#rat(A_{1})=1+p+(J+\overline{J})$ .

Since $tr(F_{r}|H^{0}(\overline{A}_{1}, Q_{l}))=1,$ $tr(F_{r}|H^{2}(\overline{A}_{1}, Q_{l}))=p$ , we have

(3.2) $tr(F_{r}|H^{1}(\overline{A}_{1}, Q_{l}))=-(J+\overline{J})$ .

Now we compute the number of the $F_{p}$-rational points #rat(V).
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PROPOSITION 3.1. #rat(V) $=1+2p+p^{2}+(J+\overline{J})^{2}$ .
$PR\infty F$ . Let $A_{2}=A_{1}/(Z/2Z)$ be the elliptic curve defined in \S 1. Since the action 01

$Z/2Z$ on $A_{1}$ is $F_{p}$-rational, the natural isogeny $A_{1}\rightarrow A_{2}$ is defined over $F_{p}$ . The abelian
variety $A=(A_{2}\times A_{2})/(Z/2Z)$ is also the quotient of an involution defined over $F_{p}$ , the
natural isogeny $A_{2}\times A_{2}\rightarrow A$ is also defined over $F_{p}$ . Therefore, the natural homo.
morphism

(3.3) $H^{i}(\overline{A}, Q_{l})\rightarrow H^{i}(\overline{A}_{2}\times\overline{A}_{2}, Q_{l})$

is a $Gal(\overline{F}_{p}/F_{p})$-equivariant homomorphism. Since the variety $V$ is the quotient of $A$ by
the inversion of abelian surfaces, we have

$H^{i}(\overline{V}, Q_{l})=\left\{\begin{array}{ll}H^{i}(\overline{A}, Q_{l})\cong\wedge^{i}H^{1}(\overline{A}, Q_{l}) & (i=0,2,4)\\0 & (i=1,3, i\geq 5).\end{array}\right.$

By the isomorphism (3.3), we have

$H^{2}(\overline{V}, Q_{l})=H^{0}(\overline{A}_{2}, Q_{l})\otimes H^{2}(\overline{A}_{2}, Q_{l})$

$\oplus H^{1}(\overline{A}_{2}, Q_{l})\otimes H^{1}(\overline{A}_{2}, Q_{l})$

$\oplus H^{2}(\overline{A}_{2}, Q_{l})\otimes H^{0}(\overline{A}_{2}, Q_{l})$

$\cong Q_{l}(-1)^{\oplus 2}\oplus(H^{1}(\overline{A}_{2}, Q_{l})\otimes H^{1}(\overline{A}_{2}, Q_{l}))$ ,

$H^{0}(\overline{V}, Q_{l})\cong Q_{l}$ , $H^{4}(\overline{V}, Q_{l})\cong Q_{l}(-2)$ .
By using the relation (3.2), we have the proposition. $\square $

By using the following result of Davenport and the fact (3.1), we can calculate
#rat(V) more explicitly.

LEMMA 3.2 ([D-H]).

(3.4) $J\equiv 1$ $(mod 2+2\sqrt{-1})$ .
REMARK 3.3. Using (3.1) and (3.4), $J$ is determined uniquely.

COROLLARY 3.4. Let $p$ be a prime number congruent to 1 (mod4). Let, $a,$
$b$ be

integers such that $a^{2}+b^{2}=p$ and $a$ odd. Then $(J+\overline{J})^{2}=4a^{2}$ .
$PR\infty F$ . If we write $J=a+b\sqrt{-1}(a, b\in Z)$ , then we have $a+b\sqrt{-1}\equiv 1$ (mod2)

and $a^{2}+b^{2}=p$ . Therefore $a$ should be an odd number and we get the corollary. $\square $

COROLLARY 3.5. Under the notation as above, we have

#rat(V) $=1+2p+p^{2}+4a^{2}$

From this we derive some interesting facts. First the cardinal number $m_{4:6}$ of $\mathscr{C}_{4:6}$

is given by
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COROLLARY 3.6.

$m_{4:6}=(1/64\times 24)p(p-1)(p^{2}-22p+81+4a^{2})$ .
PROOF. Clear from Corollary 3.5, Lemma 1.9 and Lemma 1.12. $\square $

By an observation it is expected that $m_{4:6}=\#\mathscr{C}_{4:6}$ satisfies the relation

$\lim_{p\rightarrow\infty}m_{4:6}/\left(\begin{array}{l}p\\4\end{array}\right)=1/64$ .

THEOREM 3.7. We have the following formula

$m_{4:6}-\left(\begin{array}{l}p\\4\end{array}\right)/64=(64\times 24)^{-1}p(p-1)(-17p+75+4a^{2})$ .

We add the following

COROLLARY 3.8. The cardinality $m_{4:4\langle b)}=\#\mathscr{C}_{4:4\langle b)}$ is given by

$m_{4:4\langle b)}=(128\times 4)^{-1}p(p-1)(p^{2}-6p+1+4a^{2})$ .
PROOF. By Proposition 1.8 we have

$4m_{4:4\langle b)}=12m_{4;6}+(1/8)p(p-1)(p-5)$

and Corollary 3.6 ensures the present corollary. $\square $

This gives the following characterization of the prime number $p=5$ among all prime
numbers $p$ which are congruent to 1 modulo 4.

COROLLARY 3.9. There is no subset I of $F_{p},$ $\# I=4$ , whose graph is isomorphic to
the square (cf. \S 1.1) if and only if$p=5$ .

3.2. Chem number formula. Consider the $(p-1)$-dimensional complex projective
space $P_{p-1}=P_{p-1}(C)$ with homogeneous coordinates $x=(x_{i})(i\in F_{p})$ . Denote by $X_{i}^{1}$ the
hyperplane $Z(x_{i})$ . We set

$X^{1}=\bigcup_{i\in F_{p}}X_{i}^{1}$ and $X^{2}=\bigcup_{i,j\in F_{p}}(X_{i}^{1}\cap X_{j}^{1})$ .

(In the second definition we assume that $i\neq j.$ ) For each $i\in F_{p}$ take an open neighborhood
$N_{i}$ of $\dot{X}_{i}^{1}=X_{i}^{1}-X^{2}$ in $\dot{P}_{p-1}=P_{p-1}-X^{2}$ so that

$ N_{i}\cap N_{j}=\emptyset$ if $t\neq j$ .
Moreover, form monomials

$f_{i}^{+}=\prod_{j}x_{j}$ , $f_{i}^{-}=\prod_{k}x_{k}$ ,
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where $j$ and $k$ exhaust respectively all elements $ofF_{p}$ satisfying $(\frac{j-i}{p})=1$ and $(\frac{k-i}{p})=-1$ .
Form a matrix

$A_{|N_{i}}=\left(\begin{array}{ll}1 & (-f_{i}^{-}/f_{i}^{+})_{|N_{i}}\\0 & (x_{i}/x_{i+1})_{|N_{i}}\end{array}\right)$ .

This matrix defines a locally free sheaf $\dot{\mathfrak{E}}_{p}$ of rank two over $\dot{P}_{p-1}$ . Define a reflexive
sheaf $\mathfrak{E}_{p}$ over $P_{p-1}(C)$ by $\mathfrak{E}_{p}=\iota_{*}\dot{\mathfrak{E}}_{p}$ where $\iota$ is the injection $\dot{P}_{p-1}\subset P_{p-1}$ . Then we know
(cf. [SEK 1], [SEK 2]) that the Chem classes $c_{i}(\mathfrak{E}_{p})(1\leq i\leq 3)$ are given by

$c_{1}(\mathfrak{E}_{p})=p$ , $c_{2}(\mathfrak{E}_{p})=p(p-1)/2$ , $c_{3}(\mathfrak{E}_{p})=0$

and the fourth Chem class $c_{4}(\mathfrak{E}_{p})$ is given by (C1) in Introduction. By Corollary 3.8 we
have

THEOREM 3.10. $c_{4}(\mathfrak{C}_{p})=-(5/64)p(p-1)(p^{2}-6p+1+4a^{2})$ .
By Corollary 3.9 we have

COROLLARY 3.11. $c_{4}(\mathfrak{E}_{p})=0lf$ and only if$p=5$ .
Thus the reflexive sheaf or, is locally free if and only if $p=5$ . When one of the

authors began the research in [SEK 1], [SEK 2], his hope was that there may be some
small prime numbers $p$ for which $\mathfrak{E}_{p}$ has no singularity at codimension 4. However,
this is false by a characteristic fact, Corollary 3.10. We hope that the content here gives
a hint to consider the existence or non existence of a non indecomposable reflexive
sheaf of rank two on $P_{n}(C)(4\leq n)$ , which do not have singularity at codimension 4
and are different from the Horrocks-Mumford bundle.

4. Appendix.

In the first place, using results of \S 3, we calculate the fourth Chem class $c_{4}(\mathfrak{E}_{p})$ in
the case of $p\equiv 1$ (mod4), $p<1OO$ and give the following table:

$p$ 5 13 17 29 37 41
$a$ 1 3 1 5 1 5

$m_{4:6}/p$ $0$ $0$ $0$ 7 15 25

$\ovalbox{\tt\small REJECT}^{-3240-4800}\ovalbox{\tt\small REJECT}^{-240-1680}C_{4}(\mathfrak{E}_{p})/p0-120m_{4:6}/p65100180352480p5361738997a75359$

$c_{4}(\mathfrak{E}_{p})/p$ $-10920$ $-16200$ $-27720$ $-51480$ -68640
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In the second place, we give quadratic residue graphs with respect to $p=5,13,17$ ;

see Figure 4.

$p=13$

$p=17$

FIGURE 4
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