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Abstract. Suppose $G$ is a 2-connected graph of order $n$ with diameter $d\geq 2$ . We prove that

$|E(G)|\geq\frac{dn-2d-1}{d-1}$ .

We also characterize the extremal graphs for $d\geq 5$ .

1. Introduction.

In this paper, we consider finite undirected graphs without loops or multiple edges.
(Terminologies not defined here can be found in [4] or [8]). The set of vertices (resp.

the set of edges) of a graph $G$ is denoted by $V(G)$ (resp. $E(G)$). The edge joining two
vertices $x$ and $y$ is denoted by $xy$ , and for subsets $A$ and $B$ of $V(G)$ ,

$E(A, B):=\{xy\in E(G)|x\in A, y\in B\}$

denotes the set of edges joining $A$ and $B$ . The set of vertices adjacent to a vertex $x$ is
called the neighbourhood of $x$ , and is denoted by $N(x)$ . The degree of a vertex $x$ is
denoted by deg(x). The minimum degree (resp. the maximum degree) of $G$ is denoted
by $\delta(G)$ (resp. $\Delta(G)$). A subset $A$ is often identffied with the induced subgraph $\langle A\rangle$ , and
$ G-x:=\langle V(G)-\{x\}\rangle$ for $x\in V(G)$ . For $x$ and $y$ in $V(G),$ $d(x, y)$ denotes the distance
between $x$ and $y$ , and diam$(G)$ is the diameter of $G$ . The length of a path $P$ is denoted
by $1(P)$ . A path $P=(v_{0}, v_{1}, \cdots, v_{l})$ is called an ear if $\deg_{G}(v_{i})=2$ for $1\leq i\leq l-1$ . Two
paths $P$ and $Q$ connecting distinct vertices $u$ and $v$ are called internally disjoint if
$V(P)\cap V(Q)=\{u, v\}$ . For a set $X,$ $|X|$ denotes the cardinality of $X$. For a real number

$z$ , the greatest integer not exceeding $z$ is denoted by $\llcorner z\lrcorner$ , and [$ z\neg:=-\llcorner-z\lrcorner$ is the
least integer not less than $z$ .

Let
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$\mathscr{G}(n, d, d^{\prime}):=\{G|_{diam(G-x)\leq d’ forany’ x\in V(G)}^{|V(G)|=n,diam(G)\leq d}\}$ ,

$f(n, d, d^{\prime}):=\min\{|E(G)||G\in \mathscr{G}(n, d, d^{\prime})\}$ .
Bollob\’as $[2, 3]$ proved

$\lim_{n\rightarrow\infty}\frac{f(n,d,d^{\prime})}{n}=\frac{d}{d-1}$

for $d^{\prime}\geq 2d-1$ . The exact value of $f(n, d, d^{\prime})$ is determined if $d\leq 4$ and $n$ is not small
[10, 1, 6, 5]. Applying the method introduced in [9], we prove the following theorem
([7, Conjecture 3]).

THEOREM 1. Suppose $n>d^{\prime}\geq 2d-1$ . Then

$ f(n, d, d^{\prime})=\lceil\frac{dn-2d-1}{d-1}\rceil=L\frac{dn-d-3}{d-1}\rfloor$

unless $n=4$ and $d=2$ .
Define the graph $G(a, b;c, d)$ for positive integers $a$ and $b$ , an integer $d\geq 2$ , and an

integer $c$ with $2\leq c\leq d$ as follows: $G=G(a, b;c, d)$ consists of intemally disjoint paths
$P_{1},$ $\cdots,$ $P_{a}$ connecting $u$ and $v$ , intemally disjoint paths $Q_{1},$ $\cdots,$ $Q_{b}$ connecting $u$ and
$w$, and an edge $vw$ , where $u,$ $v$ and $w$ are distinct vertices, $l(P_{i})=d$ for $1\leq i\leq a,$ $l(Q_{j})=d$

for $1\leq j\leq b-1,$ $l(Q_{b})=c$ , and $V(P_{i})\cap V(Q_{j})=\{u\}$ for $1\leq i\leq a,$ $1\leq j\leq b$ . Then

$n:=|V(G)|=(a+b-1)(d-1)+c-1+3$ ,

$|E(G)|=(a+b-1)d+c+1=L\frac{dn-d-3}{d-1}\rfloor$ ,

and $G\in \mathscr{G}(n, d, 2d-1)$ . This implies the inequality $ f(n, d, d^{\prime})\leq[(dn-2d-1)/(d-1)\neg$ .
Note that when $d$ and $n$ are given, such $a,$

$b$ and $c$ exist if $n\geq d+3$ . Define $G(a, b;d):=$

$G(a, b;d, d)$ . Since Theorem 1 was proved for the case $d\leq 4,$ $f(n, d, n-1)\leq f(n, d, d^{\prime})$

and

$\mathscr{G}(n, d, n-1)=\{G|_{Gis2- connected}^{|V(G)|=n,diam(G)\leq d},$ $\}$ ,

Theorem 1 follows from the following theorem.

THEOREM 2. Suppose $G$ is a 2-connectedgraph oforder $n$ with diameter $d\geq 5$ . Then

$|E(G)|\geq\frac{dn-2d-1}{d-1}$ .

Furthermore, equality holds if and only if $G$ is isomorphic to some $G(a, b;d)$ .
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In Section 2, we prove preliminary results that estimate the number of edges. We
prove Theorem 2 in Section 3.

2. Preliminaries.

In this section, we assume that $|V(G)|=n,$ $\delta(G)=2,$ $\Delta(G)\geq 3,$ $d\geq 5,$ $l(\geq 2)$ is the
length of longest ears, and a subset $D_{0}$ of $V(G)$ is given. Set

$D_{r}:=\{v\in V(G)|d(v, D_{0})=r\}$ ,

where $d(v, D_{0}):=\min\{d(v, u)|u\in D_{0}\}$ .
Define functions $s$ and $t$ on $V(G)$ as follows: Let $v$ be a vertex in $D_{r}$ . If either $r=0$ ,

$\deg(v)\geq 3$ , or $|N(v)\cap D_{r-1}|\geq 2$ , define $s(v):=v$ and $t(v):=0$ . If $r>0,$ $\deg(v)=2$ and
$N(v)\cap D_{r-1}=\{u\}$ , then define $s(v):=s(u)$ and $t(v):=t(u)+1$ . Note that

$t(v)=d(v, s(v))\leq\min\{r, l-1\}$ .

If the shortest path from $v$ to $D_{0}$ is unique, $v$ is called of type $U$. If $v$ is not of type $U$,
$v$ is called of type $M$ . Note that $t(v)\leq r-1$ if $v$ is of type $M$.

Define a function $w(u, v)$ for $uv\in E(D_{r}, D_{r+1})$ , and a function $w(C)$ for a connected
component $C$ of $D_{r}$ inductively as follows:

(1) For $uv\in E(D_{0}, D_{1}),$ $w(u, v):=0$ .
(2) For a connected component $C$ of $D_{r}(r\geq 1)$ ,

$w(C):=|E(C)|+\sum_{{}_{1}Cxy\in E\langle D_{r-},)}(1-w(x, y))$ .

(3) For $uveE(D_{r}, D_{r+1})(r\geq 1)$ , let $C$ be the connected component of $D_{r}$ that
contains $u$ . If $w(C)\geq\frac{d}{d-1}|C|$ , then $w(u, v):=0$ . Otherwise,

$w(u, v):=\frac{\frac{d}{d-1}|C|-w(C)}{|E(C,D_{r+1})|}$ .

LEMMA 3. Suppose $ r\leq d-1-\llcorner l/2\lrcorner$ and $uv\in E(D_{r}, D_{r+1})$ .

(1) $w(u, v)\leq\frac{r+t(u)}{2(d-1)}$ . In particular, $w(u, v)\leq\min\{\frac{r}{d-1},\frac{r+l-1}{2(d-1)}\}$ .

(2) If $u$ is of type $M$, then $w(u, v)\leq(r+t(u)-1)/(2(d-1))$. In particular, $ w(u, v)\leq$

$\min\{(r-1)/(d-1), (r+l-2)/(2(d-1))\}$ .
(3) If $\deg(u)\geq 4$ , then $w(u, v)\leq\max\{r/(3(d-1)), (r-1)/(2(d-1))\}$ .

PROOF. We use induction on $r$ . It is easily seen that the lemma holds for $r=0$ .
Suppose $r\geq 1$ , and let $C$ be the connected component of $D_{r}$ that contains $u$ , and set
$\alpha:=|C|$ and $\beta:=|E(D_{r-}{}_{1}C)|-\alpha$ . If $w(C)\geq\alpha d/(d-1)$ , then $w(u, v)=0$ . Hence we may
assume w$(C)<\alpha d/(d-1)$ . IfCisnota tree, we have
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$w(C)\geq|E(C)|+|E(D_{r-}{}_{1}C)|(1-\frac{r-1}{d-1})$

$\geq\alpha(2-\frac{r-1}{d-1})>\frac{\alpha d}{d-1}$

by induction. Hence $C$ is a tree. Then

$\frac{\alpha d}{d-1}>w(C)\geq\alpha-1+(\alpha+\beta)(1-\frac{r-1}{d-1})$ (2.1)

$\frac{\alpha d}{d-1}>w(C)\geq\alpha-1+(\alpha+\beta)(1-\frac{r+l-2}{2(d-1)})$ (2.2)

by induction. From (2.1), we get

$d-1-\lfloor\frac{l}{2}\rfloor\geq r\geq d-\frac{\alpha+d-2}{\alpha+\beta}$ ,

and from (2.2)

$d-1-\lfloor\frac{l}{2}\rfloor\geq r\geq 2d-l-\frac{2\alpha+2d-3}{\alpha+\beta}$ .

Combining these inequalities, we get

$\frac{\alpha+d-2}{\alpha+\beta}\geq\lfloor\frac{l}{2}\rfloor+1\geq\lceil\frac{l}{2}\rceil=l-\lfloor\frac{l}{2}\rfloor\geq d+1-\frac{2\alpha+2d-3}{\alpha+\beta}$ .

This implies $\alpha(d-2)+\beta(d+1)\leq 3d-5$ . Since $\alpha\geq 1$ , we conclude $\beta<2$ . More precisely,
$\alpha=1$ if $\beta=1$ , and $\alpha\leq 3+1/(d-2)<4$ if $\beta=0$ .

First, suppose $\alpha=\beta=1$ . Then

$w(u, v)\leq\frac{d}{d-1}-2(1-\min\{\frac{r-1}{d-1},$ $\frac{r+l-2}{2(d-1)}\})$

$\leq\frac{d}{d-1}-(1-\frac{r-1}{d-1})-(1-\frac{r+l-2}{2(d-1)})$

$=\frac{3r-2d+l}{2(d-1)}\leq\frac{r+2(d-1-\llcorner l/2\lrcorner)-2d+l}{2(d-1)}$

$\leq\frac{r-1}{2(d-1)}$ .

This proves (1), (2) and (3), sinoe $t(u)=0$ in this case.
Next, suppose $\beta=0$ . First, suppose $\alpha=3$ . Then $t(u)=0$ since $\deg(u)\geq 3$ , and
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$w(u, v)\leq\frac{3d}{d-1}-\{2+2(1-\frac{r-1}{d-1})+(1-\frac{r+l-2}{2(d-1)})\}$

$=\frac{5r-4d+l+4}{2(d-1)}\leq\frac{r+4(d-1-\llcorner l/2\lrcorner)-4d+l+4}{2(d-1)}$

$=\frac{r+l-4\llcorner l/2\lrcorner}{2(d-1)}\leq\frac{r-1}{2(d-1)}$ .

Next, suppose $\alpha=2$ and let $C=\{u, u^{\prime}\}$ . Then $t(u)=0$ since $\deg(u)\geq 3$ . If
$|E(C, D_{r+1})|\geq 2$ ,

$w(u, v)\leq\frac{1}{2}(\frac{2d}{d-1}-3+\frac{2(r-1)}{d-1})\leq\frac{r-1}{2(d-1)}$ .

Hence we may assume that $|E(C, D_{r+1})|=1$ . This implies $\deg(u^{\prime})=2$ , and then

$w(u, v)\leq\frac{2d}{d-1}-\{1+(1-\frac{r-1}{d-1})+(1-\frac{r+l-3}{2(d-1)})\}$

$\leq\frac{r-2\llcorner l/2\lrcorner+l-1}{2(d-1)}\leq\frac{r}{2(d-1)}$ .

Suppose furthermore that $u$ is of type $M$ . Then

$w(u, v)\leq\frac{2d}{d-1}-\{1+(1-\frac{r-2}{d-1})+(1-\frac{r+l-3}{2(d-1)})\}$

$\leq\frac{r-2}{2(d-1)}$ .

Finally, suppose $\alpha=1$ . Let $k:=\deg(u)$ and $N(u)\cap D_{r-1}=\{x\}$ . If $k=2$ , then
$t(x)=t(u)-1$ , and

$w(u, v)=\frac{d}{d-1}-(1-w(x, u))$

$\leq\frac{1}{d-1}+\frac{r-1+t(u)-1}{2(d-1)}=\frac{r+t(u)}{2(d-1)}$ .

Note that $u$ is of type $M$ if and only if $x$ is of type $M$. Therefore, if $u$ is of type $M$,

$w(u, v)\leq\frac{1}{d-1}+\frac{r+t(x)-2}{2(d-1)}=\frac{r+t(u)-1}{2(d-1)}$

Ifk $\geq 3$ ,

$w(u, v)\leq\frac{1}{2}(\frac{1}{d-1}+w(x, u))\leq\frac{r}{2(d-1)}$ .
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If $u$ is of type $M$, then $x$ is of type $M$ and $t(x)\leq r-2$ . Hence

$w(u, v)\leq\frac{1}{2}(\frac{1}{d-1}+\frac{r-2}{d-1})=\frac{r-1}{2(d-1)}$ .

Ifk $\geq 4$,

$w(u, v)\leq\frac{1}{3}(\frac{1}{d-1}+\frac{r-1}{d-1})=\frac{r}{3(d-1)}$ . $\square $

A connected component $C$ of $D_{r}$ is called an end-component if $ E(C, D_{r+1})=\emptyset$ .
LEMMA 4. Suppose $C$ is an end-component of $D_{r}$ .
(1) If $ r\leq d-1-\llcorner l/2\lrcorner$ , then $w(C)\geq\frac{d}{d-1}|C|$ . Furthermore, suppose $l\geq d-1$ and

$w(C)=\frac{d}{d-1}|C|$ . Then $l$ is odd, $r=d-1-\llcorner l/2\lrcorner,$ $|C|=2$ , and $\sum_{u\in C}t(u)=l-1$ .

(2) If $ r\leq d-\llcorner l/2\lrcorner$ , then $w(C)\geq\frac{d|C|+\llcorner l/2\lrcorner-r-1}{d-1}$ . Equality holds only if
$r=d-\llcorner l/2\lrcorner,$ $|C|=2$, and $t(u)=r$ for all $u\in C$.

(3) Suppose $ r\leq d-\llcorner l/2\lrcorner$ and all the vertices in $C$ are of type M. Then $ w(C)\geq$

$\frac{d|C|+\llcorner l/2\lrcorner-r}{d-1}$ Equality holds only if $r=d-\llcorner l/2\lrcorner,$ $|C|=1,$ $|N(C)|=2$ and $t(x)=r-1$

for all $x\in N(C)$ .
(4) Suppose 1 is even, $ r=d-\lfloor l/2\lrcorner$ , and all the vertices in $C$ are of type M. Then

$w(C)\geq\frac{d}{d-1}|C|$ . Furthermore, suppose $l=d-1$ and $w(C)=\frac{d}{d-1}|C|$ . Then $|C|=1$ ,
$|N(C)|=2$ , and $\sum_{x\in N(C)}t(x)=l-2$ .

$PR\infty F$ . Let $\alpha:=|C|$ and $\beta:=|E(D_{r-}{}_{1}C)|-\alpha$ .
(1) Suppose $w(C)\leq\alpha d/(d-1)$ . Then $C$ is a tree and $\alpha(d-2)+\beta(d+1)\leq 3d-3$ .

Hence $\beta\leq 2$ . More precisely, $\alpha\leq 2$ if $\beta=1$ , and $\alpha\leq 3+3/(d-2)\leq 4$ if $\beta=0$ . It is easily
checked that $\alpha=2$ and $\beta=1$ cannot occur. Suppose $\alpha=\beta=1$ , and let $C=\{u\},$ $N(u)=$

$\{x_{1}, x_{2}\}$ . Then

$\frac{d}{d-1}\geq w(C)\geq\sum_{i=1}^{2}(1-\frac{r-1+t(x_{i})}{2(d-1)})$ .

This implies that

$t(x_{1})+t(x_{2})\geq 2d-2r-2\geq 2\llcorner l/2\lrcorner\geq l-1$ .
On the other hand, $u$ is contained in a ear of length $t(x_{1})+t(x_{2})+2$ , which contradicts
the definition of $l$. Next, suppose $\beta=0$ . It is easily checked that $\alpha=4$ is not possible. If
$\alpha=3$ , two vertices in $C$ are of degree 2. Henoe
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$w(C)\geq 2+(1-\frac{r-1}{d-1})+2(1-\frac{r+l-3}{2(d-1)})$

$\geq\frac{3d-l+2\llcorner l/2\lrcorner+1}{d-1}\geq\frac{3d}{d-1}$ .

If $l\geq d-1$ ,

$w(C)\geq 2+3(1-\frac{r-1}{d-1})\geq\frac{2d+1+3\llcorner l/2\lrcorner}{d-1}>\frac{3d}{d-1}$ .

Suppose $\alpha=2$ and $C=\{u_{1}, u_{2}\}$ . Then

$w(C)\geq 1+\sum_{i=1}^{2}(1-\frac{r+t(u_{i})-2}{2(d-1)})$ .

This implies that

$ l-1\geq t(u_{1})+t(u_{2})\geq 2d-2r-2\geq 2\llcorner l/2\lrcorner$ .

This is possible only if$w(C)=2d/(d-1),$ $l$ is odd, $ r=d-1-\llcorner l/2\lrcorner$ , and $t(u_{1})+t(u_{2})=l-1$ .
(2) Suppose

$w(C)\leq\frac{\alpha d+\llcorner l/2\lrcorner-r-1}{d-1}$ . (2.3)

Since

$w(C)\geq\alpha-1+(\alpha+\beta)(1-\frac{r-1}{d-1})$ ,

we have

$(\alpha+\beta-2)\llcorner l/2\lrcorner+(\alpha+\beta-1)(d-\llcorner l/2\lrcorner-r)\leq\alpha-2$ .

This is possible only if equality holds in (2.3), $\alpha=2,$ $\beta=0,$ $ r=d-\llcorner l/2\lrcorner$ , and $t(u)=r$ for
all $u\in C$.

(3) Suppose

$w(C)\leq\frac{\alpha d-\llcorner l/2\lrcorner-r}{d-1}$ . (2.4)

Then we have
$(\alpha+\beta-2)\llcorner l/2\lrcorner\leq\alpha-1$ .

This is possible only if $\beta\leq 1$ . Suppose $\beta=0$ . Then $|N(u)\cap D_{r-1}|=1$ for all $u\in C$, and
all the vertices in $N(C)\cap D_{r-1}$ are of type $M$. Hence we have
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$w(C)\geq\alpha-1+\alpha(1-\frac{r-2}{d-1})$ ,

which implies that

$(\alpha-]Kd-\llcorner l/2\lrcorner-r)+(\alpha-2)\llcorner l/2\lrcorner+1\leq 0$ ,

a contradiction. Suppose $\beta=1$ . Then $|N(u_{1})\cap D_{r-1}|=2$ for some $u_{1}\in C$ and
$|N(u)\cap D_{r-1}|=1$ for all $u\in C-\{u_{1}\}$ . Furthermore, all the vertices in $N(C-\{u_{1}\})\cap D_{r-1}$

are of type $M$. Hence we have

$w(C)\geq\alpha-1+2(1-\frac{r-1}{d-1})+(\alpha-1)(1-\frac{r-2}{d-1})$ ,

which implies

$\alpha(d-\llcorner l/2\lrcorner-r)+(\alpha-1)\llcorner l/2\lrcorner\leq 0$ .

This is possible only if $ r=d-\llcorner l/2\lrcorner$ and $\alpha=1$ . In this case, we have

$\frac{d+\llcorner l/2\lrcorner-r}{d-1}\geq w(C)\geq\sum_{x\in N(C)}(1-\frac{r-1+t(x)}{2(d-1)})$ ,

which implies

$\sum_{x\in N\langle C)}t(x)\geq 2d-2\llcorner l/2\lrcorner-2\geq 2(r-1)$ .

This is possible only if $t(x)=r-1$ for all $x\in N(C)$ .
(4) Suppose $w(C)\leq\frac{d}{d-1}|C|$ . Then, as in the proof of (1), we get $\alpha(d-3)+\beta d\leq$

$3d-3$ . This implies $\beta\leq 2$ . Suppose $\beta=2$ . Then $\alpha=1$ , and

$w(C)\geq 1-\frac{r-1}{d-1}+2(1-\frac{r+l-2}{2(d-1)})$

$=\frac{3d-l-2r}{d-1}=\frac{d}{d-1}$ .

Equality holds only if $t(x)=r-1=l-1$ for all $x\in N(C)$, but this cannot happen when
$l=d-1$ .

Suppose $\beta=1$ . Using the fact that $\alpha-1$ vertices in $N(C)\cap D_{r-1}$ are of type $M$, we
easily get $\alpha\leq 2$ . Suppose $\alpha=2$ and let $C=\{u_{1}, u_{2}\}$ with $N(u_{1})=\{x_{1}, u_{2}\}$ . Since $x_{1}$ is of
type $M$ and $t(x_{1})\leq l-1$ ,

$w(C)\geq 1+(1-\frac{r-1}{d-1})+(1-\frac{r+l-2}{2(d-1)})+(1-\frac{r+l-4}{2(d-1)})=\frac{2d}{d-1}$ .

Equality holds only if $t(x)=r-1=l-1$ for all $x\in N(u_{2})\cap D_{r-1}$ . This cannot happen
when $l=d-1$ . Suppose $\alpha=1$ and let $C=\{u\}$ and $N(u)=\{x_{1}, x_{2}\}$ . Since $t(x_{1})+t(x_{2})\leq l-2$,
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$w(C)\geq\sum_{i=1}^{2}(1-\frac{r-1+t(x_{i})}{2(d-1)})$

$=\frac{4d-2r-2-t(x_{1})-t(x_{2})}{2(d-1)}\geq\frac{d}{d-1}$ .

Equality holds only if $t(x_{1})+t(x_{2})=l-1$ . Finally, suppose $\beta=0$ . Using the fact that all
the vertices in $N(C)\cap D_{r-1}$ are of type $M$, and the fact that at least two vertices in $C$

have degree 2, it is easily checked that the only possibility is $\alpha=2$ . Let $C=\{u_{1}, u_{2}\}$ and
$N(u_{i})\cap D_{r-1}=\{x_{i}\},$ $i=1,2$ . Since $t(x_{1})+t(x_{2})\leq l-3$ ,

$w(C)\geq 1+\sum_{i=1}^{2}(1-\frac{r-2+t(x_{i})}{2(d-1)})$

$=\frac{6d-2r-2-t(x_{1})-t(x_{2})}{2(d-1)}$

$\geq\frac{4d+1}{2(d-1)}>\frac{2d}{d-1}$ . $\square $

3. Proof of Theorem 2.

Let $G$ be a 2-connected graph of order $n$ with diam$(G)\leq d(d\geq 5)$ . Then $\delta(G)\geq 2$ .
If $\delta(G)\geq 3$ , we have

$|E(G)|\geq\frac{3}{2}n>\frac{dn-2d-1}{d-1}$ .

Hence we may assume that $\delta(G)=2$ . If $\Delta(G)=2,$ $G$ is a cycle and diam$(G)=\llcorner n/2\lrcorner\leq d$ .
This implies that

$|E(G)|=n\geq\frac{dn-2d-1}{d-1}$ .

Equality holds only if $n=2d+1$ , and then $G$ is isomorphic to $G(1,1;d)$ . In the rest of
the proof, we assume that $\Delta(G)\geq 3$ . Let $P=(v_{0}, v_{1}, \cdots, v_{l})$ be a longest ear, and we
shall apply the results in Section 2 by setting $D_{0}:=V(P)$ . Note that $l\geq 2$ since $\delta(G)=2$ .
Moreover, all the vertices in $D_{d-Ll/2\lrcorner}$ are of type $M$ when $l$ is odd, and $ D_{d+1-U/2\lrcorner}=\emptyset$ .

Case I. $l\geq d+1$ . Let $C$ be an end-component of $D_{r}$ . If $r\leq d-\llcorner l/2\lrcorner-1$ ,

$w(C)\geq\frac{d|C|+\llcorner l/2\lrcorner-(d-\llcorner l/2\lrcorner-1)-1}{d-1}\geq\frac{d|C|+l-d-1}{d-1}$

by Lemma 4(2). Suppose $ r=d-\llcorner l/2\lrcorner$ . If $l$ is even,
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$w(C)\geq\frac{d|C|+l-d-1}{d-1}$

by Lemma 4(2). If $l$ is odd, all the vertices in $C$ are of type $M$. Hence

$w(C)\geq\frac{d|C|+\llcorner l/2\lrcorner-(d-\llcorner l/2\lrcorner)}{d-1}\geq\frac{d|C|+l-d-1}{d-1}$

by Lemma 4(3). In every case, $w(C)\geq(d|C|+l-d-1)/(d-1)\geq d|C|/(d-1)$ for any
end-component $C$. Let $C_{0}$ be an end-component. Then

$|E(G)|\geq|E(P)|+\frac{d}{d-1}(n-|V(P)|-|C_{0}|)+w(C_{0})$

$\geq l+\frac{d(n-l-1)}{d-1}+\frac{l-d-1}{d-1}=\frac{dn-2d-1}{d-1}$ .

If $|E(G)|=(dn-2d-1)/(d-1)$, then $l=d+1$ or $C_{0}$ is the unique end-component. First,
suppose $C_{O}$ is the unique end-component. Then

$w(C_{0})=\frac{d|C_{0}|+l-d-1}{d-1}$ .

This is possible only if either (i) $r=d-1-\llcorner l/2\lrcorner,$ $l$ is odd, $|C|=2$ and $\sum_{u\in C}t(u)=l-1$ ,
(ii) $r=d-\llcorner l/2\lrcorner,$ $1$ is even, $|C|=2$ and $t(u)=r$ for all $u\in C$, or (iii) $r=d-\llcorner l/2\lrcorner,$ $l$ is odd,
$|C|=1,$ $|N(C)|=2$ and $t(x)=r-1$ for all $x\in N(C)$ . In case (i),

$l-1=\sum_{u\in C}t(u)\leq 2r=2(d-1-\frac{l-1}{2})\leq l-3$ ,

a contradiction. In case (ii) or (iii), the uniqueness of the end-component implies that
$\deg(v_{0})=\deg(v_{l})=2$ , which contradicts the definition of $P$.

Next, suppose $l=d+1$ . Then

$w(C)=\frac{d|C|+l-d-1}{d-1}=\frac{d}{d-1}|C|$

for any end-component $C$. By Lemma 4, any such end-component is contained in
$D_{d-1-U/2J}\cup D_{d-U/2\lrcorner}$ . Suppose an end-component $C$ is contained in $D_{d-1-U/2\lrcorner}$ . Then
by Lemma 4(1), 1 is odd, $|C|=2$ and $\sum_{u\in C}t(u)=l-1$ . However, $t(u)\leq d-1-\llcorner l/2\lrcorner<$

$(l-1)/2$ . So, this cannot happen. Suppose an end-component $C$ is contained in $D_{d-L^{l/2_{\lrcorner}}}$ .
Then either (i) $l$ is even, $|C|=2$ and $t(u)=r$ for all $u\in C$, or (ii) $l$ is odd, $|C|=1$ ,
$|N(C)|=2$ and $t(x)=r-1$ for all $x\in N(C)$ . It is easily seen that $G$ is isomorphic to $G(a, 1;d)$ ,
where $a$ is the number of end-components. $\square $

In the rest of the proof, we assume that $l\leq d$. Suppose that the two end-vertices
$v_{0}$ and $v_{l}$ of $P$ are adjacent. Then
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$H:=G-\{v_{1}, \cdots, v_{l-1}\}e\mathscr{G}(n-l+1, d, n-l)$ ,

$|E(G)|=l+|E(H)|\geq l+\frac{dn^{\prime}-2d-1}{d-1}\geq\frac{dn-2d-1}{d-1}$

by induction, where $n^{\prime}=|V(H)|=n-1+1$ . Furthermore, equality holds only if $l=d$and

$|E(H)|=\frac{dn^{\prime}-2d-1}{d-1}$ .

By induction, $H$ is isomorphic to some $G(a, b;d)$ . However, it is easily seen that if we
add an ear of length $l$ to an edge of $G(a, b;d)$ , the diameter of the resulting graph is
greater than $d$. Hence we may assume that the two end-vertices of any ear of length $l$

are nonadjacent.
If $w(C)\geq\frac{d}{d-1}|C|$ for any end-component $C$, we have

$|E(G)|\geq l+\frac{d}{d-1}(n-l-1)>\frac{dn-2d-1}{d-1}$ .

Hence we may assume that some end-component $C$ of $D_{r}$ satisfies $w(C)<\frac{d}{d-1}|C|$ . By
Lemma 4(1), $ r=d-\llcorner l/2\lrcorner$ . It is easily seen (by the proof of Lemma 3) that $C$ must be
a tree. Let $\alpha:=|C|$ and $\beta:=|E(D_{r-}{}_{1}C)|-\alpha$ . Then

$w(C)\geq\alpha-1+(\alpha+\beta)(1-\min\{\frac{r-1}{d-1},$ $\frac{r+l-2}{2(d-1)}\})$ ,

which implies that
$(\alpha+\beta)\llcorner l/2\lrcorner\leq d+\alpha-2$ , (3.1)

$(\alpha+\beta)[l/2\neg\geq(\alpha+\beta-2)d-2\alpha+3$ . (3.2)

Case II. $l=d$. By (3.1), we have

$\beta\leq\frac{d+\alpha-2}{\llcorner l/2\lrcorner}\alpha<2$ .

Subcase II-1. $l$ is odd. Suppose $\beta=0$ . Since all the vertices in $C$ are of type $M$,

$w(C)\geq\alpha-1+\alpha(1-\frac{r-2}{d-1})$ .

This implies that $l-2\geq\alpha(l-1)/2$ , a contradiction. Suppose $\beta=1$ . Then $\alpha=1$ . Let $C=\{u\}$

and $N(u)=\{x_{1}, x_{2}\}$ . Then

$\frac{d}{d-1}>w(C)\geq\sum_{i=1}^{2}(1-\frac{r+t(x_{i})-1}{2(d-1)})$ ,

which implies that $t(x_{1})+t(x_{2})\geq l-2$ . On the other hand, $t(x_{i})\leq r-1=(l-1)/2$ . Hence
we may assume that $t(x_{1})=(l-3)/2$ and $t(x_{2})=(l-1)/2$ . This means that $s(x_{1})\in D_{1}$ and
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$s(x_{2})\in D_{0}$ . Let $s(C)$ be the $\infty nnected$ component of $D_{1}$ that contains $s(x_{1})$ . If $|s(C)|>1($

then $w(x_{1}, u)\leq(r-2)/(d-1)$, which implies that $w(C)\geq d/(d-1)$ . Hence we may assume
that $|s(C)|=1$ . let $\{C_{1}, \cdots, C_{a}, C_{1}^{\prime}, \cdots, C_{b}^{\prime}\}$ be the set of end-components such thal
$w(C_{i})<\frac{d}{d-1}|C_{i}|$ for $1\leq i\leq a$ and $w(C_{j}^{\prime})\geq\frac{d}{d-1}|C_{j}^{\prime}|$ for $1\leq j\leq b$ , and set $C_{i}=\{u_{i}\}$ foI
$1\leq i\leq a$ . Sinoe $d(u_{i}, u_{j})\leq d=l<2r$, we have $s(C_{i})=s(C_{j})$ for all $i$ and $j(1\leq i, j\leq a)$

Let $k$ be the degree of the vertex in $s\langle C_{i}$ ). Then $k\geq a+1$ and

$w(C_{i})=\frac{d}{d-1}-\frac{1}{(k-1Kd-1)}$ .

Hence

$|E(G)|\geq l+\frac{d}{d-1}(n-l-1-a)+\sum_{i=1}^{a}w(C_{i})$

$\geq l+\frac{d}{d-1}(n-l-1)-\frac{1}{d-1}=\frac{dn-2d-1}{d-1}$ .

Equality holds only if $k=a+1$ and $w(C_{j}^{\prime})=\frac{d}{d-1}|C_{j}^{\prime}|$ for $1\leq j\leq b$ . By Lemma 4, $C_{j}^{\prime}$ is
contained in $D_{d-U/2\lrcorner-1}\cup D_{d-U/2\lrcorner}$ . Suppose $v\in D_{d-U/2\lrcorner}-\bigcup_{i=1}^{a}C_{i}$ . Then $ d(v, u_{i})\geq$

$2(d-\llcorner l/2\lrcorner)\geq d+1$ , a contradiction. Hence $C_{j}^{\prime}$ is contained in $D_{d-U/2\lrcorner-1}$ . By Lemma
4(1), $|C_{j}^{\prime}|=2$ and $\sum_{u\in C_{j}}t(u)=l-1=2(d-\llcorner l/2\lrcorner-1)$ . This means that $G$ is isomorphic
to $G(a, b+1;d)$ . $\square $

Subcase II-2. 1 is even. In this case, we have $(\alpha+\beta-2)d\leq 2\alpha-4$ by (3.1). This
implies $\beta=0$ and $\alpha=2$ . Let $C=\{u_{1}, u_{2}\}$ and $N(u_{i})\cap D_{r-1}=\{x_{i}\}$ . Then

$w(C)\geq 1+\sum_{i=1}^{2}(1-\frac{r-1+t(x_{i})}{2(d-1)})$ ,

which implies that

$t(u_{1})+t(u_{2})=t(x_{1})+t(x_{2})+2\geq 2d-2r-1=l-1$ .
On the other hand, $t(u_{1})+t(u_{2})\leq l-1$ and $t(u_{i})\leq r=l/2$ . Hence we may assume that
$t(u_{1})=l/2-1$ and $t(u_{2})=l/2$ . Note that $s(u_{1})\in D_{1}$ and $s(u_{2})\in D_{0}$ . Since $s(u_{1})$ and $s(u_{2})$ are
joined by an ear of length $l,$ $s(u_{1})$ and $s(u_{2})$ are not adjaoent. Since $w(x_{1}, u_{1})>(r-2)/(d-1)$ ,
$\{s(u_{1})\}$ is a connected component of $D_{1}$ . Let { $C_{1},$ $\cdots,$ $C_{a}$, C\’i, $C_{b}^{\prime}$ } be the set of
end-components such that $w(C_{i})<\frac{d}{d-1}|C_{i}|$ , for $1\leq i\leq a,$ $w(C_{j}^{\prime})\geq\frac{d}{d-1}|C_{j}^{\prime}|$ for $1\leq j\leq b$ .
We can conclude that $G$ is isomorphic to $G(a, b+1;d)$ by the same way as in Subcase
II-1. $\square $

Case III. $l\leq d-1$ . We shall show that some end-vertex of an ear of length $l$ is
of degree 3.

Subcase III-I. $l$ is even. By (3.1) and (3.2),



EXTREMAL 2-CONNECTED GRAPHS 13

$d+\alpha-2\geq(\alpha+\beta-2)d-2\alpha+3$ ,

which implies $\beta\leq 1$ .
Suppose $\beta=1$ . Then $\alpha\leq 2$ . Suppose $\alpha=2$ , and let $C=\{u, v\}$ with $\deg(u)=3$ and

$\deg(v)=2$ . If $t(v)=l-1$ , then the end-vertex $u$ of an ear of length $l$ is of degree 3. Hence
we may assume that $t(v)<l-1$ . Then

$w(C)\geq 1+2(1-\frac{r+l-2}{2(d-1)})+(1-\frac{r+l-4}{2(d-1)})$ .

From this, we get $d<\frac{3}{2}l$ instead of (3.2). This contradicts (3.1). Suppose $\alpha=1,$ $C=\{u\}$

and $N(u)=\{x_{1}, x_{2}\}$ . Then

$w(C)\geq\sum_{i=1}^{2}(1-\frac{r-1+t(x_{i})}{2(d-1)})$ ,

which implies that $t(x_{1})+t(x_{2})\geq l-1$ , a contradiction.
Suppose $\beta=0$ . If $\alpha\geq 2$ , at least two vertices of $C$ are of degree 2. Hence

$d+\alpha-2\geq\alpha\llcorner l/2\lrcorner=\alpha[l/2\neg\geq(\alpha-2)d-2\alpha+5$ .

This implies that $\alpha\leq 4$ , but for $\alpha=4$ , there is no integral solution. Suppose $\alpha=3$ and
$C=\{u_{1}, u_{2}, v\}$ with $\deg(v)=3$ . Then we may assume that $t(x)<l-1$ for all $x\in N(v)$ . Then
we get $d\leq\frac{3}{2}l-4$ instead of (3.2). This contradicts (3.1). Suppose $\alpha=2$ and $C=\{u_{1}, u_{2}\}$ .
Then by the same argument as in Subcase II-2, we get $t(u_{1})+t(u_{2})=l-1$ . We may
assume that $\deg(s(u_{i}))\geq 4$ for $i=1,2$ . Then

$w(C)\geq 1+\sum_{l=1}^{2}(1-\max\{\frac{r-t(u_{i})}{3(d-1)},$ $\frac{r-1-t(u_{i})}{2(d-1)}\}-\frac{t(u_{i})-1}{d-1})$

by Lemma 3(3). Let

$S:=\sum_{i=1}^{2}$ max $\{\frac{r-t(u_{i})}{3(d-1)}\frac{r-1-t(u_{i})}{2(d-1)}\}$ .

If

$S=\frac{r-t(u_{1})}{3(d-1)}+\frac{r-t(u_{2})}{3(d-1)}=\frac{2r-l+1}{3(d-1)}$ ,

we have

$d-2l+2\llcorner l/2\lrcorner-1<0$ ,

which contradicts the assumption that $l\leq d-1$ . If

$S=\frac{r-1-t(u_{1})}{2(d-1)}+\frac{r-1-t(u_{2})}{2(d-1)}=\frac{2r-l-1}{2(d-1)}$ ,



14 HIKOE ENOMOTO AND YOKO USAMI

we have $2\llcorner l/2\lrcorner<l-1$ , a contradiction. Suppose

$S=\frac{r-t(u_{1})}{3(d-1)}+\frac{r-1-t(u_{2})}{2(d-1)}$ .

Then we have

$5r-6d+6l-3>2t(u_{1})+3t(u_{2})\geq 3l-3-r$ ,

a contradiction. $\square $

Subcase III-2. $l$ is odd. By (3.1) and (3.2), we have $\beta\leq 2$ . Suppose $\beta=2$ . Then
there are at least $\alpha-2$ vertices $u$ in $C$ such that $|N(u)\cap D_{r-1}|=1$ . Since all the vertices
in $C$ are of type $M$,

$w(C)\geq\alpha-1+4(1$ -min $\{\frac{r-1}{d-1’}\frac{r+l-2}{2(d-1)}\})$

$+(\alpha-2)(1$ -min $\{\frac{r-2}{d-1’}\frac{r+l-3}{2(d-1)}\})$ ,

which implies that $\alpha\leq 1+3/(d-2)<3$ . Suppose $\alpha=2$ . Then $d=5$ and $l=7/2$ , a
contradiction.

Suppose $\alpha=1$ and $C=\{u\}$ . Then we may assume that $t(x)<l-1$ for all $x\in N(u)$ ,

Hence

$w(C)\geq 3(1-\frac{r+l-3}{2(d-1)})$ ,

which implies that $3d\geq 2d+4$ . This contradicts (3.1).
Next, suppose $\beta=1$ . If $\alpha\geq 2$ , there are $\alpha-1$ vertices $u$ in $C$ satisfying

$|N(u)\cap D_{r-1}|=1$ , one of which is of degree 2. Since all the vertices in $C$ are of type $M$.

$w(C)\geq\alpha+2(1-\min\{\frac{r-1}{d-1},$ $\frac{r+l-2}{2(d-1)}\})$

$+(\alpha-2)(1$ -min $\{\frac{r-2}{d-1},$ $\frac{r+l-3}{2(d-1)}\})$

$+$ (1-min $\{\frac{r-2}{d-1’}\frac{r+l-4}{2(d-1)}\}$),
which implies that

$d-1\geq(\alpha+1)\llcorner l/2\lrcorner=(\alpha+1)([l/2\neg-1)\geq(\alpha-1)d-2\alpha+2$ .
Hence



EXTREMAL 2-CONNECTED GRAPHS 15

$\alpha\leq 2+\frac{1}{d-2}<3$ .

Suppose $\alpha=2$ and $C=\{u, v\}$ with $\deg(u)=2$ and $\deg(v)=3$ . Then we may assume that
$t(x)<l-1$ for all $x\in N(v)$ . Hence

$w(C)\geq 4-\min\{\frac{3r-4}{d-1},$ $\frac{3r+3l-11}{2(d-1)}\}$ ,

which is impossible. Suppose $\alpha=1,$ $C=\{u\}$ , and $N(u)=\{x_{1}, x_{2}\}$ . By the same argument
as in Subcase II-1, we have $t(x_{1})+t(x_{2})=l-2$ , and we may assume that $\deg(s(x_{i}))\geq 4$

for $i=1,2$ . Then

$w(C)\geq\sum_{i=1}^{2}(1-\max\{\frac{r-1-t(x_{i})}{3(d-1)},$ $\frac{r-2-t(x_{i})}{2(d-1)}\}-\frac{t(x_{i})}{d-1})$

by Lemma 3(3). It is easily verified that this leads to a contradiction as in Subcase III-I.
Finally, suppose $\beta=0$ . Then for all $xeC,$ $x$ is of type $M$ and $|N(x)\cap D_{r-1}|=1$ .

Furthermore, at least two vertices in $C$ are of degree 2. Hence

$w(C)\geq\alpha-1+(\alpha-2)(1$ -min $\{\frac{r-2}{d-1},$ $\frac{r+l-3}{2(d-1)}\})$

$+2$(1-min $\{\frac{r-2}{d-1},$ $\frac{r+l-4}{2(d-1)}\}$),
which implies that $\alpha\leq(3d-7)/(d-2)<3$ . Suppose $\alpha=2$ and $C=\{u_{1}, u_{2}\}$ . Then

$w(C)\geq 1+\sum_{i=1}^{2}(1-\frac{r-3+t(u_{i})}{2(d-1)})$ ,

which implies that

$t(u_{1})+t(u_{2})>2d-2r=l-1$ ,

a contradiction. $\square $

We have proved that there exists an ear of length $l$, one of whose end vertices is
of degree 3. Hence we may assume that $N(v_{l})=\{v_{l-1}, v_{l+1}, v\int_{+1}\}$ . Set $D_{0}:=V(P)\cup N(v_{l})$ ,

$inD_{d-Ll/2\lrcorner}areoftypeM.ByLemma4(1)and(4),w(C)\geq\frac{\emptyset d}{d-1}|C|foranyend- componentandapp1ytheresultsinSection2.Iflisodd,D_{d-u/2\lrcorner}=.Ifliseven,allthevertices$

$C$. Hence

$|E(G)|\geq l+2+\frac{d}{d-1}(n-l-3)\geq\frac{dn-2d-1}{d-1}$ .

Equality holds only if $l=d-1$ and $w(C)=\frac{d}{d-1}|C|$ for any end-component $C$. Suppose
$l$ is odd, and $C$ is an end-component. By Lemma 4(1), $C$ is contained in $D_{d-1-U/2\lrcorner}$ ,
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$|C|=2$ , and $\sum_{u\in C}t(u)=l-1$ . It is easily verified that all the vertices in $C$ are of
type $U$. Since $\deg(v_{l+1})\geq 2$ and $\deg(v_{l+1}^{\prime})\geq 2$ , there are end-components $C_{1}=\{u_{1}, u_{2}\}$

and $C_{2}=\{u_{1}^{\prime}, u_{2}^{\prime}\}$ such that $ d(u_{1}, v_{l+1})=d(u_{1}^{\prime}, v_{l+1}^{\prime})=d-1-\llcorner l/2\lrcorner$ . Then $d(u_{1}, u_{1}^{\prime})=$

$2(d-1-\llcorner l/2\lrcorner)+2=d+2$ , a contradiction. Suppose $l$ is even. By Lemma 4(4), any
end-component is contained in $ D_{d-L\iota/2}\lrcorner$ , and consists of a single vertex. In this
case, there are end-components $C_{1}=\{u_{1}\}$ and $C_{2}=\{u_{1}^{\prime}\}$ such that $d(u_{1}, v_{l+1})=$

$ d(u_{1}^{\prime}, v_{l+1}^{\prime})=d-\llcorner l/2\lrcorner$ . Since all the vertices in $N(u_{1})\cup N(u_{1}^{\prime})$ are of type $U,$ $d(u_{1}, u_{1}^{\prime})=$

$2(d-\llcorner l/2\lrcorner)=d+1$ , a contradiction. $\square $

This completes the proof of Theorem 2. $\square $
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