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Introduction.

Let 4 be a commutative ring with unity. For a subset E of SpecA4, we put
6y Sg= ﬂE(A\P) (Ss=4).
pe

Then Sg is a saturated multiplicatively closed set.
To an A-module M, we associate a presheaf M in the following way. By putting

2 MU)=Sg'M

for an open subset U of Spec A, we define a presheaf M of modules on SpecA. Here
M is not a sheaf in general. But the sheafification of M turns out to be the quasi-coherent
A-module M. Then we ask the question: When is the presheaf M actually a sheaf?

Noting that M is a sheaf if and only if M =M, we introduce the following three
conditions for a ring A:

(S.1) M =M for any A-module M.
(S.2) a=a for any ideal a of 4.
(S.3) A=A4.
In the previous paper, the following facts are shown (see [5]):

Fact 1. Suppose that A is a valuation ring. Then
(1) A satisfies the condition (S.3).
(ii)) (S.1)<>(S.2)<>Spec A is a noetherian topological space.

FAct 2. Let A be a Dedekind domain. Then
(S.1)<>(5.2) <> (5.3) <> the ideal class group of A is torsion.

Fact 3. Suppose that A is a unique factorization domain. Then
(1) A satisfies the condition (S.3).
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(i) (S.1)<>(S8.2)<> A is a principal ideal domain.

Next we introduce the topological conditions (T.1), (T.2) and (T.3).
For a ring 4, we put

Z={D(f) | fe4},
Z,={D(a,) | ae 04} U {¢} .

Here D(a)={peSpec4 | a¢p}, QA isthetotal quotient ringof 4 and a,={be 4 | bac 4}.
Moreover for any subset E of Spec 4, we put

€)) E= ) U={p eSpecd | p= U p'},
Uex p'eE
USE
4 E'=N V.
Vel
: vSE

Then we introduce the following conditions for the topology of SpecA.
(T.1) For any open subset U of Spec A, there exists f€ A such that U= D(f).
(T.2) For any open subset U of Specd4, U=T.

(T.3) For any open subset U of Spec4, U'=U.

The main results of this paper are as follows.

THEOREM 1. For an integral ring A, we obtain

S.1) = (82 = (8.3
! ¢ f
(T.1) < (T.2) = (T.3).
THEOREM 2. Let A be a ring consisting of algebraic integers with quadratic quotient
field. Then A satisfies the condition (S.1).

THEOREM 3. Let k be a field of characteristic p=0, s(t) a monic polynomial of
k[t] where degs=2, and A=k @ s@)k[t]. If s(t)=]]i-,(—o)* is the irreducible
polynomial decomposition in k[t] where k is an algebraic closure of k, then

{(S.l)<=>(S.2)<=>(S.3)<=>p;é0 if m=1,
(S.1) <= (8.2) <= (8.3) <= p#0 and k is algebraic over F, if mz=2.

The authors wish to express their thanks to Professor Hideo Wada and Doctor
Koji Sekiguchi for their advices and warm encouragement.

1. In this section we shall prove Theorem 1.

LEMMA 1. Let A be a ring and a an ideal of A. Then



PRESHEAVES ASSOCIATED TO MODULES 343

i f¢ U p= ac\/(jT),for any element f of A.

peD(a)

(ii) The following four conditions are equivalent:

(b) There exists f € A such that \Ja = /f
© Ifac Upe g P, then there exists pe E such that acyp for any subset E of

Spec A.
d Ifac Upevp, then there exists p e U such that acyp for any open subset
U of SpecA.

PrROOF. (i) f¢,cp@P = f¢P for any peD(a)
<> peD(f) for any peD(a)
<= D(a) =D(/)

— /ac Jf)

= ac/(f).
(i)(a) < (b): v
a# Jep P < there exists fe 4 such that fea, f¢(),.peq?P
<= there exists fe A such that fea, ac./(f)

<= there exists fe A such that ./ a =./(f).

(@)= (c):
a¢ U pep@ P < if EcD(a), then a¢ ), p for any subset E of Spec4
—if ac UpeE p, then E¢ D(a) for any subset E of Spec A4
<= if ac(, P, then there exists pe E such that acp
for any subset E of SpecA .

(a) <> (d): Since D(a) is an open set, the proof is clear. Q.E.D.
For a ring 4, we introduce the following conditions (I.1), (I.2), (I.1)’ and (1.2).
(I.1) For any ideal a of 4, there exists f€ 4 such that \/a =,/f).
(1.2) For any p eSpecA, there exists fe A4 such that p=\/(_/7).

.1y For any ideal a of 4 and any subset E of Specd, if ac| ), gp’, then there
exists p’ € E such that acyp’.
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(I.2) For any peSpecA and any subset E of SpecA if pc U g P’, then there exists
p’eE such that pcyp’.

ProPoSITION 1. For a ring A, the conditions (S.1), (8.2), (T.1), (T.2), (I.1), (1.2),
(1.1Y and (1.2) are all equivalent.

ProoF. By Lemma 1, we have that (T.1) <> (I.1) <> (1.1) and (T.2) = (1.2) < (1.2)'.

Next we shall prove that (I.1)’ <> (1.2)". It is sufficient to prove that (I.2)' = (I.1)".
Since a N Sg=¢, there exists p e Spec A(E) such that acpc UP,E g P’, By assumption,
there exists p’e€ E such that acpcyp’.

Finally we shall prove that (T.1)<>(S.1)<>(S.2). It is sufficient to prove that
(S.2) = (I.1). Therefore, we shall prove that if 4 does not satisfy the condition (I.1),
then A does not satisfy the condition (S.2). We can assume that A4 satisfies the condition
(S.3). By Lemma 1, 4 does not satisfy the condition (I.1) if and only if there exists an
ideal a of A4 such that ac UpeD o P- Here we fix such an ideal a of 4 and we put
U=D(a). Then we shall prove a(U)#a(U). From ac Upevp, we obtain a(U) & A(U)
On the other hand we have a,= 4, for any p € U. Since d is a sheaf, we obtain a(U) = A(D).
From A(U)=A(U), we have a(U);éa(U) Therefore A4 does not satisfy the condition
(8.2). Q.E.D.

Then the proof of Theorem 1 is easy from Proposition 1 and [5], Lemma 8.

ExAaMPLE 1. Letk be a field and ¢,, ¢,, * - - indeterminates over k. We put 4,=k%,
Ai=A;_ 1 +1(0QA;_)I[t;]1]1(=1),and A= )2, 4;. Then A is a valuation ring of infinite
dimension and every non-zero prime is of finite depth, so SpecA4 is a noetherian
topological space. By Fact 1, A satisfies the condition (S.1).

The following lemma is needed in section 3.

LeMMA 2. Let A, and A, be integral rings such that dimA, <1, A,cA, and
Spec A, — Spec A, is injective. If A, satisfies the condition (S.1), then A, satisfies the
condition (S.1).

ProOOF. For any BeSpecA4,, we put p=P A4, eSpecA4,. Since A4, satisfies the
condition (I.2), there exists f€ 4, such that p=./(f) in 4,. Since SpecA, - Spec4, is
injective and dim4, <1, B=,/(f) in 4,. Therefore 4, satisfies the condition (I.2), and
hence (S.1). Q.E.D.

2. In this section we shall prove Theorem 2.

LeEMMA 3. Let K be an algebraic number field, B the ring of integers of K and A
a subring of B with quotient field K.
(i) Then A is of finite index n=(B : A).
(ii) If p is a prime number which dose not divide the index n=(B: A) and p is a
prime ideal of A which contains p, then there exists fe€ A such that p=\/m.
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ProoF. (i) is well-known.

(i) Take any P eSpecB which contains p. Then there exists a positive integer A
such that P"=(g) in B. Since p dose not divide n, g is a unit in B/(n). Then there exists.
a positive integer / such that g'—1e(n) in B. Therefore f=g'e 4 and p=./(f).

Q.E.D.

Proor oF THEOREM 2. We shall prove that A4 satisfies the condition (I.2). Let
(p)=Z n p for any peSpecA4. By Lemma 3, we can assume p divides n. If the prime
ideal (p) dose not split in B, where B is the ring of integers of QA, then p is a unique
prime ideal of 4 which contains (p). Therefore p=./(p).

Next we assume (p) splits in B. Then (p)=(p, 2)(p, a') in B, where N(«)=aa’=pm
and (p, m)=1. There exists an intermediate module M of B/A such that (B: M)=p.
Then we shall prove (p, ®) n M =(p, a’) n M. Since (p) splits in B, we have a¢ M. Let
(p,®) " M>y=ap+ba. Then p|b. If put b=pb,, then

my =amp +bam=amp +b,oa'«
=amp+b,(ca+d)a’=(am+b,cm)p+bda’,
where a?2=ca+d. Since (p,m)=1, ye(p,a’)n M. Therefore (p,0)nA=(p,a’)n A

and p=./(p). Q.E.D.
ExampLE 2. Let m,, ---,m; be square free integers such that (m;,m;)=1 for

any i#j. Then A=2Z[./m,, - - -, Jm,] satisfies the condition (S.1).

Proor. We shall prove that A4 satisfies the condition (I.2). First we shall compute
the index (B : A), where B is the ring of integers of QA. Let p be an odd prime which
divides m;m, - - -m,. Since the 2° elements l,\/rn—l, e mumy, o, Jmim, - - -mg, We
put a,, - -, o,s, form a Z-basis of A4, the p-part of the discriminant of 4 is p>**”". On
the other hand, the group of Dirichlet characters associated to K=Q(/my, - -, \/m,)
is generated by {Xm,> " "> Xm.}> Where x,, is a quadratic character with conductor m; or
4m;. Therefore the conductor-discriminant formula says the p-part of discriminant of K
and that of 4 coincide, and hence (B : A)=./d(x,, - -, ®,.)/dx is a power of 2.

Therefore p e SpecA and p> 2 imply p=./(f) for some feA by Lemma 3. Since
\/—nZ- and their conjugates are congruent modulo 2, 4 has only one prime ideal p, which
contains 2. Then p,=./(2). Q.E.D.

3. In this section we shall prove Theorem 3 and consider affine coordinate rings of
singular rational curves.

Let k be a field of characteristic p=0 and k[t] a polynomial ring with variable .
For any non constant polynomial s(z) of k[t], we put

) A=k @ s(t)k[t]=k[t] .
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Then A is a subring of k[t] and k[t] is integral over A. Therefore Speck[t] — Spec A4
is surjective. Moreover for any polynomial f(¢) of k[t], we put

©) S,=f()k[t]1nA.
Then 3, is an ideal of 4.

LEMMA 4. Let f,(t) and f,(t) be irreducible monic polynomials of k[t] Then
@ fiO]s®O=3,,=3,
(i) fl(t)*s(t) S1(O) #5() = 3., #3y,.

Proor. (i) It is sufficient to prove 3, =3, For any g(t)e3,,, we put
gt)=c+s(t)g,(t). Then c=0 from f,(t) | g(t). Therefore g(t)=s(t)g,(t)e 3,
(i) If we assume that 3, =3, then s(t)f,(t)e(fi(t)) in k[t]. Since k[t] is a
principal ideal domain and f(t){s(t), we have f,(f)=f,(¢). This is a contradiction.
Q.E.D.

COROLLARY. Let s(t)=s,(t)- - -5,(t) be the irreducible polynomial decomposition in
k[t]. Then 3;,= - - - =3, =3,. Moreover, the mapping

Speck[t]\{(s1), - - -, (s»)} — Spec 4 \{3,}
is bijective.

The following two lemmas are easy to prove from Corollary of Lemma 4.

LEMMA 5. Let U be an open set of Spec A. If U 3, then there exists g(t)e A such
that U=D(g).

LEMMA 6. Let f1(t), - - -, fu(t) be irreducible polynomials of k[t] such that f;(t) | s(t)
(1=i=m) and U=SpecA\{3;,, - - -, 3;,.}. Then there exists g(t)e A such that U=D(g)
if and only if there exist positive integers 1y, - - -, I, such that [|]- | fi()* € A.

LEMMA 7. Let U be an open set of SpecA. Then we obtain U'=U.

Proor. For any irreducible polynomial f(f) of k[t], we put U,=SpecA \{3,}.
It is sufficient to prove U} r=U;1f f(?) ] s(2), then we obtain U, =D(s)= D(a_), otherwise
since Sfca_gA and dimA4 =1, Sf—a_ Therefore U,—Uf Q.E.D.

COROLLARY. For a ring A=k ® s(t)k[t], all the conditions (S.1), (S.2) and (S.3)
are equivalent.

ProoF oF THEOREM 3. From Proposition 1, Lemmas 5, 6 and Corollary of Lemma
7, A satisfies the conditions (S.1), (S.2), (S.3) < for any irreducible polynomial f(z)ek[t]
such that f(¢) { s(¢), there exists a positive integer n such that f(¢)"e 4.

First we suppose that m=1 and put s(¢)=(t—a,)!, e, =2. By the statement, we
consider only two cases for the characteristic of k:

(i p=0. We put f(t)=t—c for some cek\{a,}. Since (f(?)") =n(t—c)"" ', we
have (f")(«;) #0 for any positive integer n. Hence f(¢)"¢ 4 for any positive integer .
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Therefore A does not satisfy the condition (S.3).
(i) p#0. Let e, =p%, where (p, e)=1. Then af” ek because

s@)=(—a )P =" —al) =1t —eal t?Fc "Vt ... +(—ay)ek[t].

Here for any polynomial f(¢t)ek[t], we put f(t)=f(a;)+(t—a,)g(¢) where g(t)ek[t].
Then f(t)"" = f(a,)"" +(t—a,)""g(t)"" for any positive integer n. Since f(a;)”" €k for any
na,ifp"2e,, thens(t) | (f(¢)"" —f(2)"")in k[t] and then f(¢)”" € A. Therefore 4 satisfies
the condition (S.1).

Next we suppose that m=2. For any irreducible polynomial f(¢)€k[t] such that
f@) 1),

Sloy)" -1 — ACH)
S )" NACH)

Hence if f(cx,)/f(«,) is not a root of unity, then f(#)"¢ A for any positive integer n.
Therefore, if there exists ¢ ek such that s(c) #0 and (x; — ¢)/(a;, —¢) is not a root of unity,
then 4 does not satisfy the condition (S.3). Here by the statement, we consider only
three cases for the characteristic and the transcendental degree of k:

(i) p=0. Since the mapping Q\{a,, - -, &} = Q(a;, a,) defined by c+>(a; —
¢)/(e, — ¢) is injective and the set of root of unity in Q(«,, «,) is finite, there exists ce Q
such that s(c) #0 and (&, —¢)/(®, —¢) is not a root of unity. Therefore 4 does not satisfy
the condition (S.3).

(i) p#0 and tr.degg k=0. For any irreducible polynomial f(t)ek[t] such that
f(t) {s(t), there exist a positive integer a such that f(x,)’="--:=f(x,)*=1. Then
f@)yP=1+(—a,) - -(t—a,)g(t) where g(t)ek[t]. Here we put e=max(e,, - - -, e,). Then
f@)YP =14+@—a)?"- - -(t—a,)? g(t)"" for any positive integer n. Therefore if p” = e, then
s(®) | (f(£)*""—1) in k[t]. Hence if p"=e, then f(¢)**"€A. Therefore A satisfies the
condition (S.1).

(i) p#0 and tr.degg k=1. If both «; and a, are algebraic elements over F,
then (a; —¢)/(®, —c¢) is a transcendental element for any transcendental element c. If «,
is an algebraic element and o, a transcendental element, then (a; —c)/(x,—c) is a
transcendental element for any algebraic element c#a,. If both o, and a, are
transcendental elements, then o,/a, or (a; —1)/(x,—1) is a transcendental element.
Therefore A does not satisfy the condition (S.3). Q.E.D.

LEMMA 8. Let A;=k®s()k[t] and A,=k @ s,(t)k[t], where s,(t) and s,(t) are
polynomials of k[t] such that degs,, degs,=2. Then
() AjcA,<s5()|54).
(ii) Suppose that A=A, Then SpecA, —SpecA, is injective if and only if
Jls1(0)=/(s2(2)) in k[1].
(iii) Let A be an intermediate ring of k[t]/A, such that Spec A — Spec A, is injective.
Then U'=U for any open set U of Spec A.

SO)red = f(a)"=f (o) =

is a root of unity .
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ProOOF. (i) We put s,(t)=c+s,(t)g(t). Then s,(z)t=ct+s,(t)g9(t)te A,. Hence
cte A,. Then ¢=0 from degs,2>2. Therefore s,(¢) | 5,(¢).

(i1) The proof is easy from Corollary of Lemma 4.

(iii) The proof is similar to that of Lemma 7. Q.E.D.

COROLLARY. For an intermediate ring A of k[t]/A, such that Spec A — SpecA, is
injective, all the conditions (S.1), (S.2) and (8.3) are equivalent.

In particular, we suppose that s,(t) | s,(¢) and \/(sl(t))=\/(§2(t)) in k[t]. Then for an
intermediate ring A of A,/A,, all the conditions (S.1), (S.2) and (S.3) are equivalent.

PROPOSITION 2. Let Ay and A, be as in Lemma 8 such that s,(t)|s,(t) and
Js1(2))=52(2)) in k[t], and A an intermediate ring of A,/A,. Then

A satisfies the condition (S.1) <= A, satisfies the condition (S.1)
<=> A, satisfies the condition (S.1) .
The proof is easy from Theorem 3, Lemma 2, and Corollary of Lemma 8.

LeEMMA 9. For any monotone increasing sequence of natural number {a;} ;> such
that a,=0, we put A=@ . kt* <k[t] and G={a;|jZz0} =N. Then
(@) A is aring if and only if G is an additively closed set.
(b) Suppose that A is a ring with characteristic 0. For any irreducible polynomials
S1(2), - -, fi(2) of k[t] such that f,(t)#t and any positive integers 1,, - - -, I,
we put f(t)=]]r, fi(®)" and h(t)=> T Lfi)/fi(t). Then

f()eA <= f™0)=0 for any neN\G
<~ K" D0)=0  forany neN\G,
where f"(t) is the n-th derivative of f(t).
(c) If A is a ring and N\G is a non-empty finite set, then
(S.1) <= (S.2) <= (S.3) <> p 0.

Moreover we shall determine open sets U of Spec A such that A(U)=A(U).
(I) U=SpecA or U=¢ = A(U)=A(U).
(D) U¢S, = A\U)=A(U).
(II) For any irreducible polynomials fi(t), - - -, f.(t) of k[t] such that f,(t)#t
(1Zi<m), we put U=SpecA\{3;,, - - -, 3, } where 3, =fi(t)k[t]1 A. Then
AU)=A(U)=

7 A, -, 1,21 such that h" Y0)=0  forany neN\G.

In particular, if f,(t)=t—7y;, then the condition (7) can be replaced by the following
condition (8);
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m

l.
®) N, -, 1,21 suchthat Y, ——=0  forany neN\G.

i=17;

ProoOF. (a) The proof is easy.

(b) It is sufficient to prove that f®(0)=0 for any ne N\G<>h"~Y(0)=0 for any
neN\G. | |

First we shall prove ‘“only if part”. Since fM(¢)=h(¢)f(t) and f(0)#0,
FD(0)=0 <> h(0)=0. Here for any n’ <n such that n’ e N \ G, we assume that 2"~ V(0)=0.
If n+1eN\G, then r+1eN\G or n—reN\G for 0<'r<n. Therefore h”(0)=0 or
£=7(0)=0 for 0<"r <n. Since £®*V(t)=Y"_, ,CAD)f "~ "2), h™(0)=0.

The proof of “if part” is similar to that of “only if part”.

(©) (S.1)<>(S.2)<>(S.3) <> p#0: Obvious from Proposition 2.

Next we shall determine open sets U of Spec A such that A(U)= A(U). It is sufficient
to consider that p=0 and U ¢. By Lemma 8 and [5], Lemma 5, A(U)=A(U) if and
only if U= 0. Since UFC is a finite set, there exists f€ 4 such that U=D(f). Therefore,
A(U)=A(U) if and only if there exists f€ 4 such that U=D(f). From (b), we obtain
(), (1) and (III). Q.E.D.

Next we consider the affine coordinate ring of singular rational curves as applications
of Theorem 3 and Lemma 9.

ExampLE 3. Let A =k[x, y]/(y*+ axy—bx?*—x?3), where a, b€ k, then A is the affine
coordinate ring of the singular Weierstrass curve C: y2+axy= x>+ bx?.

From the k-algebra homomorphism ¢ : k[x, y]— k[t] defined by x+>t2+at—b,
y+—>t3+at?—bt, we obtain 4 =k @ s(t)k[t], where s(t)=t>+at —b. Hence we can apply
Theorem 3. Therefore,

(8.1) = (8.2) <= (8.3) <= p#0 if the singular point is a cusp,
(8.1) = (8.2) <= (8.3) if the singular point is a node .
<> p#0 and k is algebraic over F,

Moreover we shall determine open sets U of SpecA such that 4A(U)=A(U). Let
s(t)=(t—o;)(t —a,) be the irreducible polynomial decomposition in k[¢].
(I U=SpecA or U=¢ = A(U)=A(U).
A U¢S, = A(U)=A).
(IIT) For any irreducible polynomials f(¢), - - -, f(t) of k[t] such that f;(z) | s(¢)
(1<i<m), we put U=SpecA\{S,,, -, 3,,}. Then A(V)=A(U)<

©) {3117 -+, 1,21 such that H?:lfi(al)l"Gk, H?:l Lifiey)/fie)=0 if a;=a,,
Ay, -, 1,21 such that []7, file)'=]]r, filer)€k if o, #a,.

In particular, if k is an algebraically closed field, then by putting
f{t)=t—1y,, the condition (9) can be replaced by the following condition (10);
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(10) { o, -, l,=1suchthat ) [ [/(a; —y)=0 if a;=a,,
311, Tty l Z 1 Such thatl_[ =1 ((al 'yi)/(az—’}’,-))"=1 if oy #az .

ExampLE 4. Let A=k[x,y, z]/(x®—yz, x2y—z2, y?—xz), then A4 is the affine
coordinate ring of the singular rational curve C: x> —yz=0, x2y—2z2=0, y?> —xz=0.

From the k-algebra homomorphism ¢ : k[x, y, zZ] — k[t] defined by x+> 3, y s ¢4,
z> 13, we obtain 4=k @ t3k[t]. Hence we can apply Lemma 9. Therefore,

(S.1) <= (S.2) <= (S.3) <> p#0.

Moreover we shall determine open sets U of SpecA such that A(U)=A4(U).
(I) U=SpecA or U=¢ = A(U)=A(U).
A U¢3, = AU)=A4(U).
(IIT) For any irreducible polynomials f;(z), - - -, f,.(t) of k[t] such that f(t)#¢
(1<i<m), we put U=SpecA\{3,,, - - *, 3,,.}. Then 4(U)=A(U)<

(11) i, -+, 1,=1 such that A0)=h1)0)=0.

In particular, if k& is an algebraically closed field, then by putting
fi(t)=t—y;, the condition (11) can be replaced by the following condition (12);

£=0.
197

ExAMPLE 5. Let A= k[x y]/(x —»3%), then A is the affine coordinate ring of the
singular rational curve C: y3=x%.

From the k-algebra homomorphism ¢: k[x, y]—k[t] defined by x> 13,
y—t* we obtain A=k ® 3%k D t*k ® t°k[t]. Hence we can apply Lemma 9. There-
fore,

m l m
(12) 3, -+, 1,21 such that Z - L3
i= ‘y =

i

(8.1) = (8.2) <= (8.3) <= p+#0.

Moreover we shall determine open sets U of SpecA such that A(U)=A(U).
(I) U=SpecA or U=¢ = A(U)=A(U).
D U¢S, = A(U)=A4(U).
(ID) For any irreducible polynomials f;(¢), - - -, f,.(t) of k[t] such that f(¢)#¢
(1<i<m), we put U=SpecA\{3;,, - - -, 3, }. Then A(U)=A(U)<

(13) 31, -+, 1, =1 such that h(0)=A"(0)=h*0)=0.

In particular, if &k is an algebraically closed field, then by putting f;(¢)=¢—7;, the
condition (13) can be replaced by the following condition (14);

(14) 311,...,[mglsuchtha Zl— Zl—z 21—5
i= ’}’ 1=l t=
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