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Abstract. Using a “complex Pisot number” λ ∈ C with |λ| > 1, the numerical expansion
∑∞

j=−k aj /λj of

a complex number, where each digit aj is chosen from some finite set Γ of Z[λ], was established recently as an

analogue of β-numeration system
∑∞

j=−k bj /βj of a real number, where bj ∈ {0, 1, . . . , �β�}.
In this paper, we give a necessary and sufficient condition for a complex number to have eventually or purely

periodic complex Pisot expansion.

1. Introduction

Let β > 1 be a real number. The β-transformation Tβ : [0, 1) → [0, 1) is defined by

Tβ(x) = βx mod 1 .

For every x ∈ [0, 1), we define a sequence {aj }j≥1 of non-negative integers by

aj = �βT
j−1
β x� .

We call the sequence {aj }j≥1 the β-expansion of x. It holds that

x =
∞∑

j=1

aj

βj
.

We say that x has a periodic β-expansion {aj }j≥1 if there exist p ≥ 1 and M ≥ 1 such that
an+p = ap for all n ≥ M. Especially, if an+p = ap for all n ≥ 1, then we say that x has a
purely periodic β-expansion. We set

Per(β) = {x ∈ [0, 1) | x has a periodic β-expansion.}
and

Pur(β) = {x ∈ [0, 1) | x has a purely periodic β-expansion.} .

K. Schmidt has shown the following theorem on the periodic β-expansions.
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THEOREM ([8]). Let β > 1 be a Pisot number. Then, x ∈ Per(β) if and only if
x ∈ Q(β) ∩ [0, 1).

Especially, on the purely periodic β-expansions, S. Ito and H. Rao have shown the fol-
lowing theorem.

THEOREM 1.1 ([3]). Let β > 1 be a Pisot unit. Let ρ : Q(β) → Rd , z0 + z1β +· · ·+

zd−1β
d−1 �→




z0

z1
...

zd−1


. Then the following conditions are mutually equivalent.

(1) x ∈ Pur(β);
(2) x ∈ Q(β) ∩ [0, 1) and ρ(x) ∈ X̂, where X̂ is a natural extension of the β-shift.

This statement is slightly modified from the original one; see [3] for details.
The purpose of this paper is to extend the above theorems to the case of complex Pisot

expansions.
In Section 2, we recall definitions of a complex Pisot number and complex Pisot tiles.

The complex Pisot expansion is introduced in Section 3. One of the results established in this
paper is stated as follows.

THEOREM 3.1. Let λ be a complex Pisot unit. Assume that the companion matrix of
the minimal polynomial for λ has a complex Pisot numeration set X. Then it holds that

Per(λ) = Q(λ) ∩ φe(X \ N) ,

where φe is a canonical linear map: Pe → C.

(A definition of the set N can be found in Section 3.)
In order to characterize purely periodic points of complex Pisot expansions, we introduce

the sofic cover of a complex Pisot numeration system and its natural extension X̂λ in Section 4.
By using a construction theorem of Markov partitions for toral automorphisms developed

by [1] and [5, 6], we obtain the other result of this paper:

THEOREM 5.2. The following conditions are mutually equivalent.
(1) z ∈ Pur(λ);
(2) z ∈ Q(λ) ∩ φe(X̂λ \ N ′) and ρ(z) ∈ X̂λ, where X̂λ is a natural extension of the

Pisot numeration system.

2. Basic concepts

We define a complex counterpart of the so-called β-expansion.

Let P(X) = Xd − p1X
d−1 − · · · − pd−1X − pd, be an irreducible polynomial, where

pi ∈ Z.
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DEFINITION 2.1. A complex number λ is called a complex Pisot number if λ is an
algebraic number which is a root of the equation P(X) = 0 and, in addition, roots λ =
λ1, λ̄ = λ2, λ3, . . . , λd of P(X) = 0 satisfy the inequalities |λ| = |λ̄| > 1 > |λi |, 3 ≤ i ≤ d.

A complex number λ is called a complex Pisot unit if λ is an complex Pisot number and an
algebraic unit.

For the complex Pisot number λ with the minimal polynomial P(X), set

Aλ =




0 0 . . . 0 pd

1 0 . . . 0 pd−1

0 1 . . . 0 pd−2
...

...
...

0 0 . . . 1 p1


 .

We call the matrix Aλ the companion matrix of the minimal polynomial P(X).
We regard Aλ as a linear transformation on the Rd , which maps each x ∈ Rd to Aλx.

There exist an Aλ-invariant expanding eigenspace Pe corresponding to λ, and contracting
eigenspace Pc corresponding to other complex conjugate roots. Then Rd is decomposed as

Rd = Pe ⊕ Pc. Since λ is a complex Pisot number, dimPe = 2.
Let πe( resp. πc) be the projection from Rd to the eigenspace Pe(resp. Pc). Then it is easy to
see that

Aλ ◦ πe = πe ◦ Aλ and Aλ ◦ πc = πc ◦ Aλ .

Let us consider the linear action Aλ on the linear subspacePe. Denote by µ the Lebesgue
measure on Rd , and by µe the Lebesgue measure on Pe.

DEFINITION 2.2. We say that the companion matrix Aλ has a complex Pisot numer-
ation set X = ∪j∈J Xj if there exist a finite index set J , a family T = {Xj }j∈J of compact

subsets of Pe, a set D = {d(j)

1 , d
(j)

2 , . . . , d
(j)

lj
}j∈J of d-dimensional integral vectors, and a

subset W = {W(j)

1 ,W
(j)

2 , . . . ,W
(j)
lj

}j∈J of J , such that

1. int Xj = Xj ,µe(Xj ) > 0 and µe(∂Xj ) = 0 for all j ∈ J ;
2. AλXj =⋃1≤k≤lj

(πed
(j)

k + X
W

(j)
k

) (disjoint) for all j ∈ J ;
3. X =⋃j∈J Xj (disjoint),

where “
⋃

j∈J Xj (disjoint)” means that int(Xj ) ∩ int(Xj ′) = ∅ if j �= j ′.

There are many matrices which have complex Pisot numeration sets. We present two
simple examples here.

EXAMPLE 2.1 (Rauzy Fractal [2], [7]). Let λ be a complex Pisot number whose min-

imal polynomial is P(X) = X3 + X2 + X − 1. We have that λ = −0.7718 + 1.1151i, λ2 =
−0.7718 − 1.1151i, and λ3 = 0.5436.



520 MASAKI HAMA AND SHUNJI ITO

FIGURE 1

The companion matrix Aλ of λ is given by Aλ =

 0 0 1

1 0 −1
0 1 −1


 and λ1, λ2, and λ3 satisfy

|λ1| = |λ2| > 1 > λ3 > 0. The configurations of the roots are illustrated by Figure 1.
In this case, it is known by [2] that there exist a finite index set J = {2 ∧ 3, 3 ∧ 1, 1 ∧ 2},

and a family T = {X2∧3,X3∧1,X1∧2} of compact subsets of Pe, which is given by

X1∧2 := lim
n→∞ A−n

λ πeE
n
2 (σ ) (e3, 1 ∧ 2) ;

X3∧1 := lim
n→∞ A−n

λ πeE
n
2 (σ ) (e2, 3 ∧ 1) ;

X2∧3 := lim
n→∞ A−n

λ πeE
n
2 (σ ) (e1, 2 ∧ 3) ,

(see [2] for the definitions of E2 (σ )n and i ∧ j ).

We proved that the so-called Tile condition int Xj = Xj is valid for all j ∈ J . In
particular, T satisfies that

AλX1∧2 = πe(−e2 − e3) + X2∧3 ;
AλX3∧1 = X1∧2 ∪ (πe(−e2) + X2∧3) ;
AλX2∧3 = X2∧3 ∪ X3∧1 ,

(see Figure 2).

In other words, a set D = {d(j)
1 , d

(j)
2 , . . . , d

(j)
lj

}j∈J of d-dimensional integral vectors

and a subset W = {W(j)

1 ,W
(j)

2 , . . . ,W
(j)

lj
}j∈J of J are given by

d
(1∧2)
1 = −e2 − e3 ; W

(1∧2)
1 = 2 ∧ 3 ;

d
(3∧1)
1 = 0 ; W

(3∧1)
1 = 1 ∧ 2 ;

d
(3∧1)
2 = −e2 ; W

(3∧1)
2 = 2 ∧ 3 ;

d
(2∧3)
1 = 0 ; W

(2∧3)
1 = 2 ∧ 3 ;

d
(2∧3)
2 = 0 ; W

(2∧3)
2 = 3 ∧ 1 .

Therefore, X = ∪i∈J Xi is a complex Pisot numeration set.



COMPLEX PISOT EXPANSIONS 521

FIGURE 2

FIGURE 3

EXAMPLE 2.2 ([2]). Let λ be a complex Pisot number whose minimal polynomial is

P(X) = X4 − X3 + 1. We have that λ = 1.0189 + 0.6026i, λ2 = 1.0189 − 0.6026i, λ3 =
−0.5189 + 0.6666i, and λ4 = −0.5189 − 0.6666i.

The companion matrix Aλ of λ is given by Aλ =




0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 1


 and λ1, λ2, λ3, and λ4

satisfy |λ1| = |λ2| > 1 > |λ3| = |λ4| > 0. The configurations of the roots are illustrated by
Figure 3.

In this case, it is known by [2] that there exist a finite index set

J = {1 ∧ 2, 1 ∧ 3, 1 ∧ 4, 2 ∧ 3, 2 ∧ 4, 3 ∧ 4}
and a family T = {Xj∧k | j ∧ k ∈ J } which is given by

X1∧2 := lim
n→∞ A−n

λ πeE2 (σ )n (−e3 − e1 − e2, 1 ∧ 2) ;
X1∧3 := lim

n→∞ A−n
λ πeE2 (σ )n (e4 − e1 − e3, 1 ∧ 3) ;

X1∧4 := lim
n→∞ A−n

λ πeE2 (σ )n (−e3 − e1, 1 ∧ 4) ;
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X2∧3 := lim
n→∞ A−n

λ πeE2 (σ )n (e4 − e1 − e2 − e3, 2 ∧ 3) ;
X2∧4 := lim

n→∞ A−n
λ πeE2 (σ )n (−e3 − e1 − e2, 2 ∧ 4) ;

X3∧4 := lim
n→∞ A−n

λ πeE2 (σ )n (−e3, 3 ∧ 4) ,

(see [2] for the definitions of E2 (σ )n and i ∧ j ).

We proved that int Xj = Xj for all j ∈ J . In particular, T satisfies that

AλX1∧2 = X2∧3 + πe(−2e4 + e1)

AλX1∧3 = X2∧4 + πee3

AλX1∧4 = (X2∧4 + πe(e3 + e1 − e4)) ∪ (X1∧2 + πee3)

AλX2∧3 = X3∧4 + πe(e1 + e2)

AλX2∧4 = (X3∧4 + πe(−e2 − e4)) ∪ (X1∧3 + πe(−e2 − e4))

AλX3∧4 = X1∧4 + πee3

(see Figure 4).

In other words, a set D = {dj

1 , d
j

2 , . . . , d
j
lj
}j∈J of d-dimensional integral vectors and a

subset W = {W(j)
1 ,W

(j)
2 , . . . ,W

(j)
lj

}j∈J of J are given by

d
(1∧2)
1 = −2e4 + e1 ; W

(1∧2)
1 = 2 ∧ 3 ;

d
(1∧3)
1 = e3 ; W

(1∧3)
1 = 2 ∧ 4 ;

d
(1∧4)
1 = e3 + e1 − e4 ; W

(1∧4)
1 = 2 ∧ 4 ;

d
(1∧4)
2 = e3 ; W

(1∧4)
2 = 1 ∧ 2 ;

d
(2∧3)
1 = e1 + e2 ; W

(2∧3)
1 = 3 ∧ 4 ;

d
(2∧4)
1 = −e2 − e4 ; W

(2∧4)
1 = 3 ∧ 4 ;

d
(2∧4)
2 = −e2 − e4 ; W

(2∧4)
2 = 1 ∧ 3 ;

d
(3∧4)
1 = e3 ; W

(3∧4)
1 = 1 ∧ 4 ;

FIGURE 4
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Therefore, X = ∪i∈J Xi is a complex Pisot numeration set. Especially, we see that 0 ∈ int X.

Hence we have that Q(λ) ∩ φe(X̂λ \ N ′) �= ∅.

3. Complex Pisot expansion

Let Y denote the set ∪N
j=1∂Xj . We define an expanding transformation Ā : X\Y → X\Y

by

Āz = Aλz − πed
(j)

k if z ∈ int Xj and Aλz ∈ (πed
(j)

k + int X
W

(j)
k

)

and define iterations Ān of Ā by

Ān(z) = AλĀ
n−1(z) − πed

(jn)

k (n ≥ 1)

if

Ān−1(z) ∈ int Xjn−1 and AλĀ
n−1(z) ∈

(
πed

(jn−1)

kn−1
+ int X

W
(jn−1)

kn−1

)
.

Note that the iteration of the map Ā is well-defined on the set X \ N , where

N = {z ∈ X | there exists n ∈ N such that Ān−1(z) ∈ Y
}
.

We consider the points in X whose orbits are disjoint from the boundary of any of the sets

{Xj }Nj=1.

Since µe(∂Xj ) = 0 (j ∈ J ) and A is a linear transformation, we can define iterations of

the expanding map Ā for µe-a.e. z ∈ X.

Thus, for µe-a.e. z ∈ X, we have the infinite sequence d = (d
(j0)
k0

, d
(j1)
k1

, . . . ,

d
(jn−1)

kn−1
, . . . ) ∈ (Zd)N.

DEFINITION 3.1. We call the sequence d the digit sequence of z ∈ X. We obtain the
following formal series

z =
∞∑

n=1

A−n
λ πed

(jn−1)

kn−1
.

Therefore, we can define the formal series for µe-a.e. z ∈ X. Moreover, there is a unique
formal series for any given z ∈ X \ N .

Let u1 (resp.u2) be an eigenvector corresponding to λ (resp. λ̄), i.e.

Aλu1 = λu1 (resp. Aλu2 = λ̄u2) .

Now, we change a basis {u1,u2} of Pe to another basis {v1, v2} by the transition matrix(
1 1
i −i

)
.
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Actually, v1 = (u1 + u2)/2 and v2 = (u2 − u1)/2i. Then {v1, v2} satisfies that

Aλv1 = av1 + bv2 ;
Aλv2 = bv1 − av2 ,

where λ = a + bi. Therefore, there exists a linear map φe : Pe → C satisfying
1. φe(Aλx) = λφe(x) for all x ∈ Pe = L(v1, v2);
2. φe(v1) = 1;
3. φe(v2) = i,

where L(v,w) means a linear span of the vectors {v,w}.
Let λ be a complex Pisot number. Throughout the remainder of this paper, we assume

that the companion matrix of the minimal polynomial for λ has a complex Pisot numeration
set.

For any z ∈ φe(X \ N), we can define the digit sequence d = (d
(j0)

k0
, d

(j1)

k1
, . . . ,

d
(jn−1)

kn−1
, . . . ). Let an = φe(πed

(jn−1)

kn−1
). Since Aλ is the companion matrix, πed

(jn−1)

kn−1
belongs

to Z[λ]. Therefore an also belongs to Z[λ]. We define a map T : φe(X \ N) → φe(X \ N) by

T (z) = λz − a1 ,

and iterations T n of the map T by setting for z ∈ φe(X \ N),

T n(z) = λT n−1(z) − an (n ≥ 1) .

Notice that the expanding map T and its iterations are well-defined for µe-a.e. z ∈ φe(X).

DEFINITION 3.2. We define the complex Pisot expansion:

z =
∞∑

n=1

an

λn
.

The complex Pisot expansion is well-defined for µe-a.e. z ∈ φe(X). The complex Pisot
expansion of any z ∈ φe(X \ N) is unique.

DEFINITION 3.3. We say that a complex number z ∈ φe(X\N) has a periodic complex
Pisot expansion if there exist integers p,N ≥ 1 such that an+p = an for every integer n ≥ N .
Let us denote by Per(λ) the set of points in φe(X \ N) which have periodic complex Pisot
expansions.

We say that a complex number z ∈ φe(X \ N) has a purely periodic complex Pisot
expansion if there exists an integer p ≥ 1 such that an+p = an for every integer n ≥ 1. Let
us denote by Pur(λ) the set of points in φe(X \ N) which have purely periodic complex Pisot
expansions.

One of our main results is stated as follows.
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THEOREM 3.1. Let λ be a complex Pisot unit. Assume that the companion matrix of
the minimal polynomial for λ has a complex Pisot numeration set X. Then it holds that

Per(λ) = Q(λ) ∩ φe(X \ N) .

This is the complex Pisot version of the K. Schmidt’s theorem, and the proof of the
theorem can be given by using essentially the same idea.

To prove Theorem 3.1, we need a few definitions and lemmas.
We designate the conjugate roots of λ as follows:

λ = λ1, λ2 = λ̄, λ3, λ4 = λ̄3, . . . , λ2s−1, λ2s = λ̄2s−1, λ̃1 = λ2s+1, . . . , λ̃t = λ2s+t = λd ,

where λk ∈ C (k = 1, . . . , s) and λ̃k ∈ R (k = 1, . . . , t).
Also, let uk(resp. ũk) be an eigenvector of the matrix A corresponding to the eigenvalue

λk(resp. λ̃k). Define real vectors {vk}2s+t
k=1 by

1. v2k−1 = (u2k−1 + u2k)/2 (k = 1, 2, . . . , s).

2. v2k = (u2k − u2k−1)/2i (k = 1, 2, . . . , s).

3. v2s+k = u2s+k (k = 1, 2, . . . , t).

Note that

Rd =
s∑

k=1

⊕L(v2k−1, v2k)
⊕ t∑

k=1

⊕L(v2k+t ). (1)

Let φ : Rd → Cs × Rt

1. φ(L(v2k−1, v2k)) � C (k = 1, 2, . . . , s), i.e., φ(v2k−1) = e2k−1 and φ(v2k) = e2k.

2. φ(L(v2s+k)) � R (k = 1, 2, . . . , t), i.e. φ(v2s+k) = e2s+k.
Actually,

φ(v1, v2, . . . , v2s−1, v2s, v2s+1, . . . , vd) =




0 ad

1 0 O ad−1

0 1 0 ad−2

0
. . .

. . .
...

. . .
. . .

. . .
...

. . .
. . . 0 a2

O 0 1 a1




. (2)

By using the direct sum decomposition (1), we obtain a unique representation of z ∈ Rd :

z =
s∑

k=1

(z2k−1v2k−1 + z2kv2k) +
t∑

k=1

z2s+kv2s+k ,

where {zk}2s+t
k=1 ⊂ C.
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Let us define maps {φck }2s+t
k=2 by

φck (z) =
{

z2k−1v2k−1 + z2kv2k ∈ L(v2k−1, v2k) (k = 2, 3, . . . , s) ;
zkvk ∈ L(vk) (k = 2s + 1, . . . , 2s + t) .

Notice that φe = φ|L(v1,v2), and

φck (z) =
{

φ|L(v2k−1,v2k) (k = 2, 3, . . . , s) ;
φ|L(vk) (k = 2s + 1, . . . , 2s + t) .

LEMMA 3.1. Let φck be as above. Then

φck (A(z)) = λkφck (z)

for k = 2, 3, . . . , s, 2s + 1, . . . , 2s + t .

PROOF. This lemma is trivial in the case k ∈ {2s+1, . . . , 2s+ t}. We consider the case
k ∈ {2, 3, . . . , s}. Let z = z1v2k−1 + z2v2k ∈ L(v2k−1, v2k) and λk = ak + bki (ak, bk ∈ R).

It follows that

A(z) = A(z1v2k−1 + z2v2k)

= A(v2k−1, v2k)

(
z1

z2

)

= (av2k−1 − bv2k, bv2k−1 − av2k)

(
x1

x2

)

= (v2k−1, v2k)

(
ak bk

bk −ak

)(
z1

z2

)

= λk(v2k−1, v2k)

(
z1

z2

)
= λkz .

Since A(z) ∈ L(v2k−1, v2k), it follows that φck (Az) = λkz for each k ∈ {2, 3, . . . , s}. �

Since {1, λ, λ2, . . . , λd−1} is a basis for the field Q(λ), we can define a map ρ : Q(λ) →
Qd by

ρ(z0 + z1λ + · · · zd−1λ
d−1) =




z0

z1
...

zd−1


 .

We call the map ρ the canonical map. It is obvious that for any z ∈ Q(λ),

ρ(λz) = Aρ(z) (mod Zd ) .

Now we need a lemma.
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LEMMA 3.2. Let z ∈ Q(λ) be represented in the form

z = 1

q

d−1∑
i=0

piλ
i , pi, q ∈ Z, q > 0 ,

where q is the least integer such that qz ∈ Z[λ]. Let zn ∈ Q(λ) be given by

zn = λn

(
z −

n∑
k=1

ak

λk

)
, (3)

where {ak}∞k=1 is the complex Pisot expansion of z. Then for every integer n ≥ 0, there exists

a unique element (r
(n)
1 , . . . , r

(n)
d ) = r (n) ∈ Zd with

zn = 1

q

d∑
k=1

r
(n)
k λ−k .

PROOF. We prove this lemma by the induction argument.

If n = 0, the lemma is true because {1, λ−1, . . . , λ−d+1} is a basis of the field Q(λ).
Assume that the lemma is true when n = j . There exists a unique element r(j) =

(r
(j)

1 , . . . , r
(j)

d ) ∈ Zd such that

zj = 1

q

d∑
k=1

r
(j)

k λ−k .

It follows from the definition that

zj+1 = λj+1


z −

j+1∑
k=1

ak

λk


 = λzj − aj+1 .

Since ak belongs to the ring Z[λ], zj+1 belongs to the field Q(λ). Therefore, the lemma

follows from the fact that {1, λ−1, . . . , λ−d+1} is a basis for the field Q(λ). �

Let z ∈ Q(λ). Since {1, λ, . . . , λd−1} is a basis for Q(λ), there exists a polynomial

Pz(X) = z1 + z2X + · · · + zd−1X
d−1 (zi ∈ Q) satisfying z = Pz(λ). We define maps

ζj : Q(λ) → Q(λj ) (j = 1, . . . , 2s, 2s + 1, . . . , 2s + t) by

ζj (z) = Pz(λj ) ,

and define a map

ζ : Q(λ) → Q(λ3) × Q(λ5) × · · · × Q(λ2s−1) × Q(λ2s+1) × Q(λ2s+2) × · · · × Q(λ2s+t )

by

ζ(z) = (ζ3(z), . . . , ζ2s−1(z), ζ2s+1(z), ζ2s+2(z), . . . , ζ2s+t (z)) .
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PROOF OF THEOREM 3.1. Let z ∈ Q(λ) ∩ φe(X \ N) be arbitrary. Let zn be as in
Lemma 3.2 and write

z = 1

q

d−1∑
i=0

piλ
i , pi, q ∈ Z, q > 0 ;

ζi(zn) = 1

q

d∑
k=1

r
(n)
k λ−k

i , n ≥ 1 (i = 1, . . . , d) .

Since z ∈ Q(λ) ∩ φe(X \ N), we have

|zn| = |ζ1(zn)| = |ζ2(zn)| < ||φe(X)|| < +∞
for all n ≥ 1.

Define K and η by

K = max{|ζe(πe(d
(j)
k ))|, |ζcj (πcj (d

(j)
k ))| | d

(j)
k ∈ D, 1 ≤ j ≤ d} ;

η = max
i=3,... ,d

|λi | < 1 .

Then the equation (2) induces the inequalities

|ζi(zn)| =
∣∣∣∣∣λn

i

(
1

q

d−1∑
k=0

piλ
k
i −

n∑
l=0

ζci (d
(jl)
kl

)λ−l
i

)∣∣∣∣∣ ≤ 1

q

d−1∑
k=0

|pi |ηn+k + K

n∑
k=0

ηk < +∞

for every i = 3, . . . , d.

Since

Vn = q




ζ1(zn)
...

ζd(zn)


 =



λ−1
1 λ−2

1 . . . λ−d
1

...
...

...
...

λ−1
d λ−2

d . . . λ−d
d






r
(1)
n

...

r
(d)
n


 (4)

and |ζi(z
n)| < ||φe(X)|| < +∞ (1 ≤ i ≤ d), the vectors {Vn | n ≥ 0} have bounded

norms. Since the matrix in (3) is nonsingular, the vectors {rn | n ≥ 0} have bounded norms.
Therefore we have that rm+n = rn for some m,n ≥ 1, and hence zm+n = zn. �

4. Symbolic dynamics of complex Pisot expansions

Let us define a directed graph G = (V ,E, i, t) from a complex Pisot numeration system
by

1. V = J ;

2. E = {(j
k

) | j ∈ V, 1 ≤ k ≤ lj
}
;

3. i : E → V,
(
j
k

) �→ j ;

4. t : E → V,
(
j
k

) �→ W
(j)
k .
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Note that the graph G is uniquely determined.

EXAMPLE 4.1 (Rauzy Fractal [7]). The graph of Example 2.1 is given by Figure 5.

FIGURE 5

EXAMPLE 4.2 ([2]). The graph of Example 2.2 is given by Figure 6.

FIGURE 6

Let us call a symbolic space right-sided (left-sided) if it is one-sided extending to the
right (left, respectively).

DEFINITION 4.1. Let Ω
j+
λ denote the right-sided symbolic space{

(d
(j0)
k0

d
(j1)
k1

. . . )

∣∣∣∣ j1 = j ∈ V, t

(
jp−1

kp−1

)
= jp (p ∈ N)

}
.

Then we denote by Ω+
λ the right-sided symbolic space

⋃
j∈J Ω

j+
λ .

Let us define

X̂
j+
λ =
{ ∞∑

n=1

πeA
−nd

(jn−1)

kn−1

∣∣∣∣ (d(j0)

k0
d

(j1)

k1
. . . ) ∈ Ω

j+
λ

}
,

and

X̂+
λ =
{ ∞∑

n=1

πeA
−nd

(jn−1)

kn−1

∣∣∣∣ (d(j0)
k0

d
(j1)
k1

. . . ) ∈ Ω+
λ

}
.

It is obvious that X̂+
λ =⋃j∈J X̂

j+
λ .
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DEFINITION 4.2. Define ϕ : Ω̂+
λ → X̂+

λ by

ϕ
((

d
(j0)
k0

d
(j1)
k1

. . .
)) = ∞∑

n=1

A−nπed
(jn−1)

kn−1
.

Note that (Ω̂+
λ , σ ) is a sofic cover of (X, Â) and ϕ is a factor map from Ω̂+

λ to X.

PROPOSITION 4.1. ϕ(Ω̂
j+
λ ) = Xj holds for all j ∈ J .

PROOF. It is easy to see that the set
{
ϕ
(
Ω̂

j+
λ

)}
j∈I

is the family of the compact sets

and satisfies the set equation stated in Definition 2.2. On the other hand, we see that Xj\N ⊂
ϕ
(
Ω̂

j+
λ

)
, Xj ⊂ cl

(
γj\N
)

and so Xj ⊂ ϕ
(
Ω̂

j+
λ

)
. Therefore, from the uniqueness of attractors

by the graph-directed iterated function system theorem [4], we have ϕ
(
Ω

(j)
λ

) = Xj . �

Let Ω̂
j−
λ denote the left sided symbolic space{(

. . . d
(j−3)

k−3
d

(j−2)

k−2
d

(j−1)

k−1

) ∣∣∣∣ t
(

j0

k0

)
= j, t

(
j−p

k−p

)
= j−p+1 (p ∈ N)

}
.

Let us define a two sided symbolic space Ω̂λ by

Ω̂λ =
{(

. . . d
(j−2)

k−2
d

(j−1)

k−1
. d

(j0)
k0

d
(j1)
k1

. . .
) ∣∣∣∣ j1 = j ∈ V, t

(
jp

kp

)
= jp+1 (p ∈ Z)

}
.

Let us call Ω̂λ =⋃j∈J Ω̂
j
λ the natural extension of Ω+

λ .

DEFINITION 4.3. Define a set X̂
j−
λ ⊂ Pc by

X̂
j−
λ =
{ ∞∑

n=0

πcA
nd

(jn)
kn

∣∣∣∣ (. . . d(j−2)

k−2
d

(j−1)

k−1
. d

(j0)
k0

d
(j1)
k1

. . .
)

∈ Ω
j−
λ

}
.

Let X̂
j
λ = X̂

j+
λ − X̂

j−
λ ⊂ Rd .

Since {X̂j+
λ }Nj=1 is a complex Pisot numeration set, we have that int X̂i ∩ int X̂j = ∅ (i �=

j). Set X̂λ =⋃j∈J X̂
j
λ .

DEFINITION 4.4. Define ϕ̂ : Ω̂λ → X̂λ by

ϕ̂
(
(. . . d

(j−2)

k−2
d

(j−1)

k−1
. d

(j0)
k0

d
(j1)
k1

. . . )
) = −

∞∑
n=0

Anπcd
(j−n−1)

k−n−1
+

∞∑
n=1

A−nπed
(jn−1)

kn−1
.

PROPOSITION 4.2. Define a map Â on the space X̂ by

Â(x) = Â(x1 − x2) = Ax − d
(j0)
k0

,
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where x = x1 − x2 ∈ X̂
j1
λ (x1 ∈ X̂

j1+
λ , x2 ∈ X̂

j1−
λ ).

Then it follows that

1. ϕ̂
(
Ω̂λ

) = X̂λ;
2. Â ◦ ϕ̂ = ϕ̂ ◦ σ,

where σ is the shift transformation on Ω̂λ.

PROOF. It follows from the definition of the map ϕ̂ that ϕ̂(Ω̂λ) = X̂λ. Let d =
(. . . d

(j−1)

k−1
. d

(j0)
k0

d
(j1)
k1

. . . ) ∈ Ω̂λ. Then we have

ϕ̂(d) = −
∞∑

n=0

Anπcd
(j−n−1)

k−n−1
+

∞∑
n=1

A−nπed
(jn−1)

kn−1
.

On the other hand, we have

Â
(
ϕ̂(d)
)= −

∞∑
n=0

An+1πcd
(j−n−1)

k−n−1
− ϕ(d

(j0)
k0

) + πe(d
(j0)
k0

) +
∞∑

n=2

A−n−1πed
(jn−1)

kn−1

= −
∞∑

n=0

An+1πcd
(j−n−1)

k−n−1
− πc(d

(j0)

k0
) +

∞∑
n=2

A−n+1πed
(jn−1)

kn−1

= −
∞∑

n=−1

An+1πcd
(j−n−1)

k−n−1
+

∞∑
n=2

A−n+1πed
(jn−1)

kn−1

= −
∞∑

n=0

Anπcd
(j−n)

k−n
+

∞∑
n=1

A−nπed
(jn)
kn

= ϕ̂(. . . d
(j−1)

k−1
d

(j0)
k0

. d
(j1)
k1

d
(j2)
k2

. . . )

= ϕ̂(σ (d)) .

�

Note that πe(X̂λ) = X. We set

N ′ =
{
z ∈ X̂λ

∣∣∣∣ there exists n ∈ N such that Ān−1(πe(z)) ∈
N⋃

j=1

∂Xj

}
.

5. Main results

We give below a characterization of purely periodic points of complex Pisot expansions.
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We define a map T̂ : φ(X̂λ) → φ(X̂λ) in the following way. Let x ∈ X̂λ, z = φ(x) =
(z1, z2, . . . , zs , zs+1, . . . , zs+t )

t ∈ φ(X̂λ) ⊂ Cs × Rt , and

T̂ (z) =




λ1 0 . . . 0 0 . . . 0
0 λ3 . . . 0 0 . . . 0
...

...
. . .

...
...

...

0 0 . . . λ2s−1 0 . . . 0
0 0 . . . 0 λ̃1 . . . 0
...

...
...

...
. . .

...

0 0 . . . 0 0 . . . λ̃t







z1

z2
...

zs

zs+1
...

zs+t




−




φe(d)

φc1(d)
...

φcs (d)

φcs+1(d)
...

φcs+t (d)




,

where d = d
(j0)
k0

.

Then we can see that φ ◦ Â = T̂ ◦ φ, that is, the diagram

X̂λ
Â−−→ X̂λ

φ

" φ

"
φ(X̂λ)

T̂−−→ φ(X̂λ)

commutes. Let us define a map ϕ̃ : Ω̂λ → Cs × Rt by

ϕ̃(. . . d
(j−2)

k−2
d

(j−1)

k−1
. d

(j0)

k0
d

(j1)

k1
d

(j2)

k2
. . . )

=

 ∞∑

n=1

φe(πe(d
(jn−1)

kn−1
))

λn
,−

∞∑
n=0

φc3(πc3(d
(jn−1)

−kn−1
))λn

3, . . . ,−
∞∑

n=0

φcd (πcd (d
(jn−1)

−kn−1
))λn

d


 .

Set K̂λ = ϕ̃(Ω̂λ). We then obtain the following theorem.

THEOREM 5.1. Let λ be a complex Pisot unit. Assume that there is a complex Pisot
numeration set X =⋃j∈J Xj .Then the following conditions are mutually equivalent.

(1) z ∈ Pur(λ);
(2) z ∈ Q(λ) ∩ φe(X̂λ \ N ′) and (z, ζ(z)) ∈ K̂λ.

PROOF. (i) Suppose z = 0.a1 . . . ap ∈ Pur(λ), where ai = φe(πe(d
(ji−1)

ki−1
))). Since

ai ∈ Z[λ], z ∈ Q(λ) ∩ φe(X̂λ \ N ′). Therefore, we obtain

z = a1λ
p−1 + · · · + ap−1λ + ap

λp − 1
.

For k ≥ 3, the k-th coordinate of ζ(z) is given by

−(φck (πck (d
(jp−1)

kp−1
)) + φck (πck (d

(jp−2)

kp−2
))λk + · · · + φck (πck (d

(j0)

k0
))λ

p

k )(1 + λ
p

k + λ
2p

k + · · · )
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=
φck (πck (d

(j0)

k0
))λ

p−1
k + · · · + φck (πck (d

(jp−2)

kp−2
))λk + φck (πck (d

(jp−1)

kp−1
))

λ
p
k − 1

= ζk(z) .

Thus we have (z, ζ(z)) ∈ K̂λ.

(ii) Suppose that z ∈ Q(λ)∩φe(X̂λ \N ′) and (z, ζ(z)) ∈ K̂λ. Let b be the least integer
such that bz ∈ Z[λ]. Set

Rb = {(z, ζ(z)) : z ∈ b−1Z[λ] ∩ φe(X̂λ \ N ′)} .

Then Rb is a finite set because φe(X̂λ) is bounded. Notice that T̂ (z, ζ(z)) = (T̂ z, ζ(T̂ (z))).

Since there is a digit d ∈ D such that T̂ z = φe

(
Az − d

(j0)
k0

) ∈ b−1Z[λ] and T̂ (φe(X̂λ)) =
φe(X̂λ), we obtain that T̂ (Rb) ⊆ Rb . For (z, ζ(z)) ∈ Rb, there exists a sequence (w, u) ∈ Ω̂λ

such that ζ̂ (w, u) = (z, ζ(z)).
Let y = λ−1(z + z0). Then ϕ̂ ◦ σ−1(w, u) = (y, ϕ(y)). Therefore (y, ζ(y)) ∈ φe(X)

and T̂ (y, ζ(y)) = (z, ζ(z)). Consequently we can state that T̂ is surjective on Rb. Since λ

is an algebraic unit, we know that y ∈ b−1Z[λ], and hence (y, ζ(y)) ∈ Rb. Since T̂ |Rb
is a

one-to-one map, there exists an integer n such that

(z, ζ(z)) = T̂ n(z, ζ(z)) = (T̂ n(z), ζ(T̂ n(z))) .

Thus we obtain that z = T̂ nz. �

Now we can state the main theorem.

THEOREM 5.2. Let λ be a complex Pisot number. Then the following conditions are
mutually equivalent.

(1) z ∈ Pur(λ);
(2) z ∈ Q(λ) ∩ φe(X̂λ \ N ′) and ρ(z) ∈ X̂λ.

Before proving the main theorem, we shall show the following proposition.

PROPOSITION 5.1. φ−1(K̂λ) = X̂λ holds.

PROOF. It is clear from (2) that

φ−1 = (v1, v2, . . . , vd)




1 0 0 0 . . . 0 0 0
0 i 0 0 . . . 0 0 0
0 0 1 0 . . . 0 0 0
0 0 0 i . . . 0 0 0
...

...
...

...
. . .

...
...

...

0 0 0 0 . . . 1 0 0
0 0 0 0 . . . 0 1 0
0 0 0 0 . . . 0 0 1




−1
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= (v1 − iv2, v3 − iv4, . . . , v2s−1 − iv2s, v2s+1, . . . , vd) .

Therefore, we obtain

φ−1(K̂λ) =
{
φ−1

( ∞∑
n=1

πe(d
(jn−1)

kn−1
)λ−n,−

∞∑
n=0

πc3(d
(j−n+1)

k−n+1
)λn

3, . . . ,−
∞∑

n=0

πd3(d
(j−n+1)

k−n+1
)λn

d

)t

∣∣∣∣ d = (. . . d
(j1)

k−1
. d

(j0)

k0
d

(j1)

k1
. . . ) ∈ Ω̂λ

}

=
{ ∞∑

n=1

πe(d
(jn−1)

kn−1
)λ−n(v1 − iv2) −

∞∑
n=0

πc3(d
(j−n+1)

k−n+1
)λn

3(v3 − iv4) · · ·

−
∞∑

n=0

πd3(d
(j−n+1)

k−n+1
)λn

d(vd )

∣∣∣∣ d = (. . . d
(j−1)

k−1
. d

(j0)
k0

d
(j1)
k1

. . . ) ∈ Ω̂λ

}

=
{ ∞∑

n=1

πe(d
(jn−1)

kn−1
)A−n(v1 − iv2) −

∞∑
n=0

πc3(d
(j−n+1)

k−n+1
)An(v3 − iv4) · · ·

−
∞∑

n=0

πd3(d
(j−n+1)

k−n+1
)An(vd)

∣∣∣∣ d = (. . . d
(j−1)

k−1
. d

(j0)
k0

d
(j1)
k1

. . . ) ∈ Ω̂λ

}

=
{ ∞∑

n=1

A−nπe(d
(jn−1)

kn−1
) −

∞∑
n=0

Anπc3(d
(j−n+1)

k−n+1
) · · · −

∞∑
n=0

Anπd3(d
(j−n+1)

k−n+1
)

∣∣∣∣
d = (. . . d

(j−1)

k−1
. d

(j0)

k0
d

(j1)

k1
. . . ) ∈ Ω̂λ

}

= X̂λ .

�

LEMMA 5.1. Let z ∈ Q(λ). Then

φ−1
(

z

ζ(z)

)
= ρ(z) . (5)

PROOF. We prove the lemma by steps. If z = 1, then it is trivial.
Next we show that if (4) is true for z, then it is also true for λz. We have

φ−1
(

λz

ζ(λz)

)
= φ−1Iλ

(
z

ζ(z)

)

= (λ(v1 − iv2), λ3(v3 − iv4), . . . , λ2s−1(v2s−1 − iv2s),

λ2s+1v2s+1, . . . , λ2s+tv2s+t

) ( z

ζ(z)

)
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= A ((v1 − iv2), (v3 − iv4), . . . , (v2s−1 − iv2s), v2s+1, . . . , v2s+t )

(
z

ζ(z)

)

= Aφ−1
(

z

ζ(z)

)
= Aρ(z)

= ρ(λz) .

Hence (4) holds for z = λk, 0 ≤ k ≤ d − 1. Note that both φ−1 and ζ are linear maps.
Therefore (4) holds for all z ∈ Q(λ). �

PROOF OF THEOREM 5.2. From Proposition 5.1 and Lemma 5.1, we can show that

(z, ζ(z)) ∈ K̂λ ⇔ φ−1
(

z

ζ(z)

)
∈ φ−1(K̂λ) ⇔ ρ(z) ∈ X̂λ.

Hence the main theorem follows from Theorem 5.1. �
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