On Pseudoconvex Domains in P^n

Klas DIEDERICH and Takeo OHSAWA

University of Wuppental and Nagoya University
(Communicated by N. Sasakura)

To the memory of Minoru Tada and Nobuo Sasakura

1. Introduction.

Let $\Omega \subseteq \mathbf{P}^n$ be a locally pseudoconvex domain and denote, for $z \in \Omega$, by $\delta_{\Omega}(z)$ the distance between z and $\partial \Omega$ measured with respect to the Fubini-Study metric. It is known from the work of A. Takeuchi [7], that $-\log \delta_{\Omega}$ is strictly plurisubharmonic on all of Ω and, hence, Ω is Stein. Therefore, it is reasonable to try to generalize function theory to locally pseudoconvex domains in \mathbf{P}^n .

In this article we will consider two questions in this direction, namely:

- 1) Are there localization principles for the Bergman kernel function and the Bergman metric (with respect to the measure coming from the Fubini-Study metric) on a suitable class of such domains?
- 2) Does local hyperconvexity of pseudoconvex domains $\Omega \subset \mathbf{P}^n$ imply also their global hyper-convexity?

In order to formulate our results with respect to 1) we denote by $d\lambda_{FS}$ the Fubini-Study volume element on \mathbf{P}^n and put

$$A^{2}(\Omega) := \left\{ f \in \mathcal{O}(\Omega) : \int_{\Omega} |f(z)|^{2} d\lambda_{FS} < \infty \right\}.$$

This is a Hilbert space with respect to the inner product

$$(f, g) := \int_{\Omega} f(z) \overline{g(z)} d\lambda_{FS}.$$

Notice, that always $\mathbb{C} \subset A^2(\Omega)$, since the volume of Ω is finite. The space $A^2(\Omega)$ has a (possibly constant) reproducing kernel

$$K_{\Omega}(\cdot,\cdot):\Omega\times\Omega\to\mathbb{C}$$

which, in this article, will be called the Bergman kernel of Ω . We denote by $K_{\Omega}(z) := K_{\Omega}(z, z)$

its restriction to the diagonal and call it the Bergman kernel function of Ω . We will show the following localization principle for $K_{\Omega}(\cdot)$.

THEOREM 1.1. Suppose, that the interior of the complement of the pseudoconvex domain $\Omega \subset \mathbf{P}^n$ is non-empty. Then there is, for any point $x \in \overline{\Omega}$, and any pair $V \in U$ of arbitrarily small open neighborhoods of x a consant C > 0, such that for all $z \in \Omega \cap V$

$$C^{-1}K_{\Omega}(z) < K_{\Omega \cap U}(z) < C \cdot K_{\Omega}(z)$$
.

Since always $\mathbb{C} \subset A^2(\Omega)$ we have $K_{\Omega}(z) > 0$ for any $z \in \Omega$. Hence, the function $\log K_{\Omega}(\cdot)$ is well-defined on all of Ω , so that we also can consider, for any $z \in \Omega$, the hermitian form $i\partial \bar{\partial} \log K_{\Omega}(z)$. It is always positive semi-definite, and we call it the *Bergman function pseudometric* of Ω (with respect to the Fubini-Study volume element). Also for it we have an analogous localization principle, namely

THEOREM 1.2. Suppose, that the domain $\Omega \subset \mathbf{P}^n$ satisfies the same hypothesis as in Theorem 1.1. Then there is, for any point $x \in \overline{\Omega}$ and any pair $U \ni V \ni x$ of open neighborhoods of x, a constant C > 0 such that

$$C^{-1}i\partial\bar{\partial}\log K_{\Omega}(z) \leq i\partial\bar{\partial}\log K_{\Omega \cap U}(z) \leq C \cdot i\partial\bar{\partial}\log K_{\Omega}(z)$$

for all $z \in \Omega \cap V$.

As an immediate consequence of this we obtain the fact, that the Bergman function metric of such domains Ω is (strictly) positive definite everywhere on the domain, namely we have

COROLLARY 1.3. For pseudoconvex domains $\Omega \subset \mathbf{P}^n$ as in Theorem 1.1 one has for all $z \in \Omega$

$$i\partial \bar{\partial} \log K_{\Omega}(z) > 0$$
.

In order to formulate the result concerning 2) we recall, that a complex manifold X is said to be hyperconvex, if there exists a bounded plurisubharmonic exhaustion function on X, i.e. a plurisubharmonic function $\varphi: X \to [-\infty, 0)$ such that, for any $c \in [-\infty, 0)$,

$$X_c := \{x \in X : \varphi(x) < c\} \in X.$$

A domain Ω in a complex manifold M is called locally hyperconvex, if, for each boundary point $x \in \partial \Omega$, there is a neighborhood $U \ni x$ such that $U \cap \Omega$ is hyperconvex. It is known from a theorem of Vâjâitu [8], that a relatively compact domain in a Stein manifold is hyperconvex, if and only if it is locally hyperconvex. However, on \mathbf{P}^n we have the following:

THEOREM 1.4. There exists a locally hyperconvex Stein domain Ω in \mathbf{P}^5 which is not hyperconvex.

REMARK 1.5. A domain as in this theorem necessarily has to have a rather "bad" boundary, since it is known, that all pseudoconvex domains in \mathbf{P}^n with \mathscr{C}^2 -smooth boundary are hyperconvex (cf. [5]).

2. Proof of Theorem 1.1.

Under the hypothesis of Theorem 1.1 on the pseudoconvex domain $\Omega \subset \mathbf{P}^n$ we fix a point $y \in (\mathbf{P}^n \setminus \overline{\Omega})$ and denote by X the set of complex lines passing through y. We have a canonical identification $X \stackrel{\pi}{\to} \mathbf{P}^{n-1}$. For any point $x \in \overline{\Omega}$, we take $l_x \in X$ to be the complex line passing through x and y. Furthermore, we choose an arbitrary complex hyperplane H_x that intersects l_x only at y. Let, now, W be an open neighborhood of $l_x \cap \Omega$ of the form $\pi^{-1}(W') \cap \Omega$ such that $W \in \mathbf{P}^n \setminus H_x \simeq \mathbf{C}^n$. Such a neighborhood exists, since y is a point in $(\mathbf{P}^n \setminus \overline{\Omega})^\circ$.

In order to prove the statement of Theorem 1.1 it suffices to show it for $U = \pi^{-1}(W')$, since, afterwards, for treating arbitrary small neighborhoods U, we can apply well-known localization principles for bounded domains in \mathbb{C}^n . So, let $z \in V \cap \Omega$ and take a function $f \in A^2(U \cap \Omega)$ such that

$$K_{U \cap \Omega}(z) = |f(z)|^2$$
 and $\int_{U \cap \Omega} |f|^2 d\lambda_{FS} = 1$. (2.1)

Let $\rho: \mathbf{P}^{n-1} \to [0, 1]$ be a \mathscr{C}^{∞} -function such that

$$\begin{cases} \operatorname{supp} \rho \subset \pi(U) = W' \\ \rho = 1 \text{ on } \pi(V) . \end{cases}$$

We claim, that we, then, can solve the $\bar{\partial}$ -equation

$$\bar{\partial}(\rho f) = \bar{\partial} u \tag{2.2}$$

with the constraints

$$\begin{cases}
||u|| \le C_1 \\
u \mid l_x = 0
\end{cases}$$
(2.3)

In order to see this, let s_1, \dots, s_{n-1} be sections of the hyperplane bundle $\mathcal{O}(1)$ on \mathbf{P}^n , such that $\{s_1 = \dots = s_{n-1} = 0\} = l_x$ and fix fiber metrics a resp. b on $\mathcal{O}(1)$ and on the canonical bundle $K(\mathbf{P}^n) \simeq \mathcal{O}(-n-1)$ respectively so that their curvature forms $\Theta_{\mathcal{O}(1)}$ and $\Theta_{K(\mathbf{P}^n)}$ satisfy $i\Theta_{\mathcal{O}(1)} > 0$ and $\Theta_{K(\mathbf{P}^n)} = -(n+1)\Theta_{\mathcal{O}(1)}$. Then we note, that $\bar{\partial}(\rho f)$ can be considered as a $\bar{\partial}$ -closed (n, 1)-form on Ω with values in $K^{-1}(\mathbf{P}^n)$ which is square integrable with respect to the singular hermitian metric

$$h := \left(\frac{1}{\sum_{j=1}^{n-1} |s_j|^2}\right)^{n-1} b^{-1}$$
 (2.4)

and that the curvature form of h is equal to

$$-(n-1)\Theta_{\sigma(1)} - \Theta_{K(P^n)} = 2\Theta_{\sigma(1)} \tag{2.5}$$

on $\Omega \setminus l_x$. Therefore, by applying an L^2 -cohomology vanishing theorem on complete Kähler manifolds (cf. [1] or [4]), one obtains a solution of the equation (2.2) with side conditions (2.3). This finishes the proof of Theorem 1.1. \square

3. Proof of Theorem 1.2.

We just need to refine the proof of Theorem 1.1 a little bit in order to get a proof of Theorem 1.2. Namely, as usual, we use the fact, that the Bergman function pseudometric $ds^2(z, t) := i\partial \bar{\partial} \log K_{\Omega}(z)(t)$ is given by the following formula

$$ds_{\Omega}^{2}(z,t) = \frac{\sup\{|\langle \partial f(z), t \rangle|^{2} : f \in A^{2}(\Omega), ||f|| = 1, f(z) = 0\}}{K_{\Omega}(z)}$$
(3.1)

(and similarly on $U \cap \Omega$). We choose for $z \in V \cap \Omega$ a function $f \in A^2(U \cap \Omega)$ realizing the supremum in the denominator of (3.1) for the case of $U \cap \Omega$ and apply to it the same $\bar{\partial}$ -machinery as in the proof of Theorem 1.1 with the only change, that we replace the singular hermitian metric h from (2.4) by

$$h := \left(\frac{1}{\sum_{j=1}^{n-1} |s_j|^2}\right)^n b^{-1}$$
 (3.2)

in order to assure, that one has for the solution of the equation (2.2) not only the side conditions (2.3), but also du(z) = 0. This finishes the proof of Theorem 1.2. \square

4. Proof of Theorem 1.4.

We show at first

LEMMA 4.1. Let M be a complex manifold and $N \subset M$ a closed complex submanifold. Furthermore, let $D \subset N$ be a relatively compact locally hyperconvex Stein domain. Then D has a locally hyperconvex open neighborhood $\Omega \subset M$.

PROOF. For each point $x \in \overline{D}$, take a neighborhood $W_x \ni x$ in M so that a holomorphic retraction $W_x \xrightarrow{\pi_x} W_x \cap N$ exists. Since \overline{D} is compact, it can be covered by finitely many such neighborhoods W_x , say $\{W_{x_i}\}_{i=1,\dots,m}$. Let $U \supset D$ be a neighborhood satisfying

$$\pi_{x_i}^{-1}(\partial D \cap W_{x_i}) \cap \partial U \subset \partial D \qquad \forall i = 1, \dots, m.$$

By Siu's theorem [6], there exists a Stein neighborhood $V\supset D$, $V\subset M$ open, such that $V\subset U$. We can choose Stein neighborhoods $\tilde{V}_1\supset \tilde{V}_2\supset D$ with $\tilde{V}_1\subset V$ and such that $\partial \tilde{V}_2\backslash N\subset \tilde{V}_1$, $\partial \tilde{V}_1\backslash N\subset V$. Furthermore, we choose a \mathscr{C}^{∞} exhaustion function φ of V and put $V_j:=\{z\in V\colon \varphi(z)< j\}$ for all $j\in \mathbb{N}$. The sets $K_j:=\{\tilde{V}_1\backslash \tilde{V}_2\}\cap \{\bar{V}_j\backslash V_{j-1}\}$ are compact

(here $V_0 = \emptyset$), $K_i \cap D = \emptyset$ and

$$\bigcup_{j=1}^{\infty} K_{j} = (\tilde{\tilde{V}}_{1} \setminus \tilde{V}_{2}) \cap V.$$

By Runge-Hörmander's approximation theorem, for every $j \in \mathbb{N}$ and every point $z \in K_{j+2} \setminus \mathring{K}_{j+1}$ there is a function $f \in \mathcal{O}(V)$, $f \mid D = 0$, such that $\mid f(z) \mid > 1$ and $\mid f \mid < \varepsilon$ on V_j for any given $\varepsilon > 0$. Since the inequality $\mid f \mid > 1$ remains true in a neighborhood of z and K_j can be covered by finitely many such neighborhoods, we can, by passing over to suitable powers of the f's, for any $j \in \mathbb{N}$, choose a finite system of holomorphic functions $f_{jk} \in \mathcal{O}(V)$, $k = 1, \dots, N_j$, such that we have

$$\begin{cases} \sum_{k=1}^{N_j} |f_{jk}|^2 < 2^{-j} & \text{on } V_j \\ \sum_{k=1}^{N_j} |f_{jk}|^2 > 1 & \text{on } K_{j+2} \end{cases}$$
(4.1)

Of course, there are also finitely many $f_{0k} \in \mathcal{O}(V)$ for $k = 1, \dots, N_0, f_{0k} \mid D = 0$, such that

$$\sum_{k=1}^{N_0} |f_{0k}|^2 > 1 \quad \text{on} \quad K_1 \cup K_2 . \tag{4.2}$$

From (4.1) and (4.2) we get, that the function

$$\Phi(z) := \sum_{j=0}^{\infty} \sum_{k=1}^{N_j} |f_{jk}|^2$$

is a \mathscr{C}^{∞} plurisubharmonic function on V_1 with

$$\delta := \inf_{V_1 \setminus V_2} \Phi(z) > 1$$
 and $\Phi \mid D = 0$.

We put

$$\Omega := \{ z \in V_1 : \Phi(z) < \delta/2 \} . \tag{4.3}$$

Clearly $D \subset \Omega$. The domain Ω is also locally hyperconvex. This follows directly from (4.3) near all points $z \in \partial \Omega \setminus \partial D$. For any $z \in \partial D$ there is a neighborhood W_{x_i} with a local retraction π_{x_i} as chosen above. Furthermore, since D is supposed to be locally hyperconvex, we may assume, that $W_{x_i} \cap D$ has a bounded plurisubharmonic exhaustion function ρ_i . Then

$$\max\{\pi_{x_i}^*\rho_i, \Phi-\delta/2\}$$

is a bounded plurisubharmonic exhaustion on $W_{x_i} \cap \Omega$ (in the sense, that it is negative inside and goes to 0 at $\partial \Omega$).

We now come to the

PROOF OF THEOREM 1.4. Let $A := \mathbb{C}/\mathbb{Z} + i\mathbb{Z}$. As was shown in [3], there exists a worm-like (cf. [2]) Stein open subset $D \subset A \times \mathbb{P}^1$ with \mathscr{C}^{ω} -smooth boundary and such

that D is locally hyperconvex and biholomorphically equivalent to the product of an annulus and C^* .

Notice, that A can be embedded into \mathbf{P}^2 . Therefore, $A \times \mathbf{P}^1$ can be embedded into \mathbf{P}^5 using the Veronese embedding $\mathbf{P}^2 \times \mathbf{P}^1 \to \mathbf{P}^5$. By Lemma 4.1, there is a locally hyperconvex domain $\Omega \subset \mathbf{P}^5$ containing the image D_0 of D under the embedding of $A \times \mathbf{P}^1$ into \mathbf{P}^5 . However, such a domain Ω cannot be (globally) hyperconvex. Otherwise, there would exist a bounded plurisubharmonic exhaustion function φ on Ω the restriction of which to D_0 would be a bounded plurisubharmonic exhaustion function on D_0 . But this is impossible, since D_0 contains a biholomorphic image of \mathbb{C}^* as a closed submanifold. \square

References

- [1] J. P. Demailly, Estimations L^2 pour l'opérateur $\bar{\partial}$ d'un fibré vectoriel holomorphe semipositif au dessus d'une variété kählerienne complète, Ann. Sci. Ecole Norm. Sup. 15 (1982), 457-511.
- [2] K. Diederich and J. E. Fornaess, Peudoconvex domains: An example with nontrivial Nebenhülle, Math. Ann. 225 (1977), 275-292.
- [3] T. Ohsawa, A Stein domain with smooth boundary which has a product structure, Publ. Res. Inst. Math. Sci. 18 (1982), 1185–1186.
- [4] T. Ohsawa, Vanishing theorems on complete Kähler manifolds, Publ. Res. Inst. Math. Sci. 20 (1984), 21–38.
- [5] T. Ohsawa and N. Sibony, Bounded p.s.h. functions and pseudoconvexity in Kähler manifolds, Nagoya Math. J. 149 (1998), 1-8.
- [6] Y. T. Siu, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38 (1976), 89–100.
- [7] A. TAKEUCHI, Domaines pseudoconvexes infinis et la métrique riemannienne dans un espace projectif, J. Math. Soc. Japan 16 (1964), 159-181.
- [8] V. Vâjâitu, Fibre bundles with hyperconvex fibre and base are hyperconvex, preprint (1996).

Present Addresses:

KLAS DIEDERICH

MATHEMATIK, UNIVERSITY OF WUPPERTAL,

GAUSSTR. 20, D-42095 WUPPERTAL, GERMANY.

TAKEO OHSAWA

GRADUATE SCHOOL OF POLYMATHEMATICS, NAGOYA UNIVERSITY,

CHIKUSA-KU, FUROCHO, NAGOYA, 464-8602, JAPAN.