The Topological Symmetry Group of a Canonically Embedded Complete Graph in S^{3}

Chie NODA
Tokyo Woman's Christian University
(Communicated by S. Suzuki)

Abstract

We show that the topological symmetry group of a canonically embedded complete graph of $n \geq 7$ vertices in the 3 -sphere is isomorphic to a dihedral group of order $2 n$.

1. Introduction.

Throughout this paper graphs are assumed to be finite and simple. The topological symmetry group of an embedded graph in the three-sphere S^{3} was introduced by Jonathan Simon on his lecture at Tokyo in June 1991. On the other hand Takashi Otsuki defined a canonical embedding of a complete graph K_{n} of n vertices into S^{3} [2] [8]. The purpose of this paper is to show that the topological symmetry group of a canonical embedding of K_{n} is isomorphic to a dihedral group D_{n} of order $2 n$ for $n \geq 7$.

Let $V(G)$ be the set of the vertices of G. Let $\operatorname{Aut}(G)$ be the automorphism group of G. Namely

Aut $(G)=\{h: V(G) \rightarrow V(G) \mid h$ is a bijection preserving the adjacency of the vertices $\}$.
Let $f: G \rightarrow S^{3}$ be an embedding. Then the topological symmetry group of f, denoted by $\operatorname{TSG}(f)$, is a subgroup of $\operatorname{Aut}(G)$ defined by
$\operatorname{TSG}(f)=\left\{h \in \operatorname{Aut}(G) \mid\right.$ there is a homeomorphism $\varphi: S^{3} \rightarrow S^{3}$
with $\varphi(f(G))=f(G)$ such that $\left.f \circ h=\left.\varphi \circ f\right|_{V(G)}\right\}$.
We remark that φ is not necessarily orientation preserving. Thus our definition of $\operatorname{TSG}(f)$ is somewhat different from that in [7] and [9].

Let $P_{1}, P_{2}, \cdots, P_{m}$ be smoothly embedded disks in S^{3} such that $P_{i} \cap P_{j}=\partial P_{i}=\partial P_{j}$ for $1 \leq i<j \leq m$. Let $B_{m}=\bigcup_{i=1}^{m} P_{i}$ and we call it an m-bud. We further assume that the disks are arranged in this order in S^{3}. Namely $P_{i} \cup P_{i+1}$ bounds a 3-ball Q_{i} in S^{3} such that $Q_{i} \cap B_{m}=\partial Q_{i}=P_{i} \cup P_{i+1}$, here we consider the suffixes modulo m, i.e. $m+1=1$.

[^0]We set $\partial P_{1}=\partial P_{2}=\cdots=\partial P_{m}=C$. An n-cycle is a graph with n vertices that is homeomorphic to a circle. An n-cycle of a graph G is a subgraph of G that is an n-cycle. Let K_{n} be the complete graph on $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$. We consider the suffixes modulo n. Let C_{n} be an n-cycle of K_{n} consisting of the edges joining v_{i} and v_{i+1}. First we consider the case that $n=2 k$ for some integer k. Let $f_{n}: K_{n} \rightarrow B_{k} \subset S^{3}$ be an embedding illustrated in Fig. 1.1 where $\hat{v}_{i}=f_{n}\left(v_{i}\right)$. Next we consider the case $n=2 k+1$ for some integer k. Let $f_{n}: K_{n} \rightarrow B_{k+1} \subset S^{3}$ be an embedding illustrated in Fig. 1.2. Then we say that the embedding $f_{n}: K_{n} \rightarrow S^{3}$ is a canonical bud presentation of K_{n} with respect to the cycle C_{n}.

Figure 1.2

Let $D_{n}=\operatorname{Aut}\left(C_{n}\right) \subset \operatorname{Aut}\left(K_{n}\right)$ be the dihedral group of order $2 n$. Then we have the following main theorem.

Theorem 1.1. Suppose that $n \geq 7$, then $\operatorname{TSG}\left(f_{n}\right)=D_{n}$.
In section 2 we will give a proof of Theorem 1.1.
We note that a bud in S^{3} is a one-point compactification of a book in R^{3}. Therefore a bud presentation is a book presentation in the sense of [2] [5] [6] [7] [8] etc. Our f_{n} is a left canonical book presentation in [8]. A right canonical book presentation is obtained from a left one by an orientation reversing homeomorphism of S^{3}. Therefore they have isomorphic topological symmetry groups.

In section 3 we consider bud presentations with $n \leq 7$.
We refer the reader to [3] and [4] for related results on topological symmetries of complete graphs in S^{3}.

2. Proof of Theorem 1.1.

We divide the proof of Theorem 1.1 into the following two lemmas.
Lemma 2.1. $\operatorname{TSG}\left(f_{n}\right) \supset D_{n}$.
Lemma 2.2. $\operatorname{TSG}\left(f_{n}\right) \subset D_{n}$.
Proof of Lemma 2.1. Let $\rho: V\left(K_{n}\right) \rightarrow V\left(K_{n}\right)$ be a bijection defined by $\rho\left(v_{i}\right)=v_{i+1}$. Let $\tau: V\left(K_{n}\right) \rightarrow V\left(K_{n}\right)$ be a bijection defined by $\tau\left(v_{i}\right)=v_{n+2-i}$. Then $D_{n}=\operatorname{Aut}\left(C_{n}\right)$ is generated by ρ and τ. Therefore it is sufficient to show that $\rho, \tau \in \operatorname{TSG}\left(f_{n}\right)$. First we consider the case $n=2 k$. Then ρ is realized by a $2 \pi / n$ rotation of S^{3} along C followed by a $2 \pi / k$ rotation of S^{3} around C. By a π rotation of S^{3} around the edge $\hat{v}_{1} \hat{v}_{k+1}$ we have an embedding illustrated in Fig. 2.1.

Figure 2.1
By the result of Otsuki [2] [8] we have that the image of this embedding is deformed into that of f_{n} by an ambient isotopy of S^{3} fixing the vertices. Thus τ is
realized by a homeomorphism of S^{3}. The case $n=2 k+1$ is similar. But we need an additional deformation. That is a translation of half of the edges in P_{i} into P_{i+1}. More precisely, suppose that P_{i+1} contains just k edges as P_{k+1} in Fig. 1.2. Then some k edges in P_{i} are transformed into P_{i+1} by an ambient isotopy fixing the vertices. Now the proof is analogous. We omit the details.

Let $\left\{v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{i}}\right\}$ be a subset of $V\left(K_{n}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ such that $i_{1}<i_{2}<\cdots<i_{l}$. Let C_{l} be a cycle consisting of the edges joining $v_{i_{j}}$ and $v_{i_{j+1}}$. Let K_{l} be a subgraph of K_{n} induced by $\left\{v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{i}}\right\}$. Then K_{l} is a complete graph of l vertices. It is shown in [8] that $\left.f_{n}\right|_{K_{l}}$ is ambient isotopic to a canonical bud presentation of K_{l} with respect to C_{l}.

Proof of Lemma 2.2. Case 1. $n=7$. It is not hard to check that $f_{7}\left(K_{7}\right)$ contains just one nontrivial knot as illustrated in Fig. 2.2, cf. [8].

Figure 2.2
Therefore $\operatorname{TSG}\left(f_{7}\right)$ is a subgroup of $\operatorname{Aut}\left(C_{7}^{\prime}\right)$ where C_{7}^{\prime} is the cycle consisting of the edges joining v_{i} and v_{i+2}. Since $\operatorname{Aut}\left(C_{7}^{\prime}\right)=\operatorname{Aut}\left(C_{7}\right)$ we have the result.

Case 2. $n=8$. Let H be a subgraph of K_{8} consisting of the edges of C_{8} and the edges joining v_{i} and v_{i+4}. Then by the results mentioned above we have that no edges in $f_{8}(H)$ are contained in a nontrivially knotted 7-cycle and other edges are contained in a knotted 7 -cycle. Therefore we have $\operatorname{TSG}\left(f_{8}\right) \subset \operatorname{Aut}(H)$. It is easy to see $\operatorname{Aut}(H)=$ $\operatorname{Aut}\left(C_{8}\right)$.

Case 3. $n \geq 9$. Similarly we have that an edge in $f_{n}\left(K_{n}\right)$ is on a knotted 7-cycle if and only if the edge is not on $f_{n}\left(C_{n}\right)$. Thus $\operatorname{TSG}\left(f_{n}\right) \subset \operatorname{Aut}\left(C_{n}\right)$.

3. Minimal bud presentations.

An embedding $f: K_{n} \rightarrow B_{m} \subset S^{3}$ is called a bud presentation if $f^{-1}(C)=V\left(K_{n}\right)$. It is shown in [1] that $m \geq n / 2$ is a necessary and sufficient condition for the existence of a
bud presentation $f: K_{n} \rightarrow B_{m}$. A bud presentation is called minimal if $n=2 m$ or $n=2 m-1$. We remark here that in case $n=2 m-1$ our minimal bud presentation is slightly different from a minimal book presentation in [2] and [8]. Suppose that $n \leq 6$. Then $m \leq 3$. Since P_{i} and P_{i+1} are transformed into each other by an orientation reversing homeomorphism of S^{3} fixing P_{i+2} we have that a minimal bud presentation is a canonical bud presentation when $n \leq 6$, cf [2].

The following results are shown by Yoshimatsu and Toba respectively.
Theorem 3.1 [9]. Let $n \leq 5$. Let $f_{n}: K_{n} \rightarrow S^{3}$ be a minimal (hence canonical) bud presentation. Then $\operatorname{TSG}\left(f_{n}\right)=\operatorname{Aut}\left(K_{n}\right) \cong S_{n}$ where S_{n} is the symmetric group on n points.

Sketch proof. The case $n \leq 4$ is easy. We can view $f_{5}\left(K_{5}\right)$ as a 1 -skeleton of a 4 -simplex where S^{3} is viewed as the boundary of the 4 -simplex. Thus we have $\operatorname{TSG}\left(f_{5}\right)=$ $\operatorname{Aut}\left(K_{5}\right)$.

Theorem 3.2 [7]. Let $f_{6}: K_{6} \rightarrow S^{3}$ be a minimal (hence canonical) bud presentation. Then $\operatorname{TSG}\left(f_{6}\right)$ is isomorphic to $S_{2}\left[S_{3}\right]$ where $S_{2}\left[S_{3}\right]$ is the automorphism group of a disjoint union of two 3-cycles.

Sketch proof. The image $f_{6}\left(K_{6}\right)$ contains just one Hopf link of a disjoint union of two 3-cycles. We can see that other edges are placed in a symmetric mannar with respect to this Hopf link.

Example 3.3. Let $f: K_{7} \rightarrow S^{3}$ be a minimal bud presentation illustrated in Fig. 3.1. Then f is not a canonical bud presentation with respect to any 7 -cycle. In fact $f\left(K_{7}\right)$ contains a 6 -cycle trefoil $\hat{v}_{1} \hat{v}_{4} \hat{v}_{7} \hat{v}_{5} \hat{v}_{3} \hat{v}_{6} \hat{v}_{1}$.

Figure 3.1

Acknowledgement. The author wishes to thank Professor Kazuaki Kobayashi for his continuous guidance at Tokyo Woman's Christian University. Furthermore the author also wishes to thank the referee for his (or her) helpful comments to improve
this paper.

References

[1] F. Bernhart and P. C. Kainen, The book thickness of a graph, J. Combin. Theory Ser. B 27 (1979), 320-331.
[2] T. Endo and T. Otsuki, Notes on spatial representations of graphs, Hokkaido Math. J. 23 (1994), 383-398.
[3] E. Flapan, Rigidity of graph symmetries in the 3-sphere, J. Knot Theory Ram. 4 (1995), 373-388.
[4] E. Flapan and N. Weaver, Intrinsic chirality of complete graphs, Proc. Amer. Math. Soc. 115 (1992), 233-236.
[5] K. Kobayashi, Standard spatial graph, Hokkaido Math. J. 21 (1992), 117-140.
[6] K. Kobayashi, Book presentations and local unknottedness of spatial graphs, Kobe J. Math. 10 (1993), 161-171.
[7] K. Kobayashi and C. Toba, Topological symmetry group of spatial graphs, Proc. TGRC-KOSEF 3 (1993), 153-171.
[8] T. OtSUKı, Knots and links in certain spatial complete graphs, to appear in J. Combin. Theory Ser. B.
[9] Y. Yoshimatsu, Topological symmetry group of standard spatial graph of $K_{\mathbf{5}}$, Master Thesis, Tokyo Woman's Christian Univ. (1992), (in Japanese).

Present Address:
NTT Mobile Communications Network Inc.,
1-1 Hikarinooka, Yokosuka-shi, Kanagawa, 239 Japan.
E-mail: chie@std.nttdocomo.co.jp

[^0]: Received May 19, 1995
 Revised May 14, 1996

