A Generalized Frame Bundle for Certain Fréchet Vector Bundles and Linear Connections

Efstathios VASSILIOU and George GALANIS

University of Athens
(Communicated by T. Nagano)

Abstract

Let $\left(E_{i}\right)_{i \in N}$ be a projective system of Banach vector bundles whose limit is a Fréchet bundle of fibre type \mathbf{F}. We construct a generalized bundle of frames $\mathbf{P}(E)$ of E by revising entirely the classical notion and by substituting $G L(\mathbf{F})$ with an appropriate enlarged structure group. This is imposed by the pathology of $G L(F)$, which renders meaningless the ordinary frame bundle. As a result, we prove that E is associated with $\mathbf{P}(E)$ and linear connections of E correspond to (principal) connections of $\mathbf{P}(E)$. In particular, the former are necessarily projective limits of connections on the bundles E_{i}.

0. Introduction.

The study of many geometrical entities of a vector bundle, such as connections, is reduced to the study of their counterparts on the corresponding principal bundle of frames. The idea works well for finite-dimensional and Banach bundles. However it fails if we move one step further and consider vector bundles of fibre type a Fréchet space \mathbf{F}, due to the topological pathology of $G L(\mathbf{F})$. Therefore, it seems to be meaningless to think of a Fréchet vector bundle as associated to its bundle of frames $P(E)$ (after all, how could the latter be defined as a principal bundle?) and to reduce linear connections on E to connections on $P(E)$.

The aim of the present paper is to overcome the previous impasse by a radical change of the classical notion of the bundle of frames, for the category of (Fréchet) vector bundles obtained as the limit of a projective system of Banach vector bundles. Such bundles occur quite naturally in many instances (e.g. projective limits of tangent bundles of manifolds and Lie groups [8], [9]; projective limits of jet bundles [11]). Outside this category, that is for arbitrary Fréchet vector bundles, the problem of defining an appropriate frame bundle remains open.

To be a little more specific, we start with a projective system $\left(E_{i}\right)_{i \in \mathbf{N}}$ of Banach vector bundles, with respective fibres \mathbf{F}_{i} also forming a projective system $\left\{\mathbf{F}_{i}, \rho_{j i}\right\}$. Under reasonable conditions, the projective limit $E=\lim E_{i}$ is a vector bundle of fibre type the Fréchet space $\mathbf{F}=\lim _{\longleftrightarrow} \mathbf{F}_{i}$. Then we replace the ordinary bundle of frames $P(E)$
with a new principal bundle $\mathbf{P}(E)$ whose structure group is

$$
H^{\circ}(\mathbf{F})=\left\{\left(f_{i}\right)_{i \in \mathbb{N}} \mid f_{i} \in \mathscr{L}_{i} \delta\left(\mathbf{F}_{i}\right): \rho_{j i} \circ f_{j}=f_{i}^{\circ} \circ \rho_{j i}, j \geq i\right\}
$$

We call $\mathbf{P}(E)$ the generalized frame bundle of E and we show that $\mathbf{P}(E)$ is the limit of a projective system of Banach principal bundles (Proposition 2.2), each one being, so to speak, an enlargement of an ordinary frame bundle. As a consequence, the first main result of the paper (Theorem 2.5) shows that, analogously to the classical case, E is associated with $\mathbf{P}(E)$.

The above association allows us to establish a correspondence between linear connections of E and principal connections of $\mathbf{P}(E)$. The crucial step here is the construction of a (generalized) connection on $\mathbf{P}(E)$, obtained from a particular system of connections on the Banach principal bundles producing $\mathbf{P}(E)$ (Theorem 3.2). As a byproduct of the previous situation we obtain the following characterization concluding the paper: a linear connection ∇ on E corresponds to a unique principal connection on $\mathbf{P}(E)$ if and only if $\nabla=\lim \nabla_{i}$, where ∇_{i} is a linear connection on E_{i}.

1. Preliminaries.

Some particular cases of projective systems of vector bundles and their limits have been considered, among other authors, by [8], [9], [11] and [13]. However, they do not study in depth the vector bundle structure of the limit, since they rather focus to various algebraic and/or topological properties.

Here we are mainly interested in the mere vector bundle structure of the limit of a projective system (over \mathbf{N}) of Banach vector bundles and its geometry viz. connections.

Since the previous projective limit is not always endowed with a vector bundle structure, in the sense of [1], [5], G. Galanis ([3]) proposed the following modified version of projective systems which are of interest to us.
1.1. Definition. Let $\left\{\left(E_{i}, B, \pi_{i}\right) ; f_{j i}\right\}_{i, j \in \mathbf{N}}$ be a projective system of Banach vector bundles, over the same base B, with corresponding fibres of type \mathbf{F}_{i}. The system is said to be strong if the following conditions are satisfied:
(i) $\mathbf{F}_{i}(i \in \mathbf{N})$ form a projective system with corresponding connecting morphisms $\rho_{j i}(j \geq i)$.
(ii) For any $b \in B$, there exist local trivializations (U, τ_{i}) of E_{i} respectively, such that the following diagram is commutative:

Under the above conditions it has been proved (cf. [3]) that the limit $E:=\lim E_{i}$ is a locally trivial fibre bundle over B, whose fibres are of type $\mathbf{F}:=\underset{\longleftrightarrow}{\lim } \mathbf{F}_{i}$.

As discussed in the Introduction, E cannot be considered as a vector bundle associated with its frame bundle (in the sense of [1]). In order to obtain a generalized frame bundle from which we fully recover E, we replace the structure group $G L(\mathbf{F})$ with an appropriate "enlarged" group $H^{\circ}(\mathbf{F})$, explained below.

More explicitly, we start with the following general situation (needed also in Section 3). Let \mathbf{E}, \mathbf{F} be two fixed Fréchet spaces, obtained as the limits of the corresponding N-projective systems $\left\{\mathbf{E}_{i} ; \sigma_{j i}\right\}$, $\left\{\mathbf{F}_{i} ; \rho_{j i}\right\}$. We denote by

$$
\begin{gathered}
H_{i}(\mathbf{E}, \mathbf{F}):=\left\{\left(f_{1}, \cdots, f_{i}\right) \mid f_{k} \in \mathscr{L}\left(\mathbf{E}_{k}, \mathbf{F}_{k}\right): \rho_{j k} \circ f_{j}=f_{k} \circ \sigma_{j k}, i \geq j \geq k\right\}, \\
H(\mathbf{E}, \mathbf{F}):=\left\{\left(f_{i}\right)_{i \in \mathbf{N}} \mid f_{i} \in \mathscr{L}\left(\mathbf{E}_{i}, \mathbf{F}_{i}\right): \rho_{j i} \circ{ }^{\circ} f_{j}=f_{i} \circ \sigma_{j i}, j \geq i\right\}
\end{gathered}
$$

It follows that $H_{i}(\mathbf{E}, \mathbf{F})($ resp. $H(\mathbf{E}, \mathbf{F}))$ is a Banach (resp. Fréchet) space as a closed subspace of $\prod_{j=1}^{i} \mathscr{L}\left(\mathbf{E}_{j}, \mathbf{F}_{j}\right)$ (resp. $\left.\prod_{j=1}^{\infty} \mathscr{L}\left(\mathbf{E}_{j}, \mathbf{F}_{j}\right)\right)$. Moreover, $\left\{H_{i}(\mathbf{E}, \mathbf{F}) ; h_{j i}\right\}_{i, j \in \mathbf{N}}$ is a projective system, where

$$
h_{j i}: H_{j}(\mathbf{E}, \mathbf{F}) \rightarrow H_{i}(\mathbf{E}, \mathbf{F}):\left(f_{1}, \cdots, f_{j}\right) \mapsto\left(f_{1}, \cdots, f_{i}\right), \quad j \geq i
$$

1.2. Proposition ([3]). $H(\mathbf{E}, \mathbf{F})=\varliminf_{\longleftarrow}^{\lim } H_{i}(\mathbf{E}, \mathbf{F})$, within the isomorphism

$$
\left(f_{1}, f_{2}, \cdots\right) \stackrel{(}{\cong}\left(\left(f_{1}\right),\left(f_{1}, f_{2}\right), \cdots\right)
$$

Restricting now to the case $\mathbf{E}=\mathbf{F}$, we obtain the groups

$$
\begin{aligned}
& H_{i}^{\circ}(\mathbf{F}):=H_{i}(\mathbf{F}, \mathbf{F}) \cap \prod_{j=1}^{i} \mathscr{L}_{i J}\left(\mathbf{F}_{j}\right) \\
& H^{\circ}(\mathbf{F}):=H(\mathbf{F}, \mathbf{F}) \cap \prod_{j=1}^{\infty} \mathscr{L}_{i \delta}\left(\mathbf{F}_{j}\right)
\end{aligned}
$$

where $\mathscr{L} i \delta\left(\mathbf{F}_{j}\right)$ is the group of all invertible elements of $\mathscr{L}\left(\mathbf{F}_{j}\right)$. As a result we have
1.3. Corollary. (i) Each $H_{i}^{\circ}(\mathbf{F})$, íN, is a Banach-Lie group modelled on $H_{i}(\mathbf{F}):=H_{i}(\mathbf{F}, \mathbf{F})$, and $H^{\circ}(\mathbf{F})$ is a topological group with the relative topology of $H(\mathbf{F}):=H(\mathbf{F}, \mathbf{F})$.
(ii) The limit $\lim _{\longleftarrow} H_{i}^{\circ}(\mathbf{F})$ exists and $H^{\circ}(\mathbf{F}) \equiv \lim H_{i}^{\circ}(\mathbf{F})$.

Under the previous notations the following holds.
1.4. Theorem ([3]). Let $\left\{E_{i} ; f_{j i}\right\}_{i, j \in \mathbf{N}}$ be a strong projective system of Banach vector bundles, as in Definition 1.1. Then $E:=\underset{\leftrightarrows}{\lim } E_{i}$ is a Fréchet vector bundle.

In particular, Theorem 1.4 implies that the structure of E is fully determined by a generalized cocycle of the form

$$
T_{U V}^{*}: U \cap V \rightarrow H^{\circ}(\mathbf{F})
$$

(U, V are in the open cover of the basis defined by Condition (ii) of Definition 1.1), which also determines the ordinary transition functions

$$
T_{U V}: U \cap V \rightarrow G L(\mathbf{F}) \subseteq \mathscr{L}(\mathbf{F})
$$

by $T_{U V}=\varepsilon \circ T_{U V}^{*}$, where

$$
\varepsilon: H^{\circ}(\mathbf{F}) \rightarrow G L(\mathbf{F}): \quad\left(f_{i}\right) \mapsto \lim f_{i} .
$$

Each $T_{U V}^{*}$ is thought of as a smooth map since it can be considered as taking values in the Fréchet space $H(\mathbf{F}) \supseteq H^{\circ}(\mathbf{F})$. For later use, we also note that, in virtue of Definition 1.1, the local trivializations of \mathbf{E} have the form $\left(U, \lim \tau_{i}\right)$.

2. A generalized type of frame bundle.

As alluded to in the Introduction, the ordinary definition of the frame bundle of the Fréchet vector bundle $E=\underset{\longleftarrow}{\lim } E_{i}$ has no meaning at all. Therefore, beside the replacement of the structure group $G L(\mathbf{F})$ by $H^{\circ}(\mathbf{F})$ discussed in the preceding section, we need to revise also the very notion of the frame bundle. To this end we proceed as follows:

We fix a strong projective system $\left\{E_{i}, f_{i j}\right\}_{i, j \in \mathbf{N}}$ as in Definition 1.1. For each Banach vector bundle E_{i} we define the space

$$
\mathbf{P}\left(E_{i}\right):=\bigcup_{b \in B} H_{i}^{\circ}\left(\mathbf{F}, E_{b}\right)
$$

if E_{b} denotes the fibre of E over $b \in B$. Here we use the bold character \mathbf{P} in order to distinguish $\mathbf{P}\left(E_{i}\right)$ from the ordinary bundle of frames $P\left(E_{i}\right)$ in N. Bourbaki's [1] notation.
2.1. Lemma. $\mathbf{P}\left(E_{i}\right)$ is a principal fibre bundle over B, with structure group $H_{i}^{\circ}(\mathbf{F})$ and projection $\mathbf{p}_{i}: \mathbf{P}\left(E_{i}\right) \rightarrow B$, where

$$
\mathbf{p}_{i}\left(g_{1}, \cdots, g_{i}\right):=b ; \quad\left(g_{1}, \cdots, g_{i}\right) \in H_{i}^{\circ}\left(\mathbf{F}, E_{b}\right) .
$$

Proof. First we determine a smooth structure on $\mathbf{P}\left(E_{i}\right)$: for any $u=\left(g_{1}, \cdots, g_{i}\right) \in$ $\mathbf{P}\left(E_{i}\right)$ with $\mathbf{p}_{i}(u)=b$, we choose the local trivialization $\left(U, \lim \tau_{i}\right)$ of E (cf. Definition 1.1) with $b \in U$ and define the bijection $\Phi_{i}: \mathbf{p}_{i}^{-1}(U) \rightarrow U \times H_{i}^{\circ}(\mathbf{F})$ given by

$$
\begin{equation*}
\Phi_{i}(u):=\left(b ; \tau_{1 b} \circ g_{1}, \cdots, \tau_{i b} \circ g_{i}\right) ; \quad \tau_{k b}:=\tau_{k} \mid \pi_{k}^{-1}(b) . \tag{2.1}
\end{equation*}
$$

Now considering another bijection Ψ_{i} with respect to $\left(V, \lim \sigma_{i}\right), U \cap V \neq \varnothing$, we check that $\Psi_{i} \circ \Phi_{i}^{-1}$ is a diffeomorphism. Thus, by the gluing lemma (cf. e.g. [1; $\left.\mathbf{N}^{0} 5.2 .4\right]$), $\mathbf{P}\left(E_{i}\right)$ is indeed a Banach manifold. This structure turns the quadruple $\left(\mathbf{P}\left(E_{i}\right), H_{i}^{\circ}(\mathbf{F}), B, \mathbf{p}_{i}\right)$ into a Banach principal fibre bundle with $H_{i}^{\circ}(\mathbf{F})$ acting on $\mathbf{P}\left(E_{i}\right)$ in the obvious way.

Inducing the connecting morphisms

$$
\begin{gather*}
r_{j i}: \mathbf{P}\left(E_{j}\right) \rightarrow \mathbf{P}\left(E_{i}\right):\left(g_{1}, \cdots, g_{i}, \cdots, g_{j}\right) \mapsto\left(g_{1}, \cdots, g_{i}\right) \tag{2.2}\\
\left.h_{j i} \equiv h_{j i}\right|_{H_{j}^{\circ}(\mathbf{F})}: H_{j}^{\circ}(\mathbf{F}) \rightarrow H_{i}^{\circ}(\mathbf{F}), \tag{2.3}
\end{gather*}
$$

for any $j \geq i$, we obtain
2.2. Proposition. The following conditions are true:
(i) $\left\{\left(\mathbf{P}\left(E_{i}\right), H_{i}^{\circ}(\mathbf{F}), B, \mathbf{p}_{i}\right) ;\left(r_{i i}, h_{j i}, i d_{B}\right)\right\}_{i, j \in \mathbf{N}}$ is a projective system of Banach principal fibre bundles.
(ii) $\mathbf{P}(E):=\lim \mathbf{P}\left(E_{i}\right)$ is a locally trivial topological principal fibre bundle with structure group $\dot{H}^{\circ}(\mathbf{F})$.

Proof. The first condition is immediate, therefore $\mathbf{P}(E)$ exists. Now taking any $b \in B$ and considering the family $\left\{\Phi_{i} ; i \in \mathbf{N}\right\}$, we check that the diagram

is commutative. As a result, the morphism

$$
\begin{equation*}
\Phi:=\lim _{\longleftrightarrow} \Phi_{i}: \lim _{\longleftrightarrow} \mathbf{p}_{i}^{-1}(U) \rightarrow U \times H^{\circ}(\mathbf{F}) \tag{2.4}
\end{equation*}
$$

exists and determines a topological trivialization of $\mathbf{P}(E)$ over U .
2.3. Remarks. 1) The elements of $\mathbf{P}(E)$ are of the form $\left(g_{i}\right)_{i \in \mathbf{N}}$, where $g_{i} \in \mathbf{P}\left(E_{i}\right)$, since $\lim _{i} g_{i}$ exists.
2) The homomorphism Φ defined by (2.4) is not smooth in the ordinary sense, since $H^{\circ}(\mathbf{F})$ is not a Lie group. However, following the customary procedure, Φ is called a (generalized) diffeomorphism, as being a projective limit of diffeomorphisms. Besides, if Φ is thought of as taking values in (the Fréchet manifold) $H(\mathbf{F})$, then we can show that it is smooth in the sense of J. Leslie ([6], [7]).
3) With the previous terminology, $\mathbf{P}(E)$ is a generalized smooth principal Frechet bundle.
2.4. Definition. Under the considerations of Remark 2.3 (3) above, $\mathbf{P}(E)$ is said to be the generalized frame bundle of E.

The significance of $\mathbf{P}(E)$ lies in the fact that E is associated with $\mathbf{P}(E)$, as it is shown in the next main result. Before the statement, we introduce a natural action of $H^{\circ}(\mathbf{F})$ on (the right of) $\mathbf{P}(E) \times \mathbf{F}$, given by

$$
\left(\left(g_{i}\right),\left(u_{i}\right)\right) \cdot\left(f_{i}\right):=\left(\left(g_{i}{ }_{i} f_{i}\right),\left(f_{i}^{-1}\left(u_{i}\right)\right)\right) .
$$

Note that the family $\left(g_{i} \circ f_{i}\right)$ belongs to $\mathbf{P}(E)$, since $\lim _{\longleftarrow} g_{i}$ and $\lim _{\longleftrightarrow} f_{i}$ already exist.
2.5. TheOrem. $\bar{E}:=\mathbf{P}(E) \times \mathbf{F} / H^{\circ}(\mathbf{F})$ is a Fréchet vector bundle, isomorphic to E.

Proof. We define the projection

$$
\bar{\pi}: \bar{E} \rightarrow B:\left[\left(g_{i}\right),\left(u_{i}\right)\right] \mapsto \mathbf{p}\left(\left(g_{i}\right)\right)
$$

and we consider the trivializations $\left(U, \lim \tau_{i}\right)$ as well as the corresponding pairs (U, Φ) of $\mathbf{P}(E)$ (in this respect cf. also (2.4)). Then we see that the mappings

$$
\bar{\Phi}: \bar{\pi}^{-1}(U) \rightarrow U \times \mathbf{F}:\left[\left(g_{i}\right),\left(u_{i}\right)\right] \mapsto\left(\mathbf{p}\left(\left(g_{i}\right)\right), \Phi_{2}\left(\left(g_{i}\right)\right)\left(\left(u_{i}\right)\right)\right),
$$

where $\Phi_{2}:=\operatorname{pr}_{2} \circ \Phi$ and pr_{2} is the projection to the second factor, determine a differential structure on \bar{E}. This is again a consequence of the gluing lemma (cf. also the proof of Lemma 2.1).

Finally, we check that the mapping $h: \bar{E} \rightarrow E$, given by

$$
h\left(\left[\left(g_{i}\right),\left(u_{i}\right)\right]\right):=\left(g_{i}\left(u_{i}\right)\right),
$$

is a bijection identifying each Φ with $\lim _{\leftrightarrows} \tau_{i}$. This concludes the proof.
2.6. Remark. Thinking of Φ as a (generalized) smooth morphism in the sense of Remark 2.3(2), h is also smooth and (h, id_{B}) may be considered as an isomorphism of Fréchet vector bundles.

3. Linear connections.

In this section we fix again a strong projective system of vector bundles, each bundle E_{i} of which is endowed with a linear connection $\nabla_{i}: T E_{i} \rightarrow E_{i}$ (in the sense of [14] and [2]). We further assume that, for any $j \geq i$,

$$
\begin{equation*}
f_{j i} \circ \nabla_{j}=\nabla_{i} \circ T f_{j i} \tag{3.1}
\end{equation*}
$$

that is ∇_{j} and ∇_{i} are $f_{j i}$-conjugate (cf. also [12]). If we denote by $\Gamma_{U}^{i}: \phi(U) \rightarrow \mathscr{L}\left(\mathbf{F}_{i}, \mathscr{L}\left(\mathbf{B}, \mathbf{F}_{i}\right)\right)$ the Christoffel symbols of ∇_{i}, with respect to the open cover of Definition 1.1 (here ϕ is the coordinate map of U and \mathbf{B} the ambient space of the chart), then (3.1) implies that

$$
\begin{equation*}
\bar{\rho}_{j i} \circ \Gamma_{U}^{j}(x)=\Gamma_{U}^{i}(x) \circ \rho_{j i} \tag{3.2}
\end{equation*}
$$

where $\bar{\rho}_{j i}(f):=\rho_{j i} \circ f, f \in \mathscr{L}\left(\mathbf{B}, \mathbf{F}_{j}\right)$ (for details we also refer to the general case of [12; Prop. 3.7]).
3.1. Proposition ([3]). $\nabla:=\lim _{\longleftrightarrow} \nabla_{i}$ is a linear connection on E with Christoffel symbols Γ_{U} given by

$$
\Gamma_{U}(x)=\lim _{\longleftarrow} \Gamma_{U}^{i}(x) ; \quad x \in U .
$$

Motivated by the classical description of linear connections as connection forms
on the corresponding bundle of frames, we construct a family of principal connections θ_{i} on the bundles $\mathbf{P}\left(E_{i}\right)$ (cf. Lemma 2.1) from which we obtain a generalized principal connection θ on $\mathbf{P}(E)$, which ultimately is related with ∇.

First we construct the family θ_{i} using local connection forms. This is convenient in the context of projective limits since all the bundles E_{i} have the same basis.

We fix again an open cover $\mathscr{C}=\left(U_{\alpha}\right)_{\alpha \in I}$, as in Definition 1.1, (the need for indices will be apparent in the use of local connection forms in the next result). Recalling the notations (2.2) and (2.3), we are in a position to prove the following main
3.2. Theorem. Each linear connection ∇_{i} gives rise to a principal connection θ_{i} on $\mathbf{P}\left(E_{i}\right)$. Moreover, for $j \geq i, \theta_{j}$ and θ_{i} are $\left(r_{j i}, h_{j i}, \mathrm{id}_{B}\right)$-conjugate, i.e.

$$
\begin{equation*}
r_{j i}^{*} \theta_{i}=\bar{h}_{j i} \cdot \theta_{j}, \tag{3.3}
\end{equation*}
$$

where $\bar{h}_{j i}$ is the Lie algebra homomorphism induced by $h_{j i}$.
Proof. Each linear connection ∇_{i} determines a connection form

$$
\omega_{i} \in \bigwedge^{1}\left(P\left(E_{i}\right), \mathscr{G} \ell\left(\mathbf{F}_{i}\right)\right), \quad \mathscr{G} \ell\left(\mathbf{F}_{i}\right) \equiv \mathscr{L}\left(\mathbf{F}_{i}\right)
$$

on the ordinary frame bundle $P\left(E_{i}\right)$ of E_{i}. The corresponding Christoffel symbols $\Gamma_{\alpha}^{i}: \phi_{\alpha}\left(U_{\alpha}\right) \rightarrow \mathscr{L}\left(\mathbf{F}_{i}, \mathscr{L}\left(\mathbf{B}, \mathbf{F}_{i}\right)\right)$ of ∇_{i} and the local connection forms $\omega_{\alpha}^{i} \in \bigwedge^{1}\left(U_{\alpha}, \mathscr{G} \ell\left(\mathbf{F}_{i}\right)\right)$ of ω_{i}, with respect to \mathscr{C}, are related by

$$
\begin{equation*}
\Gamma_{\alpha}^{i}(x)(w, y)=\left[\left(\left(\phi_{\alpha}^{-1}\right)^{*} \omega_{\alpha}^{i}\right)_{x} \cdot y\right](w), \tag{3.4}
\end{equation*}
$$

for every $x \in \phi_{\alpha}\left(U_{\alpha}\right), y \in \mathbf{B}, w \in \mathbf{F}_{i}$ (for relevant details cf. [12; Corollary 2.3]). Hence, for any $i \in \mathbf{N}$ and $\alpha \in I$, we define the (local) differential 1-forms $\theta_{\alpha}^{i} \in \bigwedge^{1}\left(U_{\alpha}, H_{i}(\mathbf{F})\right)$ given by

$$
\begin{equation*}
\left(\theta_{\alpha}^{i}\right)_{b}(v):=\left(\left(\omega_{\alpha}^{1}\right)_{b}(v), \cdots,\left(\omega_{\alpha}^{i}\right)_{b}(v)\right) ; \quad b \in U_{\alpha}, v \in T_{b} B . \tag{3.5}
\end{equation*}
$$

After some tedious calculations, we check that (3.2) and (3.4) ensure that θ_{α}^{i} are indeed $H_{i}(\mathbf{F})$-valued forms.

Moreover, the ordinary compatibility conditions of the local connection forms $\left(\omega_{\alpha}^{i}\right)_{\alpha \in I}$, for each $i \in \mathbf{N}$, imply the analogous condition

$$
\begin{equation*}
\theta_{\beta}^{i}=\operatorname{Ad}_{i}\left(\mathbf{g}_{\alpha \beta}^{-1}\right) \cdot \theta_{\alpha}^{i}+\mathbf{g}_{\alpha \beta}^{-1} \cdot d \mathbf{g}_{\alpha \beta} . \tag{3.6}
\end{equation*}
$$

Here, $\mathbf{g}_{\alpha \beta}: U_{\alpha \beta}:=U_{\alpha} \cap U_{\beta} \rightarrow H_{i}^{\circ}(\mathbf{F})$ are the transition functions of $\mathbf{P}\left(E_{i}\right)$ and Ad_{i} is the adjoint representation of $H_{i}^{\circ}(\mathbf{F})$. The proof of this equality is based on (3.5) and the fact that

$$
\mathbf{g}_{\alpha \beta}(x)=\left(g_{\alpha \beta}^{1}(x), \cdots, g_{\alpha \beta}^{i}(x)\right) ; \quad x \in U_{\alpha \beta},
$$

where $\left(g_{\alpha \beta}^{k}\right)_{\alpha, \beta \in I}$ are the transition functions of $P\left(E_{k}\right), k \in \mathbf{N}$. Therefore, each family $\left(\theta_{\alpha}^{i}\right)_{\alpha \in I}$ determines a unique principal connection (form) θ_{i} (with local connection forms given precisely by the previous family).

Finally, for the proof of (3.3) we distinguish the following cases (cf. also e.g. [10]):
i) Let $u \in T_{q}\left(\mathbf{P}\left(E_{j}\right)\right)$ be any non-vertical vector at $q \in \mathbf{P}\left(E_{j}\right)$ with $\mathbf{p}_{j}(q)=b \in U_{\alpha}$. Then there exists a smooth local section $s_{j}: U \rightarrow \mathbf{P}\left(E_{j}\right)\left(U \subseteq U_{\alpha}\right.$ some open neighborhood of b) with $s_{j}(b)=q$ and $T_{q}\left(s_{j}{ }^{\circ} \mathbf{p}_{j}\right)(u)=u$. If $\mathbf{g}_{\alpha}^{j}: U \rightarrow H_{j}^{\circ}(\mathbf{F})$ is the smooth map connecting the natural local section s_{α}^{j} of $\mathbf{P}\left(E_{j}\right)$ with s_{j}, i.e. $s_{j}=s_{\alpha}^{j} \cdot \mathbf{g}_{\alpha}^{j}$, then

$$
\theta_{j}(u)=\operatorname{Ad}_{j}\left(\mathbf{g}_{\alpha}^{j}(b)^{-1}\right) \cdot\left(\mathbf{p}_{j}^{*} \theta_{\alpha}^{j}\right)(u)+\left(\mathbf{g}_{\alpha}^{j}\right)^{-1} \cdot d \mathbf{g}_{\alpha}^{j} .
$$

The last equality along with its counterpart for θ_{i} and the vector $\operatorname{Tr}_{j i}(u)$ (obtained by considering the local section $s_{i}=r_{j i}{ }^{\circ} s_{j}$ and the morphism $\mathbf{g}_{\alpha}^{i}=r_{j i}{ }^{\circ} \mathbf{g}_{\alpha}^{j}$) prove (3.3) in the present case.
ii) Let u be any vertical vector at q, i.e. $u \in V_{q}\left(\mathbf{P}\left(E_{j}\right)\right)$. In this case there exists a left invariant vector field

$$
A_{j} \in \mathscr{L}\left(H_{j}^{\circ}(\mathbf{F})\right) \equiv H_{j}(\mathbf{F})
$$

such that $u=A_{j}^{*}(q)$. Hence $\theta_{j}(u)=A_{j}^{*}$. On the other hand,

$$
\theta_{i}\left(\operatorname{Tr}_{j i}(u)\right)=\left(h_{j i} \circ A_{j}\right)^{*}\left(r_{j i}(q)\right)
$$

from which we get (3.3) and complete the proof.
Condition (3.3) of Theorem 3.2 now allows one to determine the following 1 -form $\theta \in \bigwedge^{1}(\mathbf{P}(E), H(F))$, with

$$
\theta\left(\left(g_{i}\right)\right):=\lim _{\longleftrightarrow}\left(\theta_{i}\left(g_{1}, \cdots, g_{i}\right)\right)
$$

(cf. also Remark 2.3(1)). Using the generalized smooth structure of $\mathbf{P}(E)$, we may consider θ as a generalized smooth connection form. Hence, we have
3.3. Corollary. If θ_{α} are the local connection forms of θ, over the open cover \mathscr{C}, then

$$
\begin{equation*}
\Gamma_{\alpha}(x) \cdot(w, y)=\left[\left(\left(\phi_{\alpha}^{-1}\right)^{*} \theta_{\alpha}\right)_{x}(y)\right](w) \tag{3.7}
\end{equation*}
$$

for any $x \in \phi_{\alpha}\left(U_{\alpha}\right), y \in \mathbf{B}, w=\left(w_{i}\right) \in \mathbf{F}$.
Proof. By the very construction of θ and the fact that $\theta_{i} \equiv\left(\theta_{\alpha}^{i}\right)_{\alpha \in I}$, we conclude that $\theta_{\alpha}=\lim \theta_{\alpha}^{i}$. Therefore,

$$
\begin{align*}
{\left[\left(\left(\phi_{\alpha}^{-1}\right)^{*} \theta_{\alpha}\right)_{x}(y)\right](w) } & =\left(\left[\left(\left(\phi_{\alpha}^{-1}\right)^{*} \theta_{\alpha}^{i}\right)_{x}(y)\right]\left(w_{1}, \cdots, w_{i}\right)\right)_{i \in \mathbf{N}} \\
& =\left(\left[\left(\left(\phi_{\alpha}^{-1}\right)^{*} \omega_{\alpha}^{i}\right)_{x}(y)\right]\left(w_{i}\right)\right)_{i \in \mathbf{N}} \tag{3.5}\\
& =\left(\Gamma_{\alpha}^{i}(x) \cdot\left(w_{i}, y\right)\right)_{i \in \mathbf{N}} \tag{3.4}\\
& =\Gamma_{\alpha}(x) \cdot(w, y) .
\end{align*}
$$

[Prop. 3.1]
Corollary 3.3 along with the definition of θ and the comments following Proposition 3.1, imply also
3.4. Corollary. There is a bijective correspondence between linear connections $\nabla=\lim _{i} \nabla_{i}$ on E and generalized connection forms θ on $\mathbf{P}(E)$.

Furthermore, for arbitrary linear connections on E we prove
3.5. Proposition. Let ∇ be any linear connection on E. If we assume that ∇ corresponds to a generalized connection form θ of $\mathbf{P}(E)$, via (3.7), then necessarily $\nabla=\lim _{\hookleftarrow} \nabla_{i}$, where ∇_{i} is a linear connection on E_{i}.

Proof. Since θ is an $H(\mathbf{F})$-valued form and $H(\mathbf{F})=\lim H_{i}(\mathbf{F})$, it is proved in [4] that $\theta=\underset{\leftarrow}{\lim } \theta_{i}$, where θ_{i} are connection forms of $\mathbf{P}\left(E_{i}\right)$. Using (3.7) as well as equality $\theta_{\alpha}=\lim \theta_{\alpha}^{\overleftarrow{i}}$, we check that $\Gamma_{\alpha}(x)=\lim \Gamma_{\alpha}^{i}(x)$, which concludes the proof.

Summarizing the last results we obtain the following characterization.
3.6. Theorem. A linear connection ∇ on E corresponds to a generalized connection form θ on $\mathbf{P}(E)$ if and only if $\nabla=\lim \nabla_{i}$.

References

[1] N. Bourbaki, Variétés différentielles et analytiques, Fascicule de Résultats 1-7, Herman (1967).
[2] P. Flaschel and W. Klingenberg, Riemannsche Hilbertmannigfaltigkeiten, Periodische Geodätische, Lecture Notes in Math. 282 (1972), Springer.
[3] G. Galanis, Projective limits of vector bundles, Portugaliae Math. (to appear).
[4] G. Galanis, On a type of Fréchet principal bundles over Banach base (submitted for publication).
[5] S. Lang, Differential Manifolds, Addison-Wesley (1972).
[6] J. A. Leslie, On a differential structure for the group of diffeomorphisms, Topology 6 (1967), 263-271.
[7] J. A. Leslie, Some Frobenious theorems in global analysis, J. Differential Geom. 2 (1968), 279-297.
[8] H. Omori, On the group of diffeomorphisms on a compact manifold, Proc. Symp. Pure Appl. Math. 15 (1970), Amer. Math. Soc., 167-183.
[9] H. Omori, Infinite Dimensional Lie Transformation Groups, Lecture Notes in Math. 427 (1974), Springer.
[10] Q. M. Pham, Introduction à la géometriè des variétés différentiables, Dunod (1969).
[11] F. Takens, A global version of the inverse problem of the calculus of variations, J. Differential Geom. 14 (1979), 543-562.
[12] E. Vassiliou, Transformations of linear connections, Period. Math. Hungar. 13 (1982), 289-308.
[13] M. E. Verona, A de Rham theorem for generalised manifolds, Proc. Edinburg Math. Soc. 22 (1979), 127-135.
[14] J. Vilms, Connections on tangent bundles, J. Differential Geom. 1 (1967), 235-243.

[^0]
[^0]: Present Address:
 University of Athens, Department of Mathematics, Panepistimiopolis, Athens 157 84, Greece.
 e-mail: evassil@atlas.uoa.gr
 ggalanis@atlas.uoa.gr

