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1. Introduction.

We are interested in the following problem.

PrROBLEM. Determine all possible torsion subgroups E,,(K) of the K-rational points
of an elliptic curve E defined over a number field K of a fixed degree n=[K : Q].

This problem has been studied by many people, such as Mazur, Kenku, Momosé,
Kamienny, Miiller, Stroher, Zimmer, - - -, for K of small degree over Q. In this paper,
we prove the following: ' ~

THEOREM. Let K be an imaginary cyclic quartic field and E an elliptic curve over
K. Suppose that

1. f,<4 or f3<4, where f, is the residue degree of a prime ideal over p in the
extension K/Q; and

2. the j-invariant of E is an integer of K.
Then, E,,(K) is isomorphic to one of the following ten groups:

Z/mZ (1<m<8, m#T7)

227D Z/2ul (I1<u<l).

All these groups do occur (as this is so already over the real quadratic subfield of K
[10]).

Before further describing the contents of this paper, let us recall some history on
this problem.
In the case of n=1 (i.e. K=Q), this problem was solved by Mazur (see [9]).

E\(K)= {

THEOREM (Mazur).

Z/mZ (1<m<12,m#11)

Emr(Q)g{Z/ZZ@Z/ZﬂZ (1Sﬂ$4)
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In solving the above problem for n>2, Miiller, Stréher and Zimmer ([10]) note
that the order of E,,(K) is bounded by a constant number depending only on the degree
n and the prime number p under p when E has good or additive reduction modulo a
prime ideal p, and prove the following theorem.

THEOREM (Miiller, Stroher, Zimmer). Let E be an elliptic curve with integral
j-invariant over a quadratic field K. Then,

Z/mZ (1<m<10,m#9)
E, (K)x~ { 222D Z/2uZ (1<u<3l)
Z/3Z®Z/3L.

(Today the result without the assumption that j-invariant is integral is given by
Kamienny, Kenku, Momose ([5], [6], [7]).)

Further, because of the integrality of j-invariant, they succeeded in listing all elliptic
curves and ground fields where the torsion groups are isomorphic to one of the above
groups except Z/2Z, Z/3Z, and Z/2Z.® Z/2Z.

In the same way (i.e., with the assumption that j is integral), part of the cases of
n=3, 4 have been computed (precisely, the case where the ground field is cubic is treated
in [1] and the composite of two complex quadratic fields is in [3]).

Our method closely follows that of [10]. In the first place, we appeal to the
reduction theory (§2) to obtain a first list (Theorem 1) of possible torsion subgroups
of E(K) under the assumption on K as in the above Theorem. To remove the pos-
sibility of certain cyclic subgroups of E(K) of relatively large order (such as 13, 15, 16),
we have to carry out long and tedious computations about the equations, called E(b, c),
of some explicitly parametrized elliptic curves with a specified K-rational point (§3). In
particular, when the j-invariant is integral, we obtain some restrictive conditions on the
coefficients of E(b, c). These conditions give rise to “norm equations”. Finally in Section
4, we solve these equations making use of the assumption of K as in the above Theorem
to list possible equations E(b, c) in different cases. As a result, we can exclude some of
the groups listed in Section 1, thereby obtaining our Theorem.

2. Reduction theory.

Let K be a number field, p a prime ideal of K, p the prime number under p, and
let E be an elliptic curve defined over K.

Now we denote by k, the residue field of K with respect to p, e, (resp. /o) the
ramification index (resp. residue degree) of p in the extension K/Q and E(kp) the set of
all k,-rational points on the reduction E of E modulo p.

Miiller, Stroher and Zimmer show the following fact (see [10], Theorem 1).

FAcT 1. The order of the torsion subgroup E,,(K) satisfies the following divisibility
relations.
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1. If E has good reduction modulo p, then

|EoK) ||| Ehy) | - p*,  and | E(ky)|<1+p7+2{/p” .
2. If E has additive reduction modulo p, then
| Eio(K) | |12+ p2®+ D

. _{0 (if p—1>ep)
b=

where .
max{reN; (p—1)p" "' <e,} (otherwise) .

Applying this to an elliptic curve over a quartic field, we obtain the following
proposition.

ProposITION 1. Let K be an imaginary cyclic quartic field, v, the normalized
additive valuation of rank 1 associated with p and E an elliptic curve over K. Suppose
that
1. fi<4orfy<4,

2. for each i€ {2, 3}, there exists a prime ideal p dividing i of K such that v,(j)=0.
Then,

| Eo(K)|]|2%5,6-5,2%+7,3-7,11,13, or 2°-32.

(Remark: the condition v,(j)=>0 implies that £ does not have multiplicative reduction
modulo p.)

PrROOF. Let, for each i€ {2, 3}, p; be the prime ideal of K satisfying the above
assumption 2. Note that ¢,,<3 and 7,,<1.
o If f,<4, then

I |E,, (K)| {lE(sz)|'26S9'26 if E has good red. modp,
. tor IE(kp3)| +32<100-32 if E has good red. mod p; .

210.3 if E has add. red. mod p,

1L. E, (K :
S HZZ -3°>  if E has add. red. modp;.

Let EZXK) be the p-primary part of E,,(K) for a prime number p. Reduction mod p,

shows that the order of EZ)K) satisfies | EZY(K)| | 2°. Actually, according to [12], Prop.
3.1 (p. 176),
5 .
| E2(K))| {2~ Tf E has add. red. mod p,
| E(k,,) | <100 if E has add. red. mod p; .

Thus, when E, (K) does not contain any element of prime order p>35,

| E,0(K)||2°-3%. ®

On the other hand, when E,,(K) contains an element P which has order p>5, E has
good red. mod p,. Then, | EZAK)|<9, so p=35 or 7. Further, for E also has good red.

tor
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mod p3,
| ESNK)|<100/p and |EGAK)|<9/p.
Thus,
| E,(K)||2%+5 or 23-7. (ii)
o If f3<4, then

| E(k,,)|+26<25-2% if E has good red. modp,
|E(k,)|-32<16-32  if E has good red. mod p, .
210.3 if E has add. red. mod p,

22.33 if E has add. red. mod p; .

L | Eror(K) | ' {

IL. | Eror(K) | ‘ {

In the same way as in the case of f, <4, reduction mod p; and p, shows

|E&(K)||2* and |EQXK)||32.

tor tor
Thus, when E,,(K) does not contain any element of prime order p>S5,
| E,o(K)| |2%-32 . (iii)

On the other hand, when E,,(K) contains and element P which has prime order p>35,
| E®XK)|<16. So p=5, 7, 11 or 13. Furthermore,

|ESK)|<16/p,  |EGXK)|<25/p.
Thus,

|E,,(K)||6:52-7,3-7,11 or 13. (iv)
The proposition follows from the relations (i)—(iv).

In general, if E, (K) has a subgroup which is isomorphic to Z/mZ @ Z/mZ (for
an integer m), then K contains a primitive m-th root of unity. So, if K is an imaginary
cyclic quartic field which is unequal to Q({s) where {5 is a primitive fifth root of unity,
then

E,(K)#Z/mZ®Z/mZ  (for Vm=3).

(Note that imaginary cyclic quartic fields do not contain any imaginary quadratic fields.)
Therefore, the next theorem follows.

THEOREM 1. Let K be an imaginary cyclic quartic field and E an elliptic curve
over K. Suppose that
1. fo<4orf;<4,
2. for each i€ {2, 3}, there exists a prime ideal p dividing i of K such that vy(j)=0.
Then, E,,(K) is isomorphic to a subgroup of one of the following groups.
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Z/6AZDZOZL Z)2ZDZ/32ZP L)L
Z/16Z2@®Z/52 ZRZOZRLDZLZ/ST Z/6ZDZ/SZ
ZBZDZL/TL ZNRLZLAPZ/AZDPZ/TZ Z)3ZDZL/1Z
Z/11Z Z/13Z
We will study the groups which do not occur from the torsion subgroups of elliptic

curves over quadratic fields in §4. For this purpose we quote the following result from
[10] (Theorem 4 and tables).

Facr 2. Let k be a real quadratic field and E an elliptic curve with integral
J-invariant over k. Then, E, (k) is isomorphic to one of the following groups. And all

these groups occur.
E (k)~{Z/mZ (A<m<8, m#17)
CUT\ZRZ®ZRuL (1<p<3).

3. Parametrization.

In this section, we study an elliptic curve E over a number field K whose torsion
subgroup E,,,(K) contains an element P of order N>4.
Such an elliptic curve is isomorphic (over K) to the following curve, which is called
Tate’s normal form or Kubert’s E(b, c)-form (cf. [4], Chapter 4, [8], and [10]).
Eb,c¢): Y*+(1—0)XY—-bY=X3—bX? (beK™,cek),
P=(0,0).

Here,

_ (1 —c)®> —4b)? +24b(1 —¢))®
T b(1—c)2—4b)2+8(1—c)>—27b—9(1 —c)(1 —c)® —4b))

J

THEOREM 2. Let p be a prime ideal of K, Oy the ring of integers of K, Uy the
group of units of K and v, the normalized additive valuation of rank 1 associated with p.
Case 1. If N=8, then there exists de K such that

b=Q2d—1)d—1), c=Q2d—1)d—1)d"!.

Further, if je Oy, then the following four conditions are satisfied.
(1) 0<v(a<3v,(2)  (Yp),
2 0<v,(2—&)<2v,(2) (vp),
3) 1—¢ee Uy,
()] 0 <v,(e?—8e+8) <5v,(2) (Vp),
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where e=d ™ 1.
Case 2. If N=16, then there exist w and x € K such that

_ 2FGJ ee_ T2FG
(—1+x)H*I?’ (—1+x)HI?

where
F=—1—-x+x*+x>+w,
G=—-24x—x*+x3+x*+xw,
H=1-3x+x*+x3+w,
I =l—x+x*+x*+w,
J = —44+4x-2x2+4x3 +4x* —4x® —2x8 +(4x —2x2 = 2x3)w .
Moreover, w and x satisfy
X,16) : w?=1—-2x—x2—x*+2x>+x5.
Further, if je Oy, then the following two conditions are satisfied:
D xe Uk,
2) 0<v,(x+1)<v,(2) (Vp).
Case 3. If N=9, then there exists fe K such that
b=fd—-1)d, c=f(d-1) where d=f*—f+1.

Further, if je Og, then the following two conditions are satisfied:

1)  feU,
2) [f—-1eUyg.
Case 4. If N=6 then
b=c(l1+c).

Further, if je O, then the following three conditions are satisfied:

(1) 0<o®)<20,3)  (Vp),
) 0<v,(1+8&)<30v,(2) (Vp),
3 @ 00+9=0 (¥pf6),
(B) v,0+e)=v,(1+8)  (¥p|2),
(©) v,O+8)=v,()  (¥p|3),

where e=c~ 1.

Case 5. If N=12 then there exists e€ K such that

_(—2+e)(—14+3e—¢?) —1+3e—¢?

b —_
(—1+¢* (—1+¢)?

2
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Further, if je O, then the following three conditions are satisfied:
(1) 0=v,(e)<v(D)+30,(3)  (Vp),
2) —1+eeUg,
B) (@ v(—e+2)=0  (¥pf2),

| b)) v(—e+2)=vy(e) (Vp|2).
| Case 6. If N=5 then

b=c.
Further, if je Oy, then the following two conditions are satisfied:

(1)  beUy,
@  0<v,(B2—11b—1)<30,(5)  (¥p).

Case 7. If N=10 then there exists ¢€ K such that

_ e—DE-2) . (e=DE=2)
e(—1+3e—g2)? e(—1+3e—¢?)

Further, if je Ok, then the following three conditions are satisfied:
(1) 0<uE@<v,  (¥p).
(2  0=<v(e—=2)=<vy(2) (Yp),
A3) e—1e Uy
Case 8. If N=15 then there exist w, x€ K such that

4xFGJ dxFG
bzw, C=
HI? HI

b

where
F=—44+x+w,
G=—8-2x—x242w,
H=—8—6x—x2+2w,
I =64+48x+12x*+ x> +(—16—8x—xH)w,
J =644+32x+16x2+x34+(—16—4x—x*)w .
Moreover, x and w satisfy
X,(15) : w?=16+8x+5x*+x3.
Further, if je Ok, then the following two conditions are satisfied:
€)) vp(x)=0 or 2v,(2),
2) vp(x+4)=0 or 2v,(2) or 4v,(2).
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Case 9. If N=7, then there exists de K such that
b=d*d-1), c=dd-1).
Further, if je Ok, then the following two conditions are satisfied:
(1)  deUy,
2) d—1e Uy.
Case 10. If N=11 then there exist w, xe€ K such that
_ w—4+2x)w—4)(w+4) o (w—4+2x)(w—4) -

b )
128x 16x

Moreover, w and x satisfy
X,(11): w?*=16—4x2+x3.
Further, if je Ok, then the following five conditions are satisfied:
1) 0<u,()<20,)  (Vp),
2 0<vp(x—4)<20,(2) (vp),
(3 vpw—=Fv,(x)  (Vp),
@ vw+d)=Fv,(x)  (Yp),
%) vp(W—4+2x)=3v,(x) (Vp).
Case 11. If N=13 then there exist w, ue K such that
_ 2(—1+uu?FI o 2(—1+4+uwu?F

b , 5
G’H GH

where
F=1-2u+u’>+u+w,
G=14+uv>—ud+w,
H=1—-2u+3u’ —u3+w,
I =1—-w?+ul+w.
Moreover, w and u satisfy
X (13): w?2=1—4u+6u?—2u3+u*—2u°+us.
Further, if je Ok, then the following two conditions are satisfied:
1) ueUy,
(2 u—1leUy.

ReEMARK. In this theorem the Cases 1, 3-7 and 9-10 are quoted from [10], so
we have only to prove Cases 2, 8 and 11. The equations of Cases 2, 8 and 11 are in
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fact equations of the universal family on the modular curves X,(16), X;(15) and X;(13),
respectively, and are transformations of the equations given in Reichert [11].

Proor. First, we show how to derive our equations from [11].
For an integer m, let x,,, be a X-coodinate of mP.
Case 2. Reichert [11] obtained

X,(16) : (W +3u+2)V2i+u+4u?+4u)V —u=0

from the equation x,p=X_4p by the birational transformations

%) {b=cr, c=s(r—1),
m(l—s)=s(1—r), r—s=t(l—ys),
and
e Vit(u+1)V =1
Vitu—1)V—-u’ V-1
Further, by the transformations
Ve M u=x—1,

wHuu+2)?’
we arrive at
wr=1-2x—x2—x*+2x>+x°®.
Case 8. In the same way, Reichert’s form is obtained from x,p=x_gp by the
birational transformations () and
-V 4+ @W—uV +u? uv

V2P +u)V +ud+u? VPP w)V +ud+u?

Further by the transformations
1
u=—x, =—8—(w+x—4),

we arrive at
w2=16+8x+5x2+x>.
Case 11. The equation
X,(13) : w?=1—4u+6u?—2u’+u*—2u> +u®
is obtained by the birational transformations (*) and

_V+u3—u o —ul+u V——W ud—u?—1
v v 2 2
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Secondly, we prove the estimations of coefficient of E(b, ¢). But it is really long and
tedious, so we describe only Case 2: the rest can be proved by similar arguments.
Note that the following two lemmas are valid.

LEMMA 1. v,(b)>0 and v,(c)>0 = v,(j)<O.
This follows easily from the formula for j given at the beginning of §3.
LEMMA 2. 20,(c)<v,(b) <0 = v,(j)<O.
PRrROOF.
2v,(c) <vp(b) <0 = v,(j) = 120,(c) — (Bv,(b) + 4v,(c))
=8v,(c)—3v,(b)
<2v,(c)<0. O

Case 2. Put F'=F(x, —w), G'=G(x, —w), H'=H(x, —w), I'=1(x, —w), J'=J(x, —w)

for F=F(x, w), G=G(x, w), H=H(x, w), I=I(x, w), J=J(x, w). Then
FF' =4(1—x)x(1+x), GG’ =4(1—x)(1+x?),
HH =4(—1+x)x(1—2x—x2%), II'=4x%, JJ' =16(—1+x)>.

(1) Now we prove that je Oy =xeU, k- It is equivalent to the condition that
J€Og=>v,(x)=0 (Vp).

Suppose that v,(x)>0 for some p. Then v,(w)=0. Moreover, we know v,(F)+
Up(F') = 0,(FF')=20,(2) + vy(x) and vy(F—F")=v,(2). Thus (v,(F)+ v,(F"))/2> vy (F —F),
and so v,(F)#v,(F’). So we have the following two cases:

® )= {vp(2)+vp(x) GF 0,(F)>0,(F) @)
vp(2) (if vy(F)<vp(F"). “(B)
In the same way, comparing v,(G), v,(H), - - - with v,(G'), v,(H’), - - -, respectively, we
have the following:
@ vp(G) = vp(G/) = vp(z) .
0 vo(H) = {%(2) + vy(x) (.if vy(H) > vp(H:)) (@)
vp(2) (if vy(H)<v,(H"). - (B)
05(2) + 2v,4(x) (Gf vy(I)>v,(I") s (o)
n=4" p P P
® ol {vp(Z) (f vp()<vy(I)) . “(B)
® vp(J)=v,(J")=20,(2) .

On the other hand we have v,(F —H)=v,(F'—H')=v,(2). This implies that (D-o
(i.e. vp(F)=v,(2)+vy(x)) and @-a (i.e. v (H)="1,(2)+v,(x)) do not occur at the same
time. Furthermore if v, (F)=v,(2) and v,(H)=1,(2), then we have v,(F')=0v,(2)+ v,(x)
and v,(H')=0,(2)+ v,(x), which is impossible. So (D-f and (®-B do not occur at the
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same time either. In the same way, the condition v,(F —I) =v,(F' —I')=v,(2) implies that
®-a=@®-p and O-f=@-a.

Therefore, the following two cases are possible.

case A. (D-a and @-@-f. Then, vy(b)=0v,(x)>0, vy(c)=0vy(x)>0. So, accord-
ing to Lemma 1, v,()<0.

case B. (-f and ®-@-a. Then, v,(b)= —8v,(x), vy(c)= —Svy(x). So, according
to Lemma 2, v,(j)<O0.
Next, suppose that v,(x) <0 for some p. Then we have the followings.

® 0p(F) = {%(2) (f 05(F) > vp(F) @
p 0,(2) + 3vy(x) (if vu(F)<vy(F"). - (B)
0p(2) —vp(x) (f v,(G)>v,(G)) c (@)

G)= p P P P
® i {up(z) Fan(x) G 0(G)<va(G)). B
® oo (H) = {%(2) o) GF vg(H)> v (H)) (@)
’ Q) +30,(x) G vu(H)<v,(H). (B
@ o) = {”P(z) —vp(x) (i vp(D)>0p(I) (@)
P 0p(2) + 3v,(x) (f vp()<vp(I)) . (B
B o ()= {2%(2) —vp(x)  (f v(J)>vp(J) (@)
F 20,(2)+30,(x) (i vp(J)<vu(J) . (B

On the other hand we have the following conditions:
Vp(x * F—G)=0,(x * F'—G')=0,(2) +v,(x) ,
vo(F — H)=v,(F' — H') =0,(2) + v,(x) ,
Vp(F=D)=v,(F' —=I')=0,(2),
HI+J=2F and HI'+J =2F'.
Therefore, the following only two cases are possible.
case A. D-@O-O-@-®-a. Then, v,(b)= —20v,(x)>0, vy(c)= —vy(x)>0. So,
v,(j)<0.

case B. D-@-®-@-®-p. Then, v,(b)= —6v,(x), vy(c)= —vy(x). So, v,(j)<O0.
(2) To show that je Ox=0<v,(x+1)<v,(2) (Vp), we put y=x+1. Then,

X,(16) : w2=8y—12y2+4y3 +4y*—4y°> +y°,
F=—2y2+y3+w, FF=41—y(=2+y)y,
G=—4+2y+2y2 =3y +y*+(—1+pw, GG =42—y)2—2y+)?),
H=4-2y—2y+y*+w, HH=4—2+))(—1+)2—)),
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I=2-2y*+y*+w, II'=4(—1+y)?,

J=—8—4y+20y>— 12y —6y*+8y> —2y° +2(1 —y =2+ y)1 +y)w,
JJ =16(—2+y)?.

Applying the above argument for these equations and polynomials, one can show
v,(J) <0 when v,(y) <0 or vy(y) > v,(2).
In this way, we can complete the proof. Q.E.D.

4. Solving norm equations.

In this section, let K be an imaginary cyclic quartic field which is unequal to the
field Q({5), where {5 is a primitive 5th root of unity, and k =Q(J_D— ) the real quadratic
field which is contained in K, where D is a square-free integer. (In the case K=Q({s),
the residue degrees f, and f; are equal to 4.)

We will apply Theorem 2 to elliptic curves E with integral j-invariant over K. At
this time, the next fact is essential (see [2], Satz 15, p 320).

Fact 3. Let K be an imaginary cyclic quartic field, k the real quadratic field which
is contained in K and Uy (resp. U,) the group of units of K (resp. k). Then

[Uk: WkUil=1,

where Wy is the group of all roots of unity contained in K.
Especially, if K#Q((s), then Ug=U,.

PrROPOSITION 2. Let K be an imaginary cyclic quartic field which is unequal to the
field Q({s), and E an elliptic curve with integral j-invariant over K. Then, E,,(K) does not
have subgroups which are isomorphic to one of the following groups.

1. Z/9Z,7Z/12Z,7/10Z, Z/7Z,
2. ZPRZ®Z/3Z,

3. Z/16Z,

4. Z/15Z,

5. Z/11Z,

6. Z/13Z.

PROOF. Cases 1, 5 and 6. Suppose E, (K)>Z/mZ (me{9,12,10,7, 11, 13}).
According to Theorem 2 and Fact 3, one can easily show that E has already defined
over the real quadratic subfield k of K and je O,, which contradicts Fact 2.

Case 2. Suppose E, (K)>Z/2Z D Z/8Z. In particular, E, (K)>Z/8Z, and so
according to Case 1 of Theorem 2, there exists ¢ (€ K) which satisfies the following three
conditions:
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(D Ngjole)= £2" 0<n<10,
2 Ngo(2—g)= 2" 0<m<8,
®)  l-seUg=U.

From (3), we know the conditions (1) and (2) are equivalent to the following respectively.
(1) Nyol)=+2" 0<n'<S5,
(2 Nyo-e)=x2" 0=m'<4.

Miiller, Stréher, Zimmer [10] solved these norm equations and got the following eight
solutions.

e=3+./5, —1+./5, 5+ /17, =3+./17.

By direct computations, we know the elliptic curves which are yielded by these solutions
have only one K-rational point of order 2. This is a contradiction to our hypothesis.

Case 3. Suppose E,,(K)>Z/16Z. According to Case 2 of Theorem 2, there exists
an element x which satisfies the following two conditions:

1) xeUy=0,

By the condition (1), we can put x in the form

x=a+p/ D, o>?+DBp*=+1 (o, BeQ) .

Further we remark that since E,,(K)>Z/8Z, D=5 or 17 (see Proof of Case 2). Then
we get the following as the solutions of the norm equations (2):

x=1, ii\/s_, —%i%\/?, +2+./5 .

o x=1. This is a cusp.

o x=%++4.5, —3+3%/5, £2+./5. Then w?=1—-2x—x2—x*+2x5+x°>0, so
wé¢kK.

o x=—4+4./5=>w?=—-542./5. We have N o(F)= Ny oH)=Ngo(l)=2% Ngo(G)
=2%-11, Ngo(J)=28+5%, Ngo(—1+x)=1. Then, for a prime ideal p of K which
divides 11,

vp(b)>0 and vy(c)>0.

Therefore, according to Lemma 1 (in Proof of Theorem 2), v,( j) <0, which contradicts
the assumption je Ok.

Case 4. By virtue of the following Lemma, we can prove this case by the same
method as Case 3.

LemMma 3. If E,,(K)>Z/5Z, then in the E(b, c)-form of this elliptic curve E (cf.
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Case 6, Thm 2), b (=c) is one of the following:
b=—-7+5/2, +5+2./6,3+./10,18+5./13,5+./26,

6+./37,8+./65, —57+5./130, 68+5,/185 .
In particular, let k=Q(ﬁ ) be the real quadratic field contained in K. Then,
D=2,6,10, 13,26, 37, 65,130, 185.
(This Lemma results from [10] (see Table 8) as in Case 2.)
By Proposition 2 and Theorem 1, we arrive at the following theorem.

THEOREM 3. Let K be an imaginary cyclic quartic field and E an elliptic curve over
K. Suppose that

1. fo<4 or f3<A4,

2. jeOk.
Then, E,,(K) is isomorphic to one of the following ten groups.
Z/mZ (1<m<8, m#7)

E‘“’(K)§{2/2Z@Z/2uz (1<p<3)

REMARK. All these groups do occur (cf. Fact 2).

5. Closing remarks.

We wish to remove the assumption, f, <4 or f; <4, on the ground field K. At first,
we need to evaluate the order of the torsion subgroup. One can prove the following
proposition as in Proposition 1.

PROPOSITION 3. Let K be an imaginary cyclic quartic field and E an elliptic curve
over K. Suppose that

For each i€ {2, 3}, there exists a prime ideal p dividing i of K such that
vo()=0.
Then, E,,(K) divides one of the following integers.
24.3.5, 2%2.25, 23.3.7, 2%3-11, 2%-13
22-17, 2%2-19, 2%2.23, 26-.3%,

Next, we have to solve the norm equations including the case where K=Q((s) (cf.
Prop. 2). The following is conjectured.

ConNJECTURE. Let K be an imaginary cyclic quartic field and E an elliptic curve
with integral j-invariant over K. Then, E, (K) does not have subgroups which are
isomorphic to one of the following groups.
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Z/16Z, Z2Z®Z/8Z
ZPZ, Z/12Z, Z/SuZ  (u=>2)
Z2/72, Z/11Z, Z/13Z.

(The cases of Z/9Z, Z/12Z, Z/5uZ (1>2), and Z/7Z have been calculated.)

Thus, in order to get the result such as Theorem 3 for arbitrary imaginary cyclic
quartic fields K, we have to study elliptic curves E such that E, (K)>Z/17Z, Z/19Z,
or Z/23Z.

On the other hand, it is interesting to study how many elliptic curves (and ground
fields) exist whose torsion subgroups are isomorphic to a given group of Theorem 3;
this has been partially solved (see Proof of Cases 2, 4, Prop. 2).
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