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1. Introduction.

Let M be a complex manifold of dimension n (n>2) and & a holomorphic foliation
on M of codimension g (g=>1). We denote the normal bundle of & by v(£), and its
dual by v(#)*. Then we can define the obstruction P e H (M, w(F)* ® End(v(#))) to
the existence of holomorphic projective connection n={p,} of v(¥). As is well-known,
there always exists a C* affine connection a={a,} of v(¥), by which we can define the
Chern forms {¢(a)}{-, of v(&). Similarly there always exists a C® (normal reduced)
projective connection #={p,} of vw(&), and this defines a kind of C* characteristic
forms {P,(m)}¢-, of (&), which we call projective Weyl forms.

In this paper, we shall show that, for any C*® normal reduced projective connection
n={p,} of v(&F), the projective Weyl forms are d-closed, and that there exists a C*
affine connection a={a,} of v(#) which satisfies the following formulae;

g 1 a+1 g k
S =TT % p )<1+ t) ,

k=0 1+ (ax—PB)t k=0
¢ k
——oct) ’

q q
Y, Pumi=(1—a)(1—PBt) Y, Ck(“)(
k=0 k=0 1
where c,(a) is the k-th Chern form defined by the affine connection a, and both a and
B are d-closed 2-forms which represent the de Rham cohomology class [Htc,(a)]
(Theorem).
As a corollary to this theorem, in the cohomology class level, we get the formulae;

N k_ g+1 d )k
2 [a@lt = +[09"" 3, [Px )]<——1+[ )

;Z‘o [Py(m)]e* = (1~ [oJe)** Z [Ck(a)]<1_[ ]t) :
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These are generalizations of the results in [K1] to the case of holomorphic foliations
on complex manifolds.

2. Projective connections of a holomorphic foliation.

Let M be a complex manifold of dimension n (n>2). Let I' be the pseudogroup
which is defined by the local biholomorphic maps of C? and I', the pseudogroup defined
by the local biholomorphic maps of C? which fix the origin o e C4. We denote by j%(f)
the r-jet at x of a mapping f defined near the point x. In the following, we consider
only 1 or 2-jets, i.e., r <2. Put

Pq)={jif): fel,xeC%,  G@={j(f): fel,}.
Then G'(q) is a complex Lie group with multiplication defined by the composition of jets,
JsNJs@=Jjs(f-9) .
DerFINITION 2.1. By a holomorphic foliation & of codimension q (g>1) on M, we
shall mean a maximal system of 3-tuples {(U,, x,, ,4)} such that
1. {U,}is an open covering of M,

2. x,:U,—»C?is of maximal rank everywhere,
3. there is an element @,z€ " such that x,=@,4(x;) on U, N U,.

In what follows, x, is called a local projection. The set
P (F)={juf) : f.is a local projection with f,(x)=0,xeU,}

forms a principal fibre bundle over M with the structure group G'(q), where n : P"(F) —
M, n(j(f,))=x, is the projection.

We shall describe our foliation in terms of local coordinates. Take an open covering
% ={U,} of M such that on each U,, there is a system of local coordinates z, such as

1 +1
za=(xaaya)=(xa s ”',xaqsyaq ’ "',yan)
so that, for any leaf L, an arcwise connected component of U,n L is given by
X4 =cy, "+, x8=c, for some constants c¢,, - -, c,€C. Let @3=(p.4, .5, 1<j<gq,

g+1<21<n, be a system of coordinate transformations on U, n U;. More explicitly,
we write

. . 1
xa1=‘P¢ﬁJ(xﬁ Y xﬂq) >

A A 1 q q+1 n
Ya =(Paﬂ(xﬁs”'sxﬂ9yﬁ a'."yﬁ)'

The transition function T,; of the tangent bundle of M is given by
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(% asksg
(M) Ti=9 oo
=8 (g+1<k<n).
0yp
We put
J axaj A ayal 1 l_ayal

v = T _ T =
aBy Ox k> FaBy 5yﬂu ’ Bk k

( 1 sj,k3q>
g+1<iu<n/’

Veg O
Taﬂ=< 1 >.
T ap Ta[)‘

The foliation & gives the exact sequence

0xg

Then

00z ->50y—->v(F)—0
and its dual
0-wF*-QL-QL -0,

where we denote by @, the sheaf of germs of holomorphic vector fields tangential to
the leaves of &, QL the dual of @, v(%) the sheaf of germs of holomorphic normal
vectors to the leaves, and v(#)* the dual of v(#). By the definition of T, it is clear that

(2) TopTyy =T, -
The principal bundle P}(F) is a G'(g)-bundle associated with v(#). We define also
vaﬂj'k=$alk :
0x5 0xg
An element j2(f)e G*(q) is described by the pair
FO=D ) -

Here (f%) is a ¢ x ¢ non-singular matrix, and f% = f};. The multiplication in G?*(qg) is
given explicitly by

J2) 7@ =((figd), (flugrgs+ figr) -
The transition function v,; of the normal bundle v(%#) defines an element
J2,0ap) = (ap)> (Vo)

for every xe U, n U, with respect to the system of local coordinates x,. The principal
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bundle P*(#) is the union

U U, xGg)),

a

where

(Xer &)= (%o (bap Ea)) € U x G¥(g)
and

(s Eg)=(xp: (55 g, )) € Up x G(g)
are identified if and only if

Xq=Xg . =J'3,,(Vaﬂ) * fp .
The second equality is written more explicitly as
i =Vaplay > Cag=VarslasCaytVan oy -

Motivated by Kobayashi-Nagano [KN, sections 5, 6], we define the subgroup H?*(q)
of G?*(q) by

H*q)={((/3) )€ G*(q) : fi=S30c+Sio; for some a;} .

For each transition function v, of the normal bundle %, we define the following section
Pap € T(U, N Ug, W F)* @ End(W(F))) by

; 0 ; 0
3 = —d. ' @ A~ 1 Vg dx ‘ P )
(3) Pap=0up—dxp @0 & ox; Oup @ dxp ®6x,,
where
Aup= v;gl;vaﬁ;'l'dxﬂj ® dxﬁ' ® a—ar,
x
@) ’

1
o.,,=——dlogdetv,, .
? qg+1 & ?
Here 9/0x,' € ®,, and its image by the natural projection @,, — v(%) are indicated by
the same symbol, and i, j, k run over all 1<i, j, k<gq. By an easy calculation, we have

PrOPOSITION 2.1. The set {a,z} and {0,;} define cohomology classes such as
1. {a,;} e H(M, F)* @ End(v(F)),
2. {0, € H\(M, W(F)*).

The cohomology class defined by the set {a,;}, which we denote by a5, is well-defined
by the foliation & . The following is well-known.

PROPOSITION 2.2. The structure group of the principal bundle P*(F) reduces to
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GY(q) if and only if a; =0.

If az =0, then there is a 0-cochain a={a,} € CO(%, F)* ® End(v(¥))) such that
0{a,} ={a,z}, which is called a holomorphic affine connection of v(¥). The cohomology
class az={a,z}€ H'(M, W(F)* ® End(v(¥))) is the obstruction to the existence of
holomorphic affine connection of W(F). If (¢Js);<j<, is an affine transformation,
then the obstruction az = {a,z} vanishes.

Similarly, by Proposition 2.1, we see that the set { p,;} also defines an element of
HY(M, w(F)* ® Endv(#))). This cohomology class, which we denote by P, is well-
defined by the foliation &% . We can show the following.

PROPOSITION 2.3. The structure group of the principal bundle P*(F) reduces to
H?(q) if and only if P;=0.

PrROOF. Suppose that the structure group of P*(#) reduces to H?*(g). We can
assume that there are some functions {aaﬂj} defined on U, n Uy such that

i Ly i
Vapji = VapOapp T VapiOap; -

This equation determines Oapjs and we have the holomorphic functions

=T O
Then
Pap=Vag"(Vap) Capy+ Vg, Oup )%’ ® ' ® % ~dxy @0 ® =0, ®dx)' ® ‘ ;
Xg 0xg 0xg
=dx;' ® aa,,®i.+aap®dxﬁi®i.—dx,,i®aaﬁ®~a—.—aap®dxﬁi®—T=O .
Oxg' Oxg' oxg' 0xy'

Conversely, suppose that Pz =0. Then there exists a 0-cochain n={p,},

0
ox,'

Pa=Paydx ® dx,* ®

in CO%, W(F)* ® End(v(%))), such that
&) Pap=Ps—Ps -
Then, by (3),

i i r s i r i i
Vapj = T PaysVap Vapy T Vap, Ppji T VapTapy+ TapVapy -

Hence
(@D (=Pag) ™" * ((Vap)> Vapp)) * (B1), (— Py

. . . ! . . i
= ((vaﬁ;)s (Vaﬁ:,,Pp:-’,: +pa;mvaﬂjvap;:l)) = ((vaﬂ;)a (vaﬂ;o-aﬂk + vaﬂkaaﬂj)) .
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This shows that the structure group of P3(#) reduces to H?(q). 0

DEFINITION 2.2. The 0-cochain n={p,} € CO(%, W(F)* ® End(vW(F))) satisfying (5)
is called a holomorphic projective connection of v(&). The cohomology class P is called
the obstruction to the existence of the holomorphic projective connection of v(%).

We remark here that, if (¢,5’ ); <<, is @ projective linear transformation, then Py
vanishes. We can also consider C ® sections of the vector bundle W% )* ® End(W(F)). Let .

o :
éa = éajkdxaj ® dxak ® 5_1_

Xa

be a C® section of W(F)* ® End(v(¥)) defined on a local coordinate neighborhood
(U, x,). In what follows, we write such section as a g x g-matrix §a=(é,i), where the
(i, k)-component is the C* (1, 0)-form defined by £, =¢&,,dx,". Using such matrix
notation, the 1-cocycle p,; of (3) is written as

(6) paﬂ = aaﬂ - paﬂ - aaﬁl s
where [/ is the g x g identity matrix, and

P |
aaﬂ—vaﬂ dvaﬂ ,

1 < k
o,=——dlogdetv,,;= G5, dXg ,
g g+1 £ g kgl b b

(7 j |
paﬁ=(paﬂk) (1 S], k SQ) ’

J J
Pagy = Tap4Xg -

By the matrix notation, holomorphic projective connection { p,} of (5) is written as a
set of g x g-matrix valued holomorphic 1-forms satisfying the equation

(8) paﬁ =pﬂ_va_ﬂlpavaﬁ .

In the following, we also consider C*® projective connection. That is, a set {p,}
of g x g-matrix valued C* (1, 0)-forms satisfying the same equation as (8).

DEefFINITION 2.3. A C® projective connection { P} is said to be normal if paj.k = p,,,ij,
and is said to be reduced if p,, =0.

PRrOPOSITION 2.4. For any holomorphic foliation & , there always exists a C*® normal
reduced projective connection of W(F).

PrROOF. It is evident that there exists a C® projective connection n={p,}. Given
a C* projective connection == {p,}, we can modify it to a normal and reduced one as
follows. We put

paﬂ = (Paﬁ;kdxﬂj) s aaﬂ = (aaﬁ;kdxﬂ]) s paﬁ = (paﬂ;kdxﬂj) ] aaﬂ = (5}aaﬁkdxﬁj) .
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By (6), we have

i i azxal S S5i
Papj ="Vap lW_ i%apr — %k0ap; >
where / is summed over 1 </<gq. Hence
®) paB;k =paﬂij :

Now we write p, as
| Pa=(Paydx,) .
On the other hand, we define g, by
9= Doy A%.))
The equation (8) is written as
| Pap X5 = Pgydxy —Vig | Pay X, Vagy, -

Hence we have

i i —qi 1 r s
paﬁjk _pﬁjk_vaﬁ lpaz,.svaﬁjvaﬂk .

Therefore by (9), we have

N

(10) Papis=Ppi;—Vap' 1ParsVaprVan -
Multiplying (10) by dx,’, we have
i j i —1i 1 r
Pagp jkdxﬂj =dg.— vaﬂllqarvaﬂk :
Hence, we get
a1 paﬂzqﬂ—v;ﬂlqavaﬁ'

Thus, by (8) and (11), if we replace p, by X (p,+¢,), then p, satisfies p,,j.k = pa,ij. That
is, the projective connection {p,} can be always replaced with a normal one. In what
follows, we assume that {p,} is normal. By taking the traces of the equations (6) and
(8), we have

trp,g = tra,; —trp,s —tr(c,z1l)
=(q+1)0,3—0,5—q0,5=0,
trp,g=trps—trp,.
Hence we have
(12) trp,=trpg.
Put 7, =(trp,)I. Then

i s ; k
ty;=0;tr P, =0}y, A%, .
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Define
=) » t =t +1,,
t=0pamdx . Lt (p)=1] .
Then by (12), t"(p,) satisfies

t”(pa) = Vﬂ_al t"(pﬁ)vﬂa .

Note that ¢“(p,) is normal. Since tr(¢"(p,))=(¢+1)trp,, replacing {p,} with

{pa—5311"(p.)}, we obtain a normal reduced projective connection of (). Note that

if {p,} is holomorphic, then {p, — 441 t"(p,)} is also holomorphic. 0

REMARK 1. It was pointed out by Fernanda Pambianco that the method described
in [K1] and [K2] of replacing a given projective connection with a normal and reduced
one contained a mistake. We can correct the mistake by the same argument as above.

REMARK 2. If the projective connection n={p,} is reduced, then in the case of
g=1, n={p,} vanishes. Therefore, from now on, we shall consider the cases of g=>2.

3. Weyl forms of a holomorphic foliation.

Let # be a holomorphic foliation of codimension g (¢ >2) on M. From now on,
to define Weyl forms, we calculate the Weyl curvature tensor of the normal bundle
(%) of the holomorphic foliation &# on M. Let n={p,} be a C® normal reduced
projective connection of W(&). From (6) and (8), we have

-1
Pp=0up—Pap—0upl + Vo5 DyVap
-1 -1
= vaﬂ dvaB - paﬂ - GaBI+ vaﬂ pavaﬂ .
LemMMma 3.1.

( i ) dO'aﬂ =0 P’y
(ll) pa/\vaﬂpaﬁ=09
(iii) dvaﬁ N paﬂ =0 N
(IV) paﬂ A paﬂ =paﬂ A aaﬂl ’
(V) ol ncpl=p,p NGl + 05l Apug
=Vep @Vop A Oopl + G gl AV AV,
=Yg PaVap A Oupl +0,gl A VgDV =0
Proor. The equation (i) is obvious. The equations in (v) follow from the fact that

Paps> Vag AVap, Vag'PaVep are 1-forms, and o, is a scalar-valued 1-form. By the normality
of {p,}, the (i, m)-component of p, A v,zp,;s is
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i j 1 i k j l
Paj A VapiPapy, =pajkdxa AVupOap, AXg
- i k ) —
=0, pajkdxa Andx,’)=0.

Hence the equation (ii) follows. The (i, m)-component of dv,; A p,g is

A AP = 0%, dx, Ao, dx,
apfj Papm axﬂlaxﬂj B aBm™" B
a%x,’ ;
=0'aﬂ (% dxl;l A dXﬂj>=0 .
"\ Oxg 0xp
Hence we get (iii)). The equation (iv) follows immediately from the definition. []

From (2), we have
1 1 _ 1
T aﬂvﬂv'*'TaﬁT By =T ay>

where {t',,} € H'(M, #Hom(WF), O z)). Let Hom®(W(F), O ) denote the sheaf of germs
of C® homomorphisms vW(F)— @ . Since HY(M, #om®(WF), O z))=0, there exists

{u.} € COM, Hom®WF), O z))
such that
(13) Tl g =Tapllg— UyVyp -
From Lemma 3.1 and (6) and (8), we have
(14) dpﬂ+pﬂ Apﬁ=va—ﬁl(dpa+paApa)vaﬂ—'raﬂ ’
with
Tup=Pap A Vag opg+ AP — Poug A Oapl + Pog AVag'PuVap -

Here r,; is a g X g matrix-valued (2, 0)-form. Moreover we can write r,; in the following
form,

(15) Fap=apy) = (ragi g’ Adxg")
where

raﬁ?jk = 61%1"«131'1( - 5’?raﬁij .
We rewrite (14) as
(16) a’p,,:'k A dxﬂk +p,3;'jp,,ikdx,,j A a’x,,k

__ ., —1h l t 1 m s t n h J k
=Vap (AP A AXy + Dy Po@X A AX, WV op, — raﬂijkdx,, ndxg .

Comparing the terms containing dy,f’s in both hand sides of (16), we have
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apﬂ, - hapan t
(17) By, L gy et

while, comparing the terms containing no dyﬁ ’s in both hand sides of (16), we have

ap h h ! j k
( d MJ" +pﬂtjpﬂik dx,,’ A dxﬂ
Xp

l
(18) _1h 5p 6p n h
= vaﬂll axa"s' vaﬂ:vaﬁk+ a a';: T aﬂj aﬂk +Pamspam azﬁj aﬁk aﬂi _raBijk

X dxﬂj A dxﬁ .
Now, recall the equation (13), i.e.,

1 n_ noA u
T apj = Tapilp; —Ua vaﬁ,

then (18) is written as
< oy, bt _h OPay

) TPRPe T Ve o, 1L gl VY aﬂ.)dxﬂ ndx,!
lf

(19) ap s t aP n h
= Vaﬂ 1 axam apjVap — aya': U vaﬂ, aﬂk +pamspam aﬁ_, aﬂk Vap; — Tapyj
a

a

X dx,,j A dxﬂ .

Using (17), the left hand side of (18) can be written as

Ox Bi1j¥ Bik P P B -
Put
Pss Py
th__ YPBy h 1 Bik ,, A
Bijk = ox.’ +pﬂlj Bik P ll uﬂ} ’
B
and

l
1h — —1h apa, S t apa, I3 n
Pa ijk Vap l(ax” aﬂ_] aBk F);"Tu“ vlﬁj aﬂk+p“msp¢nt ‘1/3} aﬁk Vap; -
P a

Then the equation (19) is written as

__uh 1h h h
(20) pﬂl]k pﬂlk_] =Py uk—p"‘ ikj (r“ﬁijk—raﬁikj) .

Put
h ’ ’
X =PBijk—PBixj -

Recall that the projective connection 7= { P} is reduced. Contracting X, Biji with respect
to 4 and k, we have
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vk o,
Xﬂij'_Xﬂijh_pﬂijh pﬁihj

ho 1 Pp Pﬁ
=DpPpy—— o +——Ld up
pﬂl]pﬂlh a [;‘h ayﬂ

Similarly, contracting the right hand side of (20) with respect to 4 and k, we have

rh rh l m apast apast
Pa ijh —Pa ihj 2r¢ﬁl]h <p“mtp°‘sl ax ay u Uay “ﬁj aﬂz 2r<1ﬂuh
a

=X Vaﬁj"am —2r

st “ﬁ ijh °

Hence we get
h t s
Fapijn= —+ (X,,” ast aﬂjvaﬂi)'
From the equation (15), we have
h _ sh h —
Yapijn= 51’ Vapin ™ 5hraﬁik =(1- q)raﬁij .
Hence

1

raﬂij= 2(q_ 1) (Xﬂl_) Xastv“ﬂjvaﬂi) )

Therefore, from (18), we‘have

Yapi; kdx,, Adxg*=2dx;" A Fap;; dx;’

h s J
dx; A(Xﬂu X vaﬂjvam)dxﬂ

st

q—1

1 i o 1
p O Xy, dxy Adxg — aﬂlt<q_1 5,"Xastdxal/\dx,'>va,,

Thus if we put a tensor field W={W,} as

1
W =dpa+pa/\pa+——l—Xa s

X,=0}X,,dx, A dxz ,

= ‘;’;:k Fphpiyt T,
then we have
2n W=V Woves -

DEerFINITION 3.1. The tensor field W= {W,} defined as above is called the projective
Weyl curvature tensor of the normal bundle w(&) of the holomorphic foliation #.
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Now we define a kind of characteristic 2k-forms, which we call Weyl forms. Let
tbe an indeterminate and A4 be an n x n matrix. Define polynomials ¢, ¢4, * - -, @, by

t n
27i k=0
By the equation (21), P,(n)=@(W,) gives a 2k-form defined on the whole space M.

DerINITION 3.2. We call P(rn), 0<k <gq, the k-th projective Weyl form of ().

A priori, we do not know whether the P,(r) are d-closed or not. In the next section,
we shall give a formula which relates the Chern forms of v(#) with the Weyl forms of
(&), which is our main theorem . By this formula we see that all the P,(n) are d-closed.

4. Relations between the Chern forms and the Weyl forms.

In this section, to show that the Weyl forms {P,(n)} are d-closed, we prove the
following theorem, which is the main result of this paper. In what follows, the term
“smooth” means C*®.

THEOREM. Let M be a complex manifold of dimc M =n (n>2), and & a holomorphic
JSoliation of codimension q (q=1) on M. Let v(¥) be a normal bundle of ¥, and n={p,}
any smooth normal reduced projective connection of W¥). Then there exists a smooth
affine connection a={a,} of V(¥), which satisfies the following equalities;

< v (o)™l & t )"
2, culayt= 1+ (Pt 2z, Pk(n)<l+at ’

)fP.-(n)ti=(1—at)«(1—ﬂt)iq(a)( ! )
i=0 k=0 1 —oat

where c,(a) is the k-th Chern form associated with the affine connection a={a,} on W(F),
P(m) is the k-th Weyl form associated with the projective connection n={p,} on WF),
both a and B are d-closed 2-forms which represent the de Rham cohomology class
[s41 ¢1(@)]. Here the equality c\(a)=o+ g holds as forms.

ReMARrRk 3. If the codimension g equals 1, then we cannot define the Weyl
curvature tensor. But as we have seen before, the projective connection n={ p,} vanishes
for g=1. So the formulae above hold also in the case g=1.

As a corollary, we have

COROLLARY 4.1. In the cohomology level, we have the formulae as follows;

S k__ q+1 2 t k
k;o [e(@]t*=(1+[«]) k;o [Pu(m)] (——1 " [a]t) :
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I

L [Pt =(1 =[]0 éo Leda)] (1_—6[5?) ’

where [a] =371 [c,(@)].

To calculate the Chern forms of v(#), we construct a smooth affine connection of
W(Z), using the given C* normal reduced projective connection.

Now we denote by K the line bundle represented by the 1-cocycle {K,;} such that
{Kg ={K,;seH' (M, 0*),
K.p=(detv,,)~".
Let {h,} be a smooth metric of {K,}, i.e.,
hy=|K,z1h, on U,nU;.
Then we have
loghy=logK,z;+10gK,;+logh,
Ologhy=0logK,;+0logh, .
We define 1-cochains {s,} and {p,} as follows:

DEFINITION 4.1.
1 j A
0,= —ﬁ Ologh,= aajdxa +0.,4y, »
pa=(padx,") »
A

paj=aaj_'o-a;,uaj .
ProrosSITION 4.1.
(1) aaﬁ=aﬁ—aaa
()  Pap=Pp—Vap PaVap - |
PrOOF. First we show (i). By Definition 4.1 and (4), we have immediately

1 1
o;,—6,= ———(0logh;—0dlogh,)= ———— dlogK,
5 q+1( ghg gh.) . gk

1
=———_0Olog(detv,,)  '=0,.
g+1 g( p) 8

Next we show (ii). From (i) and Definition 4.1, we have by direct calculation,
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O—aﬁ = O'ﬁ - O'a 9
J J A i n
aaﬁja'xﬂ = aﬁjdxﬁ +04,dys —0,4dx, ——aaudya
— i 1 » j n a
=(04;,— Ou;Vap;— 0a,T ap; )dxg + (05, — Oa,Tap Dy
Hence
— i 1
{ o-aﬁj - Gﬂj - O'aivaﬂj - o-aut aﬂ_’
un
O'ﬁ)_ - Gautaﬁl .
Therefore, by (13),
_ i no A n 1
Oup;i=08; Oa;Vap;— aau(TaBAuﬁ i UayVap j)

u A i " 1
= (aﬂj - aau‘caﬂluﬂj) - (aaivaﬁ:’ - aa#ual vaﬂj)

=(0p;— 0 Au,,j) —(00;— O sy )v,,,j. .
Since dx,*= v;ﬁ‘fdxa', we have
o,,,deﬁk =(0p,—0p,u ,,j)dx,gk — (04— 04 s Ve ,,j.v;,‘fa’x,'
=p ,,jdx,,k - v;,,lf(paidxa')va,,; .
Hence we get p,;=ps—Vep' Pavap- Thus (ii) is proved. ]

Now let 7= {p,} be a given smooth normal reduced projective connection of v(%).
Define a g x ¢ matrix-valued smooth (1, 0)-form a, by

A, =Pyt p,+0,l.

Then we show that the 0-cochain a={a,} is a smooth affine connection of v(#). From
(6), we can write a,; as

Aup=Papt Pap+Tapl .
By (8) and Proposition 4.1, we get
Aup=(Pp—Vap' PaVap) +(Pg—Vag' PaVag) + (05— 0
=(Pﬂ +pp+ O'ﬂI) _'va_ﬂl(Pa+ Pa"'o'al)vap
=Ap—Vep'a,V,p -

Thus we see that the 0-cochain a={a,} is a smooth affine connection of wW(%). The
curvature form 4={4,},

A,=da,+a,na,,
satisfies the equation

-1
Aﬂ =vaﬂ Aavaﬂ .
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We try to write 4, in terms of p,, p, and ¢,l. By the definition of {¢,}, we have
da,=dp,+dp,+do JI=dp,+dp,+ 00,1,
Ay A Ay =Pyt Put ) APyt po+0,1)
=DaAPat PaAPatPuAPat PalDa
LemMma 4.1. '
PaAPa=dp, A p,=p,Adp,=0.
Proor. This follows from the normality of {p,}. 0
By Lemma 4.1, we can write 4, as
A,=da,+a,Aa,=dp,+dp,+ 00, +p, ADPy+ Py APyt Pa AP, -

From now on we omit the subscript a for simplicity. Then the Chern forms of v(%)
are given by

@)= @A)
{ kgq;o (pk(A)t"=det<Iq——tT A) .

2mi
Hence
q q t
Z cla)th= Z qak(A)t"=det<Iq———~.A)
k=0 k=0 2mi
(22)
t
=det(lq—7(dp+dp+5—al+p/\p+pAp+p/\p)>.
i
Put
23) i=1——Ldo=1-_" G0

27i 2mi

Then by Lemma 4.1, we get

t t
I ——A=M1 ———(dp+do+pAp+pArp+poAn
T <q 27rM(p p+PAP+PpApP+P p))

t ! t
=iI,——— [ - I— d .
(q Y (dp+p Ap))( e (p Ap))( P 2m'/1( p+p/\p))

Hence the equation (22) becomes
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zq: cla)k = det(lq —{— A>

k=0 i

t t
24 =Mdet| I, ——(dp+ det| 7, ————
(24) e<q 27U.'l(p p/\p)) e(q 2m.'l(p/\p)>

t
X det(lq —m(dp +pA p)) .

PROPOSITION 4.2.

t t
25 det| I, ———(d =det{ I, — w).
(25) e<q 2nM(p+pAp)) de(., oy )

77}
Proor. To prove the proposition, first we show the next lemma.
LEMMA 4.2.
pPAX=dpArX=0 where X=(8]Xudx’ A dx¥).
PrOOF. By the normality of {p,}, we have
(P AX)j=pi A Xy =pidx' A 6L X dx™ A dx*
=X pidx' ndxX* Adx*=0.
Similarly, we have dp A X=0.

So we can write the right hand of (25) as
det(l ! W)—det(l _! (d +pAp+ : X))
T omid ) T 2mid \ PPN TG T
—det{([ ! (dp+pn ))(1— ! ( ! X))}
- 1 g, P TPAP N a5 2 =)

t t 1
=detlt I ——— (dp+ det| I, — X .
e(" 2min P p’\p)) e(" 2mid (Z(q—l) ))

det(Iq— . ’_l X>=1 .
i

ProoOF. In general, we have the formula

LEMMA 4.3.

det(/+tA)= i <Z det(A4 ,’;))ts

s=0 \ Js

where J,={(j,, ‘- ", J)|Jj1<- - - <Js}- By this formula, we have
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_ - (S s\~ )
(26) det(l o ) ; <stdet(X,s)>< 27:1',1)'

Then

Zdet(X};) Z Y. (8NN X (i) m, @X T AAX™ A - A X,

a(j)sms
Js €S

dx’s A dx™s)

=S!ZX dx AdX™ A - - A X, dxI A dX™

Jimy Jshs

=ZX dx"AdX™UA - AKX, dX A dX™

rymg

<(X;dx' A dx™®

where I,={(i,, ‘- -, i;)}. Therefore the equation (26) is written as

t 9 ¢ s
det(lq 5 X) = ;0 ( ; det(X ,’;))( ~ o )

= i (XimdxiAdx"')s(— t_ ) .
s=0

2nild

But, since { p,} is normal, we see that

. 0, 0 .
Ximdx' A dx'”=(— Pin +PimPint—— Pin )dx‘ Adx™=0.
ox" oy*

Hence we get

q . t- S
Xidx' A dx™P| — =1
3;0 ( ) < 2mil )
Thus we have proved the lemma. U

Proposition 4.2 follows from Lemmas 4.2 and 4.3. B

t -1
trd, .
27iA p)

PrROOF. Analogously to Lemma 4.3, the left hand side of (27) becomes

ProOPOSITION 4.3.

@7) det(Iq —2—7;_1— (dp+p A p)) - (1 +

t r N\
det<1q-—m(dp+p/\p)> Z(dp,+pk/\p,)’< 1,1)’

Now we can easily see that
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dpi+pi A p¥=dp]+ pidx’ A p;dx*
=dpj+pyp;dx’ ndx*=dp].
Therefore we have

det(Iq —! @p+pn p)) -3 (trdp)‘( - L) - (1 +
27[11 s=0

27il

-1
trdp) . ]

27iA
PROPOSITION 4.4. The 2-form —%tL trdp represents the Chern class c,(K ).

PrOOF. By taking the trace of the equation of Proposition 4.1 (ii), we have

O-aﬁ = tl‘paﬁ = tl'pﬂ - tI‘pa .

Since
1 q+1
———dlogK 3=———0,,
2ni 8 Rap 2mi
we have
qg+1 q+1
~ 1 ae K,=———trp,+ trp, .
2mi 8Ras 2xi tPs 27 p

Hence, by de Rham theory, {—%%1-dtrp,} is a global 2-form on M which represents
the Chern class ¢,(Kg). ]

PROPSOTION 4.5.

t

PrROOF. Analogously to Lemma 4.3, we can prove the proposition as follows;

det(z,,_;wp)) 3 (pkdxmp,)s(— ! )
27wiA

s=0 27iA

—(pi A )°( ’)°=1. 0
27iA

Combining Propositions 4.2, 4.3 and 4.5, we have from (24) that

éo ca)th = /1"(1+2Ltrdp( )) det(
—lq(l+%mtrdp(i)>‘ i ( >i




CHARACTERISTIC FORMS OF HOLOMORPHIC FOLIATIONS

1 1
o=———do and =———trdp.
2mi p 27 P

Then from (23), we have

A=1+4at,
S e =L iP(n)< t >
ey 1+@—B) <o " \1+at)
If we put
.t t
l =—= ,
A 4ot
we have

q q t, k
Z Pi(m)t =1 —at)(1—pBt") Y, ck(a)( - ) .
i=0 k=0 1 —oat
Note that, by definition,

ci@=¢,A)= ——lftrA = —-——I—.tr(da+a A Q)
2mi 2xi

1
= "_1 -tr(da)= ———tr(dp +dp + dol) .
2mi 2ni

Since {p} is reduced, trdp =0 holds. Hence we have

1 1
———tr(dp+dp+dol)= ———tr(dp +dol)= —L.(trdp + qdo) .
2mi 2mi 2mi

Thus we get c,(a)=a+¢gf. Thus we have proved our Theorem.
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0

By Theorem, every k-th Weyl form P, (=) is expressed as a polynomial of the Chern
forms {c;(@)}f-,. Since it is well-known that the c;(a) are d-closed, we have the

following Corollary.

COROLLARY 4.2. The k-th Weyl form P,(rn), 0<k<gq, are d-closed.

Now we call the de Rham cohomology class [ P,(r)] € H?*(M, C) the k-th projective

Weyl class. By the definition of « and 8, we can easily see that [o] =[] = [541 ¢;(@)].

COROLLARY 4.3. In the cohomology level, we have

k g+ 1 :
Z Led@)]e®=(1+[«]?) Z [Pi(m )]( [T o ]t)
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J i__ _ q+1 d t *
.-=Zo [Pi(m)]t'=(1—[al?) kz,o [ck(a)]<———l_[a]t) )

where [o] =31 [c,(a)].

CoOROLLARY 4.4. If a g-codimensional holomorphic foliation & on M" (n > 2) admits
a holomorphic projective connection, then we have

P(rn)=0  for 2k>q.
Furthermore, if M is compact and of Kdihler, then also we have
P(F)=[P(m)]=0  for k=1.

PrOOF. By the definition of the Weyl forms, if a foliation # on M”" (n>2) admits a
holomorphic projective connection, then all k-th projective Weyl forms are holomorphic
2k-forms by (25). Therefore if 2k>gq, then the k-th projective Weyl form vanishes.
Since a d-closed holomorphic g-form represents a real de Rham cohomology class only
if it represents a zero class, we see that the g-th projective Weyl class also vanishes. If,
further, the manifold is compact and Kdihler, then we can apply the Hodge theory.
Since the projective Weyl forms are holomorphic, they are harmonic. On the other
hand, by Corollary 4.2, the projective Weyl classes are real. Therefore they vanish by
the Hodge theory.

5. Examples.

1. Let TP? denote the tangent vector bundle of the complex projective 3-space
P? and Z the associated projective bundle. On Z, we can consider two fibre bundle
structures. One is the natural projection

p:Z—-P3
with fibers P2, and the other is the projection
q: Z-Gr4,2)

to the Grassmannian manifold of all lines in P3 with fibers P!. The fibre of g passing
through a point v e Z corresponds to the line in P passing theough p(v) with direction
v. It is clear that, on Z, there is a holomorphic foliation F of codimension 3 with a
holomorphic projective connection. Every leaf of & is a fibre of p, which is compact and
biholomorphic to P2.

2. Obviously, every element of PGL(4, C) induces a holomorphic automorphism
of Z and Gr(4, 2). We fix two skew lines / and /' in P? (i.e., lines without intersection).
Let [/] be the point in Gr(4, 2) defined by the line /and {/'} the divisor in Gr(4, 2) defined by
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{I'}={[L] € Gr(4,2): a line L=P? which intersects /'}.

Fix a system of homogeneous coordinates [z4:z; : z, : z3] on P> such that the two skew
lines are given by

l': z,=z;3=
Let ge PGL(4, C) be
1000
01 0
(28) =\ oo g 0
000 2
Let

W=Z—(@q '[U1u{l'}).
Obviously, the infinite cyclic group (g)> acts on W. The action is free and properly
discontinuous. The quotient space M = W/{g) is a compact manifold of dimension 5,
which is a P'-bundle over Y=(Gr(4, 2)—([/] v {I'}))/{g)>. Here Y is biholomorphic to
a non-singular closed hypersurface of a 5-dimensional Hopf manifold. Let’s see more
closely the above argument using coordinates. Define the Pliicker embedding of Gr(4, 2)
into P* as follows. For a line in P3,
{ aozo +a121 +0222 +a3Z3 =O
b020+b121 +b222 +b323=0 Py

we define the Pliicker coordinates by

Gr(4, 2)={[fo3‘f1352363354355]61)536065“5154"“5263:0} 5

[/1=[1:0:0:0:0:0] in P, and {/'} coincides with the hyperplane section Gr(4, 2) N
{£0=0}. Therefore Gr(4,2)—{l'} is a non-singular quadric in C°>=P°*—{£,=0}. The
automorphism (28) induces the following linear transformation g on C?,

20000

ap a4,

bo b,

ap a,

by b,

Ao aj

bo by

a, a;

by b,

a, as

b, b,

a, as

. .

Then

02
g= 00
00
00

O O NN O

0
0
2
0

s~ O O O



64 YOSHIKATSU KAMOZAWA AND MASAHIDE KATO

The set Gr(4,2)—{/'} is g-invariant and the point [/] corresponds to the origin of C°.
Therefore Y=(Gr(4,2)—([/]J v {I'}))/<g)> is a submanifold of a 5-dimensional Hopf
manifold. By our construction of M, we see that there is a holomorphic foliation & of
codimension 3 with a holomorphic projective connection. Almost all leaves of & are
non-compact, which are images of the fibers of p " !(x) —g~*({/'}), xe P*—1. The leaves
which are images of the fibers of p~!(x)—q "([I1u {I'}), xel, are compact and
biholomorphic to Hopf surfaces.
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