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1. Introduction.

In this paper we shall consider the asymptotics of scattering phases of Schrodinger
equation with magnetic fields. The equation is described as follows:

Zd: {i0;+bi(x)}Pu+q(x)u=Au .
i=1

In particular we do not assume that the scalar potential ¢g(x) and the vector potential
bj(x) are spherically symmetric. D. R. Yafaev defined in [8] the scattering phases of
Schrodinger equation

—Au+qg(x)u=Au,

which has the scalar potential g(x) without spherical symmetry, and he studied the
asymptotics. One of his results is that the asymptotics of scattering phases depend on
the asymptotics of the even part q,(x) of the scalar potential (i.e., q,(x)=(q(x)+ g(— x))/2).
So we shall extend the result to the case for Schodinger equation with magnetic fields.
Yafaev gave a definition of scattering phases related with the eigenvalue of the
modified scattering matrix Z(4). Z(4) is defined by S(4)J where S(1) is a scattering matrix
and J is a reflection operator. In fact, the scattering phases defined by D. R. Yafaev
make sense in physical point of view (cf. [9]). In a similar way we can also define
scattering phases of Schrédinger equation with magnetic fields. In our case we can find
that the asymptotics of scattering phases depend on the asymptotics of the even part
q4/x) of scalar potential and the odd part b;, of the vector potential (i.e., b; (x)=
(b,(x)—b,(—x))/2). | |
This paper is organized as follows. In section 2 we give the correct definition of
the scattering phases related to the eigenvalues of the operator X(4). And we give main
theorems without proofs. In section 3 some properties of compact operators are given.
In particular the properties of singular values play an important role in this paper. In
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section 4 we give a stationary representation of scattering matrix S(4), and some results
obtained by M. Sh. Birman and D. R. Yafaev ([2], [3], [8]). In section 5 we define
the operator B by using the operator 2(4) and consider the asymptotics of its eigenvalues.
By considering the construction of B, the asymptotics of the scattering phases of X(1)
reduce to the asymptotics of the eigenvalues of the operator B. In section 7 we give the
proofs of main theorems.

ACKNOWLEDGEMENT. We would like to thank Professor S.T. Kuroda for en-
couragement and advices. This problem was suggested by him.

2. Main theorems.

Let £¢ be the dual space of R? and S?~! the unit sphere in E¢ Let A, be a
(d—1)-dimensional subspace in £¢ which is orthogonal to w e S?~ . Assume that in case
d>2 the sphere 84" 2=8"1n A, is endowed with (d—2)-surface measure and in case
d=2 the set S¢~2 consists of two points which have measure 1. Let s =L%RY),
H=L?*{S*"'). We denote the function (d,/)(x) by (¢,f) and the operator d,(f x *) by
d;f. We denote x=rw, r=|x|, weS*™1.

AssUMPTION (V). We assume that the functions q(x), b;(x) and (0;b;)(x) satisfy

lg)I<Cl+[xD7",  ¢=q,
2.1) 16,0 <CA+Ix)7?,  b;=5;,

10,6, I<C+|x)"#, B>1, xeR?, d=2.

In this paper we shall consider operators in J# as follows:

Hy=—A, V= i {i0,b,(x)+ib;(x)8;+ b2(x)} + q(x) ,
j=1

H=Hy+ V=¥ {id,+b,)}+qx).

j=1

Now we denote the resolvents of the operators H, and H by Ry(z)=(Hy,—2z)" 1, 3z#0
and R(z)=(H—2z)"1, 3z#0, respectively.

Before we describe main theorems, we shall give some definitions and lemmas.
(Proofs of the theorems and the lemmas will be given in section 7 and section 8,
respectively.)

Let S(A4) be a scattering matrix (the precise definition of the scattering matrix will
be given by (4.2)) related with the operators H, and H. Let J be an operator defined

by (Jf)@)=f(—w), feH.

LEMMA 2.1. The spectrum of J consists of the eigenvalues +1, and the eigenspace
corresponding to the eigenvalue +1 is H,, respectively (i.e., H, is the subspace of the
even functions, and H _ is that of the odd functions). Moreover
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(2.2) P, =2"Y1I4J)

is the orthogonal projection in H onto the subspace H ., respectively.
DEFINITION 2.2. We define a unitary operator Z(4) as follows:

2.3) Z(A)=S(A)J .

LEMMA 2.3. The spectrum of Z(1) consists of eigenvalues with finite multiplicity.
Moreover the eigenvalues accumulate only at the points +1, —1.

We shall describe scattering phases defined by D.R. Yafaev ([8]).

DEerFINITION 2.4 (cf. [8]). We shall denote eigenvalues of Z(4) accumulating at + 1
by

exp(F2i6F), 0<déX<m/d, 65 <0f
and eigenvalues of X(4) accumulating at —1 by
—exp(F2iny), 0<ny <m/4, nay <ny.
Then we call 6% and nZ scattering phases.
Under the above preliminaries, we shall give two main theorems.

THEOREM A. Suppose B>(x+1)/2 and Assumption (V). We shall denote the even
part of q(x) and the odd part of b;(x) by

q(x) +q(—x)
2

bj(x)—bi(—x)
2

qe(x) = > bj,o(x) =

b

respectively. We shall assume that q(x) and b; (x) satisfy

{ g(x)=|x|"*g ) +o(|x|7"),

2.4) b o(X)=1x17%g; (@) +0(lx|™%),
(0jb))(x)=(0;b; )x)=0(x|"%),

as | x| — oo, where g, g;,€ C*(S*™ 1), a>1. Putting
QA; w, ¥) =J {—2AY2( B (w cos® +y sinf), ®> +gwcosd+y sinb)} sin*~26d6 ,
)

where { , > is the usual inner product,

‘// € Sc‘i— 2 ’ Bo(w) = (gl,o(w)9 gz,o(w) T gd,o(w)) ’
we define
P

a:(Sp)=2"'d-1)"*2m) A" +°”2(J dow dY(2.(4, o, l/’))”")
So

d—2
So
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where S, is any fixed hemisphere in S*~', p=(a—1)d—1)"! and Q, =max{€, 0},
Q_=Q,—Q. Then we have
() ay(Sy) is independent on S, and

(2.5 nla, =a,(So)=2""a, (8" Y);
(i1)
(2.6) lim n?6f = lim n°pf =a, .

THEOREM B. Suppose that Assumption (V) is satisfied and that
9)=0(x]7%, b ()=00x1"), (8;b;)x)=(8;b;,)x)=0(x|"%,
B>(x+1)/2,
Then we have
(2.7) o =0m"%), nf=0(m""),
where p=(a—1)d—1)"1.
REMARK. The result (ii) of Theorem A are gauge invariant for the gauge functions

S (x) such that f(x) - C as | x| — oo. In fact, for different vector potentials band b=b+
V/, Q(4; w, ¥) is invariant (see [3] pp. 346-347).

3. Properties of compact operators.

We shall describe some properties of compact operators (cf. [11, [7D).

NortaTIONS. (i) For a compact self-adjoint operator K, we shall denote positive
eigenvalues and negative eigenvalues by A, (K) and — A (K), respectively, which are
enumerated with their multiplicities and 4 | 0 as n — co.

(i) For a compact operator K we call s,(K)=(4,}(K*K))"/? singular values.

Lemma 3.1 (Inequalities of singular values [Ky Fan’s inequalities]). Let A be a
bounded operator and K; (j=1, 2) compact operators. Then the Sfollowing inequalities hold.

3.1 S(AK)<||A[s(K), s (KA)<|A|s(K),
(3.2) Sny+ny— 1Ky + K3) <5,,(Ky)+5,,(K>) ,
(3'3) Snl +,,2_1(K1K2)SS,“(K1)S"2(K2) > njeN .

By Lemma 3.1 we have the following lemmas.

LemMmA 3.2. If A, are compact operators then we have

SN< i Ak)s Y s{4), N=mn—(m-1).
k=1 k

=1
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LemMA 3.3. Let A,, C, be compact operators and B, bounded operators. Then we
have

SN( kzl AkBka>S kZ1 | By lls(A)s(Cy) 5 N=2mn—-1)+1.

LEMMA 3.4. Let A,, C, be compact operators and B, bounded operators. If
s (A)=0(n"*?) and 5,(C,)= O(n~"'?) then we have

Sn< i AkBka>=0(n—p) .
k=1

PROPOSITION 3.5. Let K, (I=1, 2) be compact self-adjoint operators. If
AX(K)~kin~*?, s (Ky)=o(n"*), n— oo,
then
AXK, +Ky)~kyn~?, n— oo .

We shall consider the perturbation of an isolated eigenvalue of infinite multiplicity.
Let X be a Hilbert space and 4 be a bounded self-adjoint operator in X. Assume that
A is an isolated eigenvalue of A with infinite multiplicity. If ¢>0 is small enough then
the both intervals [A—eg, A1) and (4, A+ €] can be gap in the spectrum.

Let K be any compact self-adjoint operator and put B=A4 + K. By Weyl’s theorem
o (A)=0(B) (o (4) means the essential spectrum of A4). Therefore the spectrum of B in
[A—e, A) and (A, A+¢€] consists of eigenvalues which have a finite multiplicity and
accumulate only at 4.

Now we denote the eigenvalues of B in (4, A+¢] (resp. [A—¢, 1)) by u, (B) (resp.
W, (B)) enumerated with their multiplicities and A<pu,, (B)<u,(B) (resp. u, (B)<
P+ 1(B)<A).

Taking account of the above facts we have the following two theorems.

THEOREM 3.6 ([8]). Let A, K and 2 be the same as above and B=A+ K. Let P be
an orthogonal projection onto the eigenspace of A corresponding to the isolated eigenvalue
A.

If for some p>0

(3.9 Af(PKP)~k,n~?, s(K)=o(n""?), n— oo,
then

(3.5) UEB)=Atk.,n P+o(n", n— oo,
holds.

THeEOREM 3.7 ([8]). If for some p>0
s{PKP)=0(n""),  s,(K)=0(n"""?),
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then

|us (B)—A|=0(n"").

4. Auxiliary facts.

We denote the Fourier transform of a function fe 3 by £, i.e.,
f(p)=@2m)~42 j exp(—iKx, p>)f(x)dx,  peE’.

R4
We define I'y(1) as an operator‘from # onto L*(R*; H) as follows:

(Fo(A)f Nw)=2"123@- 24 £(31124))
4.1)

=2 12D/~ ar2 f exp(—iKx, 22wy f()dx,  1>0.

R4
By the definition of I'y(1) we have I'*(J) as follows:

(T3 A)oXx) = 2™ 12442142y 12 j

S§d-

exp(i{x, A'?w))v(w)dw .
Lemma 4.1.  Let X, be a multiplication operator by the function (1+ x2)~"2. Then
Jor y>1/2
Zo(H)=ZP() =N,
is a compact operator from ¥ to H and continuous on 1> 0.
ProoF. It holds from Sobolev’s trace theorem. []
PROPOSITION 4.2. Let Assumption (V) be satisfied and y>1/2. Then
G(2)=G"z)=X,R(2)X,

is continuous in norm with respect to z in the complex plane except interval [0, o) and
G(A +ie) have finite boundary values as ¢ | 0.

ProoF. It holds from Mourre estimate ([4]). [
We shall denote the stationary representation of scattering matrix.

DEeFINITION 4.3 ([10]). For the operators H, and H, the scattering matrix S(A)
is defined by

4.2) S(A)=I—2mil oAV — VRA+i0)V)[¥(3) .

This form is called the stationary representation of the scattering matrix.
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It is well known that S(4) is a unitary operators in H.

Note that the operator V can be rewritten as follows:

V= i {i0,;b,(x) +ib;(x)0; + b7 (x)} + g(x)

=1
= ji {2i0;b;(x)—i(8,;b;)(x)+ b} (x)} +q(x) .
DEerFINITION (V,, V,). We define V,, V, as follows:
Vi S20pm, Ve S o)+ % b0,

V=V+V,.
LEMMA 4.4. For I'y=T () and V,, the following equality holds.

d
(FoViflw)=—2 ‘;1 'Il/zwj(robjf)(w) .

Here w; is the j-th component of weS*™ 1.

PrOOF. We can see easily from the following calculations.

d

(CoV i f)w)= {F()( “; 2i6jbj(x)>f}(cu) =2i '21 9= 1/2 @~ 2)/46@)(/1”2@

ji=

d —~ d
D I e N R W A M C R

j=1

CoOROLLARY 4.5. For I, and V1, the following equality holds.

d
LVilE=—=2% ilwiIb;ly).
j=1

J

ProoF. It is clear by Lemma 4.4. [

LemMMA 4.6. For I'y and V,, the following equality holds.

(VT Eu)x)=2 il {(—=AY2b T $o,u)(x) + ((0,b,)T $u)x)} -

Proor. We shall divide a proof into 3 steps.
Step 1. By integration by parts we have

VT §u)x)= (o V ¥)*u)x)= {(F 0(2 _Zl ibj(X)a,-)) u}(x)

j=

d
=2 3 {(oli,()2,) 1))
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Step 2. Here we shall consider {(I'¢(ib;;))*u}(x). For feCg we know 0;bi(x)f (x)=
(0;b;)(x)f (x)+b;(x)0;f)x) and so we have bi(x)(0;.1)x)=0;b(x) £ (x) — (0;5,;Xx) f ().
Using this and Lemma 4.4 we have
(T o(ib;0, W) = ({05, o) — (T'oi(3;,) f Neo)
= — A20,([ b, f Xe) — (T ofi(@;5,) /@) .
By the above equality for ue H we have
(Toib;0,f, W= (—A"w;Tob; f; uyy—(Loi(0;5;); u)g
=(fs (— A 200,T ob ") e —(f, —i(@;5,)T 31 ¢
=(f, {(=A"2@;Tob;)* +i(0;b,)L & }u) .
Consequently we obtain
(Fo(ib;0;))*u={(—A'2w;T ob;y* +i(0;b;)[ § }u= {(=A'2b; T 3w;)+i(0;b)[ &}u .
Step 3. By Step 1 and Step 2, we can find

d d
Vil gu)x)=2 ; {To(i;0,))*u}(x)= [2 ;1 {(=212b,T §w;) +i(8;5,)I'8 }u](x)

and hence lemma is proved. []

DEFINITION (q,, W). We shall define a multiplication operator W by the function
2(xX)(1+x2f" where g;(x)= —Y_, i@;b,)x)+ X5 , b}(x) + q(x).

Then the following lemma holds.

LeEMMA 4.7. Let bj(x), (0;b,)(x) and q(x) satisfy Assumption (V) and let W be a
multiplication operator by q,(x)(1+ x?)*'%. Then W is a bounded operator.

Proor. This is clear from Assumption (V). O
Let y, +y,=48, y;>1/2. Then we see that
V2 =XYl WX72=X}'2 WXH .

LemMMmA 4.8. IoV\I'§, TV, R(A+iO)V,I'¥ (I, m=1,2) are compact operators in H.

PrOOF. We shall treat these operators separately.
(1) I'yviI'§: By Corollary 4.5 we have I')V, I'¥ = —22;.':1 A2w(Fob;I'¥). Here w; in
the right hand side is the j-th component of @ and | w|=1. The multiplication operator
by w;is a bounded operator in H. Next we shall write I'ob;I'§ = (o X, )(X; b, X; "\ X,I'¥).
By Lemma 4.1 the operators I'y X, and X,I'§ are compact operators, and by Assumption
V), | X, 0, X | =|b;(x)1+x?)"|<C, y=P/2>1/2. So I'ob;I'} is a compact operator.
Hence I',V,I'§ is a compact operator.
(2) I'oV,I'g: We can write I'oV,I'§=T,X,, WX, I's=2ZW(Z§)*. By Lemma 4.1 Z}
is compact and by Lemma 4.7 W is bounded. Hence I',V,I'¥ is a compact operator.
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(3) [V, RA+i0)V,T'#: By Lemma 4.4, (I V,f)w)=—2Y%_, A%w;(Iob;f Nw), and
V,=X, WX,,=X,,WX,,. So we can write |

d
FonRV2r6k= —2 Z ll/szFObJRVzr(’f
j=1

J

d
=—2 Y APw(X, )X, 'b; X, NX, RX, )W(X,,['§).
j=1
I',X,, and X,,I'¥ are compact operators (by Lemma 4.1), G’'(z) = X,,RX,, is a bounded
operator (by Proposition 4.2), W is a bounded operator (by Lemma 4.7) and
X500, X, Y =b;(x)(1+xH)01+72/2=p(x)(1 + x?)’/? is a bounded operator (by Assump-
tion (V)). Therefore I' VRV ,I' is a compact operator.

(4) T'oV,R(A+i0)V,I'¥: Using Lemma 4.6 we write as follows:

d

d
[ WV,RV\T§=T, VZR{ —2 .Zl AV2bM§w;+2 Zl i(a,-b,-)Fa"}
=

ji=

d
= =212 Y ([oX, )X, RX, )X, b; X;, )X, §w;
j=1

J

d
+2 Y (FoX,,)W(X, RX, (X, i(0;b)X,, )X,,T'§) .
j=1

By Lemma 4.1, Proposition 4.2, Lemma 4.7 and Assumption (V), I'oV,RV I'§ is a
compact operator.

(5) I'yV R(A+i0)V,I'¥: Using Lemma 4.4 and Lemma 4.6 we have

d
FO VIRVIF(’)"= —'2 .Zl ll/szFObJRVlrg

j=

d d d
=2 Zl ,ll/zwjl"objR{—Z k; A2 TEm+2 kzl i(akbk)l“(’,"}

j=

d d
jk=1 Jk=1
Here we can write each term in the first sum in the right hand side as follows:

O)jroblekF(’fwk=(DJ(FOX),)(XY_leX),_l)(XyRXy)(Xy_ lkay— 1)(X),Fg)a)k s

where y=pf/2>1/2. We know that I',X, is a compact operator and the others are
bounded. Hence w;I'ob;Rb,I'§w, is a compact operator. Similarly we can easily know
that the rest of the sum in the right hand side is a compact operator. Hence I'o VRV, I'§
is a compact operator.

(6) Ty V,R(A+i0)V,I'¥: Similarly, by I'oV,RV,I'§ =T X, )W(X,,RX,)W(X, '), we
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have that I'gV,RV,I'¥ is a compact operator. []
COROLLARY 4.9. S(A)—1 is a compact operator.
PrOOF. By (4.2) and V=V, + V, we have
SA)=1-2nil((V—VR(A+iO)V)[ ¥

2 2
=1-2mi ), T V,IT§+2ni Y, T'oViRA+iO)V,;I¥.
k=1

k.j=1
By Lemma 4.8, S(4)—1I is a compact operator. []

We denote a subset of S*~! by %, (j=1, 2). Let Y; be a multiplication operator by
the characteristic function of %;. We set

T=TA)=ToA)VT§A),

and consider the asymptotics of the spectrum of Y, 7TY,.
The following proposition was given by M. Sh. Birman and D. R. Yafaev.

ProrosiTion 4.10 ([2], [3]). Let q(x) and bj(x) have the following asymptotics

{ a(x)=|x|""g(w)+o( x|™%,

4.3) bj(x)=|x|"%g (@) +o(lx]|"),
@b;)x)=o0(x|7%),

as |x|— o, g, ;e C*(S*~ 1), a> 1. Putting
4.4 QU o, ¢)=J {—24'2{B(wcosO +y sinf), w) + g(w cos@ + y sin )} sin®~20dh ,
0

where
YeSL 2,  Bw)=(g,(@), g2(@) - -, glw)),
we define
p
4.5) ai(@)=2_1(d—1)"”(2n)"“i’1+“’2<J dwf ay(Q +(4; w, l//))”") ,
¥ sa 2

where p=(a—1)(d—1)"" and Q, =max{Q,0}, Q_=Q, —Q. Then
(4.6) AX(YTY)=a,(@)n *+o(n"*).
Moreover if (d— 1)-surface measure of %, "%, is equal to 0 then we have
4.7 s(Y TY,)=0(n"").

By Proposition 4.10 we have the following corollary.

CorOLLARY 4.11. If y>1/2 then for the compact operator Z}(A)=TI ()X, in
Lemma 4.1 we have
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S”(Zg(l)) —_ O(n —(r—1/2)/(d- 1)) )
PrROOF. We shall calculate s2(Z}(4)) first.
SH(ZYA) = AT (ZHANZHAN*) = AE(T (A X, X, T $(A))
= 'lf (Fo(A) X, oI 3(A) .
Putting V=X, in the definition of T and Y=/ in (4.6) we have
St (ZYAN=AF(T)=a.(8 " Wm~ " +0(n™?), p=Q2y—-1)d—1)"".
Hence we obtain
S ZYA) = O(n™*%)= O(n= 0~ 1/21E-1) O

S. Asymptotics of the eigenvalues of the operator B.
DEFINITION 5.1 (cf. [8]). We define an operator B by

(5.1 B=2'2J(tZ(A)=2""2(FJS* —1SJ), T=exp(ni/4) .
Putting R= R(A + i0),

(5.2) T,=I,V,Irg, Tyw=~ToV\RV, I} (Lm=1,2),

(5.3) Ky=1tT,J+$JT}, Kp=1T, J+3JTY (,m=1,2),

(5.4) K==2"2n(K\,+K;+ K+ K3+ K3, +K;3),

we know that

(5.5 B=J+K,

REMARK. An advantage of the representation (5.5) of Bis that J, K are self-adjoint
operators. By Lemma 4.8 the operators 7}, 7),, (I, m=1, 2) are compact and so KX is
compact self-adjoint. Hence by combining the fact mentioned above and Lemma 2.3
the eigenvalues of the operator B accumulate only at the points +1, i.e., denoting the
eigenvalue of B by uF, v we see

pE=120, vi--—1+0.

LEMMA 5.2.  If there exists p>0 such that u ~1+kon" (resp. v~ —1 tl.n"P)
as n— oo then 87 ~27 'k n™° (resp. n¥ ~27'1.n"*). Here 6,(resp. n,) is the same as in
Definition 2.4,

PROOF. We shall prove only that 67 ~2~*k.n"*, Taking account of u* —1+0
and p," =2'23(vexp(£2i6,)) we know that +267 ~pu*—1 ~ +k,n*. (In the case of
vy, remark that vEi= —2'23(zexp(F2int).) [

Our purpose is to study the asymptotics of scattering phases. Because of Lemma
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5.2, it is reduced to the study of the asymptotics of the eigenvalues of B. So we consider
the asymptotics of the eigenvalues of B. Using Theorem 3.6 we can find the asymptotics
of the spectrum of the operator B. To apply Theorem 3.6 to the operator B=J+K,
we consider the following two problems.

(1) Estimate of the singular value of the operator K;

(2) Investigation about the asymptotics of the spectrum of the operators P, KP,.

LeEMMA 5.3. Let po=(B—1)d—1)""! and p, <2(B—1)d—1)" 1. If Assumption (V)
is satisfied then for T,, T,, we have

Sn(Tl)= O(n—Po) H sn(Tlm)= O(n_pl) (la m= 1’ 2) .

Proor. We shall treat these singular values separately.
(1) s,(T,)=0(n"*°): By Corollary 4.5 we have

d
sn(T1)=sn(r0Vlr(?)=sn(—2 Z 'll/zwjrobjra‘> .

j=1

Taking account of the facts that the operators I'g X/, and Xj,,I'§ are compact and that
the others are bounded, and using Lemma 3.3, we have

d d
sN(—Z _Zl A”zw,.robjrg)q,v(—z -Zl /1l/zw,.roX,,,ZX,;,zlb,X,;,zlX,,,zr;;>

j= Jj=
d
< Zl 12212 | lo; || 1| X 5,20, X 5,3 1T 0 X g,5)
‘l=

where N=2d(n—1)+1. By Corollary 4.11 we know s2(IoXj,)=0m" ¢V~ D)=
O(n™*°) and so we have s5,(—2Y._, A'2w;Iob;I'¥)=O0(n"*°). Hence we get s,(T)=
O(n™*°). ,

2) s,(T,)=0(n"*°): By (3.1) and (3.3) we can see

Son—1(T2) =820 1(LoVal'§) =52, 1(ToXg) s WXy 2 )< || W”Snz(roXp/z) .

Using Corollary 4.11 we have s,(7T,)= O(n"~*°).
3) s5,(T,,)=0(n"*). We can get the following equality in the same way as the proof
of Lemma 4.8 (3).

$AT12)=s,T oV \RV,I'§)

d

=s,,<—2 .Zl ,ll/zwj(FoXyz)(X,,‘zlij;l1)(XHRX“)W(Xyzl"g‘)> .
J= .

Here putting y, =9, y,=8—7, we have s,(FoX;_,)=O0(n~2#~27~D2@-1) by Corollary

4.11. We put p, =(28—2y—1)/(d—1), then p, <2p, and s,(I'(X;_,)=O(n"**'?). More-

over taking account of the fact that the rest of operators in the right hand side are
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bounded (by Assumption (V) and Proposition 4.2), and using Lemma 3.4, we have
5A(T12)=0(n"*).

(4) 5(T51)=0(n"*"). By the equality in the proof of Lemma 4.8 (4) and the inequality
(3.1) we know easily that

Son-1(T21) =585y (Lo VRV I'E)

d
=S2n—1<2'11/2 Z (FOX)'z) W(XHRXYl)(Xy_;lb'X_l)(X}’ng)wf

Jhrey
j=1

d
-2 '21 (I"OX“)W(XHRX“)(X;li(ajbj)Xy”zl)(Xsz"g‘)>
j=

d
SS,,(z,ll/Z Y (FoX, )W(X,,RX, )X; b, X, 1)(ang)w,.)
ji=1

JTy2

d
+s,,(2 ’Zl (I'vX,,) W(X“RX“)(X;li(ajbj)X;zl)(XnI“(’,")> .
j=
We can treat the right hand side in the same way as the proof of s,(7T,). Hence we
knOW S"(T21)= O(n‘pl).

(5) sT11)=0(n""*): By the equality in the proof of Lemma 4.8 (5) and the inequality
(3.1) we know easily that

Szn—1(T11)=Szn—1(FoV1RV1F(?)

J

d d
=Szn—1(_4)- kZ_ w;Tob;Rb IS, + 442 kz_

1 J

;T b J-Ri(akb,,)l’;,")

1

Jj 1

d
ijObijkF{)"wk)+s,,(4i”2 > ijobij’(akbk)F(’,">
k=

d
=sn<—4l > wj(l"oXn)(Xy'zlb-X“1)(Xy1RX“)(X},_1lka;zl)(XhF(’,")wk)
J k=

Jn

d
+5, (4/11/2 kz_ @;(ToX, XX, b ij‘l1)(XHRXYI)(X;’i(akbk)Xy'zl)(Xyzl"(’,")) :

1

J

Using Lemma 3.2 we can treat the right hand side in the same way as the proof of
5x(Ty2). Therefore we know s,(T; ;)= O(n~*1).
(6) 5,(T5,)=0(mn"*1). We have

S2n—1(T22)=S2n—I(FOVZRVZF:)=S2n—1((r0Xyz)W(XleXyl)W(Xyzr(:)k))
<IWI?|X, RX,,IIsHTX,,) -

So we get an estimate of s,(T,,) in the same way as the proof of s,(T;,). [
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COROLLARY 5.4. Suppose that Assumption (V) is satisfied. Then for the operator
K in (5.4) we have
Sn(K)=0(n—Po), p0=(ﬂ—l)(d'" 1)_1 .

Moreover if f>(x+1)/2 then
siK)=o(n™ %),  p=@-)d-17".

Proor, Using the definition of K, Lemma 3.2 and Lemma 5.3 we find
s,(K)=0O(n"*), We shall give a proof of the second claim. If f>(«+1)/2 then
2(—1)>a—1. So we have p=(a—1)Yd—1)"' <2(B—1)d—1)"'=2p,. Hence p/2<p,
and 5,(K)=0(n"")=o(n"*?). 0O

We shall consider the asymptotics of the spectrum of the operators P.KP..

PROPOSITION 5.5. Suppose p>(x+1)/2. Let K,,, be the operator in (5.3) and P, (¢
is whether ““+ or *—"") the operator in (2.2). Then

s,,( 22: (—2Y z7:1»’,,1(,,,,1’,)) =o(n"")

Im=1

holds.
PrROOF, By (5.3) and (3.2) we have
San—1(PaKimPa)=S2n— 1P Tim/ Py + TPJ T P) 2| 7| I l|$0(Tim) -
By Lemma 5.3 we know
s(—2'2nP KP)=00""),  py<2B=1)d=-1)"".
Therefore by Lemma 3.3 we see
sn( ) («z”lnP,K,,..P,))EO(n-M).

lm=1

Furthermore as fi>(x+1)/2, we know
p=@—10d=1)"'<2AB-1)d—1)"'=2p, .

Since p, is an arbitrary number less than 2p,, we can take p, such that p<p, <2p,.
Hence

sn( i (_‘zuzupaKlmPa)>=a(n—ﬂ)
Im=1

holds, O

THEOREM 5.6, Suppose B>(x+1)/2. Let K, be the operator in (5.3) and P, (a is
whether *“+ or *“—"") the operator in (2.2) and 8 .(S,) the function in (4.5), Fix an
arbitrary hemisphere Sq of 8°' and put a . =na +(So). Then ‘
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, v
Aff( Y (—-2‘/27tP,,K,P,,)>=2a;,n"’+o(n"”)
1=1

holds. .
We shall postpone proving Theorem 5.6 and give its proof in sectioﬁ 6.
THEOREM 5.7. If B>(x+1)/2 then for K defined in (5.4) we have
AE(P,KP,)=2az n"P+o0(n").
Proor. By the definition of K we have
P, KP,= li (=2Y2nP,K,P,)+ : i 1 (=2'2nP,K,,P,).

Combining Theorem 5.6, Proposition 5.5 and Proposition 3.5 we can easily obtain this
lemma. [

THEOREM 5.8. If B>(a+1)/2 then for uE, v}, which are the eigenvalues of the
operator B in (5.5), the following equalities hold.

puE=14+2azn"?+o(n"*),
vi=—14+2a.n"P+on"*.

ProoF. By Theorem 5.7, Corollary 5.4 and Theorem 3.6 we can easily find this
lemma. [J o

6. Proof of Theorem 5.6.

To prove Theorem 5.6, we shall define new operators and consider their properties.
‘We define operators L, T as follows (cf. [8]):

Pi(Ky+K)P;
(6.1) {‘i = T2 ’
©.2) P (T, +T))+ T+ T, -
2
Using J2=1, (2.2) and (5.3) we find
(6.3) L,=2"Y(xT+1J).
LemMma 6.1. For T,, T, defined in (5.2) and for J we have
T d
_iiT_lJ_=ro< ¥ 2ia,.b,.,,)r;;,
2 j: 1 !
T,+JT,J d d
—1—2——2—~=ro(— 2, 060+ 3 (67)dx) +qe<x))ra* :
J= J=
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Proor. First we prove the following two assertions:
Tobi(I§Jf N —w) =T obi(—x)'§fNw),
(JTo Vo) EIf Nw)=(oV(—X)§f Nw) .
We put k=2"1/23@~2)/42z)~42 By definition we can find that

(Fobj(x)r(’;-]f)( —w)

=2~ 112 )@= 24 )= 412 J exp(—i{x, —AY2w))b;(x)(T Jf Nx)dx

R4
r r
=k? | exp(—i{x, —A'?w))b;(x) (Jf Nw")exp(i{x, A 2w’ Y)dw'dx
JR4d JSd-1
r r
=k? | exp(—i{x, —A'2w))b(x) f(—w)exp(i{x, A1 ?w">)dw’ dx
JR4 JSd-1
r ~
=k? | exp(—i{x, —A"2w))b;(x) f@)exp(i{x, —AY2w">)dw'dx
JR4 Jsd-1

=kj exp(—i{x, —AY2))b;(x)I'&fN— x)dx
Rd

=kf exp(— i —x, —A2w)b;(—xXT§f Nx)dx

=(Lob{—x)'§ f)w) .
So we have (Fpb;(x)'§JfN—w)=(Tob;(—x)I'§fNw). In a similar way, we also find
TV (I N w)=(o Vo —X)§f Nw).
Now using the first assertion above and Lemma 4.4 we shall prove the first part
of the lemma. We shall calculate the following.
( T, +JT,J

> f)(w) = TV TS Ye)+ UToViT 31 Ye)

[

% { -2 i ﬂ.”zwj(l"obj(x)l"{)"f)(w)}+% J{—z i A2awy(Foby(x) T'3If )(w)}
j=1 j=1

j=

d d
- ‘;1 ’11’2wj(l"ob,-(x}F6“f)(w)— _;1 /11/2(—a)j)(l"obj(x)['6".]f)(_w)

J

a

d

— 2 APoLob ()l §fNw)+ Y, APwi(Tobi(—x)Ef New)

=23 l"zwj(ro( P A) )Fa"f)(w)
=-2 i A”zwj(l"obj,o(x)l"(’,"f)(a))=1"0< Zd: Ziajbj,o(x)rg‘f>(w) .
i=1 i=1
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Hence we obtain the first part of the lemma.
Similarly, using the second assertion above and the definition of V,, we can also
find the second part of the lemma. []

COROLLARY 6.2. The operator T defined in (6.2) can be rewritten as follows:

T=F0{

d 2i0;b;,,— Zd: i(0b;)(x) + i(bf)e(Xqu(X)}F J -
=1 j=1

=

J

Proor. This is clear from Lemma 6.1 and (6.2). [J

DEFINITION 6.3. We define an operator ¥ by

d

P= 3 200,00~ ¥ i@5)0+ . BN+

Jj=1

d d d
Y. i0;b;,+ '21 ibj,0;+ '21 (07 e(x)+ge(x) .
j= i=

j=1

I

Note that
(6.4) T=r,vrg,
and T is self-adjoint since ¥ is self-adjoint. Moreover by TJ=JT and (6.3) we can find
(6.5) L J=JL,=+L,.

Let Y, be a multiplication operator by the characteristic function for a fixed
hemisphere S, =S?~!. In general, for an arbitrary operator satisfying (6.5), we have
the following lemma.

LEMMA 6.4. Let N, be compact operators satisfying (6.5),i.e., N, JJ=JN,=+N,,
and put M, =2Y,N.Y,. Then N, and M, have common non-zero eigenvalues with the
same multiplicities.

ProOF. Let S;=S?"1\S, and Y, =I—Y,. Since L}S?™')=L>*S,) ® L*S}), we
have
N _( YoN.Yo YoN. Ya)
*T\YNLY, VN.Y,)
By a simple calculation, we find Y;=JY,J. Using this relation and (6.5), we can rewrite
matrix N, as follows:
M, + MiJ)

N+—_-2_1(
* +IM, IM.J
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The matrix N, is unitarily equivalent to

D¢=2“( M iM*).

M, M,

Therefore non-zero spectrum of N, and D, are the same. Moreover since non-zero
spectrum of D; and M, are the same, N, and M, have common non-zero eigen-
values. [J

LeMMA 6.5. M, =2Y,L.Y, can be written as follows:
(6.6) M,=+Y,TY,+ Y, TY}J, o=I-Y,.
ProoFr. Taking account of Yo=JY,J, J2=1 and (6.3) we see
M, =2Y,L,Y,=2Y,{2 Y+ T+TJ)} Y,
=Y (£ T+ TN Y=+ Y, TY,+ Y, T7Y,
=+ Y, TY,+ Y, TY, . O

LEMMA 6.6. Under the same condition as Theorem A we have
(i) a.(So) is independent on S, and

nlay =a,(Se)=2""a,(8"7");
(i)
A M)=n"'ay,n"P+o(n "), n-ow.
Proor. We shall prove (i) first. We put
QA4 @, Y)=2,(4; 0, Y)+ Q4 o, §)

where

g,,sf {—24Y2{B,( cos + sinf), ) sin*~20}df ,
0

Q.= j g(wcosf+ysinf)sin*~20d0 .

0
Then by B,(w)= —B,(—w) and g (w)=g.(—w), we have
Qo('q'; , ‘/’)=Qo(l’ —, "‘P) ’ Qe(ls , lp)="2e(2'9 —, _Il’) .

By the properties above we obtain
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J f (Q2+(4; w, ) "Pdydw
gd-1 sg;-Z
=J f (2:(4; o, l//))”"dl#dw+f f Q.4 @, Y)Pdydw
So s:)~2 sb :"1
=J f Q.4 o, lﬁ))”"dwdw+f J Q.4 —w, —Y)°dydw
So V842 ~ s, Jsd-?

=2 J- ‘[ Q14 w, ) Pdydw ,
Sy v84-2

where S, =S89"1\S,. Therefore by (4.5) we see a.(So)=2"a.(S*"'). Hence a.(S,) is
independent of S, and a.(Sy)=2""a.(S"1).
(i) We put

nla,=a,(S0)=2""a.(8""").

We shall apply Proposition 4.10 to T'=I,PI'*. By (4.6) in Proposition 4.10 we have

6.7) AE(YoTY)=a,.(Son P+on P)=n"layn"P+o(n"*).
Since |S, NS4 |=0, we have, by (4.7), s,(YoTY;)=0(n""), and so
(6.8) s (YoTYo )=0(n"").

Recall that J, T, Y,, Y}, are self-adjoint and that JY; = Y,J and 7 =JT. Taking account
of these facts, we have

(Yo TYo ) *=JY,TY =Y (JTN)YoJ =Y, TYJ .

Hence Y,TY,J is a self-adjoint operator. Taking account of the fact that for any
compact operator 4, AX(—A)=A7(4) and applying Proposition 3.5 to the operator
oY, TY,+ Y,TY,J, we have

AEM )= Y, TYo+ Y, TYo)=n"ta,,n"?+o(n""). O

ProOOF OF THEOREM 5.6. By (6.1) we have
2
h ( Y (- 2“2nP,K,Pa)) =2"20)(— PKy + K)P,)
=1
=212 2(—2V2L,)=A*(—2=nL,)
=2nA](L,).
Using Lemma 6.4 and Lemma 6.6 we see
AX(L)=n"ta ,n"P+o(n"").

Therefore we can find
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2 .
Af ( Y (—21/27tP,,K,Pa))=2nlf(L,)=2a;dn‘P+o(n‘P) . 0
1=1 :

7. Proof of main theorems.

PrOOF OF THEOREM A. (i) The proof is the same as in Lemma 6.6 (i).
(i) By uprf=2Y"2J(rexp(+2i6])) and vi=—2"2J(rexp(F2int)), and adapting
Theorem 5.8 to the result of Lemma 5.2, we find

07 ~27'x2ar xn"P=azn"", pf~2"'x2a,xn"P=a,n"".
Hence we have limn?8f =limn*yt=a, . O
To prove Theorem B, we shall give two lemmas.
LemMa 7.1. We shall assume that b;(x) and q(x) satisfy Assumption (V) and that
4)=0(x1"%, b;X)=0(1x]"%), (8;5))(x)=(3;b;.)x)=0(x|%).

If B>(x+1)/2 then for the singular values sV, s, s, s® of the operators

d

d d
I‘o( Zl 2i0,-b,-,o>1"6", I“o( 2 i(ajb,-)e(x)>F6", I‘o( 2 (b})e) ¢ Togels,
j= i=1

ji=1
respectively, we have

57=0(m"")  (k=1,2,3,4),
where p=(a—1)d—1)" .

PrOOF. We shall take their proof in order. Recall that X, =(1+x2)""/2,
(1) s9: By Lemma 4.4 we have

d d
S,,(I-'()(j;l 2i61b1,0>1-'6")=s,,<—2 .;1 ll/zwj(robj,org)>

J
d
=Sn<_2 '21 (A‘1/2wj)(FOXz/Z)(XaJZIbj.oXaJZI)(Xa/ZFg)) .
j=
By Corollary 4.11, s(I'¢X,;;), s,(Xy2I'§)=0(n""*), by assumption the rest of the
operators are bounded, and using Lemma 3.4 and Corollary 4.11 we have
V sf,i)=0(n—(“_1)/("_1))=0(n—”).

(2) s By assumption X;,2i(3;b;)(x)X;3 = (1+x%)%%i(d;b,)(x) is bounded. There-
fore in the same way as the proof of (1) we have

S;2)= O(n—(a— 1)/d— 1))= O(n"’) .

(3) s Taking account of (1+x?)*2<C(1+|x[)!** and B>(x+1)/2 we have
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(14+x2)*2<C1 +|x|)**. So we find that

b}(x)+bi(—x)
2

| X2 (010X 3 | =11 +x22(63) (%) | = | (1 +x2)2

S C{UA+]xDPh;(x) > +1(1+| xbj(—x) %} .
Hence by Assumption (V), X, ;(b?).(x)X,,3 is bounded. Therefore in the same way as
the proof of (1) we have :

s = O~ D=1y O(n =) |

(4) s: By assumption X;q.(x)X;; =(1+x?)%?q(x) is bounded. Therefore in the
same way as the proof of (1) we have

sf,4)=0(n—(“_”/(d—1))=O(n—“’). 0

LEMMA 7.2. We shall assume that b;(x) and q(x) satisfy Assumption (V) and that
g4x)=0(x1"%, b; x)=0(x|"%, (0;b;)(x)=(0;b;)x)=0(x]|"".
If B> (o +1)/2 then
suLy)=0(n"").
PrOOF. By (6.4) and by the definition of ¥ (see Def. 6.3), we find
s(T)=sToVTE)
d

d d
=s, (r( . 20,00~ 3 i0b)+ 3 (bf)e(x)+qe(x))ra=) .

j=1
By Lemma 3.3 and Lemma 7.1 we have s,(7)= O(n~*). Moreover by (6.3) we see

11

+T+1T7 ~ ~ -
Ebutll )s%sn(TH——z si(T)=s/T) .

s2n—1(Li:)=s2n—1( P
Therefore s,(L,)=0n""*). O

ProOF OF THEOREM B. By (5.4) and (3.2) we find

2 2
S2n—I(PaKPa)Ssn(Pa(_zl/zn 2 K1>Pa>+sn( Z (-21/2nPaK1mPa)) .

=1 lm=1

Taking account of (6.1) and Lemma 7.2, for the first term in the right hand side we have

2
Sy (P,,( —-2127 % K, )P,) =2ns,(2 2P (K, + K,)P,)
=1

(7.1)
=2ns,(L,)=0(n""*).

For the second term in the right hand side, by Proposition 5.5, we have
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(72) sn( 22: (_21/2nPaKlmPo))=o(n—p) .

Iim=1
Combining (7.1) and (7.2) we have
(7.3) Sy(PoKP;)=O(n"").
Since f>(a+ 1)/2, by Corollary 5.4 we have
(7.4 s(K)=o0(n""*12),

Applying Theorem 3.7 to the operator B=J+K in (5.5) we can find, by (7.3)
and (7.4),

s —=1|=0(n"?), |vi+1|=0(n"").
Hence by Lemma 5.2 we have 6 =0(n"*), nf=0(n"*. O

8. Appendix.

PROOF OF LEMMA 2.1. Suppose (Jf {w)=Af(w). Then f=J%*f =AJf=A%f because
of J2=1, so A= + 1. Hence the set of eigenvalues of J consists of only +1, and so the
eigenspace for +1 (resp. —1) is the subspace of the space of the even (resp. odd) func-
tions in H. Moreover by the following equalities, the latter statement of Lemma 2.1 is
proved.

P f(@)=f(@)+f(-w)2=f(w), P_f(w)=((0)-f(—w)2=f(). O

PROOF OF LEMMA 2.3. We know XZ(A)—J=S(A)J—J=(S(A)—I)J. Since S(A)—1 is
compact, the operator Z(4)—J is compact by Corollary 4.9. Taking account of the fact
that the set of eigenvalues of J consists of only +1 and using Weyl’s theorem (see [1])
we have Lemma 2.3. O
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