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Abstract. We show that the topological symmetry group of a canonically embedded complete graph
of $n\geq 7$ vertices in the 3-sphere is isomorphic to adihedral group of order $2n$ .

1. Introduction.

Throughout this paper graphs are assumed to be finite and simple. The topological
symmetry group of an embedded graph in the three-sphere $S^{3}$ was introduced by
Jonathan Simon on his lecture at Tokyo in June 1991. On the other hand Takashi
Otsuki defined a canonical embedding of a complete graph $K_{n}$ of $n$ vertices into $S^{3}[2]$

[8]. The purpose of this paper is to show that the topological symmetry group of a
canonical embedding of $K_{n}$ is isomorphic to a dihedral group $D_{n}$ of order $2n$ for $n\geq 7$ .

Let $V(G)$ be the set of the vertices of $G$ . Let $Aut(G)$ be the automorphism group
of $G$ . Namely

$Aut(G)=$ {$h:V(G)\rightarrow V(G)|h$ is a bijection preserving the adjacency of the vertices}.
Let $f:G\rightarrow S^{3}$ be an embedding. Then the topological symmetry group off, denoted by
$TSG(f)$ , is a subgroup of $Aut(G)$ defined by

$TSG(f)=\{h\in Aut(G)|$ there is a homeomorphism $\varphi:S^{3}\rightarrow S^{3}$

with $\varphi(f(G))=f(G)$ such that $f\circ h=\varphi\circ f|_{V\langle G)}$}.

We remark that $\varphi$ is not necessarily orientation preserving. Thus our definition of
$TSG(f)$ is somewhat different from that in [7] and [9].

Let $P_{1},$ $P_{2},$ $\cdots,$ $P_{m}$ be smoothly embedded disks in $S^{3}$ such that $P_{i}\cap P_{j}=\partial P_{i}=\partial P_{j}$

for $1\leq i<j\leq m$ . Let $B_{m}=\bigcup_{i=1}^{m}P_{i}$ and we call it an m-bud. We further assume that the
disks are arranged in this order in $S^{3}$ . Namely $P_{i}\cup P_{i+1}$ bounds a 3-ball $Q_{i}$ in $S^{3}$ such
that $Q_{i}\cap B_{m}=\partial Q_{i}=P_{i}\cup P_{i+1}$ , here we consider the suffixes modulo $m$ , i.e. $m+1=1$ .
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We set $\partial P_{1}=\partial P_{2}=\cdots=\partial P_{m}=C$ . An n-cycle is a graph with $n$ vertices that
homeomorphic to a circle. An n-cycle of a graph $G$ is a subgraph of $G$ that is an n-cyc
Let $K_{n}$ be the complete graph on $V(K_{n})=\{v_{1}, v_{2}, \cdots, v_{n}\}$ . We consider the suffix
modulo $n$ . Let $C_{n}$ be an n-cycle of $K_{n}$ consisting of the edges joining $v_{i}$ and $v_{i+1}$ . $Fil$

we consider the case that $n=2k$ for some integer $k$ . $Letf_{n}$ : $K_{n}\rightarrow B_{k}\subset S^{3}$ be an embeddi]

illustrated in Fig. 1.1 where $\hat{v}_{i}=f_{n}(v_{i})$ . Next we consider the case $n=2k+1$ for sor
integer $k$ . Let $f_{n}$ : $K_{n}\rightarrow B_{k+1}\subset S^{3}$ be an embedding illustrated in Fig. 1.2. Then we $s$

that the embedding $f_{n}$ : $K_{n}\rightarrow S^{3}$ is a canonical bud presentation of $K_{n}$ with respect to $t$

cycle $C_{n}$ .

$P_{t}$ $P_{2}$ $P_{k}$

FIGURE 1. 1

$P_{\{}$

$P_{2}$ . . . $P_{k}$ $P_{k*1}$

FIGURE 1.2

Let $D_{n}=Aut(C_{n})\subset Aut(K_{n})$ be the dihedral group of order $2n$ . Then we have
following main theorem.
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THEOREM 1.1. Suppose that $n\geq 7$ , then $TSG(f_{n})=D_{n}$ .
In section 2 we will give a proof of Theorem 1.1.
We note that a bud in $S^{3}$ is a one-point compactification of a book in $R^{3}$ . Therefore

a bud presentation is a book presentation in the sense of [2] [5] [6] [7] [8] etc. Our
$f_{n}$ is a left canonical book presentation in [8]. A right canonical book presentation is
obtained from a left one by an orientation reversing homeomorphism of $S^{3}$ . Therefore
they have isomorphic topological symmetry groups.

In section 3 we consider bud presentations with $n\leq 7$ .
We refer the reader to [3] and [4] for related results on topological symmetries

of complete graphs in $S^{3}$ .

2. Proof of Theorem 1.1.

We divide the proof of Theorem 1.1 into the following two lemmas.
LEMMA 2.1. $TSG(f_{n})\supset D_{n}$ .

LEMMA 2.2. $TSG(f_{n})\subset D_{n}$ .
PROOF OF LEMMA 2.1. Let $\rho:V(K_{n})\rightarrow V(K_{n})$ be a bijection defined by $\rho(v_{i})=v_{i+1}$ .

Let $\tau:V(K_{n})\rightarrow V(K_{n})$ be a bijection defined by $\tau(v_{i})=v_{n+2-i}$ . Then $D_{n}=Aut(C_{n})$ is
generated by $\rho$ and $\tau$ . Therefore it is sufficient to show that $\rho,$ $\tau\in TSG(f_{n})$ . First we
consider the case $n=2k$ . Then $\rho$ is realized by a $2\pi/n$ rotation of $S^{3}$ along $C$ followed
by a $2\pi/k$ rotation of $S^{3}$ around $C$. By a $\pi$ rotation of $S^{3}$ around the edge $\hat{v}_{1}\hat{v}_{k+1}$ we
have an embedding illustrated in Fig. 2.1.

$P_{1}$

$P_{2}$
$P_{k}$

$FlGURE2.1$

By the result of Otsuki [2] [8] we have that the image of this embedding is
deformed into that of $f_{n}$ by an ambient isotopy of $S^{3}$ fixing the vertices. Thus $\tau$ is
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realized by a homeomorphism of $S^{3}$ . The case $n=2k+1$ is similar. But we need
additional deformation. That is a translation of half of the edges in $P_{i}$ into $P_{i+1}$ . $Mt$

precisely, suppose that $P_{i+1}$ contains just $k$ edges as $P_{k+1}$ in Fig. 1.2. Then some $k$ edg
in $P_{i}$ are transformed into $P_{i+1}$ by an ambient isotopy fixing the vertices. Now 1
proof is analogous. We omit the details.

Let $\{v_{i_{1}},v_{i_{2}}, \cdots, v_{i_{1}}\}$ be a subset of $V(K_{n})=\{v_{1}, v_{2},\cdots, v_{n}\}$ such that $j_{1}<i_{2}<\cdots<$

Let $C_{i}$ be a cycle consisting of the edges joining $v_{i_{j}}$ and $v_{i_{j+1}}$ . Let $K_{i}$ be a subgraph
$K_{n}$ induced by $\{v_{i_{1}}, v_{i_{2}}, \cdots, v_{i_{l}}\}$ . Then $K_{l}$ is a complete graph of $l$ vertices. It is $sho1$

in [8] that $f_{n}|_{K_{l}}$ is ambient isotopic to a canonical bud presentation of $K_{i}$ with $resp|$

to $C_{l}$ .
$PR\infty F$ OF LEMMA 2.2. Case 1. $n=7$ . It is not hard to check that $f_{7}(K_{7})$ conta

just one nontrivial knot as illustrated in Fig. 2.2, cf. [8].

$\hat{v}_{1}$

FIGURE 2.2

Therefore $TSG(f_{7})$ is a subgroup of $Aut(C_{7}^{\prime})$ where $C_{7}^{\prime}$ is the cycle consisting
the edges joining $v_{i}$ and $v_{i+2}$ . Since $Aut(C_{7}^{\prime})=Aut(C_{7})$ we have the result.

Case 2. $n=8$ . Let $H$ be a subgraph of $K_{8}$ consisting of the edges of $C_{8}$ and
edges joining $v_{i}$ and $v_{i+4}$ . Then by the results mentioned above we have that no ed
in $f_{8}(H)$ are contained in a nontrivially knotted 7-cycle and other edges are contain
in a knotted 7-cycle. Therefore we have $TSG(f_{8})\subset Aut(H)$ . It is easy to see $Aut(H$

$Aut(C_{8})$ .
Case 3. $n\geq 9$ . Similarly we have that an edge in $f_{n}(K_{n})$ is on a knotted $7- cycl|$

and only if the edge is not on $f_{n}(C_{n})$ . Thus $TSG(f_{n})\subset Aut(C_{n})$ .

3. Minimal bud presentations.

An embedding $f:K_{n}\rightarrow B_{m}\subset S^{3}$ is called a budpresentation if$f^{-1}(C)=V(K_{n})$ . $l$

shown in [1] that $m\geq n/2$ is a necessary and sufficient condition for the existence $\mathfrak{c}$
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bud presentation $f:K_{n}\rightarrow B_{m}$ . A bud presentation is called minimal if$n=2m$ or $n=2m-1$ .
We remark here that in case $n=2m-1$ our minimal bud presentation is slightly different
from a minimal book presentation in [2] and [8]. Suppose that $n\leq 6$ . Then $m\leq 3$ . Since
$P_{i}$ and $P_{i+1}$ are transformed into each other by an orientation reversing homeomorphism
of $S^{3}$ fixing $P_{i+2}$ we have that a minimal bud presentation is a canonical bud presentation
when $n\leq 6$ , cf [2].

The following results are shown by Yoshimatsu and Toba respectively.

THEOREM 3.1 [9]. Let $n\leq 5$ . Let $f_{n}$ : $K_{n}\rightarrow S^{3}$ be a minimal (hence canonical) bud
presentation. Then $TSG(f_{n})=Aut(K_{n})\cong S_{n}$ where $S_{n}$ is the symmetric group on $n$ points.

SKETCH PROOF. The case $n\leq 4$ is easy. We can view $f_{5}(K_{5})$ as a l-skeleton of a
4-simplex where $S^{3}$ is viewed as the boundary of the 4-simplex. Thus we have $TSG(f_{5})=$

$Aut(K_{5})$ . $\square $

THEOREM 3.2 [7]. Let $f_{6}$ : $K_{6}\rightarrow S^{3}$ be a minimal (hence canonical) bud presenta-
tion. Then $TSG(f_{\text{\’{o}}})$ is isomorphic to $S_{2}[S_{3}]$ where $S_{2}[S_{3}]$ is the automorphism group
of a disjoint union of two 3-cycles.

SKETCH $PR\infty F$ . The image $f_{6}(K_{6})$ contains just one Hopf link of a disjoint union
of two 3-cycles. We can see that other edges are placed in a symmetric mannar with
respect to this Hopf link. $\square $

EXAMPLE 3.3. Let $f:K_{7}\rightarrow S^{3}$ be a minimal bud presentation illustrated in Fig.
3.1. Then $f$ is not a canonical bud presentation with respect to any 7-cycle. In fact $f(K_{7})$

contains a 6-cycle trefoil $\hat{v}_{1}\hat{v}_{4}\hat{v}_{7}\hat{v}_{5}\hat{v}_{3}\hat{v}_{6}\hat{v}_{1}$ .

$\hat{v}_{1}$

$P_{1}$
$P_{2}$

$P_{3}$
$P_{4}$

FIGURE 3.1
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