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Abstract. We define a property of strong-mixing in the theory of $C$“-dynamical systems and show that
the property follows from the existence ofa base ofWalsh type. Moreover as applications we analyze covariant
representations of chaotic dynamical systems.

1. Introduction.

One of the most important property in the chaotic dynamical theory is to be
sensitive dependence on initial conditions. In the case of continuous map $\varphi$ on a metric
space $X$ with metric $d$, this means that there exists $\delta>0$ such that, for any $x$ in $X$ and
neighbourhood $U(x)$ of $x$ , there exist $y$ in $U(x)$ and $n\geq 0$ such that $ d(\varphi^{n}(x), \varphi^{n}(y))>\delta$ .
Concerning chaotic dynamical systems in the nature, from this property we can know
the difficulty in expecting the future $\varphi^{n}(x)$ of a given point $x$ , because we cannot get the
exact value of initial point $x$ . On the other hand, the property of sensitive dependence
on initial conditions is induced from that of topological-mixing. This property says for
the future of an open set, that is, for any pair of open sets $U$ and $V$ there exists a large
integer $N$ such that $\varphi^{n}(U)\cap V\neq\emptyset$ for any $n\geq N$. Moreover in the case where a map
$\varphi$ is topological-mixing and there exists $\varphi$-invariant measure $m$ whose support is the
whole space $X$, the map $\varphi$ is strong-mixing on the measure space (X, $m$), that is,

$\lim_{n\rightarrow\infty}\int_{X}f(\varphi^{n}(x))g(x)dm=\int_{X}f(x)dm$

for any continuous function $f$ on a metric space $X$ and $L^{1}$ -function $g$ on the measurable
space (X, $m$) with $\int_{X}g(x)dm=1$ . This property says that, in the sense of probability, we
can expect the future of the sequence $\{\varphi^{n}(E)\}$ for a set $E$ of initial points (cf. Example
3.7.3).
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Two properties: sensitive dependence on initial conditions and being strong-mixing
are seemed to be confronted with each other. However, we do not see these phenomena
simultaneously, because the first one occurs as the orbit of a point $x$ in a metric space
but the second one as that of a density function $g$ in the $L^{1}$ -space. Our purpose is to
understand the phenomena in the latter case. Henoe in the present paper we discuss the
property of strong-mixing in the theory of covariant representations of $C^{*}$-dynamical
systems into the set of bounded linear operators on a Hilbert space. Especially we
consider $C^{*}$-dynamical systems $(C(X), \alpha_{\varphi})$ associated with chaotic maps $\varphi$ such as the
tent map, the logistic map on the unit interval and the shift map on the infinite direct
product of 2 points. Our result is the following:

(1) A canonical covariant representation $\pi$ of $(C(X), \alpha_{\varphi})$ is implemented by a
couple of isometries on the underlying Hilbert space (Theorem 3.2.1).

(2) The property of strong-mixing is extended to the case $of*$-endomorphism of
$C^{*}$-algebras, and the property follows from the existence of a base on the Hilbert space
which has canonical relation with a couple of isometries $implementing*$-endomorphism

- (Theorem 2.2.3). This base is similar to Walsh series [3], so we call it a base of Walsh
type.

(3) The property of strong-mixing of chaotic maps has a large effect on that
property of $extended*$-endomorphisms of subalgebras including $\pi(C(X))$ (cf. Sections
3.2, 3.3, 3.4).

Furthermore we note that our study provides some new and interesting examples
for the structure theory of crossed-products associated with non-homeomorphic
continuous maps. In this paper, we refer to [2], [6] and [5] for theory of topological
dynamics and operator algebras respectively; in [5] theory of covariant representations
is studied in the case of homeomorphisms on compact spaces.

2. $*$-endomorphisms of $C^{*}$-algebras.

2.1. Let $A$ denote a $C^{*}$-algebra with unit $I$ on a Hilbert space $\mathfrak{H}$ with inner product
$\langle$ , $\rangle,$ $\alpha$ a $*$-endomorphism of $C^{*}$-algebra $A$ with the property $\alpha(I)=I$. First we give
three definitions.

DEFINITION 2.1.1. A $*$-endomorphism $\alpha$ of $A$ is said to be implemented by a
couple $(V_{1}, V_{2})$ of isometries on $\mathfrak{H}$ if

$\alpha(a)=V_{1}aV_{1}^{*}+V_{2}aV_{2}^{*}$

for all $a$ in $A$ . In this case, $\alpha$ is sometimes denoted by $\alpha_{V}$ .

DEFINITION 2.1.2. $A*$-endomorphism $\alpha$ of $A$ is said to be strong-mixing if there
exists a unit vector $e$ in $\mathfrak{H}$ such that

$\lim_{n\rightarrow\infty}(\alpha^{n}(a)\xi, \xi)=(ae, e)$
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for all $a$ in $A$ and $\xi$ in 5 with $\Vert\xi\Vert=1$ .

The term: strong-mixing has been used in the case of topologically dynamical
system (cf. [6: p. 154]). In the definition above, it is the case where $A’ s$ are abelian
$C^{*}$-algebras and $e’ s$ constant functions with value 1.

DEFINITION 2.1.3. Let $(V_{1}, V_{2})$ be a couple of isometries on $\mathfrak{H}$ with the property
$V_{1}V_{1}^{*}+V_{2}V_{2}^{*}=I$. A completely orthonormal base $\{e_{n}\}_{n=1}^{\infty}$ of $\mathfrak{H}$ is said to be of Walsh
type with respect to $(V_{1}, V_{2})$ if the following relation holds:

$V_{1}e_{n}=e_{2n-1}$ and $V_{2}e_{n}=e_{2n}$ for all $n\geq 1$ (2.1.3)

We note that Walsh series which appears in Example 3.2.3 is a typical example of a
base of Walsh type, which is the reason why we use the term: of Walsh type.

2.2. First we give a lemma about a base ofWalsh type and then state our theorem.
Hereafter, for a positive integer $k,$ $\{1,2\}^{k}$ means the set of all k-tuples $\mu=(j_{1}, \cdots,j_{k})$

$withj_{n}$ in {1, 2}. Moreover for $\mu$ in $\{1, 2\}^{k}$ we denote by $V(\mu)$ the isometry $V_{j_{1}}V_{j_{2}}\cdots V_{j_{k}}$

on $\mathfrak{H}$ (cf. [1: p. 174]).

LEMMA 2.2.1. Let $\{e_{n}\}_{n=1}^{\infty}$ be a base of Walsh type with respect to $(V_{1}, V_{2})$ . Then
for afixed positive integer $k$ and an arbitrary positive integer $n\geq k$, there exists a unique
k-tuple $(j_{1}, \cdots,j_{k})$ in $\{1, 2\}^{k}$ such that

$V(\mu)^{*}e_{n}=\left\{\begin{array}{ll}e_{1} & if \mu=(j_{1}, \cdots,j_{k}),\\0 & otherwise ,\end{array}\right.$

where $\mu$ is in $\{1, 2\}^{k}$ .
PROOF. First we note that $V_{1}^{*}e_{1}=e_{1}$ and $V_{2}^{*}e_{1}=0$ . For arbitrary $n\leq k$ , we have

a unique m-tuple $(j_{1}, \cdots,j_{m})$ in $\{1, 2\}^{m}(m\leq n)$ for which

$V_{j_{m}}^{*}V_{j_{m- 1}}^{*}\cdots V_{j_{1}}^{*}e_{n}=e_{1}$ and $V_{j_{m- 1}}^{*}\cdots V_{j_{1}}^{*}e_{n}\neq e_{1}$ .
Thus, putting $j_{m+1}=\cdots=j_{k}=1$ , we have a unique desired k-tuple $(j_{1}, \cdots,j_{k})$ in

$\{1, 2\}^{k}$ . q.e.d.

REMARK 2.2.2. Let $(V_{1}, V_{2})$ and $\{e_{n}\}_{n=1}^{\infty}$ be as in Lemma 2.2.1. Besides, let
$\mu=(j_{1}, \cdots,j_{n}, \cdots)$ be an infinite sequence with $j_{n}$ in {1, 2}. We put $\mu(n)=(j_{1}, \cdots,j_{n})$

and $P(\mu(n))=V(\mu(n))V(\mu(n))^{*},$ $P(\mu)=s-\lim_{n\rightarrow\infty}P(\mu(n))$ . The $C^{*}$-algebra $B$ generated by the
two isometries $V_{1}$ and $V_{2}$ is of course a continuous representation of an abstract simple
$C^{*}$-algebra $O_{2}$ (cf. [1]). We here note that the dimension of $P(\mu)\mathfrak{H}$ is one or zero,
which is one of the properties of this representation of $O_{2}$ . In fact, for each $e_{n}(n\geq 1)$ ,
there exists a unique m-tuple $(j_{1}, \cdots,j_{m})(m\leq n)$ such that $V_{j_{n}}^{*}\cdots V_{j_{1}}^{*}e_{n}=e_{1}andj_{m-1}=2$

(if $n\geq 2$), $j_{m}=1$ . Put $j_{m+i}=1$ for $i\geq 1$ and $\mu=(j_{1}, \cdots,j_{m},j_{m+1}, \cdots)$ . Then $P(\mu)\mathfrak{H}$ is the
one-dimensional subspace generated by $e_{n}$ . Conversely if $\mu=(j_{1}, \cdots,j_{n}, \cdots)$ is an infinite
sequence such $thatj_{n}=1$ for all $n\geq k$ for some $k$, there exists a unique vector $e_{n\langle\mu)}$ such
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that $P(\mu)\mathfrak{H}$ is the one-dimensional subspace generated by $e_{n\langle\mu)}$ . Otherwise, it is easy to
see that the dimension of $P(\mu)\mathfrak{H}$ is zero.

THEOREM 2.2.3. Let $\alpha$ be $a*$-endomorphism of $A$ implemented by a couple $(V_{1}, V_{2})$

of isometries. If there exists a base $\{e_{n}\}_{n=1}^{\infty}$ of Walsh type with respect to $(V_{1}, V_{2})$, then
$\alpha$ is strong-mixing.

PROOF. Let $a$ be an arbitrary operator in $A$ with $\Vert a\Vert\leq 1$ and $\xi$ an arbitrary
unit vector in $\mathfrak{H}$ with Fourier expansion $\xi=\sum_{n=1}^{\infty}c_{n}e_{n}$ with respect to $\{e_{n}\}_{n=1}^{\infty}$ . Then
for an arbitrary positive number $\epsilon<1$ , there exists a positive integer $k$ such
that $\Vert\xi-\sum_{n=1}^{k}c_{n}e_{n}\Vert=(1-\sum^{k}n=1|c_{n}|^{2})^{1/2}<\epsilon/3$ . Put $\xi(k)=\sum_{n=1}^{k}c_{n}e_{n}$ . Since $\alpha^{k}(a)=$

$\sum_{\mu\in\{1,2\}^{k}}V(\mu)aV(\mu)^{*}$ , using Lemma 2.2.1 we have the following:

$\langle\alpha^{k}(a)\xi(k), \xi(k)\rangle=\sum_{\mu e\{1,2\}^{lc}n,m=1}$

$\sum^{k}$

$\langle aV(\mu)^{*}c_{n}e_{n}, V(\mu)^{*}c_{m}e_{m}\rangle$

$=(\sum_{n=1}^{k}|c_{n}|^{2})\langle ae_{1}, e_{1}\rangle$ .

Thus it follows that

$|\langle\alpha^{k}(a)\xi, \xi\rangle-\langle ae_{1}, e_{1}\rangle|\leq|\langle\alpha^{k}(a)\xi, \xi\rangle-\langle\alpha^{k}(a)\xi(k), \xi\rangle|$

$+|\langle\alpha^{k}(a)\xi(k), \xi\rangle-\langle\alpha^{k}(a)\xi(k), \xi(k)\rangle|+|\langle\alpha^{k}(a)\xi(k), \xi(k)\rangle-\langle ae_{1}, e_{1}\rangle|$

$\leq\Vert\alpha^{k}(a)\Vert\cdot\Vert\xi-\xi(k)\Vert\cdot\Vert\xi\Vert+\Vert\alpha^{k}(a)\Vert\cdot\Vert\xi(k)\Vert\cdot\Vert\xi-\xi(k)\Vert$

$+|\sum_{n=1}^{k}|c_{n}|^{2}-1|\cdot\Vert a\Vert\cdot\Vert e_{1}\Vert^{2}\leq\epsilon/3+\epsilon/3+\epsilon^{2}/9<\epsilon$ . q.e.d.

In the remainder of this section, we give two propositions which play an important
role in the discussion in Section 3.

PROPOSITION 2.2.4 Let $(V_{1}, V_{2})$ and $(W_{1}, W_{2})$ be two couples of isometries on $\mathfrak{H}$

with the property:

$V_{1}V_{1}^{*}+V_{2}V_{2}^{*}=W_{1}W_{1}^{*}+W_{2}W_{2}^{*}=I$ .
Then the following conditions are equivalent:

(1) $V_{1}aV_{1}^{*}+V_{2}aV_{2}^{*}=W_{1}aW_{1}^{*}+W_{2}aW_{2}^{*}for$ all $a$ in $A$ .
(2) $W_{1}=V_{1}h_{11}+V_{2}h_{21}$ and $W_{2}=V_{1}h_{12}+V_{2}h_{22}$ , where $\left(\begin{array}{ll}h_{11} & h_{12}\\h_{21} & h_{22}\end{array}\right)$ is a unitary

element in the $C^{*}$-tensorproduct $M_{2}\otimes A^{\prime}$ ofthefull matrix algebra $M_{2}$ and the commutant
$A^{\prime}$ of the $C^{*}$-algebra $A$ on the Hilbert space $C^{2}\otimes \mathfrak{H}$ .

$PR\infty F$ . The implication: (2) $\Rightarrow(1)$ is shown by canonical calculation. On the other
hand, putting $h_{ij}=V_{i}^{*}W_{j}$, we can show the converse implication. q.e. $d$ .

PROPOSITON 2.2.5. Suppose that $(V_{1}, V_{2})$ and $(W_{1}, W_{2})$ satisfy Condition (1),
equivalently (2), of Proposition 2.2.4 for $A=\mathfrak{L}(\mathfrak{H})$ (the full operator algebra on $\mathfrak{H}$) and
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there exists a base $\{e_{n}\}_{n=1}^{\infty}$ of Walsh type with respect to $(W_{1}, W_{2})$ . Then there exists a
base $\{\xi_{n}\}_{n=1}^{\infty}$ of Walsh type with respect to $(V_{1}, V_{2})$ if and only if $V_{1}=W_{1},$ $V_{2}=z_{2}W_{2}$

and $\xi_{1}=z_{1}e_{1}$ for some complex numbers $z_{1}$ and $z_{2}$ with $|z_{1}|=|z_{2}|=1$ .
PROOF. We need a proof of only if part. First we note that from the hypothesis,

$V_{1}$ and $V_{2}$ are expressed as follows:

$V_{1}=c_{11}W_{1}+c_{21}W_{2}$ , $V_{2}=c_{12}W_{1}+c_{22}W_{2}$ ,

where $\left(\begin{array}{ll}c_{11} & c_{12}\\c_{21} & c_{22}\end{array}\right)$ is in the group of $2\times 2$ unitary matrices $U(2:C)$ . Next we assume the

existence of a base $\{\xi_{n}\}_{n=1}^{\infty}$ of Walsh type with respect to $(V_{1}, V_{2})$ . Let $\xi_{1}=\sum_{n=1}^{\infty}c_{n}e_{n}$

be the Fourier expansion with respect to $\{e_{n}\}_{n=1}^{\infty}$ . Since $V_{1}\xi_{1}=\xi_{1}$ , we have

$\sum_{n=1}^{\infty}(c_{11}c_{n}e_{2n-1}+c_{21}c_{n}e_{2n})=\sum_{n=1}^{\infty}c_{n}e_{n}$ .

Thus we can see that $c_{11}=1,$ $|c_{22}|=1,$ $c_{12}=c_{21}=0$ and $|c_{1}|=1,$ $c_{n}=0$ for all $n\geq 2$ .
q.e. $d$ .

3. Covariant representations of topological dynamical systems.

3.1. Let $X$ be a metric space, $C(X)$ the $C^{*}$-algebra of all continuous functions on
X. Then a continuous map $\varphi$ from $X$ onto itself induces $a*$-endomorphism $\alpha_{\varphi}$ of $C(X)$ ,
which is defined by

$\alpha_{\varphi}(f)(x)=f(\varphi(x))$ , $x\in X$ .
Hence the topological dynamical system (X, $\varphi$) induces a $C^{*}$-dynamical system $(C(X), \alpha_{\varphi})$ .

DEFINITION 3.1.1 (cf. [4: \S 2]). A map $\pi$ of $C(X)$ into the full operator algebra $\mathfrak{L}(\mathfrak{H})$

on a Hilbert space $\mathfrak{H}$ is said to be a covariant representation of $C^{*}$-dynamical system
$(C(X), \alpha)$ of multiplicity 2 if $\pi$ satisfies the following conditions.

(1) $\pi$ is a continuous homomorphism of the $C^{*}$-algebra $C(X)$ into the $C^{*}$ -algebra
$\mathfrak{L}(\mathfrak{H})$ .

(2) There exists a couple $(V_{1}, V_{2})$ of isometries on $\mathfrak{H}$ such that

$\pi(\alpha(f))=V_{1}\pi(f)V_{1}^{*}+V_{2}\pi(f)V_{2}^{*}$

for all $f$ in $C(X)$ .

We here give notations of two kinds of linear operators on the Hilbert space
$L^{2}(X, m)$ , where $m$ is a measure on $X$. We denote by $L^{\infty}(X, m)$ the set of all complex-valued
essentially bounded functions on $X$. Suppose that $f$ is in $L^{\infty}(X, m)$ and $\varphi$ a continuous
map of $X$ into itself with the property: the measure $m_{\varphi^{-1}}$ is absolutely continuous with
respect to $m$ , where $m_{\varphi^{-1}}(E)=m(\varphi^{-1}(E))$ for a measurable set $E$ in $X$. Then we can define
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the multiplication operator $M_{f}$ and the canonical linear operator $T_{\varphi}$ associated with
$\varphi$ , that is, $(M_{f}\xi Xx)=f(x)\xi(x)$ and $(T_{\varphi}\xi Xx)=\xi(\varphi(x)),$ $(x\in X)$ for $\xi$ in $L^{2}(X, m)$ . When $T_{\varphi}$

is not bounded on $L^{2}(X, m),$ $M_{f}T_{\varphi}$ and $T_{\varphi}M_{f}$ mean the linear operators defined by
$(M_{f}T_{\varphi}\xi)(x)=f(x)\xi(\varphi(x))$ and $(T_{\varphi}M_{f}\xi Xx)=f(\varphi(x))\xi(\varphi(x))$ .

3.2. Let $\varphi$ be a unimodal map of $[0,1]$ onto itself in the following sense.
(1) $\varphi$ is a continuous map of $[0,1]$ onto $[0,1]$ .
(2) There existsa pointc in $(0,1)$ such that

(i) $\varphi(0)=\varphi(1)=0$ and $\varphi(c)=1$ ,
(ii) $\varphi$ is strictly monotone increasing on $[0, c]$ and strictly monotone

decreasing on $[c, 1]$ ,
(iii) $\varphi$ and the two inverse maps $\beta,$

$\gamma$ of $\varphi$ are absolutely continuous func-
tions on $[0,1]$ , where $\beta([0,1])=[0, c]$ and $\gamma([0,1])=[c, 1]$ .

We consider that $[0,1]$ is the unit interval with usual Lebesgue measure $dx$ . Then
$\varphi(\beta(x))=\varphi(\gamma(x))=x$ for all $x$ in $[0,1]$ , and by Property (2)$-(iii)$ above, we have
$\varphi^{\prime}(\beta(x))\beta^{\prime}(x)=\varphi^{\prime}(\gamma(x))\gamma^{\prime}(x)=1$ for a.e. $x$ in $[0,1]$ , where $\varphi^{\prime}=d\varphi/dx$ and so on. Hence

we obtain a couple $(V_{1}, V_{2})=(V_{1}(\varphi), V_{2}(\varphi))$ of isometries associated with $\varphi$ by defining

as follows:

$V_{1}=V_{1}(\varphi)=M_{\sqrt{}\overline{\varphi^{\prime}}}M_{X[O.c]}T_{\varphi}$ and $V_{2}=V_{2}(\varphi)=M_{\sqrt{}\overline{-\varphi^{\prime}}}M_{X[c.1]}T_{\varphi}$ ,

where $\chi_{E}$ means the characteristic function of $E$. In fact we have $V_{1}^{*}=M_{\sqrt{}\overline{\beta^{\prime}}}T_{\beta}$ , for it

follows that

$\langle V_{1}\xi, \eta\rangle=\int_{0}^{c}\sqrt{\varphi^{\prime}(x)}\xi(\varphi(x))\overline{\eta(x)}dx=\int_{0}^{1}\sqrt{\varphi^{\prime}(\beta(y))}\xi(y)\overline{\eta(\beta(y))}\beta^{\prime}(y)dy$

$=\int_{0}^{1}\xi(y)\frac{\overline{\eta(\beta(y))}}{\sqrt{\varphi’(\beta(y))}}dy=\int_{0}^{1}\xi(y)\overline{\sqrt{\beta^{\prime}(y)}\eta(\beta(y))}dy$ .

Namely $V_{1}$ is an isometry on $L^{2}(X, m)$ such that $V_{1}V_{1}^{*}=M_{\chi_{[O,c]}}$ . Similarly we can see
that $V_{2}$ is an isometry on $L^{2}(X, m)$ such that $V_{2}V_{2}^{*}=M_{\chi_{[c.1]}}$ and hence we have
$V_{1}V_{1}^{*}+V_{2}V_{2}^{*}=I$. Thus the couple $(V_{1}, V_{2})$ induces $an*$-endomorphism $\alpha_{V}$ of $\mathfrak{L}(L^{2}[0,1])$

and by easy calculation we have

$(\alpha_{V}(M_{f})\xi Xx)=f(\varphi(x))\xi(x)$ (a.e. $x$ in $[0,1]$)

for each $f$ in $L^{\infty}[0,1]$ . Let $\pi(f)=M_{f}$ for $f$ in $C[0,1]$ , where $C[0,1]$ is considered to

be embedded into $L^{\infty}[0,1]$ . Then $\pi$ is a continuous representation of the $C^{*}$-algebra
$C[0,1]$ into $\mathfrak{L}(L^{2}[0,1])$ and we have

$\pi(\alpha_{\varphi}(f))=\alpha_{V}(M_{f})=V_{1}\pi(f)V_{1}^{*}+V_{2}\pi(f)V_{2}^{*}$ for $f$ in $C[0,1]$ .

Therefore we have the following:
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THEOREM 3.2.1. Let $\varphi$ be a unimodal map on $[0,1]$ . Then the representation $\pi$ of
$C[0,1]$ defined by $\pi(f)=M_{f}$ on $L^{2}[0,1]$ is a covariant representation of multiplicity 2
with respect to $\varphi$ .

Now suppose that $\alpha_{V}(=\alpha_{V(\varphi)})=\alpha_{W}$ on $M_{L^{\infty}[0,1]}$ for some couple $(W_{1}, W_{2})$ of
isometries, with respect to which there exists a base $\{e_{n}\}_{n=1}^{\infty}$ of Walsh type. Then by
Theorem 2.2.3 and Proposition 2.2.4 we have

$\lim_{n\rightarrow\infty}\int_{0}^{1}f(\varphi^{n}(x))|\xi(x)|^{2}dx=\int_{0}^{1}f(x)|e_{1}(x)|^{2}dx$

for all $f$ in $L^{\infty}[0,1]$ and $\xi$ in $L^{2}[0,1]$ with $\Vert\xi\Vert=1$ . In this case, putting $f=\chi_{[0,x]}$ , we
get the distribution function $D_{\varphi}$ associated with $\varphi$ , that is,

$D_{\varphi}(x)=\lim_{n\rightarrow\infty}\int_{0}^{1}\chi_{[0,x]}(\varphi^{n}(t))|\xi(t)|^{2}dt=\int_{0}^{1}\chi_{[0,x]}(t)|e_{1}(t)|^{2}dt$ .

Of course, $D_{\varphi}$ is determined independent of the vector $\xi$ in $L^{2}[0,1]$ with $\Vert\xi\Vert=1$ .
REMARK 3.2.2. The property of strong-mixing is similar to that of being ergodic.

The difference of two properties is shown by the example of irrational rotations on the
one-dimensional torus, which is not strong-mixing but ergodic.

EXAMPLE 3.2.3. Let $\tau$ be the tent map of $[0,1]$ onto itself, that is, $\tau(x)=$

$1-|1-2x|$ . Then $(\tau, [0,1])$ is a typical chaotic dynamical system and we have

$V_{1}=V_{1}(\tau)=\sqrt{2}M_{\chi_{[O,1/2]}}T_{\tau}$ and $V_{2}=V_{2}(\tau)=\sqrt{2}M_{\chi_{[1/2.1]}}T_{\tau}$ .
Now we define another couple $(W_{1}, W_{2})$ of isometries as follows:

$W_{1}=W_{1}(\tau)=\frac{1}{\sqrt{2}}V_{1}+\frac{1}{\sqrt{2}}V_{2}(=T_{\tau})$ and $W_{2}=W_{2}(\tau)=\frac{1}{\sqrt{2}}V_{1}-\frac{1}{\sqrt{2}}V_{2}$ .

Then by Proposition 2.2.4 we have

$\pi(\alpha_{\tau}(f))=V_{1}\pi(f)V_{1}^{*}+V_{2}\pi(f)V_{2}^{*}=W_{1}\pi(f)W_{1}^{*}+W_{2}\pi(f)W_{2}^{*}$ for $f$ in $C[0,1]$ ,

$\alpha_{V}(a)=V_{1}aV_{1}^{*}+V_{2}aV_{2}^{*}=W_{1}aW_{1}^{*}+W_{2}aW_{2}^{*}$ for $a$ in $\mathfrak{L}(L^{2}[0,1])$ .
We put $e_{1}=\chi_{[0,1]}$ . Then $W_{1}e_{1}=e_{1}$ and hence we can define $e_{n}$ for $n\geq 2$ inductively in
the manner of (2.1.3), that is, $e_{2n-1}=W_{1}e_{n}$ and $e_{2n}=W_{2}e_{n}$ for $n=1,2,$ $\cdots$ . Each $e_{n}$ is
a $\{-1,1\}$ -valued function on $[0,1]$ and the orthonormal system $\{e_{n}\}_{n=1}^{\infty}$ is a base of
Walsh type with respect to $(W_{1}, W_{2})$ , in fact, it is the original Walsh series (cf. [3, $p2]$ ).
Therefore by Theorem 2.2.3 $\alpha_{V}$ is strong-mixing on $\mathfrak{L}(L^{2}[0,1])$ . In particular, for any
$L^{\infty}$ -function $f$ on $[0,1]$ and $\xi$ in $L^{2}[0,1]$ with $\Vert\xi\Vert=1$ , we have

$\lim_{n\rightarrow\infty}\int_{0}^{1}f(\tau^{n}(x))|\xi(x)|^{2}dx=\int_{0}^{1}f(x)dx$ ,
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henoe we have

$D_{\tau}(x)=\lim_{n\rightarrow\infty}\int_{0}^{1}\chi_{[0.x]}(\tau^{n}(t))|\xi(t)|^{2}dt=\int_{0}^{1}\chi_{[0,x]}(t)dt=x$ .

Now we recall that the couple $(W_{1}, W_{2})$ and the base $\{e_{n}\}_{n=1}^{\infty}$ of Walsh type are
uniquely determined in the sense of Proposition 2.2.5. However when we restrict the
definition-domain of $\alpha_{V(\tau)}$ to the $C^{*}$-algebra $\pi(C[0,1])$ , such a uniqueness does not
valid. We show this fact by giving an example. First we note that the equality
$\alpha_{V\langle\tau)}(=\alpha_{W\langle\tau)})=\alpha_{U}$ on $\pi(C[0,1])$ holds fora couple $(U_{1}, U_{2})$ of isometries if and only if

$(*)$ $U_{1}=V_{1}M_{\hslash_{11}}+V_{2}M_{h_{21}}$ and $U_{2}=V_{1}M_{h_{12}}+V_{2}M_{h_{22}}$

where $\left(\begin{array}{ll}h_{11} & h_{12}\\h_{21} & 22\end{array}\right)$ is in the unitary group $U(M_{2}\otimes L^{\infty}[0,1])$ . Furthermore, a necessary

and sufficient condition for a vector $\xi$ in $L^{2}[0,1]$ to be fixed by $U_{1}$ is the following:

$(**)$ $\xi(x)=\left\{\begin{array}{ll}\sqrt{2}h_{11}(\tau(x))\xi(\tau(x)) & for 0\leq x<1/2 ,\\\sqrt{2}h_{21}(\tau(x))\xi(\tau(x)) & for 1/2\leq x<1.\end{array}\right.$

We put $I_{n}=(1/2‘‘+11/2^{n}$] for $n=0,1,2,$ $\cdots$ . Then we have $\tau(I_{n})=I_{n-1}$ and
$\bigcup_{n=0}^{\infty}I_{n}=(0,1]$ . Here we define two functions $h$ and $\xi_{1}$ on $[0,1]$ as follows:

$h(x)=\left\{\begin{array}{ll}(-1)^{n} & for x\in I_{n} .\\1 & for x=0 ,\end{array}\right.$ $(n=0,1, \cdots)$ ,

$\xi_{1}(x)=\left\{\begin{array}{ll}(-1)^{k} & for x\in I_{4n+2k}\cup I_{4n+2k+1},\\1 & for x=0,\end{array}\right.$ $(n=0,1, \cdots, k=0,1)$ .

Let $h_{11}=h/\sqrt{2}$, $h_{21}=1/(\sqrt{2}\xi),$ $h_{12}=h_{21}$ and $h_{22}=-h_{11}$ . Then $h_{11},$ $h_{12}$ and $\xi$ satisfy

Condition $(**)$ and $\left(\begin{array}{ll}h_{11} & h_{12}\\h_{21} & h_{22}\end{array}\right)$ belongs to $U(M_{2}\otimes L^{\infty}[0,1])$ . Hence, by $1*$ ), these $h_{ij}$

induce a couple $(U_{1}, U_{2})$ of isometries which implements $\alpha_{V\langle\tau)}$ on $\pi(C[0,1])$ and $\xi_{1}$

generates a base $\{\xi_{n}\}_{n=1}^{\infty}$ of Walsh type with respect to $(U_{1}, U_{2})$ . Namely we have
$\lim_{n\rightarrow\infty}\langle\alpha_{U}^{n}(a)\xi, \xi\rangle=\langle a\xi_{1}, \xi_{1}\rangle$ for each $a\in \mathfrak{L}(L^{2}[0,1])$ and $\xi$ in $L^{2}[0,1]$ with $\Vert\xi\Vert=1$ .
Especially we have

$\lim_{n\rightarrow\infty}\langle\alpha_{U}^{n}(M_{f})\xi, \xi\rangle=\lim_{n\rightarrow\infty}\langle\alpha_{V\langle\tau)}^{n}(M_{f})\xi, \xi\rangle$

$=\langle M_{f}\xi_{1}, \xi_{1}\rangle=\int_{0}^{1}f(x)dx=\langle M_{f}e_{1}, e_{1}\rangle$

for $f$ in $L^{\infty}[0,1]$ .
Now we suppose that a unimodal map $\varphi$ is topologically conjugate to the tent

map, that is, $\varphi=h\circ\tau\circ h^{-1}$ for some homeomorphism $h$ of $[0,1]$ onto itself. In our case,
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the maps $h$ and $h^{-1}$ are assumed to be absolutely continuous functions on $[0,1]$ .
Let $U(h)$ be the unitary operator on $L^{2}[0,1]$ defined by $(U(h)\xi)(x)=\sqrt{h^{\prime}(x)}\xi(h(x))$

for $\xi$ in $L^{2}[0,1]$ . Then $(U(h)^{*}\xi)(x)=\sqrt{(h^{-1})^{\prime}(x)}\xi(h^{-1}(x))$ and we put

$V_{i}(\varphi)=U(h)^{*}V_{i}(\tau)U(h)$ , $W_{i}(\varphi)=U(h)^{*}W_{i}(\tau)U(h)$

for $i=1,2$ . Moreover let $\xi_{n}=U(h)^{*}e_{n}$ for $n=1,2,$ $\cdots$ , where $\{e_{n}\}_{n=1}^{\infty}$ is the Walsh series.
Then we have

$\pi(\alpha_{\varphi}(f))=V_{1}(\varphi)\pi(f)V_{1}(\varphi)^{*}+V_{2}(\varphi)\pi(f)V_{2}(\varphi)^{*}$ for $f$ in $C[0,1]$ ,

$\alpha_{V\langle\varphi)}(a)=\alpha_{W\langle\varphi)}(a)$ for $a$ in $\mathfrak{L}(L^{2}[0,1])$ ,

$W_{1}(\varphi)=M_{\sqrt{}\overline{|\varphi^{\prime}|/2}}T_{\varphi}$

and $\{\xi_{n}\}_{n=1}^{\infty}$ is a base of Walsh type with respect to $(W_{1}(\varphi), W_{2}(\varphi))$ . Thus by Theorem
2.2.3 we have the following:

THEOREM 3.2.4. Let $\varphi$ be topologically conjugate to the tent map $\tau$ with cojugacy
$h$ . Then we have

$\lim_{n\rightarrow\infty}\langle\alpha_{V\langle\varphi)}^{n}(a)\xi, \xi\rangle=\langle a\xi_{1}, \xi_{1}\rangle$

for each $a$ in $\mathfrak{L}(L^{2}[0,1])$ , where $\xi_{1}(x)=\sqrt{(h^{-1})^{\prime}(x)}$ .

In the theorem above, if $a=M_{f}$ for $f$ in $L^{\infty}[0,1]$ it follows that

$\lim_{n\rightarrow\infty}\int_{0}^{1}f(\varphi^{n}(x))|\xi(x)|^{2}dx=\langle M_{f}\xi_{1}, \xi_{1}\rangle=\int_{0}^{1}f(xXh^{-1})^{\prime}(x)dx$ .

Thus we have $D_{\varphi}(x)=h^{-1}(x)$ .
EXAMPLE 3.2.5. Let $\lambda$ be the logistic map of $[0,1]$ onto itself, that is, $\lambda(x)=$

$4x(1-x)$ . Then $\lambda$ is topologically conjugate to the tent map $\tau$ . Namely $\lambda=h\circ\tau\circ h^{-1}$ ,

where $h(x)=\sin^{2}(\pi x/2)$ . Hence we have

$\pi(\alpha_{\lambda}(f))=V_{1}(\lambda)\pi(f)V_{1}(\lambda)^{*}+V_{2}(\lambda)\pi(f)V_{2}(\lambda)^{*}$ for $f$ in $C[0,1]$ ,

$\alpha_{V\langle\lambda)}(a)=\alpha_{W\langle\lambda)}(a)$ for $a$ in $\mathfrak{L}(L^{2}[0,1])$ ,

$W_{1}(\lambda)=M_{\sqrt{}\overline{|2-4x|}}T_{\lambda}$

and there exists a base $\{\xi_{n}\}_{n=1}^{\infty}$ of Walsh type with respect to $(W_{1}(\tau), W_{2}(\tau))$ with
$\xi_{1}(x)=1/(\pi(x(1-x))^{1/2})^{1/2}$ . Moreover we have

$D_{\lambda}(x)=\frac{2}{x}$ arcsin $\sqrt{x}$ .

EXAMPLE 3.2.6. Let $h(x)=x^{n}$ and $\varphi=h\circ\tau\circ h^{-1}$ . Then we have
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$\varphi(x)=\left\{\begin{array}{ll}2 n_{X} & for 0\leq x\leq 1/2^{n} ,\\(2-2\sqrt[\hslash]{x}) & for 1/2^{n}\leq x\leq 1.\end{array}\right.$

As in the example above, we have $\xi_{1}(x)=(1/\sqrt{n})x^{(1-n)/2}$“ and $D_{\varphi}(x)=\sqrt[\hslash]{x}$ .
We have seen those maps which are topologically conjugate to the tent map $\tau$ . Of

course there are a lot of unimodal maps which are not topologically conjugate to $\tau$ . In
addition, there are many cases $where*$-endomorphisms on $\pi(C[0,1])$ associated with
maps on $[0,1]$ are not strong-mixing. Hence, in this subsection, we leave two ques-
tions concerning relationship between general unimodal maps and strong-mixing maps.

(1) Does there exist a unimodal map $\varphi$ such that $\alpha_{V(\varphi)}$ is strong-mixing on
$\pi(C[0,1])$ but not on $\mathfrak{L}(L^{2}[0,1])$?

(2) Is a unimodal map $\varphi$ topologically conjugate to the tent map $\tau$ if $\alpha_{V\langle\varphi)}$ is
strong-mixing on $\mathfrak{L}(L^{2}[0,1])$ or $\pi(C[0,1])$?

3.3. Here we study covariant representations of chaotic dynamical systems on
Cantor set. Let $X$ be the compact infinite direct product $\prod_{n=1}^{\infty}\{1,2\}$ . Moreover we
denote by $\sigma$ and $\beta,$

$\gamma$ the unilateral shift on $X$ and the two inverse maps of $\sigma$ , that is,

$\sigma((x_{1}, x_{2}, x_{3}, \cdots))=(x_{2}, x_{3}, x_{4}, \cdots)$ ,

$\beta((x_{1}, x_{2}, x_{3}, \cdots))=(1,x_{1}, x_{2}, \cdot )$ ,

$\gamma((x_{1}, x_{2}, x_{3}, \cdots))=(2,x_{1}, x_{2}, \cdots)$ ,

where $(x_{n})_{n=1}^{\infty}$ is in $X$. In addition, for $\mu=(j_{1}, \cdots,j_{k})$ in $\{1, 2\}^{k}=\prod_{n=1}^{k}\{1,2\}$ , we de-
note by $C(\mu)$ or $C(j_{1}, \cdots,j_{k})$ the cylinder set {$x=(x_{n})_{n=1}^{\infty}\in X:x_{i}=j_{i}$ for $i=1,2,$ $\cdots,$

$k$}.

For a vector $P=\left(\begin{array}{l}p_{1}\\p_{2}\end{array}\right)$ and $Q=\left(\begin{array}{ll}p_{11} & p_{12}\\p_{21} & p_{22}\end{array}\right)$ , the associated measure $m=m(P, Q)$ is de-

termined by $m(C(j_{1}, \cdots,j_{k}))=p_{J_{1}}p_{j_{1}j_{2}}\cdots p_{j_{k- 1}}j_{k}$ . Let $P=\left(\begin{array}{l}\lambda/\langle\lambda+\mu)\\\mu/(\lambda+\mu)\end{array}\right)$ and $Q=\left(\begin{array}{ll}1-\mu & \mu\\\lambda & 1-\lambda\end{array}\right)$ ,

where $0<\lambda,$ $\mu<1$ . Then $m=m(\lambda, \mu)=m(P, Q)$ is a faithful $\sigma$-invariant measure on $X$

and the three operators $T_{\sigma},$ $T_{\beta}$ and $T_{\gamma}$ are bounded on $L^{2}(X, m)$ . We put

$V_{1}=M_{\chi_{c\{1)}}\tau_{\sigma}(\frac{1}{\sqrt{1-\mu}}M_{\chi_{c(1)}}+\frac{1}{\sqrt{\lambda}}M_{\chi_{c\langle 2))}}$ ,

$V_{2}=M_{\chi_{c(2)}}\tau_{\sigma}(\frac{1}{\sqrt{\mu}}M_{Xc(1)}+\frac{1}{\sqrt{1-\lambda}}M_{\chi_{c(2))}}$ .

Let $\pi(f)=M_{f}$ on $L^{2}(X, m)$ for $f$ in $C(X)$ . Then we have $\pi(\alpha_{\sigma}(f))=V_{1}\pi(f)V_{1}^{*}+V_{2}\pi(f)V_{2}^{*}$

for $f$ in $C(X)$ . Moreover we put
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$W_{1}=V_{1}(\sqrt{1-\mu}M_{\chi_{c(1)}}+\sqrt{\lambda}M_{\chi_{c(2)}})+V_{2}(\sqrt{\mu}M_{\chi_{c(1)}}+\sqrt{1-\lambda}M_{\chi_{c(2)}})$ ,

$W_{2}=V_{1}(\sqrt{\mu}M_{\chi_{c(1)}}+\sqrt{1-\lambda}M_{\chi_{c(2)}})-V_{2}(\sqrt{1-\mu}M_{\chi_{c(1)}}+\sqrt{\lambda}M_{\chi_{c\langle 2)}})$ .

Then we have $W_{1}=T_{\sigma}$ and $\alpha_{V}=\alpha_{W}$ on $2(L^{2}(X, m))$ (if $\lambda+\mu=1$ ) or the commutant $B(1,2)$

of the $C^{*}$-agebra $A(1,2)$ generated by $\{M_{\chi_{c(1)}}, M_{\chi_{\epsilon(2)}}\}$ (if $\lambda+\mu\neq 1$ ). For $\xi_{1}(x)=1$ on $X$

and $(W_{1}, W_{2})$ , let $\{\xi_{n}\}_{n=1}^{\infty}$ be the orthonormal system defined by (2.1.3). Since $\sigma$ is
strong-mixing with respect to the measure $m=m(P, Q)$ (cf. [6: Theorem 1.31]), $\{\xi_{n}\}_{n=1}^{\infty}$

is complete. Hence it is a base of Walsh type with respect to $(W_{1}, W_{2})$ and $\alpha_{V}$ is
strong-mixing on $\mathfrak{L}(L^{2}(X, m))$ or the $C^{*}$ -algebra $B(1,2)$ .

In the case where $\lambda+\mu=1$ , we have

$V_{1}=\frac{1}{\sqrt{\lambda}}M_{Xc(1)}T_{\sigma}$ , $V_{2}=\frac{1}{\sqrt{\mu}}M_{\chi_{c\langle 2)}}T_{\sigma}$ ,

$W_{1}=\sqrt{\lambda}V_{1}+\sqrt{\mu}V_{2}=T_{\sigma}$ , $W_{2}=\sqrt{\mu}V_{1}-\sqrt{\lambda}V_{2}=\sqrt{\frac{\mu}{\lambda}}M_{\chi_{c\langle 1)}}T_{\sigma}+\sqrt{\frac{\lambda}{\mu}}M_{\chi_{c(2)}}T_{\sigma}$ .

Therefore we obtained the following:

THEOREM 3.3.1. The representation $\pi$ of $C(X)$ into $\mathfrak{L}(L^{2}(X, m(\lambda, \mu))$ defined by
$\pi(f)=M_{f}$ is a covariant representation of multiplicity 2, and the associated $*-$

endomorphism $\alpha_{V}$ is strong-mixing on $\mathfrak{L}(L^{2}(X, m(\lambda, \mu)))$ (if $\lambda+\mu=1$ ) or the $C^{*}$-algebra
$B(1,2)$ (if $\lambda+\mu\neq 1$ ).

REMARK 3.3.2. Let us recall the family of $10$gistic maps $\lambda_{c}(x)=cx(1-x),$ $c>0$ .
Suppose $c>2+\sqrt{5}$ and

$\Lambda=$ {$x\in[0,1]$ : $\lambda_{c}^{n}(x)$ is in $[0,1]$ for each positive integer $n$}.

Then the topological dynamical system $(\Lambda, \lambda_{c})$ is topologically conjugate to
$(\prod_{n=1}^{\infty}\{1,2\}, \sigma)$ (cf. [2: \S 1.7. Theorem 7.3]). Henoe the example discussed above is
regarded as a covariant representation of $(\Lambda, \lambda_{c})$ .

REMARK 3.3.3. Let $X=\prod_{n=1}^{\infty}\{1,2\}$ and $A=\left(\begin{array}{ll}0 & 1\\1 & 1\end{array}\right)$ . We denote by $X_{A}$ and $\sigma_{A}$ ,

the set {$x=(x_{n})_{n=1}^{\infty}\in X:x_{n}=1$ can be followed by $x_{n+1}=2$} and the restriction of $\sigma$ to
$X_{A}$ . Moreover we put

$p=\left(\begin{array}{ll}\lambda/(l+ & \lambda)\\1/(l+ & \lambda)\end{array}\right)$ and $Q=\left(\begin{array}{lll}0 & 1 & \\\lambda & 1- & \lambda\end{array}\right)$ .

Then the associated measure $m=m(P, Q)$ is a faithful $\sigma_{A}$-invariant measure on $X_{A}$ (cf.

[6: Theorem 1.31]). Let
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$V_{1}=M_{\chi_{c(2.1)}}T_{\sigma_{A}}$ , $V_{2}=\frac{1}{\sqrt{\lambda}}M_{Xc(1)}T_{\sigma_{A}}$ . $V_{3}=\frac{1}{\sqrt{1-\lambda}}M_{Xc(2,2)}T_{\sigma_{A}}$ .

Then $(V_{1}, V_{2}, V_{3})$ are three isometries on $L^{2}(X, m)$ such that $V_{1}V_{1}^{*}+V_{2}V_{2}^{*}+V_{3}V_{3}^{*}=I$

and if $\pi(f)=M_{f}$ on $L^{2}(X, m)$ it follows that

$\pi(\alpha_{\sigma_{A}}(f))=V_{1}\pi(f)Vf+V_{2}\pi(f)V_{2}^{*}+V_{3}\pi(f)V_{3}^{*}$ .
Furthermore we note that the topological dynamical system $(X_{A}, \sigma_{A})$ is topologically
conjugate to $(\Lambda, \lambda_{c})$ , where $\lambda_{c}(x)=cx(1-x)$ and $c$ is approximately equal to 3.839
$(>1+\sqrt{8})$ and

$\Lambda=$ {$x\in[0,1]:\{\lambda_{c}^{3n}(x)\}_{n=1}^{\infty}$ does not converge}

(cf. [2: \S 1.3, Theorem 13.7].) The covariant representation of this dynamical systems
is studied in author’s subsequent paper related to representations of $O_{3}$ .

3.4. Let $\varphi$ be the map on the set of positive integers $N$ defined by $\varphi(2n-1)=n=$

$\varphi(2n)$ for $n$ in N. We denote by $\{e_{n}\}_{n=1}^{\infty}$ the canonical base of $l^{2}(N)$, that is, $e(l)=\delta_{n,i}$ .
Moreover let $\pi_{\psi}$ be the canonical representation of $l^{\infty}(N)$ into $\mathfrak{L}(l^{2}(N))$ , that is,
$\pi_{\psi}(g)e_{n}=g(n)e_{n},$ $(g\in l^{\infty}(N), n\in N)$ . Furthermore let $W_{1}(\psi)$ and $W_{2}(\psi)$ be two isometries
on $l^{2}(N)\det e$rmined by

$W_{1}(\psi)e_{n}=e_{2n-1}$ , $W_{2}(\psi)e_{n}=e_{2n}$ $(n=1,2, \cdots)$ .

Then we have $\pi_{\psi}(\alpha_{\psi}(g))=W_{1}(\psi)\pi_{\psi}(g)W_{1}(\psi)^{*}+W_{2}(\psi)\pi_{\psi}(g)W_{2}(\psi)^{*}$ . Sinoe $\{e_{n}\}_{n=1}^{\infty}$ is a base
of Walsh type with respect to $(W_{1}(\psi), W_{2}(\psi)),$ $*$-endomorphism $\alpha_{W(\psi)}$ is strong-mixing
on $\mathfrak{L}(l^{2}(N))$.

Now suppose that a topological dynamical system (X, $\varphi$) has a strong-mixing
covariant representation $\pi$ of multiplicity 2 into $\mathfrak{L}(L^{2}(X, m))$ , that is,

$\pi(\alpha_{\varphi}(f))=W_{1}(\varphi)\pi(f)W_{1}(\varphi)^{*}+W_{2}(\varphi)\pi(f)W_{2}(\varphi)^{*}$

for a couple $(W_{1}(\varphi), W_{2}(\varphi))$ of isometries with respect to which there exists a base
$\{e_{n}\}_{n=1}^{\infty}$ of Walsh type. By identifying the Hilbert spaoe $L^{2}(X, m)$ with $l^{2}(N)$, we can
recognize the property of strong-mixing as follows:

$\pi(\alpha_{\varphi}(f))=\alpha_{W(\varphi)}(\pi(f))=\alpha_{W\langle\psi)}(\pi(f))$ for $f$ in $C(X)$ ,

$\pi_{\psi}(\alpha_{\psi}(g))=\alpha_{W\langle\varphi)}(\pi_{\psi}(g))=\alpha_{W\langle\varphi)}(\pi,(g))$ for $g$ in 1 $\infty(N)$ .

Namely every strong-mixing representation $\pi$ is prolonged to $\pi_{\psi}$ by $\alpha_{W(\varphi)}=\alpha_{W\langle\psi)}$ .
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