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1. Introduction.

Let Q< P" be a locally pseudoconvex domain and denote, for zeQ, by 4(z) the
distance between z and 0Q measured with respect to the Fubini-Study metric. It is
known from the work of A. Takeuchi [7], that —logd,, is strictly plurisubharmonic on
all of Q and, hence, 2 is Stein. Therefore, it is reasonable to try to generalize function
theory to locally pseudoconvex domains in P”".

In this article we will consider two questions in this direction, namely:

1) Are there localization principles for the Bergman kernel function and the Bergman
metric (with respect to the measure coming from the Fubini-Study metric) on a suitable
class of such domains?

2) Does local hyperconvexity of pseudoconvex domains 2 < P” imply also their global
hyper-convexity?

In order to formulate our results with respect to 1) we denote by dipg the
Fubini-Study volume element on P" and put

AZ(Q):z{fe(O(Q): J | £(2)2dAps < oo}.
Q

This is a Hilbert space with respect to the inner product

(f,9):= f f@g(2)dags -
Q
Notice, that always C < A4%(Q), since the volume of Q is finite. The space A%(R2) has a
(possibly constant) reproducing kernel
K+, *):Q2xQ->C
which, in this article, will be called the Bergman kernel of 2. We denote by K(z) : = Koz, z)
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its restriction to the diagonal and call it the Bergman kernel function of Q. We will show
the following localization principle for K *).

THEOREM 1.1. Suppose, that the interior of the complement of the pseudoconvex
domain Q<P" is non-empty. Then there is, for any point xeQ, and any pair V € U of
arbitrarily small open neighborhoods of x a consant C>0, such that for all ze QN V

C™ 'K f2) <Ko (2)< C* Kof2) .

Since always C = 4%(Q2) we have K(z)> 0 for any z € Q. Hence, the function log K( *)
is well-defined on all of Q, so that we also can consider, for any ze€ Q, the hermitian
form i00 log K(2). It is always positive semi-definite, and we call it the Bergman function
pseudometric of Q (with respect to the Fubini-Study volume element). Also for it we
have an analogous localization principle, namely

THEOREM 1.2. Suppose, that the domain Q cP" satisfies the same hypothesis as in
Theorem 1.1. Then there is, for any point x€Q and any pair U> V3x of open
neighborhoods of x, a constant C>0 such that

C™'iddlogK(z) <iddlogKq, . y(z) < C - idd log Kofz)
forall zeQN'V.

As an immediate consequence of this we obtain the fact, that the Bergman function
metric of such domains Q is (strictly) positive definite everywhere on the domain, namely
we have

CoROLLARY 1.3. For pseudoconvex domains Q <=P" as in Theorem 1.1 one has for
all ze Q

i001ogKo(2)>0 .

In order to formulate the result concerning 2) we recall, that a complex manifold
X is said to be hyperconvex, if there exists a bounded plurisubharmonic exhaustion
function on X, i.e. a plurisubharmonic function ¢: X — [ — o0, 0) such that, for any
ce[—o0, 0),

X.:={xeX:p(x)<c}€X.

A domain € in a complex manifold M is called locally hyperconvex, if, for each
boundary point x € 0Q2, there is a neighborhood U3 x such that U n Q is hyperconvex.
It is known from a theorem of V4jaitu [8], that a relatively compact domain in a Stein
manifold is hyperconvex, if and only if it is locally hyperconvex. However, on P" we
have the following:

THEOREM 1.4. There exists a locally hyperconvex Stein domain Q in P> which is
not hyperconvex.
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REMARK 1.5. A domain as in this theorem necessarily has to have a rather “bad”
boundary, since it is known, that all pseudoconvex domains in P” with %2-smooth
boundary are hyperconvex (cf. [5]).

2. Proof of Theorem 1.1.

Under the hypothesis of Theorem 1.1 on the pseudoconvex domain Q< P” we fix
a point y € (P"\2) and denote by X the set of complex lines passing through y. We have
a canonical identification X % P"~'. For any point xe(, we take /,e X to be the
complex line passing through x and y. Furthermore, we choose an arbitrary complex
hyperplane H, that intersects /, only at y. Let, now, W be an open neighborhood of
. " Q of the form n~ }(W’) N Q2 such that W € P"\H,~C". Such a neighborhood exists,
since y is a point in (P"\Q)°.

In order to prove the statement of Theorem 1.1 it suffices to show it for U=z~ (W),
since, afterwards, for treating arbitrary small neighborhoods U, we can apply well-known
localization principles for bounded domains in C”. So, let ze V"N Q and take a function
fe A*(U n Q) such that

Kynol2)=|f()|* and J | f PdAps=1. (2.1)
Ung

Let p: P""1 [0, 1] be a ¥*-function such that

{supppcn(U)=W’
p=1onn(V).

We claim, that we, then, can solve the d-equation

a(pf)=0u (2.2)
with the constraints
lull <C,
23
{ u|l,=0. 23)
In order to see this, let 54, - - -, s,_; be sections of the hyperplane bundle O(1) on P",
such that {s,=---=s,_,=0}=/, and fix fiber metrics a resp. b on O(1) and on the

canonical bundle K(P")~@(—n—1) respectively so that their curvature forms @,
and O pr, satisfy i@y ,>0 and Ogpn = —(n+ 1)@ 4(;). Then we note, that d(pf) can be
considered as a d-closed (n, 1)-form on 2 with values in K~ !(P") which is square integrable
with respect to the singular hermitian metric

1 n—1
hi=| ————— b1 2.4
<Z;;11|Sj|2) @4

and that the curvature form of 4 is equal to
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—(n— 1)@0(1)—@1((1»-):2@0(1) (2.5)

on Q\/.. Therefore, by applying an L>-cohomology vanishing theorem on complete
Kaihler manifolds (cf. [1] or [4]), one obtains a solution of the equation (2.2) with side
conditions (2.3). This finishes the proof of Theorem 1.1. [

3. Proof of Theorem 1.2.

We just need to refine the proof of Theorem 1.1 a little bit in order to get a proof
of Theorem 1.2. Namely, as usual, we use the fact, that the Bergman function
pseudometric ds?(z, t): =idd log Ky(z)(t) is given by the following formula

Sup{l <af(z)’ t> |2 : fGAZ(Q), “f“ = 1’ f(Z)=0}
Ko(2)

ds3(z, t)= 3.1)
(and similarly on U Q). We choose for ze ¥V n Q a function fe A4*(U N Q) realizing
the supremum in the denominator of (3.1) for the case of U Q and apply to it the
same J-machinery as in the proof of Theorem 1.1 with the only change, that we replace
the singular hermitian metric 4 from (2.4) by

1 n
h:=(—————”_ )b“ (3.2)
> j=11 |'s;1?
in order to assure, that one has for the solution of the equation (2.2) not only the side
conditions (2.3), but also du(z)=0. This finishes the proof of Theorem 1.2. [

4. Proof of Theorem 1.4.

We show at first

LemMMA 4.1. Let M be a complex manifold and N = M a closed complex submanifold.
Furthermore, let D < N be a relatively compact locally hyperconvex Stein domain. Then
D has a locally hyperconvex open neighborhood Q=M.

Proor. For each point xe D, take a neighborhood W,3x in M so that a
holomorphic retraction W, %=, W, N N exists. Since D is compact, it can be covered by
finitely many such neighborhoods W,, say {W, };-;.... .. Let U> D be a neighborhood
satisfying

n, (0D N W,)noUc<dD Vi=1,---,m.
By Siu’s theorem [6], there exists a Stein neighborhood V> D, V<M open, such that
V<= U. We can choose Stein neighborhoods ¥, > ¥, >D with ¥, =¥ and such that

OV,\Nc V,, 3V,\N < V. Furthermore, we choose a ¢ * exhaustion function ¢ of ¥ and
put V;:={ze V: ¢(z)<j} for all jeN. The sets K;:={V,\V,} n {¥;\V;_,} are compact
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(here V=), K;n D= and

s

K=(P\P)nV.

It

j=1

By Runge-Ho6rmander’s approximation theorem, for every jeN and every point
zeKj“\Ii'jJrl there is a function fe O(V), f| D=0, such that | f(z)|>1 and | f| <& on
V; for any given £>0. Since the inequality | f|>1 remains true in a neighborhood of
z and K; can be covered by finitely many such neighborhoods, we can, by passing over

to suitable powers of the f’s, for any jeN, choose a finite system of holomorphic

functions fj, e O(V), k=1, ---, N, such that we have
{Zfillfjklzd‘f on ¥, an
Yel 1 fulr>1 on Kj,,.

Of course, there are also finitely many fo, € O(V)fork=1, - -, Ny, for| D=0, such that
No
Yo forl?>1 on K,uUK,. 4.2)
k=1

From (4.1) and (4.2) we get, that the function

o)=Y 3 |ful?

Jj=0 k=1

is a ¥® plurisubharmonic function on ¥V, with

6:= inf ®(z)>1 and &|D=0.

Vi\Va2
We put
Q:={zeV,: &(z)</2}. (4.3)

Clearly D<= Q. The domain Q is also locally hyperconvex. This follows directly from
(4.3) near all points ze€ dQ\0D. For any z € 0D there is a neighborhood W, with a local
retraction m,, as chosen above. Furthermore, since D is supposed to be locally
hyperconvex, we may assume, that W, N D has a bounded plurisubharmonic exhaustion
function p;. Then

max{n}p;, &—05/2}

is a bounded plurisubharmonic exhaustion on W, N Q (in the sense, that it is negative
inside and goes to 0 at 0Q).

We now come to the

PrOOF OF THEOREM 1.4. Let A:=C/Z+iZ. As was shown in [3], there exists a
worm-like (cf. [2]) Stein open subset D<= A x P! with ¥“-smooth boundary and such
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that D is locally hyperconvex and biholomorphically equivalent to the product of an
annulus and C*.

Notice, that 4 can be embedded into P2. Therefore, 4 x P! can be embedded into
P° using the Veronese embedding P> x P! > P5 By Lemma 4.1, there is a locally
hyperconvex domain Q<P? containing the image D, of D under the embedding of
A x P! into P>. However, such a domain Q cannot be (globally) hyperconvex. Otherwise,
there would exist a bounded plurisubharmonic exhaustion function ¢ on Q the restric-
tion of which to D, would be a bounded plurisubharmonic exhaustion function on D,,.
But this is impossible, since D, contains a biholomorphic image of C* as a closed
submanifold. [J
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