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Abstract. In this paper, we show that, for any spatial embedding $\Gamma:G\rightarrow R^{3}$ of a connected planar
graph $G$ , there exists a $disk/band$ surfaoe of $\Gamma(G)$ satisfying a certain linking condition. As an application of
this result, it is proved that the homology class of $\Gamma(G)$ is determined only by the linking numbers of disjoint
pairs in the set of boundary/outermost cycles with respect to a fixed planar embedding of $G$ .

Introduction.

For any spatial embedding $\Gamma:G\rightarrow R^{3}$ of a graph $G$ , a disk/band surface $S$ of
$\Gamma(G)$ isacompact, $orientablesurfaceinR^{3}$ such that $\Gamma(G)$ isadeformation retract of S
contained in int $S$ . In [1], Kauffman, Simon, Wolcott and Zhao studied the disk/band
surfaces of spatial graphs, and showed that, if $G$ is either the theta-curve or the $K_{4^{-}}$

graph, then any spatial graph $\Gamma(G)$ admits a unique (up to ambient isotopy) disk/band
surface $S$ with zero Seifert linking form. So, any topological invariant for the pair
$(R^{3}, S)$ can be regarded as an ambient-isotopy invariant for $\Gamma(G)$ , e.g. various poly-
nomial invariants for the link $(R^{3}, \partial S)$ . In [1], it was also proved that any connected,
trivalent graph other than the theta-curve or the $K_{4}$-graph has a spatial embedding
which admits no $disk/band$ surfaces with zero Seifert linking form.

In this paper, we consider a certain condition weaker than the zero-Seifert-linking
condition, and show that any spatial embedding of a connected graph $G$ with a specified
planar embedding has a disk/band surface $S$ satisfying this condition. Furthermore,
if $G$ is prime and trivalent, then such an $S$ is uniquely determined up to ambient
isotopy. Thus, our disk/band surface for any prime, trivalent, planar graph $G$ furnishes
ambient-isotopy invariants for $\Gamma(G)$ .

For any connected, planar graph $G$ , we fix a planar embedding $\Gamma_{0}$ : $G\rightarrow R^{2}$

arbitrarily. The image $\Gamma_{0}(G)$ has complementary domains $D_{1},$ $D_{2},$ $\cdots,$ $D_{n}$ that are
bounded and one unbounded $D_{0}$ . The preimage $c_{i}=\Gamma_{0}^{-1}(\partial D_{i})$ is a l-complex which can
be viewed as a l-cycle in $H_{1}(G;Z)$ . We call $c_{i}(i\neq 0),$ $c_{0}$ respectively a boundary cycle
and the outermost cycle in $G$ with respect to $\Gamma_{0}$ . Most of our results will be stated in
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terms of pairs of boundary/outermost cycles. Since the set $\{c_{1}, \cdots, c_{n}\}$ of boundary
cycles generates $H_{1}(G;Z)$ (see [1, Lemma 2.5]), the Seifert linking form $\langle$ , $\rangle_{S}$ :
$H_{1}(G;Z)\times H_{1}(G;Z)\rightarrow Z$ is determined by the values of $\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{S}$ for $i,$ $j$ with
$1\leq i,$ $j\leq n$ .

THEOREM 1. Suppose that $G$ is a connected, planar graph, and $\Gamma_{0}$ : $G\rightarrow R^{2}$ is a
planar embedding. Then, for any spatial embedding $\Gamma:G\rightarrow R^{3}$ , there exists a $disk/band$

surface $S$ of $\Gamma(G)$ that has the Seifert pairings satisfying the following equation (0.1).

$\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{S}$

$=\{0_{k(\Gamma(c_{i}),\Gamma(c_{j}))}01^{-1k(\Gamma(c_{i}),\Gamma(c_{O}))-\sum_{c_{1}\cap c_{lc}=\emptyset}1k(\Gamma(c_{i}),\Gamma(c_{k}))}$ $ ififififi=jandc_{i}\cap c_{0}=\bigotimes_{andc_{i}\cap c_{0}\neq\emptyset}i\neq jc_{i}\cap c_{j}=\emptyset i=jandc_{i}\cap c_{j}\neq\emptyset$
(0.1)

where $c_{i},$ $c_{j},$ $c_{k}$ are boundary cycles and $c_{0}$ is the outermost cycle with respect to $\Gamma_{0}$ .
Furthermore, $ifG$ isprime and trivalent, then $S$ is determineduniquely up to ambient isotopy.

Our proof of Theorem 1 implies that, for a regular neighborhood $S_{0}$ of $\Gamma_{0}(G)$ in
$R^{2}$ , there exists an embedding $f_{\Gamma}$ : $S_{0}\rightarrow R^{3}$ extending $\Gamma\circ\Gamma_{0}^{-1}$ : $\Gamma_{0}(G)\rightarrow R^{3}$ such that the
image $S=f_{\Gamma}(S_{0})$ is a $disk/band$ surface satisfying (0.1). One of the advantages of fixing
planar embeddings is to reduce relatively the number of cycles in $G$ to be considered
for certain decisions.

The following straightforward corollary presents the necessary and sufficient
condition for the existence of a $disk/band$ surface with zero Seifert linking form.

$CoROLLARY$ . Suppose that $G$ is a connected graph admitting a planar embedding
$\Gamma_{0}$ : $G\rightarrow R^{2}$ . Then, for a spatial embedding $\Gamma:G\rightarrow R^{3},$ $\Gamma(G)$ has a $disk/band$ surface with
zero Seifert linking form if and only if $1k(\Gamma(c_{i}), \Gamma(c_{j}))=0$ for all disjoint pairs $c_{i},$ $c_{j}$ in
$\{c_{1}, \cdots, c_{n}, c_{0}\}$ . In particular, if $G$ has no disjoint cycles (e.g. the theta n-curve), then any
spatial embedding of $G$ admits a $disk/band$ surface with zero Seifert linking form.

In [3], Taniyama defined the spatial-graph homology, and in [4], he proved that
two spatial embeddings $\Gamma_{1},$ $\Gamma_{2}$ : $G\rightarrow R^{3}$ of any graph $G$ are homologous if and only if
they have the same Wu invariant. The Wu invariant is given as an element of the certain
2-dimensional cohomology, see [4] for details.

Here, we will study the spatial-graph homology from a different point of view. It
is well-known that the homology class of any link is determined by the linking numbers
of all distinct component pairs. As an application of Theorem 1, we have the following
theorem which implies that there is a similar situation also in the homology of spatial
embeddings of planar graphs $G$ . In this theorem, the planarity condition on $G$ is crucial.
In fact, there are spatial embeddings of certain non-planar graphs whose homology
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classes cannot be determined by the linking numbers of all disjoint cycle pairs, for
example see [3, \S 4].

THEOREM 2. Suppose that $G$ is a connected graph admitting a planar embedding
$\Gamma_{0}$ : $G\rightarrow R^{2}$ . Then, two spatial embeddings $\Gamma_{1},$ $\Gamma_{2}$ : $G\rightarrow R^{3}$ of $G$ are homologous $lf$ and
only if $1k(\Gamma_{1}(c_{i}), \Gamma_{1}(c_{j}))=1k(\Gamma_{2}(c_{i}), \Gamma_{2}(c_{j}))$ for all disjoint pairs $c_{i},$ $c_{j}$ in the set $\{c_{1},$ $\cdots$ ,
$c_{n},$ $c_{0}$ } of boundary/outermost cycles with respect to $\Gamma_{0}$ .

Though the results similar to our theorems still hold without the assumption of $G$

connected, we only consider the connected case to simplify the statements and proofs
of theorems.

1. Preliminaries.

A graph $G$ is a finite, l-dimensional polyhedron. Each $x\in G$ has a small, open
neighborhood $U(x)\subset G$ consisting of finitely many, half-open arcs ending at $x$ . The
valence of a point $x\in G$ , denoted by val(x), is the number of such arcs. In this paper,
graphs $G$ are always assumed that val(x) $\geq 2$ for any $x\in G$ . A vertex is a point $v$ in $G$

with $va1(v)\geq 3$ . Let $V(G)$ be the set of vertices of $G$ . The closure of each component of
$G-V(G)$ is called an edge of $G$ .

A graph $G$ is planar if there exists an embedding $\Gamma_{0}$ : $G\rightarrow R^{2}$ . Then, the image
$\Gamma_{0}(G)$ is called a plane graph. A connected, planar graph $G$ is said to be prime if, for
any spatial embedding $\Gamma_{0}$ : $G\rightarrow R^{2}$ , there exists no simple closed curves $C$ in $R^{2}$ satisfying
either the following (i) or (ii) (cf. [2], [1]), where $A,$ $B$ are the two components of $R^{2}-C$ .

(i) Cmeets $\Gamma_{0}(G)inasing1epointsuchthatbothA\cap\Gamma_{O}(G)andB\cap\Gamma_{0}(G)$ are
non-empty.

(ii) $C$ meets $\Gamma_{0}(G)$ in two points such that both $A\cap\Gamma_{0}(G),$ $B\cap\Gamma_{0}(G)$ are non-
empty and not single open arcs.

Consider an oriented surface $S$ in $R^{3}$ , and l-cycles $x,$ $y$ on $S$ . Let $x^{+}$ denote the
result of the pushing $x$ a very small amount into $R^{3}-S$ along the positive normal
direction to $S$ . The function $\langle$ , $\rangle_{S}$ : $H_{1}(S;Z)\times H_{1}(S;Z)\rightarrow Z$ defined by

$\langle x, y\rangle_{S}=1k(x^{+}, y)$ .
is called the Seifert linking form for $S;\langle x, y\rangle_{S}$ is called the Seifert pairing of $x$ and $y$ .
It is well-defined, bilinear pairing, an invariant of the ambient isotopy class of the
embedding $S\subset R^{3}$ . We say that $S$ has azero Seifert linking form if $\langle\alpha, \beta\rangle_{S}=0$ for any
$\alpha,$ $\beta\in H_{1}(S;Z)$ .

LEMMA 1. With the notation as in Theorem 1, if a disk/band surface $S$ of $\Gamma(G)$

satisfies

$\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{S}=\left\{\begin{array}{ll}0 & if t\neq j and c_{i}\cap c_{j}\neq\emptyset\\ 0 & \iota fi=j and c_{i}\cap c_{0}\neq\otimes,\end{array}\right.$ (1.1)
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then it also satisfies
$\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{S}$

$=\left\{\begin{array}{ll}-1k(\Gamma(c_{i}), \Gamma(c_{0}))-\sum_{:c\cap c_{k}=\emptyset}1k(\Gamma(c_{i}), \Gamma(c_{k})) & \iota fi=j and c_{i}\cap c_{0}=\emptyset\\ 1k(\Gamma(c_{i}), \Gamma(c_{j})) & \iota fc_{i}\cap c_{j}=\emptyset.\end{array}\right.$

That is, the condition (1.1) is equivalent to the condition (0.1).

PROOF. We note that if $ c_{i}\cap c_{j}=\otimes$ , then the value of $\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{S}$ is independent
of $S$ and equal to $1k(\Gamma(c_{i}), \Gamma(c_{j}))$ . Since $c_{0}+c_{1}+\cdots+c_{n}=0$ in $H_{1}(S;Z)(=H_{1}(G;Z))$ ,

$\langle\Gamma(c_{i}), \Gamma(c_{0})\rangle_{S}+\sum_{k=1}^{n}\langle\Gamma(c_{i}), \Gamma(c_{k})\rangle_{S}=\langle\Gamma(c_{i}), \Gamma(c_{0}+c_{1}+\cdots+c_{n})\rangle_{S}=0$ .

Hence, by (1.1), we have

$\langle\Gamma(c_{i}), \Gamma(c_{0})\rangle_{S}+\sum_{c_{i}\cap c_{k}=\emptyset}\langle\Gamma(c_{i}), \Gamma(c_{k})\rangle_{S}+\langle\Gamma(c_{i}), \Gamma(c_{i})\rangle_{S}=0$
,

for any $c_{i}$ with $ c_{i}\cap c_{0}=\emptyset$ . It follows that

$\langle\Gamma(c_{i}), \Gamma(c_{i})\rangle_{S}=-1k(\Gamma(c_{i}), \Gamma(c_{0}))-\sum_{c_{j}\cap c_{k}=\emptyset}1k(\Gamma(c_{i}), \Gamma(c_{k}))$ .

This completes the proof. $\square $

2. Trivalent spatial graphs and equation systems.

Throughout the remainder of this paper, we always assume that (i) $G$ is a connected
graph admitting $a$ planar embedding $\Gamma_{0}$ : $G\rightarrow R^{2}$ , (ii) $\{c_{1}, \cdots, c_{n}, c_{0}\}$ is the set of
boundary/outermost cycles with respect to $\Gamma_{0}$ , and (iii) $S_{0}$ is a regular neighborhood
of $\Gamma_{0}(G)$ in $R^{2}$ .

In this section, we consider the special case where $G$ is connected and trivalent.
Here, $G$ trivalent means that $va1(v)=3$ for any $v\in V(G)$ . Then, our proofwill be completed
by the argument similar to that in the proof of [1, Theorem 2.4]. In [1], they used
equation systems associated to regular projections of $\Gamma(G)$ into $R^{2}$ with variables
representing the number of half twi $sts$ of bands in $disk/band$ surfaces of $\Gamma(G)$ . We will
use the same equation systems in essentials. However, our equation systems have
variables representing the number of full twists of such bands, and they are defined
directly without relying on regular projections of $\Gamma(G)$ . A half-twisting argument will
be needed later only for the proof of the uniqueness of a $disk/band$ surface when $G$

is prime and trivalent.
Let $\mathscr{N}=N_{1}\cup\cdots\cup N_{m}$ be a regular neighborhood of $\Gamma_{0}(V(G))$ in $R^{2}$ , where

$N_{i}$ is the component of $\mathscr{N}$ containing $v_{i}\in\Gamma_{0}(V(G))$ and $m=\# V(G)$ . We may assume
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that $N_{i}\cap\Gamma_{0}(G)$ is a star-shaped graph consisting of three edges with $v_{i}$ a common
vertex. It is easily seen that $\Gamma\circ\Gamma_{0}^{-1}$ : $\Gamma_{0}(G)\rightarrow R^{3}$ is extended to an embedding $g_{0}$ :
$\Gamma_{0}(G)\cup \mathscr{N}\rightarrow R^{3}$ . Let $\{\beta_{1}, \cdots, \beta_{k}, \gamma_{1}, \cdots, \gamma_{k},\}$ be the set of closures of components of
$\Gamma_{0}(G)-\mathscr{N}$ such that each $\Gamma_{0}(G)-\beta_{s}$ is connected and each $\Gamma_{0}(G)-\gamma_{t}$ is disconnected.
Since $G$ is trivalent, $2(k+k^{\prime})=3m$ . Let $B_{s},$ $C_{t}(s=1, \cdots, k;t=1, \cdots, k^{\prime})$ be mutually
disjoint, thin bands in $R^{2}$ -int $\mathscr{N}$ with $B_{s}\supset\beta_{s},$ $C_{t}\supset\gamma_{t}$ and such that $B_{s}\cap \mathscr{N},$ $C_{t}\cap \mathscr{N}$

consist of two arcs. One can regard that $S_{0}=\mathscr{N}\cup \mathscr{B}\cup \mathscr{C}$ , where $\mathscr{B}=B_{1}\cup\cdots\cup B_{k}$ ,
$\mathscr{C}=C_{1}\cup\cdots\cup C_{k’}$ . Then, $g_{0}$ : $\Gamma_{0}(G)u\mathscr{N}\rightarrow R^{3}$ can be extended to an embedding
$f_{0}$ : $S_{0}\rightarrow R^{3}$ . Let $\{d_{1}, \cdots, d_{n}, d_{0}\}$ be the set of components of $\partial S_{0}$ such that each $d_{i}$ is
homologous to $\partial D_{i}$ in $S_{0}$ , where $D_{i}’ s$ are components of $R^{2}-\Gamma_{0}(G)$ given in Introduc-
tion. We also consider oriented simple loops $d_{i}^{\prime}(i=1, \cdots, n)$ in int $S_{0}$ parallel to $d_{i}$

in $S_{O}$ . Note that, for any $c_{i},$ $c_{j}$ with $t\neq j,$ $\Gamma(c_{i}\cap c_{j})\cap f_{0}(\mathscr{C})=\otimes$ , and for any $c_{i},$
$\Gamma(c_{i})$

is homologous in $f_{0}(S_{0})$ to a sum of l-cycles in $f_{0}(S_{0}-\mathscr{C})$ . This shows that both
$1k(f_{0}(d_{i}), f_{0}(d_{j}))=\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{f_{0}\langle S_{O})}$ and $1k(f_{0}(d_{i}), f_{0}(d_{i}^{\prime}))=\langle\Gamma(c_{i}), \Gamma(c_{i})\rangle_{f_{0}\langle S_{O})}$ are invar-
iable under the modification of $f_{0}(S_{0})$ by full twistings of any components of $f_{0}(\mathscr{C})$ . For
any $n_{1},$ $\cdots,$ $n_{k}\in Z$ , let $f_{n_{1},\cdots,n_{k}}$ : $S_{0}\rightarrow R^{3}$ be the embedding extending $f_{0}|_{t}$

) $\cup$

such that, if $n_{s}\geq 0$ (re$sp$ . $n_{s}<0$) for $s=!,$ $\cdots,$
$k$ , then $f_{n_{1},\cdots,n_{k}}(B_{s})$ is obtained by the right-

hand (resp. left-hand) $|n_{s}|$ -full twistings of $f_{0}(B_{s})$ around $f_{0}(\beta_{s})=\Gamma\circ\Gamma_{0}^{-1}(\beta_{s})$ , see Fig. 1.

$ n_{s}=2\nearrow$ $\backslash ^{n_{s}=-2}$

FIGURE 1

By Lemma 1, the Seifert linking form for $S=f_{n_{1},\cdots,n_{k}}(S_{0})$ satisfies the equation (0.1)

if and only if $\{n_{1}, \cdots, n_{k}\}$ is an integral solution to the following linear equation system
(2.1).

$\left\{\begin{array}{ll}\epsilon_{1}^{\langle i,j)}n_{1}+\cdots+\epsilon_{k}^{\langle i.j)}n_{k}=1k(f_{0}(d_{i}), f_{0}(d_{j})) & if c_{i}\cap c_{j}\neq\emptyset (t\neq j)\\\epsilon_{1}^{\langle i)}n_{1}+\cdots+\epsilon_{k}^{\langle i)}n_{k}=-1k(f_{0}(d_{i}), f_{0}(d_{i}^{\prime})) & if c_{i}\cap c_{0}\neq\emptyset,\end{array}\right.$ (2.1)

where $\epsilon_{s}^{\langle i,j)}$ (resp. $\epsilon_{s}^{\langle i)}$) is 1 if $\beta_{s}\subset\Gamma_{0}(c_{i}\cap c_{j})$ (resp. $\beta_{s}\subset\Gamma_{0}(c_{i})$), otherwise $\epsilon_{s}^{\langle i,j)}=0$ (resp.
$\epsilon_{s}^{\langle i)}=0)$ .

PROPOSITION 1. If $G$ is prime and trivalent, then the equation (2.1) has a unique
integral solution $\{n_{1}, \cdots, n_{k}\}$ . Moreover, any disk/band surface of $\Gamma(G)$ satisfying (0.1)

is ambient isotopic to $f_{n_{1},\cdots,n_{k}}(S_{0})$ .
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PROOF. First, we note that the primeness of $G$ implies $\mathscr{C}=\emptyset$ . The argument
similar to that in the proof of [1, Theorem 2.4] shows that the determinant of the
coefficient matrix of (2.1) is 1. Hence, (2.1) has the unique integral solution. Let $S$ be
any $disk/band$ surface of $\Gamma(G)$ of satisfying (0.1). Sinoe $\{c_{1}, \cdots, c_{n}\}$ generates $H_{1}(G;Z)$ ,
the condition (0.1) implies that, for any $\alpha,$ $\beta\in H_{1}(G;Z)$ ,

$\langle\Gamma(\alpha), \Gamma(\beta)\rangle_{S}=\langle\Gamma(\beta), \Gamma(\alpha)\rangle_{S}$ .

Since $G$ is trivalent, $S$ is ambient isotopic rel. $\Gamma(G)$ to the surface, still denoted by $S$,
obtained from $f_{0}(S_{0})$ by half twistings of components of $f_{0}(\mathscr{B})$ . Suppose that $S$ has a
band defined by odd half-twistings of some component $f_{0}(B_{s})$ . Since $G$ is prime and
trivalent, for the $c_{i},$ $c_{j}(0\leq i<j\leq n)$ with $\Gamma(c_{i}\cap c_{j})\supset f_{0}(\beta_{s}),$ $c_{i}\cap c_{j}$ is homeomorphic to
the theta-curve. Since the $disk/band$ surface $S$ is orientable by the definition, a regular
neighborhood of $\Gamma(c_{i}\cup c_{j})$ in $S$ has genus one and the algebraic intersection number
of $\Gamma(c_{i})$ and $\Gamma(c_{j})$ in $S$ is

$\Gamma(c_{i})\cdot\Gamma(c_{j})=\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{S}-\langle\Gamma(c_{j}), \Gamma(c_{i})\rangle_{S}=1$ .

This contradiction shows that $S$ is obtained from $f_{0}(S_{0})$ by full twistings of components
of $f_{0}(\mathscr{B})$ . Then, the uniqueness of a solution to (2.1) proves that $S$ is ambient isotopic
rel. $\Gamma(G)$ to $f_{n_{1},\cdots,n_{lc}}(S_{0})$ . $\square $

PROPOSITION 2. If $G$ is a connected and trivalent, then (2.1) has an integral solution.

PROOF. As in the proof of [1, Theorem $2.4-(2)$], the orders of variables
$n_{1},$ $n_{2},$ $\cdots,$ $n_{k}$ associated with $\beta_{1},$ $\beta_{2},$ $\cdots,$

$\beta_{k}$ can be arranged such that $\beta_{s}\cap c_{0}=\otimes$ for
$1\leq s\leq l$ and $\beta_{s}\cap c_{0}\neq\emptyset$ for $l<s\leq k$ . Set $S=f_{n_{1},\cdots,n_{k}}(S_{0})$ . Then, the part of (2.1)
corresponding to $\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{S}=0$ for $c_{i},$ $c_{j}(i\neq j)$ with $ c_{i}\cap c_{j}\neq\emptyset$ is represented as
follows:

$(B_{g^{x}l}O_{g^{x}\langle k-l)})^{t}(n_{1}n_{2}\cdots n_{k})=D$ ,

where $O_{p\times q}$ denotes the $ p\times$ q-zero matrix. Ifwe represent the part of (2.1) corresponding
to $\langle\Gamma(c_{i}), \Gamma(c_{i})\rangle_{S}=0$ for $c_{i}$ with $ c_{i}\cap c_{0}\neq\emptyset$ by

$(G_{hx}{}_{l}C_{hx(k-l)})^{t}(n_{1}n_{2}\cdots n_{k})=H$ ,

then (2.1) is represented as follows:

$\left(\begin{array}{llll}B_{g} & xl & O_{g} & x\langle k-l)\\G_{\hslash} & xt & C_{h} & x\langle k-l)\end{array}\right)t(n_{1}n_{2}\cdots n_{k})=\left(\begin{array}{l}D\\H\end{array}\right)$ .

Our arrangement of the order ofvariables implies that (i) each entry $ofB_{gxl}$ and $C_{hx\langle k-1)}$

is either $0$ or 1, (ii) each row of them has at least one nonzero entry, and (iii) each
column of them has just one nonzero entry. Consider any rows of $B_{gx\iota}$ containing at
least two nonzero entries, and divide the corresponding equations in (2.1) into some
equations so that each row of the resulting matrix has just one nonzero entry 1, and
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any solution to the new equation system is also a solution to (2.1). For example, if

some equation in (2.1) has the form as

1. $n_{1}+0\cdot n_{2}+0\cdot n_{3}+1\cdot n_{4}+1\cdot n_{5}+0\cdot n_{6}+0\cdot n_{7}+0\cdot n_{8}=9$ ,

then we divide it into the three equations:

$\left\{\begin{array}{l}n_{1}+0\cdot n_{2}+0\cdot n_{3}+0\cdot n_{4}+0\cdot n_{5}+0\cdot n_{6}+0\cdot n_{7}+0\cdot n_{8}=9\\n_{1}+0\cdot n_{2}+0\cdot n_{3}+1\cdot n_{4}+0\cdot n_{5}+0\cdot n_{6}+0\cdot n_{7}+0\cdot n_{8}=0\\n_{1}+0\cdot n_{2}+0\cdot n_{3}+0\cdot n_{4}+1\cdot n_{5}+0\cdot n_{6}+0\cdot n_{7}+0\cdot n_{8}=0\end{array}\right.$

By modifying $C_{h\times\langle k-l)}$ similarly and exchanging rows of the resulting coefficient matrix
suitably, we have $a$ new equation

$\left(\begin{array}{ll}I_{lx[} & O_{l\times\langle k-l)}\\G_{\langle k-l)\times l} & I_{\langle k-l)\times(k-l)}\end{array}\right){}^{t}(n_{1}n_{2}\cdots n_{k})=\left(\begin{array}{l}D^{\prime}\\H^{\prime}\end{array}\right)$ (2.2)

whose solution is also a solution to (2.1), where $I_{p\times p}$ denotes the unit matrix of order
$p$ . Since the determinant of the coefficient matrix of (2.2) is 1, the equation system (2.2)

and hence (2.1) have an integral solution. $\square $

3. Proofs of theorems.

Now we are ready to prove theorems.

PROOF OF THEOREM 1. Set $va1(G)=\max\{va1(v);v\in V(G)\}$ , and let $V_{\max}(G)$ be the

set of vertices $v\in V(G)$ with $va1(v)=va1(G)$ . We will prove Theorem 1 by induction on
the lexicographically ordered pair $(va1(G), \# V_{m}..(G))$ .

If $va1(G)=3$ , then the proof is completed by setting $S=f_{n_{1},\cdots,n_{k}}(S_{0})$ for an integral

solution $\{n_{1}, \cdots, n_{k}\}$ to the equation system (2.1) given in Proposition 2.
Now, suppose that $va1(G)\geq 4$ . Choose $v\in V_{\max}(G)$ , and consider the set $\{c_{i_{1}}$ ,

$c_{i_{2}}$ , $c_{i_{u}}\}$ of boundary/outermost cycles containing $v$ , possibly $c_{i_{s}}=c_{i_{t}}$ for some $s$ ,

$t$ with $s\neq t$ , for example see Figure 2. Here, we need to consider the following two cases.

FIGURE 2
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$FlGURE3$

FIGURE 4

Case 1. The set $\{c_{i_{1}}, c_{i_{2}}, \cdots, c_{i_{u}}\}$ does not contain $c_{0}$ . Then, we modify $\Gamma_{0}(G)$ ,
$\Gamma(G)$ in small neighborhoods of $\Gamma_{0}(v),$ $\Gamma(v)$ to $\Gamma_{0}^{\prime}(G^{\prime}),$ $\Gamma^{\prime}(G^{\prime})$ respectively as in Figure
3, so that $c_{i_{1}}^{\prime}\cap c_{i_{2}}^{\prime}\cap c_{i_{u}}^{\prime}$ contains a vertex of valence $=3$ , where $c_{i}^{\prime}$ (re$sp$ . $c_{\acute{0}}$) is the
boundary cycle (resp. the outermost cycle) of $G^{\prime}$ with respect to $\Gamma_{\acute{0}}$ corresponding to
$c_{i}$ (resp. $c_{0}$) of $G$ . Note that $S_{0}$ can be regarded as $a$ regular neighborhood not only of
$\Gamma_{0}(G)$ but also of $\Gamma_{\acute{0}}(G^{\prime})$ . If necessary retaking $\Gamma^{\prime}$ as illustrated in Figure 4, we may
assume that lk $(\Gamma^{\prime}(c_{i_{1}}^{\prime}), \Gamma^{\prime}(c_{i_{t}}^{\prime}))=0$ for any $c_{i_{t}}^{\prime}$ with $ c_{i_{1}}^{\prime}\cap c_{i_{t}}^{\prime}=\emptyset$ . Since $(va1(G^{\prime}), \# V_{\max}(G^{\prime}))<$

$(va1(G), \# V_{\max}(G))$ , by the hypothesis of our induction, we have a spatial embedding
$f_{\Gamma’}$ : $S_{0}\rightarrow R^{3}$ extending $\Gamma^{\prime}\circ\Gamma_{\acute{0}^{-1}}$ and such that $f_{\Gamma},(S_{0})$ is a $disk/band$ surface of $\Gamma^{\prime}(G^{\prime})$

satisfying (0.1). It is easily seen that $f_{\Gamma^{\prime}}(\Gamma_{0}(G))$ is ambient isotopic to $\Gamma(G)$ in $R^{3}$ (see
Figure 5), so if necessary deforming $\Gamma(G)$ by ambient isotopy, $S=f_{\Gamma},(S_{0})$ can be
regarded as a $disk/band$ surface of $\Gamma(G)$ . Since, then, each $\Gamma(c_{i})(i=0,1,2, \cdots, n)$ is
homologous to $\Gamma^{\prime}(c_{i}^{\prime})$ in $S$, we have $\langle\Gamma^{\prime}(c_{i}^{\prime}), \Gamma^{\prime}(c_{j}^{\prime})\rangle_{S}=\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{S}$ for any $i,$ $j$ with
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$is\underline{otop}y$

FIGURE 5

$1\leq i,j\leq n$ . Since $\{c_{i_{1}}, c_{i_{2}}, \cdots, c_{i_{u}}\}$ does not contain $c_{0},$ $ c_{i}\cap c_{O}\neq\emptyset$ if and only if
$ c_{i}^{\prime}\cap c_{0}^{\prime}\neq\emptyset$ . Thus, $\langle\Gamma(c_{i}), \Gamma(c_{i})\rangle_{S}=\langle\Gamma^{\prime}(c_{i}^{\prime}), \Gamma^{\prime}(c_{l}^{\prime})\rangle_{S}=0$ for any boundary cycle $c_{i}$ with
$ c_{i}\cap c_{0}\neq\emptyset$ . Consider any boundary cycles $c_{i},$ $c_{j}(i\neq j)$ of $G$ with $ c_{i}\cap c_{j}\neq\otimes$ , and the
corresponding cycles $c_{i}^{\prime},$ $c_{j}^{\prime}$ of $G^{\prime}$ . If $ c_{i}^{\prime}\cap c_{j}^{\prime}\neq\otimes$ , then $\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{S}=\langle\Gamma^{\prime}(c_{i}^{\prime}), \Gamma^{\prime}(c_{j}^{\prime})\rangle_{S}=0$ .
If $ c_{l}^{\prime}\cap c_{j}^{\prime}=\otimes$ , then one can set $c_{i}^{\prime}=c_{i_{1}}^{\prime},$ $c_{j}^{\prime}=c_{i_{t}}^{\prime}$ for some $c_{i_{t}}^{\prime}$ with $3\leq t\leq u-1$ , so our
retaking of $\Gamma^{\prime}$ implies that $\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{S}=1k(\Gamma^{\prime}(c_{i_{1}}^{\prime}), \Gamma^{\prime}(c_{i_{t}}^{\prime}))=0$ . As a result, for all these
pairs $c_{i},$ $c_{j}$ , we have $\langle\Gamma(c_{i}), \Gamma(c_{j})\rangle_{S}=0$ . This shows that $S$ satisfies (1.1) and hence (0.1)
by Lemma 1.

Case 2. The set $\{c_{i},, c_{i_{2}}, \cdots, c_{i_{u}}\}$ contains $c_{O}$ . Set $c_{i_{u}}=c_{0}$ , and modify $\Gamma_{0}(G),$ $\Gamma(G)$

to $\Gamma_{\acute{0}}(G^{\prime}),$ $\Gamma^{\prime}(G^{\prime})$ as in Case 1. Since $ c_{i_{t}}^{\prime}\cap c_{\acute{O}}\neq\emptyset$ for $1\leq t\leq u-1,$ $ c_{i}\cap c_{0}\neq\otimes$ if and only
if $ c’\cap c_{\acute{0}}\neq\emptyset$ . Thus, the proof in this case is completed by the argument similar to
that in Case 1. $\square $

Two spatial embeddings $\Gamma_{1},$ $\Gamma_{2}$ : $G\rightarrow R^{3}(k=1,2)$ are said to be homologous if
there is $a$ locally flat embedding $\Phi:(G\times I)\#\bigcup_{i=1}^{n}F_{i}\rightarrow R^{3}\times I$ between $F_{1}$ and $\Gamma_{2}$ , where
$\{F_{i}\}_{i=1}^{n}$ is $a$ finite set of mutually disjoint, closed, orientable surfaces, and $\#$ denotes
the connected sum. More precisely, for each $F_{i}$ , there is just one edge $e$ in $G$ such that
$F_{i}$ is attached to an open disk int$(e\times I)$ by the usual connected sum of surfaces.

PROOF OF THEOREM 2. The “only if” part is easily verified. In fact, if $\Gamma_{1}$ is
homologous to $\Gamma_{2}$ , then for any $c_{i},$ $c_{j}$ with $ c_{i}\cap c_{j}=\emptyset$ , the restriction $\Phi|_{\langle\langle c\iota\cup c_{j})\times I)\#\bigcup_{J^{--1}}^{m}F_{j}^{\prime}}$

of the function $\Phi$ presenting the homology between $\Gamma_{1}$ and $\Gamma_{2}$ defines a link-homology
between $\Gamma_{1}|_{C}:\cup c_{j}$ and $\Gamma_{2}|_{c_{i}\cup c_{j}}$ , where $\{F_{j}^{\prime}\}_{j=1}^{m}$ is the set of elements of $\{F_{i}\}_{i=1}^{n}$ attached
to $(c_{i}\cup c_{j})\times I$. This shows that $1k(\Gamma_{1}(c_{i}), \Gamma_{1}(c_{j}))=1k(\Gamma_{2}(c_{i}), \Gamma_{2}(c_{j}))$ .
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Now, we prove the “if” part. If lk$(\Gamma_{1}(c_{i}), \Gamma_{1}(c_{j}))=1k(\Gamma_{2}(c_{i}), \Gamma_{2}(c_{j}))$ for any $c_{i},$ $c_{j}$ in
$\{c_{1}, \cdots, c_{n}, c_{0}\}$ with $ c_{i}\cap c_{j}=\emptyset$ , then by the proof ofTheorem 1, there exsit embeddings
$f_{\Gamma_{k}}$ : $S_{0}\rightarrow R^{3}(k=1,2)$ extending $\Gamma_{k}\circ\Gamma_{0}^{-1}$ : $\Gamma_{0}(G)\rightarrow R^{3}$ such that $\langle\Gamma_{1}(c_{s}), \Gamma_{1}(c_{t})\rangle_{S_{1}}=$

$\langle\Gamma_{2}(c_{s}), \Gamma_{2}(c_{t})\rangle_{S_{2}}$ for all boundary-cycle pairs $c_{s},$ $c_{t}$ , where $S_{k}=f_{\Gamma_{k}}(S_{0})$ . Since $\{c_{1}, \cdots, c_{n}\}$

generates $H_{1}(G;Z)$, for any $\alpha,$ $\beta\in H_{1}(G;Z)$ ,

$\langle\Gamma_{1}(\alpha), \Gamma_{1}(\beta)\rangle_{S_{1}}=\langle\Gamma_{2}(\alpha), \Gamma_{2}(\beta)\rangle_{S_{2}}$ . (3.1)

Let $T$ be a spanning tree of $\Gamma_{0}(G)$ and $\{e_{1}, e_{2}, \cdots, e_{n}\}$ the set of the closures of
components of $\Gamma_{0}(G)-T$. Let $\alpha_{i}(i=1,2, \cdots, n)$ be the l-cycle in $G$ represented by the
subgraph $\Gamma_{0}^{1}(T\cup e_{i})$ of $G$ . For $a$ regular neighborhood $S_{T}$ of $T$ in $S_{0}$ , we may assume
that $f_{\Gamma_{1}}|_{S_{T}}=f_{\Gamma_{2}}|_{S_{T}}$ , and $D_{T}=f_{\Gamma_{lc}}(S_{T})(k=1,2)$ is embedded in $R^{2}=R^{2}\times\{0\}\subset R^{3}$ , as
illustraded in Figure 6. Let $B_{T}$ be a regular neighborhood of $f_{\Gamma_{1}}(T)=f_{\Gamma_{2}}(T)$ in $R^{3}$ with

FIGURE 6

$B_{T}\cap R^{2}=D_{T}$ , and $\Gamma_{1}(G)\cap B_{T}=\Gamma_{2}(G)\cap B_{T}\subset D_{T}$ . It is not hard to see that there are
mutually disjoint embeddings $b_{i}$ : $I\times I\rightarrow B_{T}(i=1,2, \cdots, n)$ such that, for $k=1,2$ ,

(i) $b_{i}(I\times I)\cap\Gamma_{k}(G)=b_{i}(I\times\partial I)\subset f_{\Gamma_{lc}}(e_{i})$ , and
(ii) $(\Gamma_{k}(G)-\bigcup_{i=1}^{n}b_{i}(I\times\partial I))\cup(\bigcup_{i=1}^{n}b_{i}(\partial I\times I))$ is the union of $a$ graph $\Gamma_{\acute{0}k}(G)$ with

$\Gamma_{\acute{0}1}(G)=\Gamma_{\acute{0}2}(G)$ and an n-component link $\Gamma_{k}^{\prime}(L_{1}\cup\cdots\cup L_{n})$ such that $\Gamma_{\acute{0}k}(G)\cup$

$\Gamma_{k}^{\prime}(L_{1}\cup\cdots\cup L_{n})$ is ambient isotopic in $R^{3}$ to $\overline{\Gamma}_{\acute{0}k}(G)\cup\overline{\Gamma}_{k}^{\prime}(L_{1}\cup\cdots\cup L_{n})$ with
$\overline{\Gamma}_{\acute{0}k}(G)\subset D_{T}$ and $\overline{\Gamma}_{k}^{\prime}(L_{1}\cup\cdots\cup L_{n})\cap B_{T}=\otimes$ , see Figure 7. Then, $1k(\Gamma_{k}^{\prime}(L_{i}), \Gamma_{k}^{\prime}(L_{j}))=$

$\langle\Gamma_{k}(\alpha_{i}), \Gamma_{k}(\alpha_{j})\rangle_{S_{k}}$ for $k=1,2$ . Since, by (3.1), $\langle\Gamma_{1}(\alpha_{i}), \Gamma_{1}(\alpha_{j})\rangle_{S_{1}}=\langle\Gamma_{2}(\alpha_{i}), \Gamma_{2}(\alpha_{j})\rangle_{S_{2}}$ , we
have $1k(\Gamma_{1}^{\prime}(L_{i}), \Gamma_{1}^{\prime}(L_{j}))=1k(\Gamma_{2}(L_{l}), \Gamma_{2}^{\prime}(L_{j}))$ . This implies that $\Gamma_{\acute{0}1}(G)\cup\Gamma_{1}(L_{1}\cup\cdots\cup L_{n})$

is homologous to $\Gamma_{02}(G)\cup\Gamma_{2}^{\prime}(L_{1}\cup\cdots\cup L_{n})$ . Let $E$be a2-comp1ex which is locally-flatly
and properly embedded in $R^{3}\times[1/3,2/3]$ and realizes this homology. In particular, $E$

satisfies $E\cap(R^{3}\times\{1/3\})=\Gamma_{\acute{0}1}(G)\cup\Gamma_{1}^{\prime}(L_{1}\cup\cdots\cup L_{n})$ and $ E\cap(R^{3}\times\{2/3\})=\Gamma_{\acute{0}2}(G)\cup$

$\Gamma_{2}(L_{1}\cup\cdots\cup L_{n})$ . Consider the 2-complexes $E_{1}\subset R^{3}\times[0,1/3],$ $E_{2}\subset R^{3}\times[2/3,1]$

defined as follows:
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FIGURE 7

$E_{1}\cap(R^{3}\times\{t\})=\left\{\begin{array}{ll}\Gamma_{1}(G) & if 0\leq t<1/6\\\Gamma_{1}(G)\cup\bigcup_{i=1}^{n}b_{i}(I\times I) & if t=1/6\\\Gamma_{\acute{0}1}(G)\cup\Gamma_{1}^{\prime}(L_{1}\cup L_{2}\cup\cdots\cup L_{n}) & if 1/6<t\leq 1/3 ,\end{array}\right.$

$E_{2}\cap(R^{3}\times\{t\})=\left\{\begin{array}{l}\Gamma_{O2}^{\prime}(G)\cup\Gamma_{2}^{\prime}(L_{1}\cup L_{2}\cup\cdots\cup L_{n})\\\Gamma_{2}(G)\cup\bigcup_{i=1}^{n}b_{i}(I\times I)\\\Gamma_{2}(G)\end{array}\right.$
$ififif$ $2/3\leq t<5/65/6<t\leq 1t=5/6$

.
Then, the union $E_{1}\cup E\cup E_{2}$ in $R^{3}\times[0,1]$ determines the homology between $\Gamma_{1}$ and
$\Gamma_{2}$ . This completes the proof. $\square $

References

[1] L. KAUFFMAN, J. SIMON, K. WOLCOTT and P. ZHAO, Invariants of theta-curves and other graphs in
3-space, Topology Appl. 49 (1993), 193-216.

[2] S. SUZUKI, A prime decomposition theorem for a graph in 3-sphere, Topology and Computer Science,
ed. S. Suzuki, Kinokuniya (1987), 259-276.

[3] K. TANIYAMA, Cobordism, homotopy and homology of graphs in $R^{3}$ , Topology 33 (1994), 509-523.
[4] K. TANIYAMA, Homology classification of spatial embeddings of a graph, Topology Appl. 65 (1995),

205-228.

Present Addresses:
TERUHIKO SOMA and HIDEYUKI SUGAI
DEPARTMENT OF MATHEMATICAL SCIENCES, COLLEGE OF SCIENCE AND ENGINEERING,
TOKYO DENKI UNIVERSITY,
HATOYAMA-MACHI, SAITAMA-KEN, $35k03$ JAPAN.

AKIRA YASUHARA
DEPARTMENT OF MATHEMATICS, TOKYO GAKUGEI UNIVERSITY,
KOGANEI, TOKYO, 184 JAPAN.


