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1. Introduction.

Let G be an infinite compact abelian group, I' (or G) the dual group, M(G) the
convolution measure algebra on G, and L?(G) the LP-space with respect to the Haar
measure mg on G for 1<p<oo. Also for 1 <p<qg< oo let M(p, q) be the set of all
translation invariant bounded linear operators from L?(G) to L%G). For ue M(G), u
is called an LP-improving measure, if ue M(r, s) for some 1 <r<s<oo (cf. [5]). When
P<4q, M(p, g) is a commutative Banach algebra without unit with the operator norm,
and M(p, p) is a commutative Banach algebra with unit.

The purpose of this paper is an investigation of Fourier multiplier algebra M(p, q)
(I1<p<g<o).

Hatori [10] characterized A(p)-sets on G by using the Banach algebra M(p, q)
(I1<p<g< o) (cf. [3], [4]). Also, he characterized the maximal ideal space of M(p, q)
(1 <p<g<o0). These results are showed by applying Stone-Cech’s compactification.

In § 2, we give proofs of Theorems 2.2 and 2.5 that are simple proofs of his results,
by the method of [12] and [20] without using Stone-Cech’s compactification.

Igari-Sato [12] studied the operating function of M(p,q) (1<p<q< ). The
domain of the operating function is [ — 1, 1]. In § 3, we investigate the operating function
whose domain is the complex plane. When G is the unit circle, our result is an extension
of Rider’s result [14] (cf. [16]).

- There are many papers [5], [15], etc. about LP-improving measures. But it seems
that it is unknown about LP-improving measures on thin sets (cf. [5; Open questions]).
In §4, we construct non L?-improving measures on some independent set, that are in
M(G) that is the set of all bounded regular Borel measures whose Fourier-Stieltjes
transforms vanish at infinity.
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In § 5, we give a remark about generalized Riesz products. Throughout this paper,
we denote p’ for any p>1 such that 1/p+1/p'=1.

2. On Hatori’s theorems.
In this section, we give alternative proofs of Hatori’s two theorems [10].

DErFINITION 2.1 (cf. [3]). Let 1<r<oo, and EcTI. Eis called a A(r)-set, if there
exist 1 <s<rand B> 0 such that || f||, < B| f ||, for any trigonometric polynomial f with

suppfc E.

Then it is known that E is a A(r)-set, if and only if for any 1 <s<r, there exists a
constant 4,>0 such that | f|,<A4|f|l; for any trigonometric polynomial f with

suppfc E.

THEOREM 2.2 Let G be an infinite compact abelian group with the dual T,
l<p<g<oo, and EcI. Then the next conditions (1), (2), (3) and (4) are equivalent:
(1) E is a A(r)-set, where r=max(p’, q).

(2) xgeM(p,q)", where xg is the characteristic function on E and M(p, g)* ={f’| Te

M(p, 9)}.

3) M(p, )" |,=I(E).
(4) There exists Te M(p, q) such that inf{| T(y) | | ye E}>0.

ProoF. We prove (1)=(2)=3)=(4)=(1).

(1)=(2): Let 1<p<g<2 or 2<p<g<oo. For 2<p<g< 0, the proof is similar
to the case 1 <p<g<2. Then we may assume 1 <p <g<2. By the assumption, g<2<p’.
So we have r=p’. Since E is a A(r)-set, there exists a constant C>0 such that
IfNl,,<CIlfll, for any trigonometric polynomial f with supp f< E. Putting T'=y,, we
obtain || 7f | ,, < C| f |, for any trigonometric polynomial f on G. Then || Tf|,<C| fI,
for any trigonometric polynomial f on G. Thus we have y;e M(p, 9)".

Next let 1 <p<2<g<oo. Then we may have p’>gq, and r=p’. Putting T'=y, by
the assumption there exists a constant C>0 such that ||7f|, <C| f|l, for any
trigonometric polynomial f. So || Tf ||, < C|| fIl,. Thus there exists a constant C’'> 0 such
that | 7f || ,, < C’'|| f ||, for any trigonometric polynomial f. Therefore, y.€ M(q', p)" =
M(p, q)".

(2)=(3): Suppose 1 <p<g<2or2<p<g<oo. Then we may assume 1 <p<g<2.
Also it is sufficient to prove [®(E)c M(p,q)* | g Since T=yx-eM(p,q)" by the

assumption, there exists a natural number N>1 such that ﬁVEM( P, 2) (cf. [9]) and

™ = xe=T. Let ¢ be in /°(E), and f a trigonometric polynomial. Then

1Y 6D F @210l Y xef P2
SNANLMNTF N 2 <UDl oo | Tll pe, 2yl f 1l 5 -
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Hence, there exists Se M(p, 2) such that S= ¢. Therefore we have I*(E)= M(p, 9)* | £

Next suppose 1 <p<2<g<o0.Forany ¢ € /*(E), let a(y) (€ R) be ¢(y) =e™*¥| $(p)|,
and P(y)=e""2 /| $(y)|. Then ¥2=¢. Since y.€M(p,q)" = M(p,2)", we obtain
Xe€ M(p, 2)". Hence, for any trigonometric polynomial f, we have

DWAC {OTPEI R AW B
<INl Tl a2l A= DN L2 T agp. I £ -

Therefore there exists T, € M(p, 2) such that fl = ¥. Similarly, we obtain T, e M(2, q)
with f2= Y. Defining S=T,T,, we have Se M(p, q), and S=¥2=¢. Then I°(E)c
M(p, 9)" |-

(3)=(4): trivial.

(#=(1): Let e=inf{| T(y)||yeE}, and E()={y|| T(y)|=n} for any #>0. First
suppose 1 <p<g<2 or 2<p<qg<oo. We may assume 1<p<g<2. So we have r=p’.
Then there exists a natural number N>1 such that Te M(p,2) (cf. [12]). So
TVe M(2,p'). By Hare [8], {y|| T™(y)|=¢"} is a A(p’)-set. Hence, E(e) is a A(p’)-set
i.e. A(r)-set. Since E is a subset of E(¢), E is a A(r)-set.

Next suppose 1 <p<2<g<oco. We may assume p'>gq, and r=p’. By Te M(p, 2),
we have Te M(2, p'). So E(e) is a A(p')-set. Since E is a subset of E(e), E is a A(p’)-set,
ie. A(r)-set. q.e.d.

COROLLARY 2.3. Letr=max(p’, q), and E a A(r)-set in I'. Also let E be the closure
of E in the maximal ideal space of the commutative Banach algebra M(r,r), and
TeM(p, q)~ the Gelfand representation of Te M(p,q). Then E is the Stone-Cech’s
compactification of E.

ProoF. By M(p, g)= M(r,r), we have T'|ze C(E) for any Te M(p, q), where C(E)
is the set of all continuous functions on E. Then, by Theorem 2.2 M(p, ¢)* | g=1%(E).
Thus E is the Stone-Cech’s compactification of E. q.e.d.

Hatori [10] gave a characterization of the maximal ideal space of M(p, q)
(1 <p <g< o) by using Stone-Cech’s compactification. We prove the same result without
applying Stone-Cech’s compactification.

DEFINITION 2.4. Suppose l<r<s<oo. We define 4M(r,s) the maximal ideal
sapce of M(r, s).

THEOREM 2.5. Suppose 1 <p<q<oo and r=max(p’, q). Then we have

AM(p, )= | E,

E:A(r)-set

where E is the closure of E (=T') in AM(r, ). Moreover, AM(p, q) is an open subset of
AM(r, ).

PROOF. Let A be the commutative Banach algebra that is the adjunction of a
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unity M(p, q), and 4(A) the maximal ideal space of 4. Then ¢ (€ 4(A4)) is a nontrivial
complex homomorphism on M(p, g) or ¢ =0 on M(p, q). Here we show the following:

LEMMA 2.6. Let ¢ be a nontrivial complex homomorphism on M(p, q). Then ¢ has
a unique extension ¢ which is a nontrivial complex homomorphism on M(r,r). Let A, be
the set of all ¢. Then we have

Ao={YeAM(r, 1) | Y(To)#0 for some Toe M(p, q)} .

PrROOF OF LEMMA 2.6. For Te M(r,r) and T,e M(p, q), we remark that 7T, is
in M(p, q). Let ¢ be in AM(p, q), and T, be in M(p, q) with ¢(T()#0. Also let

&(TT,)
&(To)
It is well-defined. In fact, let T, be in M(p, q) with ¢(T;)#0. Then

(T )TTo)=(TT,T1)=§(To)H(TT,),

()= for any TeM(r,r).

and

$ITy) _ $(TTY)
HTo) (T

Therefore for T, Se M(r, r),
H(TSTY) _9(TT),) ¢(STy)
&(TP) d(To) &(To)

and ¢ e AM(r, r). Also by the construction, ¢ is a unique extension of ¢. Moreover, 4,
is an open subset of AM(r, r). In fact, suppose $o€ 4,. Then there exists T e M(p, q)
such that ¢(T,)=1. Putting

V={FedM(r,r) || $(To)—bo(To)|<1/2},

we have V< 4,. Since V is an open subset of AM(r,r), 4, is open in AM(r,r). q.e.d.
of Lemma 2.6.

H(TS)= =H(DG(S) ,

The following is easy to be proved by the construction of the commutative Banach
algebra 4 and Lemma 2.6.

LEMMA 2.7. Let ¢, be the nontrivial complex homomorphism on A such that
;=0 on M(p, q). Then A, is homeomorphic to AM(p, q) = A(A)\{¢,} by the natural
mapping in Lemma 2.6, and A(A) is 1-point compactification of A,.

After that, we identify 4, as AM(p, q).
LEMMA 2.8. A,cTnaMen ywhere [0 4MED s the closure of T in AM(r, ).

PROOF OF LEMMA 2.8. First Step. Aoc T4, In particular, A(A4)=TI"44),
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where I'"4“ js in the closure of I' in 4(A4). In fact, let ¢, be in A, with ¢, ¢ [i» 44,
Then for any ¢ e ' 4, there exists Te 4 such that ¢(T)#0 and ¢o(T) =0, since ¢ ~ ¢,
and A has the unit. Also let

Ve={¢'€4(4) |19"(T)— (D) | <} o(D)1} .
V, is an open neighborhood of ¢ € 4(4). Since

V¢ ) fin A(A)
¢ef1n 4(A)

and I'"44 is a compact subset of A(A), there exist ¢;€ 4 (1<j<n) such that
%=1 Vs,2 4™, Hence, by the definition of Vs,» there exist T;e A (1<j<n) such
that ¢;(7;)#0 and ¢4(7;)=0. Then for any ¢ e Vs, we have

|o(T)) | =31 d(T))| .
Here, for any yeT, defining ¢,(T) = T(y), we have
n 1 )
j; ¢7(T,’Tf)27 11111!2" |$;(TH1> (>0)

for all yeI', where T*e M(p, q) is defined by T*=T for any Te M(p, q). Suppose
T0=Z;=1 T;T} (e A). By Sato [20] (cf. [12]),

|¢(To)|2-211— min |$;(T,)|*>0  forany ¢ed(4),
1<j<n
since the spectrum of T, in 4 is the closure of T(I"). On the other hand, we have
do(To)= ’21 ¢0(Tj)¢0(T}k) =0.
i= v

This is a contradiction to the above result. Therefore we have the desired resulit.

Second Step. A, T'™4M®N n fact, let ¢y 4,. By First Step, there exists a net
{y.} =T such that lim,_, , T(y,) = ¢o(T) for all Te M(p, q). Since ¢, is in 4,, there exists
Ty e M(p, q) such that ¢o(T,)#0. Then for any Te M(r, r),

hm T(y¢)= llm T(yc’z\)TO(ya) - hl:na—'oo TTO(?(:)
xm e z= o TO(ya) hma—*co TO(ya)
= ¢o(TTo)/Po(To)=bo(T) .
Therefore lim,_, , T(y,) = ¢o(T) for all Te M(r,r). q.e.d. of Lemma 2.8.

Now we succeed the proof of Theorem 2.5. For the proof, it is sufficient to prove that

AM(p,9)= |) E,

E:A(r)-set
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where E is the closure of E in AM(r, r).

In fact, by Lemma 2.8 we have 4, I''"4M®"_Then for any ¢, € 4,, there exists
To€ M(p, q) such that ¢o(7To)=1, and {pedo||§(To)|=1/2} nI'# . Here, let E=
{yeT'|| To(y)|=1/2}. By Hare [8], E is a A(r)-set. Also ¢, € E. Hence,

AM(p,q)c \J E.
E:A(r)-set
Conversely, let E be a A(r)-set such that ¢, € E. Since E is a A(r)-set, by Theorem
2.2 there exist Te M(p, q) and ¢>0 such that inf{| f‘(y)llyeE} >¢. On the other hand,
by ¢, € E there exists a net {y,} = E such that y,—¢, in AM(r, r). Then | ¢o(T)|=¢, and
¢oe AM(p, q). q.e.d. of Theorem 2.5.

3. Operating functions on M(p, q9) (1<p<g< ).

In this section, we shall investigate operating functions on M(p, q), which are
defined on the complex plane.

DEerFINITION 3.1. A function &(z) on the complex plane C is said to operate on
M(p, q), if ®(T)e M( p, q) for every Te M(p, q), where &(T)*(y)=®(T(y)) for all yeT.

The following is an analogy of Igari-Sato [12; Theorem 1].

THEOREM 3.2. Let 1 <p< oo and P, be a function on C. Assume that @ is bounded
near the origin if p=1 or q= o0 and bounded on every bounded domain if p>1.

(@) Suppose 1<p<q<2 or 2<p<q<ow. Let Bo=(1/9—1/2)/(1/p—1/q) or
(1/2—1/p)/(1/p—1/q) respectively and n, be the smallest integer such that ny>B,. Then
Jor any constants oy, 0y, * ", Opp— 15 X2n,

D(2) =02+ 07+ "+ +0ppo— 12"+ 0y, 2"+ |z |foF 1D (2)
operates on M(p, q).
(b) Suppose 1<p<2<g<oo. Let B,=min{(1/2—1/9)/(1/p—1/2), (1/p—1/2)/
(1/2—1/q)}. Then for any constants a,, o,
D(2)=az+0,Z+|z|Pr 1Dy (2)
operates on M(p, q).

The proof of the above theorem is similar to that of [12; Theorem 1] (cf. [1]).
The proofs for p=1 or g= oo are given by Hausdorff-Young’s theorem and the duality
of M(p, q) (cf. [3], [16]). We omit the details.

Next, in Theorem 3.3, we shall show that the converse of (b) holds for G=T (the
unit circle). The following result is also an analogy of Igari-Sato [12; Theorem 3].

THEOREM 3.3. Let 1<p<2<q<oo and @ be a function on C. If ® operates on
M(p, q), then @ is of the form
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D(2)=ayz4 0,2+ |z|P1H 1Dy (2),

where oy, o, are any complex numbers and B, is the number given in Theorem 3.2 and P,
is a function on C bounded near the origin if p=1 or g= 0o and bounded on every bounded
domain if p> 1.

PrROOF. We shall prove the theorem, following to Igari-Sato [9; Theorem 3] (cf.
[1]). We may assume g<p’, i.e. B, =(1/2—1/¢)/(1/p—1/2). Also we remark that the
proof for g=co will be derived from that for p=1 by the duality (cf. [3], [14], [16]).

First Step. If @ operates on M(p, q), then there exist two constants C >0 and n>0
such that if ||77 s, . <#, then || &(T)] M@, <C. The proof is similar to that of [12;
Theorem 3] (cf. [1]).

Second Step. Letp>1and g< oo. Then @ is a bounded function on every bounded
domain. In fact, assume that @ is unbounded on a bounded set K. Then there exist
rx>0 and a sequence {z,} such that |z,|<rg (n>1) and | #(z,) |- 0 as n— 0. Let

m(k)={ Zy (k=2”).
0 otherwise .
Then, there exists a positive number C, such that

2, m(k)f (k)e™

k=1

Q0

2. m(k) f(k)e™

k=1

<C,
»

<Cirgl fl2

2

for every trigonometric polynomial f, since {2"|n=1} is a Sidon set (cf. [3], [17]).
Hence, {m(k)}, e M(2, p)* = M(p, 2)". Therefore, we have

o0

Y. m(k) f(k)e™™

k=1

<Cirglfll,
2

for every trigonometric polynomial f. Similarly, we have

o0

Y. m(k)f(k)e™

k=1

00

2. m(k)f (k)e™

k=1

<C,
q

2

for some C,>0. Then {m(k)} e M(p, q)*. Therefore, we get
{P(m(k)} e M(p, )" = M(2,2)" =I*(Z).

This contradicts the choice of {m(k)}. So we proved Second Step.

For p=1, we remark that & is bounded near the origin, by M(, @)= LYT)
(2<g< ) and Riemann-Lebesgue’s lemma.

Now it is sufficient to prove Theorem 3.3 when @ is even or odd.

LemMMA 3.4 ([14]). Let r be a prime number and o= exp(2ni/r). There is a sequence
{e,(n)} with ¢(n) having for each n one of the values 1,a, -+, a"" ' such that for t=
1,2,---,r—1
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<r(1+./r) /N  (0<x<2n,N=1).

IO

LEMMA 3.5 ([14]). For aprime number r there is a sequence {5,(n)} with 6 (n)=r—1
or — 1 such that

f; s (me™|<(r—Dr(1+/r) /N  (0<x<2n,N=1).
n=1

By Second Step, Lemmas 3.4 and 3.5, as @ is even, we can prove Theorem 3.3 in
the same way [12; Theorem 3]. So we shall prove Theorem 3.3 as @ is odd. Next we
shall omit the following proofs from Third Step to Sixth Step, since we can prove the
results by the same method of [12; Theorem 3].

Third Step. For any r>0, there exists C;>0 such that | ®(z)|<C;|z| for all
lz|<r.

Then, we may assume f, >0. _

Fourth Step. For any r>0, there exists C,>0 such that | ®(z)—2d(z/2)|<
C,|z|* 8 for all | z| <r. Here, for any ze C we define

®,(z)=lim 2"P(z/2"), D,2)=P(2)—D,(2) .
Fifth Step. For any r>0, there exists Cs>0 such that | ®,(z) | <Cs|z|'*# for all
|z|<r. Then &, and &, operate on M(p, q) by Theorem 3.2.
Sixth Step. &, is continuous on C.
Seventh Step. ®,(te™) =, (e +a(He™* (0<t< 00, 0<x<2r) for some contin-
uous functions a,, «,. For the proof, we prepare the following whose proof is easy by
Lemma 3.4 and Riesz-Thorin’s interpolation theorem.

LEMMA 3.6. For a prime number r we have

<r(l+/r)NYP=1Y2  (N=1,t=1, -, r—1).

M(p.q)

N
INCIO
Proof of Seventh Step. Let r>2 be a natural number. We assume that
(*) Y &, (ze?"M)=0  forall zeC.
i=1

Then, we shall show Seventh Step. For any ¢ we define G,(e**) = ®,(te’™). By Sixth Step
G,(e™) is continuous with respect to x. Also by (*) and r#1,

r r
Z G (' 2milry = O, (et 2Ny =0
j=1

ji=1 J

Hence, G,(e™)=—Y_] G(e"**?*"/M). For ne Z, we have
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1 2rnr—1
(n) = _2_ z G (el(x+27u/r))e—mxdx
1

o J=

1 r—1 2w+ 2nj/r . ) 3 r—1 3 ~
—_ Z J‘ Gt(elx)e—merﬂ:un/rdx=(_ z eZm]n/r)Gt(n) ,
i=1

27 =1 ) 2mjpr

and G,(n)(z o o e2™imry — O for every r>2. Then, if n=0 or |n|>2, we obtain (ft(n)=0,
and

Gle™) =a, (e’ +a, (e .

Here, «,(#) and a,(¢) are continuous on 0<f< oo, by Sixth Step. So it is sufficient to
prove (*). Suppose that (*) is proved for any prime r. For any r such that r=pgq
(p 1s prime), we have

Z & (ZeZnu/r)_ Z Z b (ZeZM((J 1)q+S)/(PQ))

s=1j=1

= Z Z ®,((ze 2mi(s— q)/(pq))(e 2m‘1‘/p)) =0.

s=1 j=1
Hence, we show (%) for a prime r>2. Let N, =[2™1/P~1/2)p=1/1/p=1/2)] and
Tie™)=(1/2mY ' (e(n))'e™ (t=1,---,r—1). Then by Lemma 3.6, |T" oy <
A2™r(1 +/7)2™m -1 ,and | T, ||M(,,q)_0(1/m) Also let B=3""_, ®@,(ze*™/""), and
H,= Z [®:1(zT) +(B/r—®,(2)T,] .
t=1

Then, applying the proof of First Step since @, operates on M(p, q) by Fifth Step, we
have

r—1 r—1
”I{mlll\l(p,q)S Z I|¢1(ZT;:)“M(p,q)+lﬁ/r_¢1(z)l Z ”Trtn”M(p,q)
t=1 t=1

<(r—1)Cs+(1/m)| B/r—@,(2) | C,

for some Cg, C;>0. Hence, {|| H,,lls(p.q} =1 is uniformly bounded. Here, by the Fourier
coefficients of H,, we have

. Nm 1
Hm(etx)_ z (1___)B mx.

n=1 2m
I & inx IBI
'IHmllM(p,q)———(l_%)—ﬂml‘ Z e 1__ — —Cyg N(I/p 1/q)
2™ |ln=1 M) 2

for some Cg>0. Then we obtain f=0, and the desired result. q.e.d. of Seventh Step.

So
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Eighth Step. o;(f)=ta;(1) (0<t<o0,j=1,2). Proof. Let 0<z<oo0, 0<¢<2n

be fixed, and r a prime number. Also let N, =[2™/P=1/2p~1/(1/p=1/2] and

te i$ Nm

ST

Then we have

1 . te'® Npm
(%) ¢1(Tm)=—{¢1(te'¢)—(r—1)¢1< )} Z ein*
2™y r—1/.=4
+L{¢1(te‘¢)+¢1( re” )} %‘ S (n)e™™ .
2™r r—1 n=1

Also we have ||@,(T,)lly(p.p< Co for some Cy>0 by applying the proof of First Step,
since || Tl pep,q < tr(1 +ﬁ )/m by Lemma 3.5. Moreover, we have

<Cyo
M(p.q)

1 A= .
— | X 8,(me™
2 n=1

for some C,,>0 by Lemma 3.5 and Riesz-Thorin’s interpolation. Therefore, by (*#*)
there are C,, >0 such that

Nom ]
Y. 8, (ne™
n=1

2™
i¢
dil(tei"’)+<151( fe >

) te*® N
D, (te'?) + @ 1 Y e
r— n=1

M(p.q)

<C; , and
M(p.9)

1
<Cyo+ omr
r

r—1

2—mpN/p=1/g)

@, (te'*)— (r— 1)q>1( ’ei': )

=Cp

for some Cy,>0. Since we have 2~ "N{/P~1/@ > 1 /(3m /P~ 1//(/p=1/2)2mb1 o6 (m— 00)
by ,>0,

B (10— (r— 1)¢1( ‘ewl )=o .

r—

Therefore we have a;(f)=(r—1)a;(t/(r—1)) (0<t< o, j=1, 2) by Seventh Step. Thus
for all prime numbers u>r and n=1, 2, - - - we have

r—1\" r—11\"
. = 1 i=1,2).
NE R .
Remark that the set

{(—D/(u—1))"|r and u are prime and n=1,2, - - -}
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is dense in (0, c0) and that «; (j=1, 2) are continuous, then we have a;(z)=1x;(1)
(0<t<oo). q.e.d. of Eighth Step.
We succeed the proof of Theorem 3.3. By Seventh Step and Eighth Step, we have

D, (te™)=a,(Dte™+a,(1)te ™™  (0<x<2m,0<t<®).
Then, by First Step we have
B(2) =D, (2) + Py(2) = z+ a7 +| 2|11 By(2)
for some a,, a, € C. This proves our desired result. q.e.d. of Theorem 3.3.

REMARK 1. Suppose that a function &(z) on |z|<1 operates on M(p, q) with
l1<p<g<oo. Then @, is bounded in Theorem 3.3 in the same way of the above proof.

REMARK 2 ([9]). Hatori [9; Cor. 3] characterized the operating functions on
M(p, 2) (1<p<?2) for any infinite compact abelian groups.

4. Non L’-improving measures on some independent set.

There are many papers Graham-Hare-Ritter [5], Hare [7], Ritter [15], etc. with
respect to LP-improving measures. But it seems that there is little papers about
LP-improving measures or non LP-improving measures on thin sets. In this section, we
shall construct some non L?-improving measures on some independent set.

For F= G, we denote (F),=Fu (—F), and M{ (F) the set of all positive measures
on F, whose Fourier-Stieltjes transform vanishes at infinity. Also for Ec G, Gp(E)
denotes the subgroup of G which is algebraically generated by E.

A compact set K (<= G) is called a Kronecker set, if fe C(K) with | f|=1 on K is
uniformly approximated on K by a continuous character yeI' (cf. [13], [17]). A non
zero measure on a Kronecker set is a non LP-improving measure.

In fact, let G be an infinite compact abelian group, and K a Kronecker set. Also
let u be a non zero measure in M(K). Then,

lull =lim sup] i(y) |,

?—©

since K is a Kronecker set (cf. [13], [17]). Here, we assume that u is an LP-improving
measure. By Graham-Hare-Ritter [5; Corollary 3.2],

Il ull =lim sup| 4(y) | <(2—2/r)"2| |
Y=o

for some 1 <r<2, where |u|| is the total variation norm of u. This contradicts u#0.
Therefore, u is not an LP-improving measure.

Now it is known that Mg (K)={0} if K is a Kronecker set. We shall construct a
nonzero non LP-improving measure in M,(G) whose support is an independent set (cf.
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[17]), by the method of Kdrner [13], Saeki [18].

THEOREM 4.1. Let G be an infinite compact metrizable abelian group, and C<G a
compact set. Also let 0% Aqe My (G) be an LP-improving measure with Aq(x+ C)=0 for
all xe G. Then there exist xo€ G and ue My (supp Ay) such that
(i) Ao(x+C+(supppn),)=0 for all xeG,

(ii) u is not an LP-improving measure, and
(iii) suppu—x, is an independent set.

For the proof, we prepare some lemmas.

LEMMA 4.2 ([18]). Let A, be a measure in M) (G), and D a compact subset such
that Ay(x+D)=0 for all xe G, where M} (G) denotes the set of all positive continuous
measures on G. Then, for each finite set F in G and ¢>0, there exists a neighborhood V
of 0€ G such that

Aolx+D+(F+ V), ]<e (xe@).

LeEMMA 4.3 ([18]). Suppose that G is metrizable and A, a nonzero measure in
M§ (G). Then there exist a point x,€ G and a nonempty, totally disconnected, compact,
perfect subset K, of supp Ay with the following three properties:
(@) Every nonempty (relatively) open subset of K, has positive Ay-measure.
(b) The elements of Ky— x, have the same order, say q,.
) Ifv,V,,:---,V,arem-disjoint, nonempty, open subsets of K,, there exist m points
x;€V; such that x; — X, X —Xg, " " *, Xy— Xo are independent.

PROOF OF THEOREM 4.1. Let K, and x, be in Lemma 4.3, and I'=) ", 4,,
where A, is a finite set such that {A4,} increases to I' as n—oo. Putting A(E)=
Ao(E+x0) N K] for a Borel set E, we have suppi=K,—x,, and any element of supp i
has the same order ¢, (in Lemma 4.3). Since A, is an LP-improving measure, there exist
1<r<2 and C>0 such that ||Ay* f|,<C| f]l, for all trigonometric polynomial f, by
Riesz-Thorin’s interpolation (cf. [7]). The norm of 4, in M(r, 2) is denoted by |4l ps.2)
(cf. §2, §3). Then, A has the same norm as || 4ol| . 2)-

Here, let {r(n)}>, be a sequence such that l<r<r(n)<r(n+1)<2 and
lim,,, r(n)=2. Hereafter, by induction we shall construct {n,}>.;<=N and
{fos P> s Ta}>- 1 with the following properties, where f, € L*(G), &, is a finite collec-
tion of disjoint clopen subset of K,—x,, 4, a probability measure in L'(4), and I, a
finite subset of I':

1) M=) aiy,

Ie#F,
where a;>0, A,=,l|,, and |y, =Z,e,n aA(I)=1. We remark ||| ps.2)< 0 (cf. [5]).
@ sup{l m i) |[ye T\ } <27, () forall IeZ,.
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3) A, < T,.

Now n; =1, and f,, %, u,, I’y may be arbitrary. Suppose that n,, f, , %, , 4,
and I', have been constructed for some peN. Let /,=Card(#, ), and write .9" =
{I}e —{I"} e ,. Also let M, be the largest natural number such that max{u, (I) l Ie

Z,} <M, * We define

={dcZ, |1<Card(A)<M }={4}~, .

We may assume 4, = {I j} = {I7}’~. ,. We shall inductively construct f,, &, (n,<n<n,,).
Suppose that f,, &%, u, and I, have been constructed for some n=n,+r—1
(r=12,---,s,), and put

H,y={Ie F,|I=J for some JeA,} .
Then we have the following:

LEMMA 4.4. There exist {af}; real numbers, for 1 €LY D), I fis1llin+1y=1 and
collections {L}}; of disjoint clopen subset of Ke A", such that

4) O<afu(L{)<27'p(K) (Ked,),
(5) 2}: afu (L)) =p(K)  (KeX}),
© 2 afalug )~ hal) | <27E) el Kedy),
0 Tdia(Lh<nt  (Ked,),
j
(8) the {LY}, ; are M ,-independent
where we say that L., L,, - -+, L, (= G) are M-independent if and only ifzg;l m;x;#0

whenever m;e Z, |m;| <qq, x;€ L; (j=1, - --,n) and 0#£)}_, |m;| <M (cf. [13], [18; p.
2327).

) sup Ao[x+C+({ ;L) I<(l,)~? (Kex,),
10) f]*( Y a+ Y Da y,,|Lx) fi* X, ajA|| <27¢*D
IeF \Xn KeXyn i Ie%, 2
for 1<j<n, and
(11) j”,,H*( Y, ad+ Y Y4 ,u,,|Lx> >n+1.
IeF  \Xn KeX, i

PrOOF OF LEMMA 4.4. If we choose LX< K such that dia(L}) (the diameter of
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LY) is “sufficiently small”, then we shall have (7), (8) and (9) by Lemmas 4.2 and 4.3.
First Step. Fore>0,thereare {K;};apartitionof Ke f,, yf € K;, and f,, , € L¥(G)

with || £, 1ll,m+1,=1 such that

(1)

<e (1<i<n),
2

Y MKk fi— X | S
J KexX,

Kef,.,,-
(ii) {y'};x are M, -independent (cf. [10]),

(iii) each K; is a relatively clopen set of K, dia(K;)<e, and |y(x)—y(y)|<e for all
vel,, x,yeK; (1<j<n),

and putting v=) g ., , UK j)éyf,

@iv) Ivefosillz>n+3+

b

M(r,2)

Z al#n I[

IeF \ X,
(v) u(K)<27'w(K)  forall j.
Proof. We obtain (i) by the following:

LEMMA 4.5. Let f be in L*(G), L a relatively clopen subset of K,— x,, and ¢>0.
Then, there exist {K;} a partition of L such that each K; is a relatively clopen set, and
{y;} (v:€K;) such that

> un(K)8,, % f— | 2 f | <e.
J 2

PrROOF OF LEMMA 4.5. Let #>0 with nu,(L)<e. Then there exist {K;}, {y;}
(yj€ K;) such that ||z, f—1,f|,<nforanyy, y;e K;, where 7, f(x)=f(x—z). We remark
that

Z“n(Kj)éyj*f(x)_MnIL*f(x)=Z (_f(x_y)) —f(x—J’))dﬂn(}’) .

i Jk,

Then, by Schwarz’s inequality we have

Z”M(Kj)éyj*f_“nll,*f

SZ Mn(Kj)1/2<f

K;

2
1/2
”Ty_,f— tyf" %dﬂn(y)> < n#n(L) <e&.

q.e.d. of proof of Lemma 4.5.

Now we have (ii) and (iii) in First Step by Lemmas 4.3 and 4.5. Also we obtain
(iv) in First Step by the following: Let v=)" 1K ,u,,(Kj)éyf. Since {y}} are all distinct,
there exists V' a compact neighborhood of 0eG such that {V+ ¥}k are pairwise
disjoint. Then we have
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2
IIV*f|l§=<f7((u..(K,~))> A1 (FeL* (V).

Since G is nondiscrete and L™"* (V)5 L%(V), there exists f,,, € L"®* (V) such that

(a) ”fn+1||r(n+1)=1 s suppfyy1<V, and
(b) v foeilla>n+3+ Z aj;
IeF\Xp M(,2)

q.e.d. of proof of First Step.
Second Step. For any £>0, there exist LY (=K;) which is a relatively clopen set
with yfe L¥ such that

@) {Lf},x are M ,-independent,
(i) Kpoysn fi= T2 Bl fi| <o (sisn,
(LK) 4 2
Hn(K; )
(i) JZI:( (L5 ILf*f;uH >n+2+ Iez\x" ardy .
. pn(K;)
(iv) Z (L) Hn |LK(Y) Hn IK(v) ’ <2ep(K)  (yel,,KedX,).

Proof. We may have (i) by Lemma 4.3 (cf. [13]). Also we can obtain (ii) by the
method of proof of Lemma 4.5 (iii): When dia(L¥) are “sufficiently small,” we have

un(K;)
JZK u,,(L")

in the same way as in the proof of (ii). Then, by (iv) in First Step, we have

2

ngc*f;a+1 _thun(Kj)éy‘_‘*f;t+1
J J» J

Ha(K;)
> K)o k*
]ZK,U,,(LK) ILK *fa+1 , gﬁ(un( i) ¥ Jn+1 ,
>n+2+| Y a
TeF\Hy M(r,2)

(iv): Since I_[K Yap, — (¥ uK;)| <eu,(K;) by First Step, we have

Un(K;)
Ua(LY)

v(y)dunILf <ep(K;) .

'v(y, M (K;) — f

Then,

l.t,.lx( )— Z ﬂnELIJ(; ﬂn'LK(y)‘ ‘Zﬂan,
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I“l'n(Kj) )
Y (K;)— du |, «
+ Zj)(v(y,)u,.( ) (L5 (») u,.ILj

<e) (K +e X (L) <2ep(K)

for all KeX,. q.e.d. of proof of Second Step.

In Second Step, let a¥ = p (K;)/p(LY). Then we have (4), (5), (6), (7), (8), (9) and
(10) in Lemma 4.4.

Hence, it is sufficient for the proof of Lemma 4. 4 to prove (11) in Lemma 4.4. By
Second Step (iii), we have

fn+1*( Y, aiA+ Za ”n'LK)

TeFn\Xn KeXy j

= f;.+1*(2 a]!(”nlLK —fosalle| X aih
iK 102 IeF \NXn M(r,2)
= f,.+1*<2 afﬂnl;,x) —"fn+1”r(n+1) Z aj; >n+1.
JK I /2 IeF\Xn M(@r,2)

q.e.d. of proof of Lemma 4.4.

Now we succeed the proof of Theorem 4.1. Let

Frs1=(F KDY Uk, (L}

Hn+1= Z a11'1+ Z Za “nlLK'
IeF )\ N n KeXn j
Then, by the choice of {af}, p,+, is a probability measure. Moreover, let I',,, be a
finite subset of 'suchthat I, ; 5 A, U Tyand | g+, (1) 1<27" Oy, ((DforallIe £, .,
and yeI'\Il',,,. Thus, we obtain f,,, (in Lemma 4.4), &,,,, p,+, and I',,,, and
{f;u 'g';n un’ Fn}np<n5np+ 1°
We repeat the above process with n, replaced by n,,; =n,+s,, which completes
our induction. Let u_, be a weak*-cluster point of {u,} in M(G), and pe M*(G) defined
by u(E) = u(E— x,) for all Borel sets in G. We claim that u has the required properties.
In fact, in the same way of Saeki [18; Lemma 4], we can show that ue Mg (supp1,),
WG =1, Ao(x+C+(suppp),)=0 for all xeG, and suppu—x, is an independent set.
Then, it is sufficient to prove that u is not an LP-improving measure. Alsoby p,, =pu*d_,,,
we may show that p_ is not LP-improving. Suppose that u, is an LP-improving measure.
Then there exist 1 <r<r(ny)<2 and C>0 such that

e * fl2<Cll flliyy  for any fe L""(G).
On the other hand, for any ne N there exist f, such that || f,ll,, =1, |, * ful o >n+1,
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and
|t * fo— B+ 1 * Soll p <270 D) for all m>n,

by the construction of u, and (10), (11) in Lemma 4.4. Then, for a fixed ne N, {u, * £,} -
converges to g, for some g, in L*(G). Also we have u, * f,=g,, since u, is a weak*-
cluster point of {u,} in M(G). Then, we have

Igallz= It * full e < Cll fillswy <€ for some C>0 (n=n,).

Moreover, since

27 m<1,

iMs

"uoo*f;l-“n*j;z”2= lim ”“m*f;l_”n*.f;tHZS
m— oo

we have

b full 2= Nt foll = 1 =

for all n>n,. This contradicts the above result. Therefore, Theorem 4.1 is completely
proved. q.e.d. of proof of Theorem 4.1.

THEOREM 4.6. Let G be an infinite compact abelian group, C a compact subset of
G, and 0+# Ao€ Mg (G) and LP-improving measure such that

Ao(x+C)=0  forall xeG.
Then there exists a non LP-improving measure pue Mg (supp A,) such that
Ao(x+ C+ (suppu),)=0 for all xeG .

If, in addition, G is metrizable, such a measure u can be taken so that suppu—x, is
independent for some x,€G.

PROOF OF THEOREM 4.6. When G is metrizable, we have Theorem 4.6 by Theorem
4.1. To prove the general case, we need a Lemma.

LEMMA 4.7 ([18]). Let Ay and C be as in Theorem 4.6. Then, given a countable
subset Aq of I', we can find an infinite countable subgroup T’ of T such that Ay<T, and

lolx+C+Hp 1=0  forall xeG,
where Hy. denotes the annihilator of T .

Now we succeed the proof of Theorem 4.6. Let A, and C be in Theorem 4.6, and
Ao={yer| /1:,())) #0}. For A,, take a Iy as in Lemma 4.7. Setting H= H_, we denote
by m and my the natural mapping of G onto G, = G/H and the normalized Haar measure
of H, respectively. Then G, is metrizable. For each v e M(G), define a measure v’ € M(G,)
by setting
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) dev’=f fomdv (f e C(Gy)) .
G G
Identifying I’y with éo in the usual way, we see V' = \?I r, for all ve M(G). Then, we obtain
0+# Ay € My(Gy), and that 1§ is LP-improving (cf. [7]). On the other hand, we have
2) Ao(x'+C")=0 for all x'eG,

by Lemma 4.7 and (1), where C’ =n(C). Therefore we can apply our result for metrizable
groups to find a measure u’ € Mg (supp ;) such that

3) Ao[x'+ C'+ (suppu’);1=0 for all x'eG,, and
C)) u' is not an LP-improving measure .

Now define a measure ue M(G) by setting

(5) _[ fdp= J {J f (x+t)dmn(t)}‘d#'(x’) (feC(G).
G Go H
Since pu*my=pu and Ay*xmy=2Jl, we have suppu=n_'(suppu’) and suppi,=
n~ Y(supp Ay). Then, we have
Ao[x + C+ (suppp)y1=Ao[x"+ C' + (suppp’)1=0

for all xe G. Hence, it is sufficient to prove that u is not LP-improving. Let {r(n)}:-,
be an increasing sequence such that 1 <r(n)<r(n+1)<2 and lim,_, ., 7(n)=2. Then for
any neN, there exist f, a trigonometric polynomial on G, such that

(6) I fo*xt'lL2cey>n and || follronggy =1 -

Here, we regard f, on G, as f, a trigonometric polynomial on G. Then, we have

2
) I faxpllia = f dmg(x)

f Ja(x—y)du(y)
G

= fa*t' | ErmGn>n? -
Since || £, | Rco= Il il RmGoy=1, we have ue Mg (suppi,) such that
(8) Ao(x+ C+ (suppu),)=0 for all xeG, and
)] u is not LP-improving .
Therefore the proof of Theorem 4.6 is completed.

DEFINITION 4.8. (1) q=q(G)=sup{s|every neighborhood of 0e G contains an
element of order >s}.

(2) (G>) E is strongly independent, if (i) any xe€ E has order ¢, and (ii) for
{x;}}=1 < E distinct and ijjx,-=0, m;=0 (mod q) for all j, where m=0 (mod o)
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means m=0.

COROLLARY 4.9. Let G be an infinite compact abelian group. Then there exists
we Mg (G) a non LP-improving measure so that mg(Gp(supp pu)) =0. In particular, if G is
metrizable, supp i is taken so that supp u is strongly independent.

PrOOF. Let Ay=mg. Then if we apply the proofs of Theorems 4.1 and 4.6, we
shall obtain the desired result. We omit the details (cf. [13]). q.e.d.

REMARK 4.10. (i) puin Corollary 4.9 is a strongly continuous measure (cf. [6]).

(ii) In Corollary 4.9, let E=suppu and H=Gp(E). Then H is a proper subgroup
of G. Moreover, ue M(H) is strongly continuous by (i), but not LP-improving (cf. [5;
Open questions (iv)]).

(iii) There are many measures u in Mg (G) such that u is LP-improving, for
example, any measure in L"(G) for some r> 1, and some Riesz products (cf. [2]), etc.

5. A remark on generalized Riesz products.

Ritter [15] has showed that Riesz products are LP-improving on the unit circle.
In this section, we remark that generalized Riesz products are not necessarily
LP-improving.

DErINITION 5.1. (1) Let ®={I;}}2, be a set in which /;cT is a finite symmetric
set with 0e ;. Then @ is called a dissociate set, if for any weI', w is represented by
w=)Y .. 0;(0;€I;\{0}), where the representation is at most one.

(2) Let ®={I;}%, be a dissociate set, and {P;}32, nonnegative trigonometric
polynomials such that || P;||, =I3j(0)=1 and suppﬁjc:Ij. Then we get ue M(G) in the
weak*-limit of {H;’= , P;}o- 1, which is called a generalized Riesz product. We remark
that Riesz product is a generalized Riesz product.

We obtain the next result with respect to generalized Riesz products.

THEOREM 5.2. Let G be an infinite compact abelian group with the dual T', and 6
a positive number with § <1. Then there exists p; a non LP-improving generalized Riesz
product with sup, . o | #s(¥) | <.

REMARK 5.3. pu; in Theorem 5.2 is a strongly continuous singular measure (cf.
[11]).

PrOOF OF THEOREM 5.2. Case 1: Let G be the circle group T, and ¢ a positive
number with e=1—65. Also let {r(n)} be an increasing sequence such that
1<r(n)<r(n+1)<2 (n=1) and lim,, ., r(n)=2. Since L"™(G) # L*(G), there exist {g,},
trigonometric polynomials such that |g,,., =1 and {|g,ll,>&™" (n=>1). Then we choose
{N,}, a sequence such that f,(x)=Kjy (x) the Fejer kernel with degree N, such that
suppg:c{rl 1—|r|/(1+N,)>¢} and | f,*g,ll,>¢e" (n=1). We remark that | f,|,=1
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and f,>0. Also we choose {s,}, rapidly increasing sequence such that
k—1 e —
Y. &;suppfi(s;x) N e suppfilsix)={0}  (k=2),
ji=1
where ¢;=0, +1, +2 (j=1), and Y7, g;E;={> 7. ,&je;|e;€ E;} for E;cT (j=1, - -+,

ji= 11 J
m).

Putting
fo= & flowet,

we have || f,ll; =¢(1 —&) " and f, > 0. Moreover, by the choice of { f,} 55 {j=suppfi(s;X)}

is a dissociate set. Then we define P;=¢7 (1 —¢) fo*KN (x), where KN (x)=f;(s;x), and
obtain that suppP <lj, |Pjll;=1, and P;>0. Therefore u in the weak*-limit of
{IT}= Pi}nisa generallzed Riesz product.

Now let Q,(x) =g,(s,x) (n=1). Then

pr O, (m) = (s,Ngnr) =2 (1 —&) fols, ) Ky (Nga(r)
=(1—8)e"~ Ky, (M)2g.(r) ,
where m=s,r, r #0, g,(r)#0. So we get

Y| uxQu(m) |2 =(1—e)e"* tlig,l3, and

lp*Qull,=/(A—e)e' ™"  (n=1).

If u is LP-improving, there exist r(ny) (1<r(ng)<2) and C>0 such that

Cllgnllymy = ll* Q,ll, for n=n,. Hence we obtain C> /(1 —&)el ™" for n>n,. This is a

contradiction. Thus u is not LP-improving. Also let m be a nonzero integer with
m=)Y g;s ;3;r; for some | r;| <N;. Then there exists ¢;,#0 for some j, such that

| fi(m) | = (s r Jo)u( Y sjrj) <(1—¢g)e telo<l —¢.
Jj#*Jjo
Case 2: Let I be 4(q) (¢=2), which is the weak direct group of the g-cyclic group
Z(q). We put

Gmmn= [l 2@, Trmmn= [l Z9),
k=m+1 k=m+1
and let {n}i_, be the strictly increasing sequence, and {g,}{=] the non-negative
trigonometric polynomials on G. Also let {r(j)} be the same sequence and ¢=1—4
in Case 1. Since L'9(G(n;, 00))# L*(G(n;, 0)), we can choose the trigonometric
polynomials g; on G(n;, o) such that |ig;ll,; =1 and ||g;l » >¢ 77/ (j=1). Then there exist
a natural integer n;,, (>n;) and a nonnegative trigonometric polynomial f; such that
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Ifilli=1, [ fi*gil2>e™, | f;|=¢ on suppg:., and suppf;<I(n;,n;,;—1). We remark
suppg';-c I'(nj,nj,,—1). Also we define

h=) &, and P,=(1—¢g)e hxf, (n=1).
k=1

Then by the choice of {n;} and {f}}, u=]];L, P; is a generalized Riesz product.
Moreover, by the choice of {g;} similar to Case 1, u is not LP-improving and
Sup, «ol fi(y) | <1—e. We omit the details.

Case 3: Let I' be the unbounded ordered group. Also let {P,}, be the trigonometric
polynomials of Case 1. Then there exist {y,}2, = I (order of y, >3, s>1) and pe M(G)
a probability measure such that
€)) 'Ilj(x)=2|k|smj Pj(k)(x, ky;)=>0, where m; is the degree of P; with the order of

Vi =m i ( ] = 1), |
(2) du,=¥Y,¥, - ¥, dmg (mg is the Haar measure on G), which has the weak*-limit

K,

(3) when I;={k;y;||k;|<m}, {I,} is a dissociate set,
@ kg + - +hy) =[]}, Pj(k;), where |k;|<m; (j=1), and
() A@)=0o0n L\, {kiys+ - +ky, |l ;| <N, 1<j<n}.

Then u is a generalized Riesz product with sup,..|/A(y)|<d, and p is not
LP-improving (cf. [15]).

Case 4. Let I' be an infinite group. Then I' contains I'y, which is the group in Case
1, Case 2, or Case 3. Let u be the generalized Riesz product on G in Case 1, Case 2,
or Case 3. Then u is considered as a generalized Riesz product on G, which is not an
LP-improving measure with sup, .| A(y)|<6. We omit the details. q.e.d. of proof of
Theorem 5.2.
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