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1. Introduction.

1.1. We consider an n-th order linear ordinary differential equation

(1.1) $\epsilon^{nh}y^{(n)}=\sum_{k=1}^{n}\epsilon^{\langle n-k)h}p_{k}(x, \epsilon)y^{\langle n-k)}$ $(0<|x|\leq x_{0},0<\epsilon\leq\epsilon_{0},$ $’=\frac{d}{dx})$ ,

where $x$ is a complex variable, and $h,$ $x_{O}$ and $\epsilon_{O}$ are positive constants.
The coefficients $p_{k}(x, \epsilon)s$ are given by

(1.1) $p_{k}(x, \epsilon):=p_{k}\cdot(x^{m}-\epsilon^{l}/x^{r})^{k}$ $(k=1,2, \cdots, n)$ ,

where $m,$
$1$ and $r$ are positive integers satisfying the singular perturbation condition:

(1.2) $h>\frac{m+1}{m+r}l$ ,

and the constants $p_{k}’ s$ are supposed to satisfy

(1.3) $\left\{\begin{array}{l}p_{1}.=\sum_{k=1}a_{k},p_{2}.=-\sum_{k_{1}<k_{2}}a_{k_{1}}a_{k_{2}},p_{3}.=\sum_{k_{1}<k_{2}<k_{3}}a_{k_{1}}a_{k_{2}}a_{k_{3}}\\\ldots\cdots\cdots\cdot\\ p_{n-1}.=(-1)^{n}\sum_{k_{1}<k_{2}<\cdot\cdot<k_{n- 1}}.a_{k_{1}}a_{k_{2}}\cdots a_{k_{n- 1}}\end{array}\right.n$

$p_{n}:=(-1)^{n+1}\prod_{k=1}^{n}a_{k}$ ,

(1.4) $a_{k-1}<a_{k}(k=2,3, \cdots, n)$ ; $\forall a_{k}\neq 0$ .

Accordingly, the characteristic equation of (1.1) is given by

(1.5) $L(x, \lambda)=0$ , $L(x, \lambda):=\lambda^{n}-\sum_{k=1}^{n}p_{k}\cdot x^{km}\lambda^{n-k}=\prod_{k=1}^{n}(\lambda-a_{k}x^{m})$
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and then the characteristic roots are

(1.6) $\lambda=\lambda_{k}(x):=a_{k}x^{m}$ $(k=1,2, \cdots, n)$ .
The characteristic roots $\lambda_{k}(x)s$ coincide at $x=0$ , then the origin $x=0$ is, by definition,

a turning point or a transition point of (1.1). The tuming point $x=0$ is also a singular
point of(l.l) from (1.1). Thus we call the origin $x=0$ a turning-singularpoint of(l.l).

1.2. The differential equation with a turning point is characterized by its char-
acteristic polygon introduced by Iwano-Sibuya [8]. The characteristic polygon is
similar to the Newton polygon for a differential equation with an irregular singular
point. We can analyze the asymptotic property of the differential equation near the
turning point by its characteristic polygon. The characteristic polygon is, however, not
effective for a case of turning-singular points.

In general, the characteristic polygon is composed of several segments. The case of
one-segment characteristic polygon are analyzed by Nakano [11], Nishimoto [19], [20]
and Wasow [27] et al. for second order, higher order differential equations and systems
of differential equations. The cases of two- and three-segment characteristic polygon
are analyzed by Nakano-Nishimoto [17] and Roos [23], [24] for second order
differential equations, and Nakano [14] analyzes certain third order differential equation
with a two-segment characteristic polygon. The second and the third order differential
equations with a tuming-singular point are analyzed by Nakano [12], [13] and [15].

1.3. Our aim is to analyze the asymptotic property of solutions of (1.1). We use
the so-called stretching-matching method and the result is given in the theorem 7.2.

In the second section the domain $0<|x|\leq x_{0}$ is divided to two circular regions, in
each of which the differential equation (1.1) is reduced. They are called the outer and
the inner equations. In the third section the outer and the inner WKB solutions are
obtained and the inner WKB solutions have the double asymptotic property.

In the fourth and fifth sections topology of Stokes curves are analyzed and the
brief sketch of Fedoryuk’s theory about canonical regions is given, and the canonical
region for the inner equation is obtained in the sixth section. In the last section the
matching matrix connecting the outer and the inner solutions is calculated.

2. Reduction of the equation.

2.1. We see that the coefficient $p_{k}(x, \epsilon)$ has an asymptotic form

(2.1) $p_{k}(x, \epsilon)=p_{k}\cdot x^{km}+O((\epsilon x^{-1/\alpha})^{l})$

for small $\epsilon x^{-1/\alpha}(\alpha:=l/(m+r)>0)$ and $x$ in the region

(2.2) $K\epsilon^{\alpha}\leq|x|\leq x_{0}$ ,

where $K$ is a positive constant.
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Thus the differential equation (1.1) is asymptotically equal to

(2.3) $\epsilon^{nh}y^{\langle n)}=\sum_{k=1}^{n}\epsilon^{\langle n}$

‘ $k$ )
$\prime_{l}p_{k}\cdot x^{km}y^{\langle n-k)}$

for small $\epsilon x^{-1/\alpha}$ and $x$ in the region (2.2).
Putting $x=t\epsilon^{\alpha}$ (a stretching transformation), we get

$p_{k}(x, \epsilon)=p_{k}\cdot p^{k}(t)$ , $p(t):=t^{m}-1/t^{r}$ $(k=1,2, \cdots, n)$ .

Thus we can reduce the differential equation (1.1) to

(2.4) $\epsilon^{nh}’ y^{\langle n)}=\sum_{k=1}^{n}\epsilon^{\langle n-k)h’}p_{k}\cdot p^{k}(t)y^{\langle n-k)}$ $(h^{\prime}:=h-(m+1)\alpha>0,$ $’=\frac{d}{dt})$

in the region $0<|x|\leq K\epsilon^{\alpha}$ . By the singular perturbation condition (1.2), the exponent
$h^{\prime}$ of $\epsilon$ is positive, and so (2.4) is a differential equation of singular perturbation type.

We investigate the differential equation (2.4) in the region

(2.5) $ 0<|t|<\infty$

instead of the region: $0<|x|\leq K\epsilon^{\alpha}$ , which is equivalent to a region: $0<|t|\leq K$. Then
two regions (2.2) and (2.5) have common interior points.

2.2. We call the differential equation (2.3) and (2.4) the outer equation and the
inner equation of (1.1) respectively, and the regions (2.2) and (2.5) are called the outer
region and the inner region of (1.1) respectively.

Summing up the above consideration we get

THEOREM 2.1. Consider the dlfferential equation

(1.1) $\epsilon^{nh}y^{\langle n)}=\sum_{k=1}^{n}\epsilon^{\langle n-k)h}p_{k}(x^{m}-\frac{\epsilon^{l}}{x^{r}})^{k}y^{\langle n-k)}$ $(0<|x|\leq x_{0},0<\epsilon\leq\epsilon_{O},$ $’=\frac{d}{dx})$ ,

andsuppose thatpositive constants $h,$ $1,m$ and $r$ satisfy the singularperturbation condition:

(1.2) $h-(m+1)\alpha>0$ $(\alpha:=l/(m+r))$ .

Then the $d\iota fferential$ equation (1.1) is reduced in the outer region

(2.2) $K\epsilon^{\alpha}\leq|x|\leq x_{0}$

to the outer equation

(2.3) $\epsilon^{nh}y^{(n)}=\sum_{k=1}^{n}\epsilon^{\langle n-k)h}p_{k}\cdot x^{km}y^{(n-k)}$ $(’=\frac{d}{dx})$ ,

and to the inner equation

(2.4) $\epsilon^{nh^{\prime}}y^{\langle n)}=\sum_{k=1}^{n}\epsilon^{(n-k)h^{\prime}}p_{k}\cdot p^{k}(t)y^{(n-k)}$ $p(t):=t^{m}-\frac{1}{t^{r}},$ $t;=\frac{x}{\epsilon^{\alpha}},$ $’:=\frac{d}{dt}$
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in the inner region

(2.5) $ 0<|t|<\infty$ ,

where $ h^{\prime}:=h-(m+1)\alpha$ .

3. The WKB solutions.

3.1. The WKB solution is, by definition, the leading term of the formal solution,
that is obtained by substituting a power series of $\epsilon$ in the differential equation.

LEMMA 3. 1. A linear ordinary differential equation containing a smallparameter $\epsilon$

(3.1) $L[y]=0$ , $L[y]:=\sum_{k=0}^{n}\epsilon^{(n-k)h}q_{k}(x)y^{\langle n-k)}$ $(’$
possesses the WKB solutions

(3.2) $\tilde{y}_{j}(x, \epsilon)=\exp(\frac{1}{\epsilon^{h}}\int_{x_{O}}^{x}\lambda_{j}(t)dt-\sum_{k\neq j}\int_{x_{O}}^{x}\frac{\lambda_{j}^{\prime}(t)}{\lambda_{j}(t)-\lambda_{k}(t)}dt)$ $(j=1,2, \cdots, n)$ ,

where $\lambda_{j}(x)s$ are characteristic roots of(3.1) which are roots of the characteristic equation
of (3.1) defined by

(3.3) $L(x, \lambda)=0$ , $L(x, \lambda):=\sum_{k=0}^{n}q_{k}(x)\lambda^{n-k}$

PROOF. Put a formal solution

$\tilde{y}:=\exp(\frac{1}{\epsilon}S(x))\sum_{j=0}^{\infty}\epsilon^{j}a_{j}(x)$ $(a_{0}(x)\neq 0)$

and substitute this for $y$ of (3.1). By using the Leibniz’s formula we get

$L[\tilde{y}]=\sum_{k=0}^{n}\frac{1}{k!}\frac{d^{k}}{dx^{k}}$ exp $(\frac{1}{\epsilon}S(x))\frac{\partial^{k}}{\partial\lambda^{k}}L(x, \lambda)|_{\lambda=\Sigma\epsilon^{j}a_{j}(x)}$

$=L(x, S^{\prime}(x))\sum_{j=0}^{\infty}\epsilon^{j}a_{j}(x)$

$+\epsilon\{\frac{1}{2}L_{\lambda\lambda}(x, S^{\prime}(x))S^{\prime\prime}(x)\sum_{j=0}^{\infty}\epsilon^{j}a_{j}(x)+L_{\lambda}(x, S^{\prime}(x))(\sum_{j=0}^{\infty}\epsilon^{j}a_{j}(x))^{\prime}\}+\cdots$

By rearranging terms according to powers of $\epsilon$ , the following equation holds:

$L(x, S^{\prime}(x))a_{0}(x)+\epsilon\{\frac{1}{2}L_{\lambda\lambda}(x, S^{\prime}(x))S^{\prime\prime}(x)a_{0}(x)+L_{\lambda}(x, S^{\prime}(x))a_{O}^{\prime}(x)\}+O(\epsilon^{2})\equiv 0$ .

Hence
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$L(x, S^{\prime}(x))a_{0}(x)=0$ , $\frac{1}{2}L_{\lambda\lambda}(x, S^{\prime}(x))S^{\prime\prime}(x)a_{0}(x)+L_{\lambda}(x, S^{\prime}(x))a_{O}^{\prime}(x)=0$ ,

Since $L(x, S^{\prime}(x))=0,$ $S^{\prime}(x)$ is a characteristic root. Putting $S^{\prime}(x)=\lambda_{j}(x)(j=1,2, \cdots, n)$ ,
we get $S(x)=\int_{x_{0}}^{X}\lambda_{j}(t)dt$ , and then

$a_{0}(x)=\exp(-\frac{1}{2}\int_{x_{O}}^{x}L_{\lambda\lambda}(t, \lambda_{j}(t))/L_{\lambda}(t, \lambda_{j}(t))\lambda_{j}^{\prime}(t)dt)$ .

Since the characteristic polynomial of (3.3) is $L(x, \lambda)=\prod_{k=1}^{n}(\lambda-\lambda_{k}(x))$ , we get

$\frac{L_{\lambda\lambda}(x,\lambda)}{L_{\lambda}(x,\lambda)}=\frac{\sum_{i=1}^{n}\sum_{j=1}^{n}\prod_{k\neq i\neq j}(\lambda-\lambda_{k}(x))}{\sum_{j=1}^{n}\prod_{k\neq j}(\lambda-\lambda_{k}(x))}=\sum_{k\neq j}\frac{2}{\lambda_{j}(x)-\lambda_{k}(x)}$ .

Thus we can get the formula (3.2). Q.E.D.

The WKB solutions are asymptotic expansions of the true solutions of (3.1), and
they have the double asymptotic property (Evgrafov-Fedoryuk [1], $\Phi e\Pi op\iota 0\kappa[3]$ , Leung
[10]) such that

LEMMA 3.2. Let $D$ be a canonical region of (3.1). Then the WKB solution $\tilde{y}_{j}(x, \epsilon)$

$(j=1,2, \cdots, n)$ has the double asymptotic property:

(3.4) $y_{j}(x, \epsilon)\sim\tilde{y}_{j}(x, \epsilon)$ $\left\{\begin{array}{ll}as & \epsilon\rightarrow 0, x\in D,\\as & x\rightarrow\infty in D, 0<\epsilon\leq\epsilon_{0} ,\end{array}\right.$

where $y_{j}(x, \epsilon)$ is the true solution of (3.1).

$D$ is a maximal region in which there exist $n$ independent solutions of (3.1) with
property (3.4). We will give the definition of a canonical region in \S 6.1 and construct
it for (2.4) in \S 6.2.

The proof is essentially same as Nakano et al. [16] and omitted here.

3.2. The solution of the outer equation (2.3) is called the outer solution of (1.1).
The solution ofthe inner equation (2.4) is called the inner solution of (1.1). The differential
equations (2.3), (2.4) and (3.1) are very similar. Therefore we can obtain the leading
terms of formal outer and inner solutions from the lemma 3.1, which are called the
outer and the inner WKB solutions of (1.1) respectively.

THEOREM 3.1. The dlfferential equation (1.1) has the outer WKB solutions

(3.5) $\tilde{y}_{j}^{out}(x, \epsilon):=x^{-m\mu_{j}}$ exp $(\frac{a_{j}}{\epsilon^{h}}\frac{x^{m+1}}{m+1})$ $(j=1,2, \cdots, n)$

and the inner WKB solutions

(3.6) $\tilde{y}_{j}^{in}(t, \epsilon):=p(t)^{-\mu_{j}}$ exp $(\frac{a_{j}}{\epsilon^{h}’}\int^{t}p(s)ds)$ $(j=1,2, \cdots, n)$ ,

where $\mu_{j}=\sum_{k\neq j}a_{j}/(a_{j}-a_{k})$ .
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PROOF. The characteristic equation and the characteristic roots of (2.3) are alsc
given by (1.5) and (1.6) respectively.

Then we have

$\int\frac{\lambda_{j}^{\prime}(x)}{\lambda_{j}(x)-\lambda_{k}(x)}dx=\frac{ma_{j}\log x}{a_{j}-a_{k}}$ .

By applying the formula (3.2) we get the outer WKB solutions (3.5).

In the same way we can get (3.6). Q.E.D.

4. Topology of Stokes curves (local property).

4.1. In this and the following two sections we sketch the Fedoryuk’s theory abou $\cdot$

the canonical region to apply it to our differential equation. The Fedoryuk’s theory $i($

explained in Evgrafov-Fedoryuk [1], Fedoryuk [4], [5] and Wasow [29].

It is essential to analyze the maximal existence region of $n$ independent inne]

solutions of (1.1) with double asymptotic property which is called the canonical region
of (2.4), because the existence region of the outer solutions must be induced from tht
canonical region to apply the matching method (\S 7). The outer solutions’ existenc $($

region is an angular sector whose boundaries correspond to the boundaries of tht
canonical region as $ t\rightarrow\infty$ (Nakano et al. [17]).

We are constructing canonical regions of (2.4) in the section six. To do it we $hav\langle$

to study topology of Stokes curves.
The canonical region for the inner equation (2.4) is bounded by Stokes curve.

defined by the equation

(4.1) $\mathfrak{R}\xi_{jk}(t_{0}, t)=0$ $(\lambda_{j}(t_{0})=\lambda_{k}(t_{0}), j\neq k)$ ,

(4.2) $\xi_{jk}(t_{0}, t):=\xi_{j}(t_{0}, t)-\xi_{k}(t_{0}, t)$ , $\xi_{j}(t_{0}, t):=\int_{o}^{t}\lambda_{j}(s)ds$ $(k, j=1,2, \cdots, n)$ ,

and a curve defined by the equation

(4.3) $5^{\sim_{\xi_{jk}(t_{O},t)=0}}$ $(\lambda_{j}(t_{0})=\lambda_{k}(t_{O}), j\neq k)$

is called an anti-Stokes curve of (2.4), where $\lambda_{j}(t)s$ are characteristic roots of the inne
equation (2.4).

4.2. The characteristic roots of the inner equation (2.4) are given by $\lambda_{k}(t)=$

$a_{k}\cdot p(t)(k=1,2, \cdots, n)$ , where $a_{k}’ s$ differ each other from the condition (1.4). Th $($

characteristic roots $\lambda_{k}(t)s$ coincide at zeros of $p(t)$ which are tuming points of (2.4

and are called secondary turning points of the differential equation (1.1) $(Nakan\langle$

[14], Nakano-Nishimoto [17], Wasow [29]).
They are the $(m+r)$-th roots ofl: $t=e^{2j\pi i/\langle m+r)}(j=0,1,2, \cdots, m+r-1)$ . The origi]

$t=0$ is a singular point of (2.4) and it corresponds to the tuming point $x=0$ of (1.1
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because of the definition of $t:x=t\epsilon^{\alpha}$ .
Since all $a_{k}’ s$ are different each other, all $\lambda_{k}(t)s$ are different each other except

secondary turning points. Every difference of arbitrary two characteristic roots contains
$p(t)$ , and it vanishes only at secondary turning points.

We get the local property of Stokes and anti-Stokes curves of (2.4).

THEOREM 4.1. If $r\geq 1$ , four Stokes curves emerge from a secondary turning point
$t_{0}=e^{2j\pi i/(m+r)}(j=0,1,2, \cdots, m+r-1)$ in the directions

(4.4) $\arg(t-t_{0})=\frac{2k+1}{4}\pi-\frac{m-1}{m+r}j\pi$ $(j=0,1,2, \cdots, m+r-1;k=0,1,2,3)$

and they tend to other secondary turning points, the origin or the point at infinity.
Stokes curves approach the origin in $2r-2(r\geq 1)$ directions given by

(4.5) arg $ t=\frac{2k+1}{2(r-1)}\pi$ $(r>1, k\in Z)$

or approach $\infty$ in $2m+2$ directions given by

(4.6) arg $ t=\frac{2k+1}{2(m+1)}\pi$ $(r\geq 1, k\in Z)$ .

PROOF. Let $t_{0}$ be a secondary turning point. We have to analyze the integral
$\xi:=\int_{t_{O}}^{t}p(s)ds,$ $p(s)=s^{m}-1/s^{r}$ . Put $ t=t_{0}+\tau$ . Then, for small $\tau$ the values of $p(t)$ are
approximated such that $p(t)\sim(m+r)t_{0}^{m-1}\tau(\tau\sim 0)$ . By integrating this, we get
$\xi\sim(m+r)t_{0}^{m-1}\tau^{2}/2(\tau\sim 0)$ . Near $t=t_{0}$ the Stokes curves $\mathfrak{R}\xi=0$ have their arguments

arg $\tau=\frac{2k+1}{4}\pi-\frac{m-1}{2}$ arg $t_{0}$ $(\tau\sim 0, k\in Z)$ .

From this equation we get four different arguments of Stokes curves near a secondary
turning point $t_{0}=e^{2j\pi i/(m+r)}$ :

arg $\tau=\frac{2k+1}{4}\pi-\frac{m-1}{m+r}j\pi$ $(\tau\sim 0;j=0,1,2, \cdots, m+r-1;k=0,1,2,3)$ .

Near the origin $t=0,$ $p(t)$ is approximated such that $p(t)\sim-t^{-r}(t\sim 0)$ . Then
$\xi\sim t^{1-r}/(r-1)(r>1, t\sim 0)$ . From the equation $\mathfrak{R}\xi=0$ , we get arguments argt $=$

$(2k+1)\pi/2(r-1)(k\in Z)$ near $t=0$ . Therefore there are $2r-2$ different directions in which
Stokes curves tend to the origin (cf. Theorem 5.2 for $r=1$ ).

Near $t=\infty,p(t)$ is approximated so that $p(t)\sim t^{m}$ . Then $\xi\sim t^{m+1}/(m+1)(t\sim\infty)$ .
From the equation $\mathfrak{R}\xi=0$ , we get arguments arg $t=(2k+1)\pi/2(m+1)(k\in Z)$ . Therefore
there exist $2m+2$ different directions in which Stokes curves tend to the point at
infinity. Q.E.D.
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5. Topology of Stokes curves (global property).

5.1. By the definition, every Stokes curve of (2.4) emerges from a secondary
turning point (cf. (4.1)). Thus there exist no Stokes curves which emerge from the origin
tend to the point at infinity and do not pass through any secondary turning point. An}
Stokes curve can not cross other Stokes curves emerging from other secondary turning
points and they can cross only at the secondary tuming points (Evgrafov-Fedoryuk
[1], Fedoryuk [2]).

We are precisely analyzing the global property of Stokes curves and anti-Stokes
curves of (2.4).

THEOREM 5.1. (a) For arbitrary positive integers $m$ and $r$, the point $t=1$ is a
secondary turning point and two intervals on the positive real axis $(t\geq 1,0<t\leq 1)$ arc
anti-Stokes curves.

(b) When $m+r$ is even, the point $t=-1$ is a secondary turning point and twc
intervals on the. negative real axis $(t\leq-1, -1\leq t<0)$ are anti-Stokes curves.

(c) When $m+r$ is odd, there exists a Stokes curve connecting two secondary turning
points neighboring $t=-1$ .

(d) When $m+r=4k(k\in N)$ , the points $t=\pm i$ are secondary turning points, $an6$

moreover
(1) if both $m$ and $r$ are odd, then four intervals on the imaginary axes $(|^{\sim}St|\geq 1’$

$0<|^{\sim}St|\leq 1)$ are anti-Stokes curves, and
(2) if both $m$ and $r$ are even, then four intervals on the imaginary axes

$(|^{\sim}5t|\geq 1,0<|^{\sim}Jt|\leq 1)$ are Stokes curves.
(e) When $r=m+2$ ,

(1) every radial line, which passes through a secondary turning point and tends to
the origin and the point at infinity, is an anti-Stokes curve, and

(2) the unit circle $|t|=1$ is composed of $2m+2$ anti-Stokes curves.

PROOF. (a), (b) Since the function $p(t)(=t^{m}-t^{-r})$ and its indefinite integral $tak\epsilon$

real values for all real $t>0$ and the point $t=1$ is a secondary turning point for any $’\gamma$,

and r, apart $(t\geq 1)$ anda part $(0<t\leq 1)$ of the positive real axis are anti-Stokes curves
for any $m$ and $r$ , and the negative real axis also consists of two anti-Stokes curves
when $m+r$ is even because the point $t=-1$ is a secondary turning point.

(c) Putting $m+r=2u+1(u\in Z)$ , secondary turning points are $t=e^{2j\pi i/(2u+1}$

$(j=0,1,2, \cdots, 2u)$ and neighboring secondary turning points near $t=-1$ are given $b$}
$t_{1}$

$;=e^{2u\pi i/(2u+1)}$ and $t_{2}$
$;=e^{\langle 2u+2)\pi i/\langle 2u+1)}$ . Then, integrating $p(t)$ from $t_{1}$ to $t_{2}$ we get

$\xi=\int_{1}^{t_{2}}p(t)dt=\frac{m+r}{(m+1)(r-1)}\frac{t_{1}^{r-1}-t_{2}^{r-1}}{(t_{1}t_{2})^{r-1}}$ $(r>1)$ ,

which is pure imaginary, because $t_{2}=\overline{t_{1}}$ and so $t_{1}^{r-1}-t_{2}^{r-1}=t_{1}^{r-1}-\overline{t_{1}^{r-1}}\in iR$ .
If $r=1$ , we get
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$\xi=\int_{t_{1}}^{t_{2}}p(t)dt=-\log\frac{t_{2}}{t_{1}}=-\frac{2}{2m+1}\pi i$ .

Thus there exists a Stokes curve connecting $t_{1}$ and $t_{2}$ .
(d) When $m+r=4k(r>1, k\in Z)$ , secondary turning points are zeros of $t^{4k}-1$

and so two points $t=\pm i$ are secondary tuming points, and we have

$\xi=\int_{\pm\iota}^{\pm it}p(s)ds=\frac{i^{m+1}}{m+1}\{(\pm t)^{m+1}-(\pm 1)^{m+1}\}+\frac{i^{1-r}}{r-1}\{\frac{1}{(\pm t)^{r-1}}-\frac{1}{(\pm 1)^{r-1}}\}$ $(t>0)$ .

If $r=1$ , we have

$\xi=\int_{\pm i}^{\pm it}p(s)ds=\frac{i^{m+1}}{m+1}\{(\pm t)^{m+1}-(\pm 1)^{m+1}\}-\log t$ $(t>0)$ .

Thus, $\xi$ is real if both $m+1$ and $r+1$ are even. Therefore both positive and negative
imaginary axes are anti-Stokes curves if both $m$ and $r$ are odd. They are Stokes curves
if both $m$ and $r$ are even.

(e) When $p(t)=t^{m}-1/t^{m+2}$ , the secondary tuming points are expressed by
$t_{0}=e^{j\pi i/\langle m+1)}(j=0,1,2, \cdots, 2m+1)$ and we get the integral

$\xi=\int_{o}^{\tau t_{O}}p(t)dt=\frac{(-1)^{j}}{m+1}(\tau^{m+1}+\frac{1}{\tau^{m+1}}2)$ $(0<\tau<\infty)$ ,

and so $\xi$ takes only real values on the line $t=\tau t_{O}(0<\tau<\infty)$ for any $j$. This line is an
anti-Stokes curve.

If $t_{0}=e^{j\pi i/\{m+1)}$ and $t_{1}=e^{(j+1)\pi i/\langle m+1)}$ , we see that

$\xi=\int_{t_{O}}^{t_{1}}p(t)dt=[\frac{1}{m+1}(e^{\{m+1)\theta i}+e^{-(m+1)\theta i})]_{(j/(m+1))\pi}^{\langle\langle j+1)/\{m+1))\pi}$

$=\frac{1}{m+1}\{(e^{\langle j+1)\pi i}+e^{-(j+1)\pi i})-(e^{j\pi i}+e^{-j\pi i})\}$ .

Both the indefinite and the definite integrals are real. Then an arc of the unit circle
between arbitrary two secondary turning points is an anti-Stokes curve. Since there
exist $2m+2$ secondary turning points on the unit circle, there exist $2m+2$ anti-Stokes
curves on the unit circle. Q.E.D.

5.2. When $r=1$ , the origin is a regular singular point, and Stokes curve
configuration is fairly different from the case $r>1$ near the origin though the Stokes
curve configuration is similar as the case $r>1$ for large $t$ .

THEOREM 5.2. Let $m$ be a positive integer and $r=1$ . Then there exists a Stokes curve
passing through all secondary turning points. It is homotopic to a circle.

The unit circle $|t|=1$ is neither a Stokes curve nor an anti-Stokes curve. A radial
line from $0$ to $\infty$ passing through a secondary turning point is an anti-Stokes curve.
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Near the origin, level curves defined by $\mathfrak{R}\xi=const$ . $(>0)$ are closed curves arou’

the origin and they are homotopic to a circle, and level curves defined by $5^{\sim}\xi=const$. $a$

radial lines emerging from the origin.

PROOF. If we put $t_{1}$
$;=e^{2j\pi i/\langle m+1)}$ and $t_{2}$

$;=e^{(2j+2)\pi i/\langle m+1)}$ and integrate $p(t)$ fro
$t_{1}$ to $t_{2}$ along the unit circle $|t|=1$ , then we see that

$\xi=\int_{1}^{t_{2}}p(t)dt=[\frac{1}{m+1}e^{\langle m+1)\theta i}-\theta i]_{\langle 2i/\langle m+1))\pi}^{(\langle 2j+2)/\langle m+1))\pi}=-\frac{2\pi}{m+r}i$ .

Thus there exists a Stokes curve connecting neighboring secondary tuming points $t_{1}$ ar
$t_{2}$ , but the unit circle $|t|=1$ is neither a Stokes curve nor an anti-Stokes curve becau
the indefinite integral is neither only real nor only imaginary on the whole circle.

If we integrate $p(t)$ from $0$ to $\infty$ passing through a secondary turning $poi$ )

$t_{1}=e^{2j\pi i/\langle m+1)}$ along the radial line $t=\tau t_{1}(0<\tau<\infty)$ , then we see that the integral

$\xi=\int_{0}^{\infty}(t^{m}-\frac{1}{t})dt=\int:_{0}^{\infty}(\tau^{m}-\frac{1}{\tau})d\tau$

takes real values only. Then the radial lines $t=\tau t_{1}(0<\tau\leq 1)$ and $t=\tau t_{1}(\tau\geq 1)$ a
anti-Stokes curves proceeding from the secondary turning point $t_{1}$ (cf. Theorem 5.1 $(e)$).

Near the origin the function $p(t)$ is approximated such that $p(t)\sim-1/t$, and $v$

have $\xi\sim$ -log $|t|-i$ arg $t(t\sim 0)$ . Then $\mathfrak{R}\xi$ takes positive values near the origin, and
level curves defined by $\mathfrak{R}\xi=const$ . is a circle $|t|=const$ . around the origin. Lev
curves defined by $S^{\sim}\xi=const$ . are radial lines defined by arg $t=const$ . and they $emer\{$

from the origin. By the way, a Stokes and an anti-Stokes curves are level lines $($

level $0$ . Q.E.D.

Whenm andr are given, we can draw outline of Stokes and anti-Stokes curves t
the theorems above. Several cases are shown in Fig. 6.

6. The canonical region.

6.1. A Stokes region of (2.4) is defined to be a simply connected region bounde
by Stokes curves of (2.4) and it does not contain any Stokes curve as an interior poinl
There are two types of Stokes regions, the one is a half-plane type and the other is
strip type.

If we consider $\xi=\xi(t):=\xi_{jk}(t_{0}, t)$ ( $t_{0}$ is a secondary tuming point) as a mappin
from the t-plane to the $\xi$-plane it is conformal except secondary tuming points ar
singular points. Level lines $\mathfrak{R}\xi=$ const. and $J^{\sim}\xi=const$ . on the t-plane are mappt
vertical and horizontal lines on the $\xi$-plane respectively. A Stokes region of half-plal
type is mapped one-to-one onto a region $\mathfrak{R}\xi>C$ or $\mathfrak{R}\xi<C$, a Stokes region of str
type is mapped one-to-one onto a region $C<\mathfrak{R}\xi<C^{\prime}$ .

For example, $D_{2}$ is a Stokes region of strip type and other $D_{j}’ s$ are Stokes region
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of half-plane type in Fig. 6-1.

FIGURE 6-1. Stokes curve configuration for $p(t)=t^{2}-1/t^{3}$

FIGURE 6-2. Stokes curve configuration for $p(t)=t^{4}-1/t$

A maximal existence region of each solution $y_{j}(x, \epsilon)$ in the lemma 3.2 is called $a$

$\lambda_{j}$-admissible region of (3.1), which is defined to consist of adjacent several Stokes regions
such that there exist paths $|\mathfrak{R}\xi_{jk}|\rightarrow\infty$ for any $k\neq j$ in their mapped region. In
order to prove the existence theorem (lemma 3.2), we have to show an existence of
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$\lambda_{j}$-admissible region (Nakano et al. [16]). This proving technique is very similar to the
case of the local thoery (Fukuhara [7], Wasow [28] et al.), and in order to get a
$\lambda_{J}$-admissible region it is sufficient to show the existence of routes along which $\mathfrak{R}\xi\rightarrow$

$+\infty,$ $-\infty$ .
A maximal existence region of $n$ independent solutions with double asymptotic

property, which is called a canonical region, is defined to be an intersection of all
$\lambda_{j}$-admissible regions for $j=1,2,$ $\cdots,$ $n$ (Evgrafov-Fedoryuk [1], Fedoryuk [5], cf.
Kelly [10]).

6.2. Since the origin and the point at infinity are irregular singular points of the
inner equation for $r>1$ , there are two directions or paths tending to them along
which $\mathfrak{R}\xi\rightarrow\pm\infty$ as $t\rightarrow 0,$ $\infty$ . Those routes are given by anti-Stokes curves, for example,
$L_{2},$ $L_{5}$ and $L_{O},$ $L_{4}$ in Fig. 6-1.

A canonical region is mapped one-to-one onto one or more sheets of the
$\xi$-plane together with slits emerging from the images of the secondary turning points.

For example, $D_{0}$ and $D_{2}$ in Fig. 4-1 is mapped onto a right half plane $(\mathfrak{R}\xi>0)$

and a strip region $(\frac{5}{6}(\cos(4\pi/5)-1)<\mathfrak{R}\xi<0)$ of the $\xi$-plane by $\xi=\xi(t):=\int_{1}^{t}p(s)ds$

respectively, and other $D_{j}’ s$ are mapped onto a right or aleft halfplane ofthe $\xi$-plane.
The region $(\bigcup_{j=0}^{4}D_{j})u(\bigcup_{j=1}^{4}l_{j})$ is a canonical region for (2.4) and it is mapped

onto a region consisting of two left half planes, two right half planes and a strip region
between them with slits of the $\xi$-plane.

In Fig. 6-2, $D_{0}$ and $D_{1}$ are Stokes regions of half-plane type and their images are
$\xi(D_{0})=\{\xi:\mathfrak{R}\xi>0\}$ and $\xi(D_{1})=\{\xi:\mathfrak{R}\xi<0\}$ by the mapping $\xi(t):=\int_{1}^{t}p(s)ds$ . $D_{2}$ is a
special Stokes region of strip type, because it is mapped onto a strip region
$D_{k}=\{\xi:C_{k}<S\sim\xi<C_{k+1}, \mathfrak{R}\xi>0\}$ and the image of the sum of infinitely many $D_{2}’ s$ , i.e.,
$\bigcup_{k=-\infty}^{\infty}D_{k}$ is a half plane $(\mathfrak{R}\xi>0)$ . In Fig. 6 the solid lines denote Stokes curves and
the broken lines denote anti-Stokes curves.

7. The matching matrix.

7.1. The outer region (2.2) and the inner region (2.5) are overlapped for small $\epsilon$ ,
and there exist the true outer and the true inner solutions of(l.l) in them respectively.

Taking an appropriate point belonging to both regions, we can compute a linear
relation between the outer and the inner solutions. This relation can be represented by
a matrix and it is called the matching matrix (Wasow [27]).

Using $n$ independent outer solutions $y_{j}^{out}(x, \epsilon)s$ , we get a vector form solution

(7.1) $Y^{out}:={}^{t}[y_{1}^{out}(x, \epsilon), y_{2}^{out}(x, \epsilon), \cdots, y_{n}^{out}(x, \epsilon)]$ ,

and we call $Y^{out}$ the outer solution of (1.1), too.
Similarly, we get the inner solution of (1.1) of vector form

(7.2) $Y^{in}:={}^{t}[y_{1}^{in}(x, \epsilon), y_{2}^{in}(x, \epsilon), \cdots, y_{n}^{in}(x, \epsilon)]$ .
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Since the matching matrix $M$ relates $Y^{out}$ and $Y^{in}$ linearly, $M$ has to satisfy the
relation

(7.3) $MY^{out}=Y^{in}$

The matching matrix $M=[m_{ij}]$ is an $n\times n$ matrix.
By using the WKB solutions (3.5) and (3.6), we can compute the matching matrix.

THEOREM 7.1. The asymptotic representation of the matching matrix $M=[m_{ij}]$

defined by (7.3) is given by

(7.4) $M\sim\epsilon^{am\cdot diag[\mu_{1},\mu_{2},\cdots,\mu_{n}]}$ $(\epsilon\rightarrow 0)$ .

PROOF. Let $\tilde{Y}^{out}$ be the outer WKB solution of vector form which is defined by
substituting the outer WKB solutions $\tilde{y}_{j}^{out}’ s$ for $y_{j}^{out}’ s$ in (7.1). Similarly the inner WKB
solution of vector form $\tilde{Y}^{in}$ is defined.

The matching relation (7.3) is asymptotically represented by

(7.5) $M\tilde{Y}^{out}\sim\tilde{Y}^{in}$
$(\epsilon\rightarrow 0)$ .

Elements of the matrix relation (7.5) satisfy

$\sum_{j’=1}^{n}m_{jj^{\prime}}\tilde{y}_{j’}^{out}\sim\tilde{y}_{j}^{in}$ $(\epsilon\rightarrow 0;j=1,2, \cdots, n)$

or

(7.6) $\sum_{j^{\prime}=1}^{n}m_{jj^{\prime}}\frac{\tilde{y}_{j^{\prime}}^{out}}{\tilde{y}_{j}^{in}}\sim 1$
$(\epsilon\rightarrow 0;j=1,2, \cdots, n)$ .

Put

(7.7) $ x=\eta\rho$ , $t=\eta\rho^{-1}$ , $\rho=\epsilon^{\alpha/2}$ , $|\eta|=1$ .

Then, $x$ belongs to the outer region $(K\epsilon^{\alpha}\leq|x|\leq x_{0})$ and $t(=x\rho^{-2})$ belongs to the inner
region $(0<|t|<\infty)$ where $\epsilon=\rho^{2/\alpha}$ is small. A new complex parameter $\eta$ will be defined
soon later.

By substituting $ x=\eta\rho$ and $\epsilon=\rho^{2/\alpha}$ in the outer WKB solutions (3.5), we get

(7.8) $\tilde{y}_{j}^{out}=(\eta\rho)^{-m\mu_{j}}\exp(\frac{a_{j}\eta^{m+1}}{m+1}\rho^{m+1-2h/\alpha})$ .

Similarly, we get from (3.6) and (7.7)

(7.9) $\tilde{y}_{j}^{in}\sim(\eta\rho^{-1})^{-m\mu_{j}}\exp(\frac{a_{j}\eta^{m+1}}{m+1}\rho^{-m-1-2h^{\prime}/\alpha})$ $(p\rightarrow 0)$ .

The exponent ofp in the exp-term of (7.9) is

$-m-1-\frac{2}{\alpha}h^{\prime}=-m-1-\frac{2}{\alpha}(h-(m+1)\alpha)=m+1-\frac{2}{\alpha}h$ .
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The last term is equal to the exponent ofp in the exp-term of (7.8).
Then, from (7.8) and (7.9) we get

(7.10)
$\underline{\tilde{y}_{j}^{out}}\sim p^{-2m\mu_{j}}=\epsilon^{-\alpha m\mu_{j}}$

$(\rho\rightarrow 0)$

$\tilde{y}_{j}^{in}$

and

(7.11) $\frac{\tilde{y}_{j^{\prime}}^{out}}{\tilde{y}_{j}^{in}}\sim p^{-m\mu_{j}-m\mu_{j}}\exp(\frac{a_{j^{\prime}}-a_{j}}{m+1}\eta^{m+1}\rho^{m+1-2h/\alpha)}$ $(j\neq j^{\prime};p\rightarrow 0)$ .

There exist two routes along which $\mathfrak{R}t(t=\eta p^{-1}, \rho>0)$ is either positive or negative.
Those routes are anti-Stokes curves $L_{1}$ and $L_{O}$ emarging from the secondary turning
points $t=1$ in Fig. 6-1, for example.

If we choose a parameter $\eta$ such as $\mathfrak{R}\eta^{m+1}>0$ for $a_{j’}-a_{j}>0$ , and if we choose $\eta$

such as $\mathfrak{R}\eta^{m+1}<0$ for $a_{j’}-a_{j}<0$ , then the magnitude of the exp-term of (7.11) tends
to $+\infty$ as $p\rightarrow 0$ . From (7.6) and (7.10), (7.11) we get

(7.12) $m_{jj}\sim\epsilon^{\alpha m\mu_{j}}$ , $m_{jj’}\sim 0(j\neq j^{\prime})$ $(\epsilon\rightarrow 0)$ ,

then the matching matrix (7.4) follows. Q.E.D.

7.2. Thus we could analyze the asymptotic property of the solutions of the
differential equation (1.1) in a region of $0<|x|\leq x_{0}$ . We conclude our analysis as

THEOREM 7.2. We suppose the singular perturbation condition (1.2). Then the
$d\iota fferential$ equation (1.1) is reduced to the outer and inner equations (2.3) and (2.4) in
the outer and inner regions (2.2) and (2.5) respectively.

The outer and the inner WKB solutions (3.5) and (3.6) are asymptotic expansions of
the true solutions of the outer and the inner equations of (1.1) respectively.

The outer and the inner solutions are related by the matching matrix (7.4).
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