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Abstract. Let $(E_{i})_{i\in N}$ be a projective system of Banach vector bundles whose limit is a Fr\’echet bundle
of fibre type F. We construct a generalized bundle of frames $P(E)$ of $E$ by revising entirely the classical notion
and by substituting $GL(F)$ with an appropriate enlarged structure group. This is imposed by the pathology
of $GL(F)$ , which renders meaningless the ordinary frame bundle. As a result, we prove that $E$ is associated
with $P(E)$ and linear connections of $E$ correspond to (principal) connections of $P(E)$ . In particular, the former
are necessarily projective limits of connections on the bundles $E_{i}$ .

$0$ . Introduction.

The study of many geometrical entities of a vector bundle, such as connections, is
reduced to the study of their counterparts on the corresponding principal bundle of
frames. The idea works well for finite-dimensional and Banach bundles. However it
fails if we move one step further and consider vector bundles of fibre type a Fr\’echet
space $F$ , due to the topological pathology of $GL(F)$ . Therefore, it seems to be meaningless
to think of a Fr\’echet vector bundle as associated to its bundle of frames $P(E)$ (after
all, how could the latter be defined as a principal bundle ?) and to reduce linear connec-
tions on $E$ to connections on $P(E)$ .

The aim of the present paper is to overcome the previous impasse by a radical
change of the classical notion of the bundle of frames, for the category of (Fr\’echet)
vector bundles obtained as the limit of a projective system of Banach vector bundles.
Such bundles occur quite naturally in many instances (e.g. projective limits of tangent
bundles of manifolds and Lie groups [8], [9]; projective limits of jet bundles [11]).
Outside this category, that is for arbitrary Fr\’echet vector bundles, the problem of
defining an appropriate frame bundle remains open.

To be a little more specific, we start with a projective system $(E_{i})_{i\in N}$ of Banach
vector bundles, with respective fibres $F_{i}$ also forming a projective system $\{F_{i}, \rho_{ji}\}$ .
Under reasonable conditions, the projective limit $E=\lim E_{i}$ is a vector bundle of fibre
type the Fr\’echet space $F=\varliminf F_{i}$ . Then we replace the\={O}dinary bundle of frames $P(E)$
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with a new principal bundle $P(E)$ whose structure group is
$H^{o}(F)=\{(f_{i})_{i\in N}|f_{i}\in \mathscr{L}io(F_{i}):\rho_{ji}\circ f_{j}=f_{i}\circ\rho_{ji},j\geq i\}$ .

We call $P(E)$ the generalized frame bundle of $E$ and we show that $P(E)$ is the limit $($

a projective system of Banach principal bundles (Proposition 2.2), each one being, :
to speak, an enlargement of an ordinary frame bundle. As a consequence, the first ma
result of the paper (Theorem 2.5) shows that, analogously to the classical case, $E$

associated with $P(E)$ .
The above association allows us to establish a correspondence between linear $col$

nections of $E$ and principal connections of $P(E)$ . The crucial step here is the constructic
of a (generalized) connection on $P(E)$ , obtained from a particular system of connectio]

on the Banach principal bundles producing $P(E)$ (Theorem 3.2). As a byproduct of tl
previous situation we obtain the following characterization concluding the paper:
linear connection $\nabla$ on $E$ corresponds to a unique principal connection on $P(E)$ if ar
only if $\nabla=\varliminf\nabla_{i}$ , where $\nabla_{i}$ is a linear connection on $E_{i}$ .

1. Preliminaries.

Some particular cases of projective systems of vector bundles and their limits $ha^{\eta}$

been considered, among other authors, by [8], [9], [11] and [13]. However, they $c$

not study in depth the vector bundle structure of the limit, since they rather focus 1

various algebraic $and/or$ topological properties.
Here we are mainly interested in the mere vector bundle structure of the limit $($

a projective system (over N) of Banach vector bundles and its geometry viz. connection
Since the previous projective limit is not always endowed with a vector bund

structure, in the sense of [1], [5], G. Galanis ([3]) proposed the following modifie
version of projective systems which are of interest to us.

1.1. DEFINITION. Let $\{(E_{i}, B, \pi_{i});f_{ji}\}_{i,j\in N}$ be a projective system of Banach vect $($

bundles, over the same base $B$ , with corresponding fibres of type $F_{i}$ . The system is sa
to be strong if the following conditions are satisfied:

(i) $F_{i}(t\in N)$ form a projective system with corresponding connecting morphisn
$\rho_{ji}(j\geq i)$ .

(ii) For any $b\in B$, there exist local trivializations $(U, \tau_{i})$ of $E_{i}$ respectively, $su\{$

that the following diagram is commutative:

$\pi_{j}^{-1}(U)\rightarrow^{\tau_{j}}U\times F_{j}$

$ f_{ji}\downarrow$ $\downarrow id_{U}\times\rho_{ji}$

$(j\geq i)$

$\pi_{i}^{-1}(U)\rightarrow U\times F_{i}$

$\tau_{i}$
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Under the above conditions it has been proved (cf. [3]) that the limit $E:=\varliminf E_{i}$

is a locally trivial fibre bundle over $B$, whose fibres are of type $F:=\lim F_{i}$ .
As discussed in the Introduction, $E$ cannot be considered as a vector bundle

associated with its frame bundle (in the sense of [1]). In order to obtain a generalized
frame bundle from which we fully recover $E$, we replaoe the structure group $GL(F)$ with
an appropriate “enlarged” group $H^{o}(F)$ , explained below.

More explicitly, we start with the following general situation (needed also in Section
3). Let $E,$ $F$ be two fixed Fr\’echet spaces, obtained as the limits of the corresponding
N-projective systems $\{E_{i};\sigma_{ji}\},$ $\{F_{i};\rho_{ji}\}$ . We denote by

$H_{i}(E, F):=\{(f_{1}, \cdots,f_{i})|f_{k}\in \mathscr{L}(E_{k},F_{k}):\rho_{jk}\circ f_{j}=f_{k}\circ\sigma_{jk}, i\geq j\geq k\}$ ,

$H(E,F):=\{(f_{i})_{i\in N}|f_{i}\in \mathscr{L}(E_{i},F_{i}):\rho_{ji}\circ f_{j}=f_{i}\circ\sigma_{ji}, j\geq i\}$ .
It follows that $H_{i}(E, F)$ (resp. $H(E,F)$) is a Banach (resp. Fr\’echet) space as a closed

subspace of $\prod_{j=1}^{i}\mathscr{L}(E_{j}, F_{j})$ (resp. $\prod_{j=1}^{\infty}\mathscr{L}(E_{j},F_{j})$). Moreover, $\{H_{i}(E,F);h_{ji}\}_{i,j\in N}$ is a
projective system, where

$h_{ji}$ : $H_{j}(E,F)\rightarrow H_{i}(E,F):(f_{1}, \cdots,f_{j})\mapsto(f_{1}, \cdots,f_{i})$ , $j\geq i$ .
1.2. PROPOSITION ([3]). $H(E, F)=\varliminf H_{i}(E,F)$ , within the isomorphism

$(f_{1},f_{2}, \cdots)\mapsto^{\underline\simeq}((f_{1}), (f_{1},f_{2}), \cdots)$ .

Restricting now to the case $E=F$ , we obtain the groups

$H_{i}^{o}(F):=H_{i}(F,F)\cap\prod_{j=1}^{i}\mathscr{L}io(F_{j})$ ,

$H^{o}(F):=H(F,F)\cap\prod_{j=1}^{\infty}\mathscr{L}io(F_{j})$ ,

where $\mathscr{L}id(F_{j})$ is the group of all invertible elements of $\mathscr{L}(F_{j})$ . As a result we have
1.3. COROLLARY. (i) Each $H_{i}^{o}(F),$ $i\in N$ , is a Banach-Lie group modelled on

$H_{i}(F):=H_{i}(F,F)$ , and $H^{o}(F)$ is a topological group with the relative topology of
$H(F):=H(F,F)$ .

(ii) The limit $\varliminf H_{i}^{o}(F)$ exists and $H^{o}(F)\equiv\varliminf H_{i}^{o}(F)$ .
Under the previous notations the following holds.

1.4. THEOREM ([3]). Let $\{E_{i};f_{ji}\}_{i,j\in N}$ be a strong projective system of Banach
vector bundles, as in Definition 1.1. Then $E:=\varliminf E_{i}$ is a Fr\’echet vector bundle.

In particular, Theorem 1.4 implies that the structure of $E$ is fully determined by
a generalized cocycle of the form

$T_{UV}^{*}$ : $U\cap V\rightarrow H^{o}(F)$
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( $U,$ $V$ are in the open cover of the basis defined by Condition (ii) of Definition 1.1
which also determines the ordinary transition functions

$T_{UV}$ : $U\cap V\rightarrow GL(F)\subseteq \mathscr{L}(F)$

by $T_{UV}=\epsilon\circ T_{UV}^{*}$ , where
$\epsilon:H^{o}(F)\rightarrow GL(F)$ : $(f_{i})\mapsto-\lim f_{i}$ .

Each $T_{UV}^{*}$ is thought of as a smooth map since it can be considered as taking valu$($

in the Fr\’echet space $H(F)\supseteq H^{o}(F)$ . For later use, we also note that, in virtue ofDefinitic
1.1, the local trivializations of $E$ have the form $(U,\varliminf\tau_{i})$ .

2. A generalized type of frame bundle.

As alluded to in the Introduction, the ordinary definition of the frame bundle $\{$

the Fr\’echet vector bundle $E=\lim E_{i}$ has no meaning at all. Therefore, beside $tI$

replacement of the structure $gro\overline{up}GL(F)$ by $H^{o}(F)$ discussed in the preceding sectio]

we need to revise also the very notion of the frame bundle. To this end we proceed ’

follows:
We fix a strong projective system $\{E_{i},f_{ij}\}_{i,j\in N}$ as in Definition 1.1. For each Banac

vector bundle $E_{i}$ we define the space

$P(E_{i}):=\bigcup_{b\in B}H_{i}^{o}(F, E_{b})$

if $E_{b}$ denotes the fibre of $E$ over $b\in B$ . Here we use the bold character $P$ in order 1
distinguish $P(E_{i})$ from the ordinary bundle of frames $P(E_{i})$ in N. Bourbaki’s [1
notation.

2.1. LEMMA. $P(E_{i})$ is a principalfibre bundle over $B$, with structure group $H_{i}^{o}$ (]
and projection $p_{i}$ : $P(E_{i})\rightarrow B$, where

$p_{i}(g_{1}, \cdots, g_{i}):=b$ ; $(g_{1}, \cdots, g_{i})\in H_{i}^{o}(F, E_{b})$ .
$PR\infty F$ . First we determine a smooth structure on $P(E_{i})$ : for any $u=(g_{1}, \cdots, g_{i})$

$P(E_{i})$ with $p_{i}(u)=b$ , we choose the local trivialization $(U,\varliminf\tau_{i})$ of $E$ (cf. Definition 1.
with $b\in U$ and define the bijection $\Phi_{i}$ : $p_{i}^{-1}(U)\rightarrow U\times H_{i}^{o}(F)$ given by

(2.1) $\Phi_{i}(u):=(b;\tau_{1b}\circ g_{1}, \cdots, \tau_{ib}\circ g_{i})$ ; $\tau_{kb}:=\tau_{k}|\pi_{k}^{-1}(b)$ .
Now considering another bijection $\Psi_{i}$ with respect to (V, $\varliminf\sigma_{i}$), $ U\cap V\neq\emptyset$ , we chec
that $\Psi_{i}\circ\Phi_{i}^{-1}$ is a diffeomorphism. Thus, by the gluing lemma (cf. e.g. [1; No 5.2.4]
$P(E_{i})$ is indeed a Banach manifold. This structure turns the quadruple $(P(E_{i}), H_{i}^{o}(F),$ $B,$ $\Pi$

into a Banach principal fibre bundle with $H_{i}^{o}(F)$ acting on $P(E_{i})$ in the obviou
way. $[$
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Inducing the connecting morphisms

(2.2) $r_{ji}$ : $P(E_{j})\rightarrow P(E_{i}):(g_{1}, \cdots, g_{i}, \cdots, g_{j})\mapsto(g_{1}, \cdots, g_{i})$

(2.3) $h_{ji}\equiv h_{ji}|\circ:H_{j}^{o}(F)\rightarrow H_{i}^{o}(F)$ ,

for any $j\geq i$, we obtain

2.2. PROPOSITION. The following conditions are true:
(i) $\{(P(E_{i}), H_{i}^{o}(F), B, p_{i});(r_{ji}, h_{ji}, id_{B})\}_{i,j\in N}$ is a projective system of Banach principal

fibre bundles.
(ii) $P(E):=\lim P(E_{i})$ is a locally trivial topological principal fibre bundle with

structure group $H^{\overline{o}}(F)$ .
PROOF. The first condition is immediate, therefore $P(E)$ exists. Now taking any

$b\in B$ and considering the family $\{\Phi_{i}; i\in N\}$ , we check that the diagram

$p_{j}^{-1}(U)\rightarrow^{\Phi_{j}}U\times H_{j}^{o}(F)$

$ r_{ij}\downarrow$ $\downarrow id_{U}\times h_{ji}$

$p_{i}^{-1}(U)\rightarrow^{\Phi_{i}}U\times H_{i}^{o}(F)$

is commutative. As a result, the morphism

(2.4) $\Phi:=\varliminf\Phi_{i}$ : $\varliminf p_{i}^{-1}(U)\rightarrow U\times H^{o}(F)$

exists and determines a topological trivialization of $P(E)$ over U. $\square $

2.3. REMARKS. 1) The elements of $P(E)$ are of the form $(g_{i})_{i\in N}$ , where $g_{i}\in P(E_{i})$ ,
since $\varliminf g_{i}$ exists.

2) The homomorphism $\Phi$ defined by (2.4) is not smooth in the ordinary sense,
since $H^{o}(F)$ is not a Lie group. However, following the customary procedure, $\Phi$ is called
a (generalized) dlffeomorphism, as being a projective limit of diffeomorphisms. Besides,
if $\Phi$ is thought of as taking values in (the Fr\’echet manifold) $H(F)$ , then we can show
that it is smooth in the sense of J. Leslie ([6], [7]).

3) With the previous terminology, $P(E)$ is a generalized smooth principal Fr\’echet
bundle.

2.4. DEFINITION. Under the considerations of Remark 2.3 (3) above, $P(E)$ is said
to be the generalizedframe bundle of $E$.

The significance of $P(E)$ lies in the fact that $E$ is associated with $P(E)$ , as it is
shown in the next main result. Before the statement, we introduce a natural action of
$H^{o}(F)$ on (the right of) $P(E)\times F$ , given by

$((g_{i}), (u_{i}))\cdot(f_{i}):=((g_{i}\circ f_{i}), (f_{i}^{-1}(u_{i})))$ .
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Note that the family $(g_{i}\circ f_{i})$ belongs to $P(E)$ , since $\varliminf g_{i}$ and $-\lim f_{i}$ already exist.

2.5. THEOREM. $\overline{E}:=P(E)\times F/H^{o}(F)$ isa Fr\’echet vector bundle, isomorphic to E.
$PR\infty F$ . We define the projection

$\overline{\pi}:\overline{E}\rightarrow B:[(g_{i}), (u_{i})]\mapsto p((g_{i}))$

and we consider the trivializations $(U,\varliminf\tau_{i})$ as well as the corresponding pairs $(U,$ $\{$

of $P(E)$ (in this respect cf. also (2.4)). Then we see that the mappings

$\overline{\Phi}:\overline{\pi}^{-1}(U)\rightarrow U\times F:[(g_{i}), (u_{i})]\mapsto(p((g_{i})), \Phi_{2}((g_{i}))((u_{i})))$ ,

where $\Phi_{2}$ $:=pr_{2}\circ\Phi$ and $pr_{2}$ is the projection to the second factor, determine a differenti
structure on $\overline{E}$. This is again a consequence of the gluing lemma (cf. also the proof $($

Lemma 2.1).
Finally, we check that the mapping $h:\overline{E}\rightarrow E$, given by

$h([(g_{i}), (u_{i})]):=(g_{i}(u_{i}))$ ,

is a bijection identifying each $\Phi$ with $\varliminf\tau_{i}$ . This concludes the proof. $|$

2.6. REMARK. Thinking of $\Phi$ as a (generalized) smooth morphism in the sen
of Remark 2.3(2), $h$ is also smooth and $(h,id_{B})$ may be considered as an isomorphis
of Fr\’echet vector bundles.

3. Linear connections.

In this section we fix again a strong projective system of vector bundles, eat
bundle $E_{i}$ of which is endowed with a linear connection $\nabla_{i}$ : $TE_{i}\rightarrow E_{i}$ (in the sense $|$

[14] and [2]). We further assume that, for any $j\geq i$,

(3.1) $f_{ji}\circ\nabla_{j}=\nabla_{i}\circ Tf_{ji}$ ,

that is $\nabla_{j}$ and $\nabla_{i}$ are $f_{j}$-conjugate (cf. also [12]). Ifwe denote by $\Gamma_{U}^{i}$ : $\phi(U)\rightarrow \mathscr{L}(F_{i},\mathscr{L}(B,F$

the Christoffel symbols of $\nabla_{i}$ , with respect to the open cover of Definition 1.1 (here
is the coordinate map of $U$ and $B$ the ambient space of the chart), then (3.1) implies th

(3.2) $\overline{\rho}_{ji}\circ\Gamma_{U}^{j}(x)=\Gamma_{U}^{i}(x)\circ\rho_{ji}$

where $\overline{\rho}_{ji}(f):=\rho_{ji}\circ f,$ $f\in \mathscr{L}(B,F_{j})$ (for details we also refer to the general case of [1
Prop. 3.7]).

3.1. PROPOSITION ([3]). $\nabla:=\varliminf\nabla_{i}$ is a linear connection on $E$ with Christofi
symbols $\Gamma_{U}$ given by

$\Gamma_{U}(x)=\varliminf\Gamma_{U}^{i}(x)$ ; $x\in U$ .
Motivated by the classical description of linear connections as connection forr
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on the corresponding bundle of frames, we construct a family of principal connections
$\theta_{i}$ on the bundles $P(E_{i})$ (cf. Lemma 2.1) from which we obtain a generalized principal
connection $\theta$ on $P(E)$ , which ultimately is related with $\nabla$ .

First we construct the family $\theta_{i}$ using local connection forms. This is convenient
in the context of projective limits since all the bundles $E_{i}$ have the same basis.

We fix again an open cover $\mathscr{C}=(U_{\alpha})_{\alpha\in I}$ , as in Definition 1.1, (the need for indices
will be apparent in the use of local connection forms in the next result). Recalling the
notations (2.2) and (2.3), we are in a position to prove the following main

3.2. THEOREM. Each linear connection $\nabla_{i}$ gives rise to a principal connection $\theta_{i}$

on $P(E_{i})$ . Moreover, $forj\geq i,$ $\theta_{j}$ and $\theta_{i}$ are $(r_{ji}, h_{ji}, id_{B})$-conjugate, i.e.

(3.3) $r_{ji}^{*}\theta_{i}=F_{ji}\cdot\theta_{j}$ ,

where $F_{ji}$ is the Lie algebra homomorphism induced by $h_{ji}$ .
PROOF. Each linear connection $\nabla_{i}$ determines a connection form

$\omega_{i}\in\wedge^{1}(P(E_{i}), \mathscr{G}l(F_{i}))$ , $\mathscr{G}l(F_{i})\equiv \mathscr{L}(F_{i})$

on the ordinary frame bundle $P(E_{i})$ of $E_{i}$ . The corresponding Christoffel symbols
$\Gamma_{\alpha}^{i}$ : $\phi_{\alpha}(U_{\alpha})\rightarrow \mathscr{L}(F_{i}, \mathscr{L}(B, F_{i}))$ of $\nabla_{i}$ and the local connection forms $\omega_{\alpha}^{i}\in\wedge^{1}(U_{\alpha}, \mathscr{G}l(F_{i}))$

of $\omega_{i}$ , with respect to $\mathscr{C}$ , are related by

(3.4) $\Gamma_{\alpha}^{i}(x)(w,y)=[((\phi_{\alpha}^{-1})^{*}\omega_{\alpha}^{i})_{x}\cdot y](w)$ ,

for every $x\in\phi_{\alpha}(U_{\alpha}),$ $y\in B,$ $w\in F_{i}$ (for relevant details cf. [12; Corollary 2.3]). Hence,
for any $i\in N$ and $\alpha\in I$, we define the (local) differential l-forms $\theta_{\alpha}^{i}\in\wedge^{1}(U_{\alpha}, H_{i}(F))$

given by

(3.5) $(\theta_{\alpha}^{i})_{b}(v):=((\omega_{\alpha}^{1})_{b}(v), \cdots, (\omega_{\alpha}^{i})_{b}(v))$ ; $b\in U_{\alpha}$ , $v\in T_{b}B$ .

After some tedious calculations, we check that (3.2) and (3.4) ensure that $\theta_{\alpha}^{i}$ are indeed
$H_{i}(F)$-valued forms.

Moreover, the ordinary compatibility conditions of the local connection forms
$(\omega_{\alpha}^{i})_{\alpha\in I}$ , for each $i\in N$ , imply the analogous condition

(3.6) $\theta_{\beta}^{i}=Ad_{i}(g_{\alpha\beta}^{-1})\cdot\theta_{\alpha}^{i}+g_{\alpha\beta}^{-1}\cdot dg_{\alpha\beta}$ .
Here, $g_{\alpha\beta}$ : $U_{\alpha\beta}:=U_{\alpha}\cap U_{\beta}\rightarrow H_{i}^{o}(F)$ are the transition functions of $P(E_{i})$ and $Ad_{i}$ is the
adjoint representation of $H_{i}^{o}(F)$ . The proof of this equality is based on (3.5) and the
fact that

$g_{\alpha\beta}(x)=(g_{\alpha\beta}^{1}(x), \cdots, g_{\alpha\beta}^{i}(x))$ ; $x\in U_{\alpha\beta}$ ,

where $(g_{a\beta}^{k})_{\alpha,\beta\in I}$ are the transition functions of $P(E_{k}),$ $k\in N$ . Therefore, each family
$(\theta_{\alpha}^{i})_{\alpha\in I}$ determines a unique principal connection (form) $\theta_{i}$ (with local connection forms
given precisely by the previous family).
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Finally, for the proofof(3.3) we distinguish the following cases (cf. also e.g. [10]):
i) Let $u\in T_{q}(P(E_{j}))$ be any non-vertical vector at $q\in P(E_{j})$ with $p_{j}(q)=b\in U_{a}$ . The

there exists a smooth local section $s_{j}$ : $U\rightarrow P(E_{j})(U\subseteq U_{\alpha}$ some open neighborhood $($

b) with $s_{j}(b)=q$ and $T_{q}(s_{j}\circ p_{j})(u)=u$ . If $g$
‘ : $U\rightarrow H_{j}^{o}(F)$ is the smooth map connectir

the natural local section $s_{\alpha}^{j}$ of $P(E_{j})$ with $s_{j}$, i.e. $s_{j}=s_{\alpha}^{j}\cdot g_{a}^{j}$ , then

$\theta_{j}(u)=Ad_{j}(g_{\alpha}^{j}(b)^{-1})\cdot(p_{j}^{*}\theta_{\alpha}^{j})(u)+(g_{\alpha}^{j})^{-1}\cdot dg_{\alpha}^{j}$ .
The last equality along with its counterpart for $\theta_{i}$ and the vector $Tr_{ji}(u)$ (obtained $t$

considering the local section $s_{i}=rfl\circ s_{j}$ and the morphism $g_{\alpha}^{i}=r_{ji}\circ g_{\alpha}^{j}$ ) prove (3.3) in tl
present case.

ii) Let $u$ be any vertical vector at $q$, i.e. $u\in V_{q}(P(E_{j}))$ . In this case there exists
left invariant vector field

$A_{j}\in \mathscr{L}(H_{j}^{o}(F))\equiv H_{j}(F)$

such that $u=A_{j}^{*}(q)$ . Hence $\theta_{j}(u)=A_{j}^{*}$ . On the other hand,

$\theta_{i}(Tr_{ji}(u))=(h_{ji}\circ A_{j})^{*}(r_{ji}(q))$

from which we get (3.3) and complete the proof. $[$

Condition (3.3) of Theorem 3.2 now allows one to determine the following l-for
$\theta\in\wedge^{1}(P(E), H(F))$ , with

$\theta((g_{i})):=\varliminf(\theta_{i}(g_{1}, \cdots, g_{i}))$

(cf. also Remark $2.3(1)$). Using the generalized smooth structure of $P(E)$ , we $m^{r}$

consider $\theta$ as a generalized smooth connection form. Hence, we have

3.3. COROLLARY. If $\theta_{\alpha}$ are the local connection forms of $\theta$ , over the open $cov_{1}$

$\mathscr{C}$ , then

(3.7) $\Gamma_{\alpha}(x)\cdot(w,y)=[((\phi_{\alpha}^{-1})^{*}\theta_{\alpha})_{x}(y)](w)$

for any $x\in\phi_{\alpha}(U_{\alpha}),$ $y\in B,$ $w=(w_{i})\in F$ .
$PR\infty F$ . By the very construction of $\theta$ and the fact that $\theta_{i}\equiv(\theta_{\alpha}^{i})_{\alpha\in I}$ , we conclu$($

that $\theta_{\alpha}=\varliminf\theta_{\alpha}^{i}$ . Therefore,

$[((\phi_{\alpha}^{-1})^{*}\theta_{a})_{x}(y)](w)=([((\phi_{\alpha}^{-1})^{*}\theta_{\alpha}^{i})_{X}(y)](w_{1}, \cdots, w_{i}))_{i\in N}$

$[(3.5)]$ $=([((\phi_{\alpha}^{-1})^{*}\omega_{\alpha}^{i})_{X}(y)](w_{i}))_{i\in N}$

$[(3.4)]$ $=(\Gamma_{\alpha}^{i}(x)\cdot(w_{i},y))_{i\in N}$

[Prop. 3.1] $=\Gamma_{\alpha}(x)\cdot(w,y)$ . $[$

Corollary 3.3 along with the definition of $\theta$ and the comments following Propositic
3.1, imply also



GENERALIZED FRAME BUNDLE 137

3.4. COROLLARY. There is a bijective correspondence between linear connections
$\nabla=\varliminf\nabla_{i}$ on $E$ and generalized connection forms $\theta$ on $P(E)$ .

Furthermore, for arbitrary linear connections on $E$ we prove

3.5. PROPOSITION. Let $\nabla$ be any linear connection on E. If we assume that $\nabla$

corresponds to a generalized connection form $\theta$ of $P(E)$ , via (3.7), then necessarily
$\nabla=\varliminf\nabla_{i}$ , where $\nabla_{i}$ is a linear connection on $E_{i}$ .

PROOF. Since $\theta$ is an $H(F)$-valued form and $H(F)=\lim H_{i}(F)$ , it is proved in [4]
that $\theta=\lim_{\leftarrow}\theta_{i}$ , where $\theta_{i}$ are connection forms of $P(E_{i})$ . Using (3.7) as well as equality
$\theta_{\alpha}=\varliminf\theta_{\alpha}^{i}$ , we check that $\Gamma_{\alpha}(x)=\varliminf\Gamma_{\alpha}^{i}(x)$ , which concludes the proof. $\square $

Summarizing the last results we obtain the following characterization.

3.6. THEOREM. A linear connection $\nabla$ on $E$ corresponds to a generalized connection
form $\theta$ on $P(E)$ if and only if $\nabla=\varliminf\nabla_{i}$ .
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