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1. Introduction.

Let $\Omega\subsetneqq P^{n}$ be a locally pseudoconvex domain and denote, for $ z\in\Omega$ , by $\delta_{\Omega}(z)$ the
distance between $z$ and $\partial\Omega$ measured with respect to the Fubini-Study metric. It is
known from the work of A. Takeuchi [7], that $-\log\delta_{\Omega}$ is strictly plurisubharmonic on
all of $\Omega$ and, hence, $\Omega$ is Stein. Therefore, it is reasonable to try to generalize function
theory to locally pseudoconvex domains in $P^{n}$ .

In this article we will consider two questions in this direction, namely:
1) Are there localization principles for the Bergman kernel function and the Bergman
metric (with respect to the measure coming from the Fubini-Study metric) on a suitable
class of such domains?
2) Does local hyperconvexity of pseudoconvex domains $\Omega\subset P^{n}$ imply also their global
hyper-convexity?

In order to formulate our results with respect to 1) we denote by $d\lambda_{FS}$ the
Fubini-Study volume element on $P^{n}$ and put

$A^{2}(\Omega):=\{f\in \mathcal{O}(\Omega):\int_{\Omega}|f(z)|^{2}d\lambda_{FS}<\infty\}$ .

This is a Hilbert space with respect to the inner product

$(f, g):=\int_{\Omega}f(z)\overline{g(z)}d\lambda_{FS}$ .

Notice, that always $C\subset A^{2}(\Omega)$ , since the volume of $\Omega$ is finite. The space $A^{2}(\Omega)$ has a
(possibly constant) reproducing kemel

$K_{\Omega}(\cdot, \cdot):\Omega\times\Omega\rightarrow C$

which, in this article, will be called the Bergman kernel of $\Omega$ . We denote by $K_{\Omega}(z):=K_{\Omega}(z, z)$
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its restriction to the diagonal and call it the Bergman kernelfunction of $\Omega$ . We will show
the following localization principle for $K_{\Omega}(\cdot)$ .

THEOREM 1.1. Suppose, that the interior of the complement of the pseudoconvex
domain $\Omega\subset P^{n}$ is non-empty. Then there is, for any point $x\in\overline{\Omega}$, and any pair V C $U$ of
arbitrarily small open neighborhoods of $x$ a consant $C>0$ , such that for all $z\in\Omega\cap V$

$C^{-1}K_{\Omega}(z)<K_{\Omega\cap U}(z)<C\cdot K_{\Omega}(z)$ .
Since always $C\subset A^{2}(\Omega)$ we have $K_{\Omega}(z)>0$ for any $ z\in\Omega$ . Hence, the function $\log K_{\Omega}(\cdot)$

is well-defined on all of $\Omega$, so that we also can consider, for any $ z\in\Omega$ , the hermitian
form $i\partial\overline{\partial}\log K_{\Omega}(z)$ . It is always positive semi-definite, and we call it the Bergman function
pseudometric of $\Omega$ (with respect to the Fubini-Study volume element). Also for it we
have an analogous localization principle, namely

THEOREM 1.2. Suppose, that the domain $\Omega\subset P^{n}$ satisfies the same hypothesis as in
Theorem 1.1. Then there is, for any point $x\in\overline{\Omega}$ and any pair $U\Supset V\ni x$ of open
neighborhoods of $x$ , a constant $C>0$ such that

$C^{-1}i\partial\overline{\partial}\log K_{\Omega}(z)\leq i\partial\overline{\partial}\log K_{\Omega\cap U}(z)\leq C\cdot i\partial\overline{\partial}\log K_{\Omega}(z)$

for all $z\in\Omega\cap V$.

As an immediate consequence of this we obtain the fact, that the Bergman function
metric of such domains $\Omega$ is (strictly) positive definite everywhere on the domain, namely
we have

COROLLARY 1.3. For pseudoconvex domains $\Omega\subset P^{n}$ as in Theorem 1.1 one has for
all $ z\in\Omega$

$i\partial\overline{\partial}\log K_{\Omega}(z)>0$ .

In order to formulate the result concerning 2) we recall, that a complex manifold
$X$ is said to be hyperconvex, if there exists a bounded plurisubharmonic exhaustion
function on $X$, i.e. a plurisubharmonic function $\varphi:X\rightarrow[-\infty, 0$) such that, for any
$c\in[-\infty, 0)$ ,

$X_{c}:=\{x\in X:\varphi(x)<c\}\subseteq\subset X$ .
A domain $\Omega$ in a complex manifold $M$ is called locally hyperconvex, if, for each

boundary point $ x\in\partial\Omega$ , there is a neighborhood $U\ni x$ such that $ U\cap\Omega$ is hyperconvex.
It is known from a theorem of V\^aj\^aitu [8], that a relatively compact domain in a Stein
manifold is hyperconvex, if and only if it is locally hyperconvex. However, on $P^{n}$ we
have the following:

THEOREM 1.4. There exists a locally hyperconvex Stein domain $\Omega$ in $P^{5}$ which is
not hyperconvex.
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REMARK 1.5. A domain as in this theorem necessarily has to have a rather “bad”
boundary, since it is known, that all pseudoconvex domains in $P^{n}$ with $\mathscr{C}^{2}$-smooth
boundary are hyperconvex (cf. [5]).

2. Proof of Theorem 1.1.

Under the hypothesis of Theorem 1.1 on the pseudoconvex domain $\Omega\subset P^{n}$ we fix
a point $y\in(P^{n}\backslash \overline{\Omega})$ and denote by $X$ the set of complex lines passing through $y$ . We have
a canonical identification $X\rightarrow\pi P^{n-1}$ . For any point $x\in\overline{\Omega}$, we take $l_{x}\in X$ to be the
complex line passing through $x$ and $y$ . Furthermore, we choose an arbitrary complex
hyperplane $H_{x}$ that intersects $l_{x}$ only at $y$ . Let, now, $W$ be an open neighborhood of
$ l_{x}\cap\Omega$ of the form $\pi^{-1}(W^{\prime})\cap\Omega$ such that $W\subset\subset P^{n}\backslash H_{x}\simeq C^{n}$ . Such a neighborhood exists,
since $y$ is a point in $(P^{n}\backslash \overline{\Omega})^{o}$ .

In order to prove the statement ofTheorem 1.1 it suffices to show it for $U=\pi^{-1}(W^{\prime})$ ,
since, afterwards, for treating arbitrary small neighborhoods $U$, we can apply well-known
localization principles for bounded domains in $C^{n}$ . So, let $ z\in V\cap\Omega$ and take a function
$f\in A^{2}(U\cap\Omega)$ such that

$K_{U\cap\Omega}(z)=|f(z)|^{2}$ and $\int_{U\cap\Omega}|f|^{2}d\lambda_{FS}=1$ . (2.1)

Let $\rho:P^{n-1}\rightarrow[0,1]$ be a $\mathscr{C}^{\infty}$ -function such that

$\left\{\begin{array}{l}\rho\subset\pi(U)=W^{\prime}\\\rho=1\pi(V)\end{array}\right.$

We claim, that we, then, can solve the $\overline{\partial}$-equation
$\overline{\partial}(\rho f)=\overline{\partial}u$ (2.2)

with the constraints

$\{_{u|l_{x}=0}\Vert u\Vert\leq C_{1}$

.
(2.3)

In order to see this, let $s_{1},$ $\cdots,$ $s_{n-1}$ be sections of the hyperplane bundle 0(1) on $P^{n}$ ,

such that $\{s_{1}=\cdots=s_{n-1}=0\}=l_{x}$ and fix fiber metrics $a$ resp. $b$ on $\mathcal{O}(1)$ and on the
canonical bundle $K(P^{n})\simeq \mathcal{O}(-n-1)$ respectively so that their curvature forms $\Theta_{0\langle 1)}$

and $\Theta_{K\langle P^{n})}$ satisfy $i\Theta_{0\langle 1)}>0$ and $\Theta_{K\langle P^{n})}=-(n+1)\Theta_{0(1)}$ . Then we note, that $\overline{\partial}(\rho f)$ can be
considered as a $\overline{\partial}$-closed $(n, 1)$-form on $\Omega$ with values in $K^{-1}(P^{n})$ which is square integrable
with respect to the singular hermitian metric

$h:=(\frac{1}{\sum_{j=1}^{n-1}|s_{j}|^{2}})^{n-1}b^{-1}$ (2.4)

and that the curvature form of $h$ is equal to
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$-(n-1)\Theta_{\mathcal{O}\langle 1)}-\Theta_{K\langle P^{n})}=2\Theta_{\mathcal{O}\langle 1)}$ (2.5

on $\Omega\backslash l_{x}$ . Therefore, by applying an $L^{2}$-cohomology vanishing theorem on complete
K\"ahler manifolds (cf. [1] or [4]), one obtains a solution of the equation (2.2) with side
conditions (2.3). This finishes the proof of Theorem 1.1. $\square $

3. Proof of Theorem 1.2.

We just need to refine the proof of Theorem 1.1 a little bit in order to get a $proo|$

of Theorem 1.2. Namely, as usual, we use the fact, that the Bergman functior
pseudometric $ds^{2}(z, t):=i\partial\overline{\partial}\log K_{\Omega}(z)(t)$ is given by the following formula

$ds_{\Omega}^{2}(z, t)=\frac{\sup\{|\langle\partial f(z),t\rangle|^{2}:f\in A^{2}(\Omega),\Vert f\Vert=1,f(z)=0\}}{K_{\Omega}(z)}$ (3.1’

(and similarly on $ U\cap\Omega$). We choose for $ z\in V\cap\Omega$ a function $ f\in A^{2}(U\cap\Omega)realizin\xi$

the supremum in the denominator of (3.1) for the case of $ U\cap\Omega$ and apply to it the
same $\overline{\partial}$-machinery as in the proof of Theorem 1.1 with the only change, that we replace
the singular hermitian metric $h$ from (2.4) by

$h:=(\frac{1}{\sum_{j=1}^{n-1}|s_{j}|^{2}})^{n}b^{-1}$ $(3.2_{J}^{\backslash }$

in order to assure, that one has for the solution of the equation (2.2) not only the side
conditions (2.3), but also $du(z)=0$ . This finishes the proof of Theorem 1.2. $\square $

4. Proof of Theorem 1.4.

We show at first

LEMMA 4.1. Let $M$ be a complex manifoldand $N\subset M$ a closed complex submamfold
Furthermore, let $D\subset N$ be a relatively compact locally hyperconvex Stein domain. Ther
$D$ has a locally hyperconvex open neighborhood $\Omega\subset M$.

PROOF. For each point $x\in\overline{D}$, take a neighborhood $W_{x}\ni x$ in $M$ so that $e$

holomorphic retraction $W_{x}\rightarrow\pi_{X}W_{x}\cap N$ exists. Since $\overline{D}$ is compact, it can be covered b3
finitely many such neighborhoods $W_{X}$ , say $\{W_{x_{i}}\}_{i=1,\cdots,m}$ . Let $U\supset D$ be a neighborhooc
satisfying

$\pi_{x_{j}}^{-1}(\partial D\cap W_{x_{i}})\cap\partial U\subset\partial D$ $\forall i=1,$
$\cdots,$ $m$ .

By Siu’s theorem [6], there exists a Stein neighborhood $V\supset D,$ $V\subset M$ open, such thal
$V\subset U$. We can choose Stein neighborhoods $\tilde{V}_{1}\supset\tilde{V}_{2}\supset D$ with $\tilde{V}_{1}\subset V$ and such thal

$\partial\tilde{V}_{2}\backslash N\subset\tilde{V}_{1},$ $\partial\tilde{V}_{1}\backslash N\subset V$. Furthermore, we choose a $\mathscr{C}^{\infty}$ exhaustion function $\varphi$ of $V$ anc
put $V_{j}:=\{z\in V:\varphi(z)<j\}$ for all $j\in N$ . The sets $K_{j}:=\{\overline{\tilde{V}}_{1}\backslash \tilde{V}_{2}\}\cap\{\overline{V}_{j}\backslash V_{j-1}\}$ are compacl
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(here $ V_{0}=\emptyset$), $ K_{j}\cap D=\emptyset$ and

$\bigcup_{j=1}^{\infty}K_{j}=(\overline{\tilde{V}}_{1}\backslash \tilde{V}_{2})\cap V$ .

By Runge-H\"ormander’s approximation theorem, for every $j\in N$ and every point
$z\in K_{j+2}\backslash \mathring{K}_{j+1}$ there is a function $f\in \mathcal{O}(V),$ $f|D=0$ , such that $|f(z)|>1$ and $|f|<\epsilon$ on
$V_{j}$ for any given $\epsilon>0$ . Since the inequality $|f|>1$ remains true in a neighborhood of

$z$ and $K_{j}$ can be covered by finitely many such neighborhoods, we can, by passing over
to suitable powers of the $f’ s$ , for any $j\in N$ , choose a Pnite system of holomorphic
functions $f_{jk}\in \mathcal{O}(V),$ $k=1,$ $\cdots,$ $N_{j}$, such that we have

$\left\{\begin{array}{ll}\sum_{k=1}^{N_{j}}|f_{jk}|^{2}<2^{-j} & on V_{j}\\\sum_{k=1}^{N_{j}}|f_{jk}|^{2}>1 & on K_{j+2}.\end{array}\right.$ (4.1)

Ofcourse, there are also finitely many $f_{0k}\in \mathcal{O}(V)$ for $k=1,$ $\cdots,$ $N_{0},f_{0k}|D=0$ , such that

$\sum_{k=1}^{N_{O}}|f_{ok}|^{2}>1$ on $K_{1}\cup K_{2}$ . (4.2)

From (4.1) and (4.2) we get, that the function

$\Phi(z):=\sum_{j=0}^{\infty}\sum_{k=1}|f_{jk}|^{2}N$

is a $\mathscr{C}^{\infty}$ plurisubharmonic function on $V_{1}$ with

$\delta:=\inf_{V_{1}\backslash V_{2}}\Phi(z)>1$ and $\Phi|D=0$ .

We put

$\Omega:=\{z\in V_{1} : \Phi(z)<\delta/2\}$ . (4.3)

Clearly $ D\subset\Omega$ . The domain $\Omega$ is also locally hyperconvex. This follows directly from
(4.3) near all points $z\in\partial\Omega\backslash \partial D$ . For any $z\in\partial D$ there is a neighborhood $W_{x_{i}}$ with a local
retraction $\pi_{x_{i}}$ as chosen above. Furthermore, since $D$ is supposed to be locally
hyperconvex, we may assume, that $W_{x_{i}}\cap D$ has a bounded plurisubharmonic exhaustion
function $\rho_{i}$ . Then

$\max\{\pi_{x_{i}}^{*}\rho_{i}, \Phi-\delta/2\}$

is a bounded plurisubharmonic exhaustion on $ W_{x_{i}}\cap\Omega$ (in the sense, that it is negative
inside and goes to $0$ at $\partial\Omega$).

We now come to the

PROOF OF THEOREM 1.4. Let $A:=C/Z+iZ$ . As was shown in [3], there exists a
worm-like (cf. [2]) Stein open subset $D\subset A\times P^{1}$ with $\mathscr{C}^{\omega}$-smooth boundary and such
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that $D$ is locally hyperconvex and biholomorphically equivalent to the product of an
annulus and $C^{*}$ .

Notice, that $A$ can be embedded into $P^{2}$ . Therefore, $A\times P^{1}$ can be embedded intc
$P^{5}$ using the Veronese embedding $P^{2}\times P^{1}\rightarrow P^{5}$ . By Lemma 4.1, there is a locall}
hyperconvex domain $\Omega\subset P^{5}$ containing the image $D_{0}$ of $D$ under the embedding 01
$A\times P^{1}$ into $P^{5}$ . However, such a domain $\Omega$ cannot be (globally) hyperconvex. Otherwise $($

there would exist a bounded plurisubharmonic exhaustion function $\varphi$ on $\Omega$ the restric.
tion of which to $D_{0}$ would be a bounded plurisubharmonic exhaustion function on $D_{0}$

But this is impossible, since $D_{0}$ contains a biholomorphic image of $C^{*}$ as a closed
submanifold. $\square $
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