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1. Introduction.

Let g be an integer greater than 1. Let a(n) be a complex-valued arithmetical func-
tion. a(n) is said to be g-additive if

a(n)= 3, a(bq’)
i=0
for any positive integer n=3) . b;q’ with ;€ {0, 1, - - -, g—1}, and a(0)=0. It follows
from the definition that a(n) is g-additive if and only if
a(ng* +r)=a(ng*)+ a(r)
for any integer n>0 and k>0 with 0 <r<g*. a(n) is said to be g-multiplicative if
a(m)=1T] a(b;q")
i>0
for any positive integer n as above, and a(0)=1. a(n) is a g-multiplicative function if
and only if
a(ng* +r)=a(ng*)a(r)

for any n>0 and k>0 with 0<r<gqg*. If g-additive or g-multiplicative function a(n)
satisfies

a(bqi):‘a(b) (be{osl’ Y q—l},iZO), (1)

then a(n) is said to be strongly g-additive or strongly g-multiplicative, respectively.
We say a(n) is p and g-additive if it is p-additive and also g-additive. Similarly, a p
and g-multiplicative function is defined. The notion of g-additive functions and g¢-
multiplicative functions were introduced by Gel’fond [2] and Delange [1] respectively
and has been investigated by many authors (eg. [3], [4], [5D).

If a(n) is a g-additive or g-multiplicative function, a(n) is g'-additive or ¢'-
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multiplicative for any positive integer /.

Recently, Toshimitsu [8] proved that any strongly p and g-additive functions is
identically zero, if logp/logq is irrational. He also obtained a similar result for
strongly p and g-multiplicative functions (see Corollary 1 and 2 below). His proofs
based on the deep results in the transcendence theory of Mabhler functions (cf. Nishioka
[6], [7]). Elementary proofs of these results are given in [9]. In this paper, we determine
explicitly the form of p and g-additive or multiplicative functions without the ‘strongly’
condition (1).

THEOREM 1. Let p and q be integers greater than 1 such that logp/loggq is irrational.
Let a(n) be a p and q-additive function. Then there exist positive integers I, m, and
g=g.c.d.(p, q™) such that a(ng)=na(g) for each n>1. If g is greater than 1, then a(n) is
g-additive.

CoOROLLARY 1 (Toshimitsu [8; Theorem 3], [9]). Let p and q be as in Theorem
1. Let a(n) be a strongly p and gq-additive function. Then a(n)=0 (n>0).

THEOREM 2. Let p and q be integers greater than 1 such that logp/logq is irra-
tional. Let a(n) be a p and q-multiplicative function. If p and q are relatively prime, then
a(n)=a(1)" (n=1) or there exists a positive integer | such that a(np")=0 (n>1). If p and
q are not relatively prime, then there exist positive integers I, m, and g=g.c.d.(p', g™
such that a(ng)=al(g)" for each n>1 and a(n) is g-multiplicative.

CoRrOLLARY 2 (Toshimitsu [8; Theorem 4], [9]). Let p and q be as in Theorem
2. Let a(n) be a strongly p and q-multiplicative function. Then a(n)=0 (n>1) or a(n)=y"
(n>1), where yP "1 =y171=1,

PROOF OF COROLLARY 1. Letg, [, and m be as in Theorem 1. Since a(n) is strongly
p-additive, we have by Theorem 1, a(g)=a(pg)=pa(g). So a(g)=0, noting that p>2.
Hence we get by Theorem 1 and strongly p-additivity,

i

a(n)=a(np')=a<”;" g>= ”;’ ag)=0  (n>0).

PrROOF OF COROLLARY 2. Assume that p and g are relatively prime. Since a(n) is
strongly p-multiplicative, we have a(n)=a(1)" (n>1) by Theorem 2. Let p and g are not
relatively prime. Let g, I, and m be as in Theorem 2. We write p'=p,g. Since a(n) is
strongly p-multiplicative, we have a(1)=a(p")=a(p,9)=a(g)?!, so that a(n)=a(np")=
a(g)""* =a(1)" (n=1). In any case, we get a(n)=a(1)" (n>1). In particular,

a(l)=a(p)=a(1)’, a(l)=a(g)=a(1)*.
Hence we get a(1)» " '=a(1)" =1 if a(1)x0.
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2. A lemma.

In this section, we shall prove the key lemma for the proof of Theorems 1 and 2.
Let p and g be as in Theorem 1.

LEMMA 1. Let L be an infinite set of positive integers and mq, be a positive
integer. Then there exist integers | € L and m > m satisfying the following two conditions;

(i) p'>g and q™>g, where g=g.c.d.(p', ¢g™),

(i) bp"#cq* for any integers b, c, h, and k with 1 <b<p—1, 1<c<q—1, h=>l,
and k>m.

PROOF. First step. We show that there exists a sequence {(/,, m,)},5 o With /,e L,
ly<ly<---, and m,>m, such that (i) holds for any /=/, and m=m, (n=0).
For any /e L, let u(l) denote the smallest integer m >m, such that p' <g™. Let

p=pi*---pe, q=q{*--q/,
be the factorization of p and ¢ into distinct primes, where e, - - -, e, fy, ', f, are
positive integers.

Case 1. Let{p,, - -,p#{q1, -, q}.Ifp;¢{qy, - -, q,} for some i, then p' { g*®
for any /e L. So we can choose {/y, [y, ---}=L and m,=u(l,) (n=0). Otherwise, we
have ¢;¢{p,, -, p,} for some j. Let /e L be an integer such that u(/)>m,. Since
logp/logq is irrational, we get ¢*® '<p!, so that ¢*®~'{p'. Then we choose
{lo, 1y, - -y ={le L|u(l)>m¢} and m,=p(l,)—1 (n=0).

Case 2. Let{p,, " ',p={q1, ", q.)- Wemayputg;=p, (1 <i<s=t). We show
that

P hg"® or ¢*® " 14p! for infinitely many /e L . )

Assume to the contrary that there exists /,e L such that p'|¢*® and ¢*"~!|p' for
any /,</e L. Then we have

le;<p(l)fi, W—-1)fi<le, (1<i<s)

for any / with /,</e L, and so

ul)—1 L& u(l)

—<— 1<i<s, ly<lel). 3

; 7 ; ( 0 ) (3)

Let y=log,q. Since p'<g*?, we get I<u(l)log,q=pu(l)y for any /e L. We define the
sequence {/,},so inductively as in the following. Let n>1. Suppose that Iy, - - -, [,_,

are defined. Noting that u(/,_,)y/l,—;>1. We can choose /,_; <l,e€ L and m>mg such
that

,u'(ln - 1)

n—1

l,<my<

!,

n -
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Since
pln<p™ = g™ < ghlin- Dbnfln-1
we get
wly<m<Hazs) )
n—1
and so

O< ”(ln) < u(ln—l)
1 I,

n

n=1).

Then the sequence {u(/,)/],},> o converges to the limit a=lim,,_, ., u(/,)//,. It follows from
(3) that a=e¢;/f; for any i, and so e,f; =e, f; for any i (1 <i<s). This contradicts the
irrationality of logp/logg, and (2) is proved.

Now by (2), we can choose an infinite subset {/y, /;, - - -} of L such that

pz,.)(qu(t..) or quﬂn)—lJ(p’" (n=0).

We put m,=pu(l,) if pf¢** and m,=pu(l,)—1 if g**~ ' }p'. Then /=I, and m=m,
satisfy the condition (i).

Second step. Let {(l,, m,)},>o be the sequence constructed in the first step. It
remains to show that there exists an integer n>0 such that (ii) holds for /=1/, and
m=m,. We assume, to the contrary, that for any integer »>0, there exist integers b,
¢, h,, and k, with 1 <b,<p—1, 1<c¢,<q—1, h,>1,, and k,>m, such that b,p" = c,q"*".
Since {b,},>0> {Ca}ns0 are bounded, there exist integers n,, n, such that

b, =b,,, c,=C,,, h, <h,,.

ny

Then we have

h, kyn
ph"Z_h"l = bnlp ? = anq i =

hn kn
by p™ Cugtm

This contradicts the irrationality of logp/logg, and the lemma is proved.

g¥n2hny

3. Some formulas for p and g-additive functions.

Let p, g and a(n) be as in Theorem 1. In this section, we may assume without loss
of generality that p <gq and write

g=dp+r, re{0,1, ---,p—1}. 4

In the following Lemmas 2-7, we shall prove some formulas for p and g-additive func-
tions which are necessary for the proof of Theorem 1.
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LEmMMA 2. We have
alq)=a(dp)+a(r), S)
a((d+ 1) p)=a(dp) +a(p) . (6)

ProOF. (5) is obvious. We prove only (6). Since a(n) is p and g-additive, we have
by (4)

| a(g+p)=a((d+1)p+r)=a(d+1)p)+alr),
and so by (5)
a((d+1) p)=alg+p)—a(r)
=a(q) + a(p) —alr)=aldp)+ a(p) .

LemMmA 3. Let f (<p—1), h, and k be nonnegative integers such that 0<f+
hp —kr<p. Then

a(f+hp—kry=a(f)+ ha(p)—ka(r) .

ProoF. By induction on i+ k. This is true if #+k=0. Let h+k>0 and suppose
that a(f+h'p—k'r)=a(f)+h'a(p)—k’a(r) for any nonnegative integers A, k' with
h'+k'<h+k and 0< f+h'p—k'r<p. Since 0< f+hp—kr<p, we have

r<f+hp—(k—Dr<p+r.

Case 1. Assume first that f, h, k satisfy p< f+hp—(k—1)r<p+r. Then we
have 0< f+(h—1)p—(k—1)r<r, and so

al@+ f+hp—kr)=a(d+1)p+ f+(h—1)p—(k—1)r),
using (4). Here we note that ~>1 and k>1. So we have by p and g-additivity
a(q)+a(f+hp—kr)=a(d+1) p)+a(f+*h—1)p—(k—1)r)
=a(dp)+a(p) +a(f)+ (h—1a(p)—(k—1)a(r)
=a(q)+a(f)+ ha(p) —ka(r)
by (5), (6), and the induction hypothesis. Therefore we obtain
a(f+hp—kr)y=a(f)+ ha(p)—kal(r) .
Case 2. Letr<f+hp—(k—1)r<p. Then we have
alg+f+hp—kry=a(dp+ f+hp—(k—1)r)
=a(dp)+a(f+hp—(k—1)r)
=a(q)+al(f)+ ha(p)—ka(r)
by (5), k> 1, and the induction hypothesis. Since a(q +f +hp —kr)=a(q) + a( f+ hp —kr),
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we get
a(f+hp—kr)=a(f)+ ha(p)—ka(r) .
LEMMA 4. If r#0, then a(np)=na(p) (0<n<d).

ProOOF. This is true if n=0. Let 1 <n<d. We note that g>np, since r#0. Then
we have by p and g-additivity

a(q) +a(np)=alg +np)=a((d+n)p +r)=a((d+n)p)+a(r) ;
namely
a(np)=a((d+n)p)—alg) +a(r) .
By (4), Lemma 3, and r #0, we have
a((d+n)p)=aldp+r+(n—1)p+p—r)
=a(q)+a((n—1)p)+a(p—r)
=a((n—1)p)+a(q)+a(p)—al(r) .
Hence we get
a(np)=a((n—1)p)+a(p)=- - - =na(p).

LEMMA 5. Assume that r#0. Let f(<p—1), h, and k be nonnegative integers such
that 0<f+hq—kp<p. Then

a(f+hq—kp)=a(f)+ ha(q)—ka(p) .

" PROOF. By induction on £+ k. This is true if h+k=0. Let A+ k>0 and suppose
that a(f+h'q—k'p)=a(f)+Hh a(q)—k'a(p) for any nonnegative integers 4, k' such that
W+k'<h+kand 0<f+h'q—k'p<p. We have to show that

a(f+hq—kp)=a(f)+ ha(q)—ka(p) . (7
Case 1. Let 0<f+hg—kp<r. Since g=dp+r, we have h>1, k>d+1, and
d+1p<f+hqg—(k—@+1)p<@+1)p+r,
and so
p—r<f+h—-1)gq—(k—@d+1)p<p.
Hence we get
a(d+D)p+f+hq—kp)=alg+f+(h—1)g—(k—(d+1))p).
Since a(n) is p and g-additive, we have by the induction hypothesis

a((d+1)p)+a(f+hq—kp)=al(q)+ a(f+(h—1)g—(k—(d +1))p)
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=a(q)+ a(f) + (h—1)a(q) — (k—(d + 1))a( p)
=a(f)+ ha(q)— ka(p) +da(p)+a(p)

using Lemma 4 and (6). Therefore we obtain (7).
Case 2. Letr<f+hq—kp<p. Since h>1, k>d and

O<f+(h—1l)g—(k—d)p<p—r,
we have
a(dp+f+hq—kp)=alg+f+(h—1)g—(k—d)p)
=a(q)+alf+(h—1)g—(k—d)p)
=a(f)+ ha(q) — ka( p)+da( p)
by the induction hypothesis. Using Lemma 4, we obtain (7).

LEMMA 6. Assume that r#0. Let n be a positive integer such that a(hp)= ha(p)
forany h(0<h<n—1). Let k be a nonnegative integer such that k <np/q. Then a(kq) = ka(q).

PrROOF. Lethbea nonnegative integer such that 0 <kq—hp <p. Since 0 <kq — hp,
we have A <kq/p. Noting that k <np/q, we get h<n. Then we have by Lemma 5,

a(kq) = a(hp) + a(kq — hp) = a(hp) + ka(q) — ha( p) .
Hence we obtain a(kq) = ka(q) since h<n.

LEMMA 7. Assume that r#0 and bp"#cq* for any integers b, ¢, h, and k with
1<b<p—1,1<c<q—1,h=1,and k=1. Then

a(np)y=na(p), a(ng)=nalqg) (n=1).
PrOOF. We show only the first formula
alnp)=na(p)  (n=1), (8)

since the second formula follows from the first and Lemma 6. The proof will be carried
on by induction on #. (8) holds for any n <d by Lemma 4. Let n>d+ 1 and assume that

a(hp)=ha(p) O<h<n-—1). )
Then we have by Lemma 6
alkq)=kalq)  (0O<k<np/q). (10)
We have to prove that a(np)=na( p).
Case 1. Let qlnp. We expand np to base p and ¢;

t
np = i b,p' (b;€{0, 1, ...,p_l},bsp;éo, b,,#0),

i=sp
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t
=Y aqt (@e{0,1, -, g—1}, ¢, #0, ¢, #0),

so that s,>1 and s,>1. By the assumption of this lemma, we have s,#¢, or
s,#1t,. We assume first that s,#¢,. Noting that b,;p'~!'<n (s,<i<t,), we have by
(9) a(b;p)=b;p'~ 'a(p). Using this we get

anp)= Y. abp’)= Y. bip'~'a(p)=na(p).

i=sp i=sp

Next we consider the case s,#17,. Since c;q' " <np/q (s,<i<t,), we have by (10)
a(c;9")=c;q' " 'a(q). Hence we get

anp)= 3, aleig)= 3. cig'alg)=""" a(@).

Noting that ¢|np, we have by Lemma 5
n, n
O=a<i q—np)=—p—a(q)—na(p) ;
q q
and so

a(np)="q%’a(q)=na( p).

Case 2. Let gfnp. Let h and k be nonnegative integers such that 0<np—kg<gq
and 0<np—kq—hp<p. We note that k>1, since np>(d+1)p>g>np—kq, and so
0<h<n—1, since np—hp>np—kq—hp>0. Also k<np/q, since g{np implies
0 <np —kq. Hence we have by p and g-additivity, Lemma 3, (9) and (10),

a(np) = a(kq +(np —kq))
=a(kq) + a(hp + (np— kq — hp))
=a(kq)+ a(hp) + a((n—dk — h)p —kr)
=ka(q) + ha( p) + (n—dk — h)a( p) — ka(r)
=na(p)+ kalq) —k(da( p) + a(r)) ,
and so using (4) and Lemma 4
a(np)=na( p)+ ka(q) — k(a(dp) + a(r)) = na( p) .

In both cases, we obtain a(np)=na( p), and so (8) is proved.

4. Proof of Theorem 1.

PROOF OF THEOREM 1. Let L={1,2, ---} and my=1. Then there exist positive
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integers / and m satisfying the conditions (i), (ii) in Lemma 1. We may assume that
pl<gq™, since, otherwise, we exchange p, [ by g, m, respectively. We write

qn=dp'+r  (re{l,2,---,p'—1}). a1

Note that r#0, because of (i). In what follows, we use Lemmas 2-7, with p' and g™
in place of p and g, respectively.
We prove the first statement of Theorem 1; namely,

a(ng)=na(g)  (n=1,g=g.c.d.(p',q™). (12)

We put p'=p,g, so that p,>2 by (i) in Lemma 1. Let h, k be positive integers
such that

kq™—hp'=g. (13)

We show that
a(ng) =nal(g) (I<n<p,—1), (14)
a(p')=a(p.9)=p,a(g) . (15)

Indeed, we have for n with 1 <n<p,—1

a(ng)=a(knq™ — hnp")=n(ka(q™) — ha( p"))

by Lemma 5. In particular, a(g)=ka(q™)— ha(p'). Combining these we get (14). Next
we show (15). Since a(p'q™=p'a(@g™) and a(g™p')=q™a(p') by Lemma 7, we have
by (11)

algm="L_ a(ph=da(p)+--a(p’).
p D

On the other hand, we get a(g™) =da(p')+a(r) by (11) and Lemma 4. Comparing the
right-hand side, we find

L a(ph=at)=—alg),
D g

noting that g divides r; which yields (15).
Now we prove (12) using (14) and (15). Let n be a positive integer. We write
n=sp,+t with s>0 and 0<t<p, —1. Then we have by p-additivity

a(ng)=a((sp, +t)g)=alsp' + tg)=a(sp") + a(tg) ,
and so
a(ng) = sa(p') + ta(g) = (sp, + t)alg) =nal(g)
using Lemma 7, (14), and (15). Therefore, (12) is proved.
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It remains to show that a(n) is g-additive provided g>2. Let n>0 be an integer.
We write

n=sg+t (s=0,t€{0,1, ---,g—1}),
s=s,p1+5, (s;=0,5,€{0, 1, ---, p,—1}).
Then we have
am)y=a((s,p, +s,)g+t)=a(s,p'+s,g+t)=a(s,p')+a(s,g+1),
and so by (15)
a(n)=s,pa(g)+a(s,g+1).
Since 0 <s,g+t=ks,q™—hs,p'+t<p' by (13), we have by Lemma 5
a(s,g+t)=a(ks,q™ —hs,p' +t)=ks,a(q™)— hs,a(p') + a(t) .

Hence we get by (12), (13)

m hpl

kq _T)a(g) +a(t)=s,a(g) + alt) ,

a(32g+t)=82(
g

and so a(n) =(s,p, + s;)a(g) + a(t) = sa(g) + a(t). Therefore a(n) is g-additive, and the proof
is completed.

S. Additional conditions to Lemma 1 in multiplicative case.

In order to apply Lemma 1 for p and g-multiplicative functions, we need additional
conditions that a(p')#0 and a(g™)#0, which is insured by Lemma 9 below. Let p, g,
and a(n) be as in Theorem 2.

LEMMA 8. Let b (1<b<p—1)andl>1 be integers such that a(bp')#0 and
bp'=cq'+u  (c,zb 1<u<gq’). (16)
Then a(q*)#0.

PRrROOF. We expand u to base g
u= 3 ¢q'  (¢e{0,1, - -, g—1}, ¢#0), a7
so that 0<h<t—1. Since a(bp’)#0, c,>b, and u>1, we have
a(c,q)#0  (0<i<h,i=t), (18)

q'<p'. (19)
Let f be a positive integer such that (f— 1)c,<p <fc,.
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We show first that

a((f—Deag") #0 . (20)

It is enough to show that a(jc,g") #0 for all 1 <j<f—1 by induction on j. This holds
for j=1by (18). Suppose that a((j— 1)c,g") # 0 for some 2 <j < f— 1. We have by (16), (17)

h—1
abp'+(j— l)chq")=a< ) ciq"+jchq”+c,q‘) ,

and so by (19)
h—1 .
a(bpha((j— l)chqh)=< [1 a(ciq‘)>a(jchq")a(ctq'),
i=0
which together with (18) leads to a(jc,q")#0, and hence (20) follows.
We put
ke j=(f=Dexg"+(q—1g" 1+ - - +(g— g’ " +cq’,
where ¢ and j are integers with 0<c<qg—1 and A+1<j<t. We show that if h<t—1,
a(ky—1.4-1)#0 . @
It is enough to show that
ak,,;)#0 O<c=<qg—-1,h+1<gj<t—1) (22)

by induction on ¢ and j. By (20), we have a(k ,+ 1) #0. Assume that a(k, ;) #0 for some
0<c<qg—2and h+1<j<t—1. Then it follows from (16), (17), and (19) that

h—1

albp'yalk, ;)=albp'+k. ;)= ( [T alciq i))d(nq")a((c + g’)a(c,q") ,

i=0

where n=fc,—q. Hence we have a((c+ 1)qg’)#0, so that a(k,., ;)#0. Noting that
ky—1,j=kKo,j+1, we obtain (22), and so (21).
It follows from (16), (17), and (19) that

h—1
a(bp'alko )= albp'+ko )= ( I] alc:iq i))a(nq "al(c,+1)q") .

i=0

Noting that ko ,=(f—1)c,g" if h=t—1, =k,_,,_, if h<t—1 and using (20) or (21),
respectively, we have

a((c,+1)g") #0 . (23)
It follows from (16) and (19) that
a(bp')alg’)=a(bp' +q")=a((c, + 1)g")aw) .
This together with (23) leads to a(gq®) #0.
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REeMARK. Exchanging p by ¢, in Lemma 8, we have the following: Let m be a
positive integer such that a(q™)#0 and

m=bp'+v  (1<b,<p, 1<v<p').
Then a(p*) #0.

LEMMA 9. If a(np)#0 for infinitely many n>1, then there exist positive integer |
and m satisfying (i) and (ii) in Lemma 1 and (iii) a(p')#0, a(q™)#0.

PrROOF. Let a(np)#0 for infinitely many n>1. Then a(nq) #0 for infinitely many
n>1. So we may assume that ¢>p, since, otherwise, we can exchange p by gq.
By Lemma 1, it is enough to show that there exist an infinite set L of positive
integers and a positive integer m, such that a(p') £ 0 and a(g™) # 0 forany /e Land m>m,,.
Let
L={h=1|a(p"#0}, M={k>1|a(g")#0}.

We show that both L and M are infinite sets. First we prove that M is infinite. Let A,
be a positive integer with p"°>gq. For any b (1<b<p—1) and h>h,, we can write bp"
as in the following form:

bp'=cq*+u, : (24)
where
b<c,=c(b,h)<q?, O0<u=u(b,h)<gq*, s=s(b,h)>0.
Indeed, if the first digit d, in the g-adic expansion

bp*= Y diq'  (de{0,1,---,q—1}, d,#0)

is not less than b, we put s=k, ¢,=d,, and u=2f=_; d,q'; otherwise, we put s=k—1,
c;=dig+d,_,, and u=Y*22dq', noting that k> 1 since p*>q.

Assume that u(b, h)=0 for infinitely many pairs (b, h). Then there exist integers b
(I1<b<p—1), h,, and h3 (h, <h3) such that

Cso.ha)Ds 12) = Cyp ny)(b> h3) and  u(b, hy)=u(b, h;3)=0,
since {c{(b, M)}y <p<p—1.n21, 1S bounded; so that we have

h s(b,h3)
hs—hy _ bp™ _ Csv.hn)Ds B3)g """ — 5(b.h3) ~s(b,h2)
h b.h :
bp™  Cyppyy(bs h,)q*®-+

This contradicts the irrationality of logp/loggq.

Hence there exists an integer A, >h, such that u(b, h)>1 for any 1<b<p—1 and
h>h,. Also we note that a(bp”)#0 for infinitely many pairs (b, h), since a(np)#0 for
infinitely many n> 1. These facts with (24) and Lemma 8 imply that a(g®) #0 for infinitely

p
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many s; and therefore M is an infinite set.
To show that L is infinite, we write

g“=bp'+tv  (1<b=bfk)<p, 0<v=uv(k)<p’, t=1(k)=0) (25)

for any k> 1. In the similar way as above, there exists ko> 1 such that v(k)>1 for any
k>k,. Since M is an infinite set, we get a(q*)#0 for infinitely many k >k,. Therefore,
L is also an infinite set by (25) and the remark of Lemma 8.

Next we show that M > {my, my+1,my+2, - - -} for some integer m,. Let /e L
satisfy lo >, and let my e M satisfy my, >k, and p'><g™. We write {(me M |m=m,}=
{mo, my,my, -} (mg<my<my<---)and put [,=[m,y] (n=1), where y=log,q. We

note that y>1 since p<gq. Let n be a positive integer. Since m,—m, _, >1, we have
1<mn'y—mn—1'y:ln_ln—1 +(mny—ln)—(mn—1y—ln—l) )

and so /,>/,_,, noting that O<m, _,y—1,_,, m,y—1I,<1. Assume that [/,/y]<m,_,.
Then we get [,/y<m,_,, and so [, <[m,_,y]=1[,_,. It is a contradiction to [,_, </,
Hence we obtain

m,_<[L/yJ<m,  (nz1), (26)

noting that /,<m,y</,+1. Since ko<m,e M and p"<p™’=g™<p™*! we have
a(p'")#0 by the remark of Lemma 8, and so /,e L. Since h, <I, and g/ <gh/7=
phr<g®M* 1 we get a(@"™")#0 by Lemma 8, and so [/,/y]e M. Then we have
m, _=[/l,/y] by (26). Hence we obtain

/ —1 1
1Smn_m,,-l<mn_(L_1)<mn_(%_1)=1+v,
_ Y Y Y

and so m,—m,_;=1 since y>1, so that M > {mgy, mo+1,my+2, ---}.

Therefore, by Lemma 1, there exist integers /e L and m >m, satisfying (i), (ii), and
(ii1), and the proof is completed.

6. Some formulas for p and g-multiplicative functions.

In this section, we assume as we may that p <g and write
g=dp+r, re{0,1,---,p—1}.

The following lemmas can be proved by transforming the arguments in Section 3 into
g-multiplicative case. So we omit the proofs.

Lemma 10. If a(r)#0, then

alg)=aldp)a(r) , a((d+1)p)=aldp)a(p).
LemMma 11. Assume that a(q)#0. Let f(<p—1), h and k be nonnegative integers
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such that 0<f+hp—kr<p. Then
a(f)a(p)"

ary

LEMMA 12. If r#0 and a(q) #0, then a(np)=a(p)" (1<n<d).

a(f+hp—kr)=

f
REMARK. By Lemma 10 and 12, if r #0 and a(q) #0, then a(p)+#0.

LemMA 13. Assume that r #0 and a(q) #0. Let f (<p—1), h and k be nonnegative
integers such that 0<f+hq—kp<p. Then

a(f)a(g)"
a(p)

LEMMA 14. Assume that r #0 and a(q)#0. Let n be a positive integer such that
a(hp)=a(p)* for any h (0<h<n—1). Let k be a nonnegative integer such that k<np/q.
Then a(kq)=a(q).

a(f+hqg—kp)=

LEMMA 15. Assume that r #0, a(q) #0, and bp"# cq* for any integers b, c, h, and
kwith1<b<p—1,1<c<q—1,h>1,and k>1. Then

alnp)=a(p)', alng)=alq® (nx=1).

7. Proof of Theorem 2.

PrOOF OF THEOREM 2. Case 1. Assume first that there exists a positive integer
h such that a(np")=0 for n>1. If p and q are relatively prime, then Theorem 2 holds
for /=h. Let p and q are not relatively prime. Since a(np*)=0 for n> 1, we have a(nq*)=0
for some k>1 and any n>1. Then there exists a positive integer j such that
g.cd.(p™, g™)=g.c.d.(p" ¢ >p" noting that p and g are not relatively prime. Hence
we obtain a(ng)=0=a(g)" for n>1, and so a(n) is g-multiplicative, where g=
g.c.d.(p’*, ¢’*). Therefore Theorem 2 holds for /=jh and m=jk.

Case 2. Next we assume that a(np)#0 for infinitely many n>1. By Lemma 9,
there exist positive integers / and m satisfying (i), (ii), and (ii1). Hence Lemmas 10-15
hold for p=p' and g=g™. We put g=g.c.d.(p', ¢™). In the same way as the proof of
Theorem 1, we can prove that a(ng)=a(g)" (n>1) and a(n) is g-multiplicative provided
that g>2, using Lemmas 10-15 in place of Lemmas 2-7 respectively. The proof is
completed.
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