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Abstract. We prove the existence and uniqueness of mild and classical solutions of a quasilinear integrodif-
ferential equation with nonlocal condition. The results are obtained by using $C_{0}$-semigroup and the Banach fixed
point theorem.

1. Introduction.

The problem of existence of solutions of evolution equations with nonlocal conditions
in Banach space has been studied first by Byszewski [8]. In that paper he has established
the existence and uniqueness of mild, strong and classical solutions of the following nonIocal
Cauchy problem:

$u^{\prime}(t)+Au(t)=f(t, u(t))$ , $t\in(0, a$ ] (1)

$u(0)+g(t_{1}, t_{2}, \cdots , t_{p}, u(t_{1}), \cdots , u(t_{p}))=u0$ (2)

where $0<t_{1}<\cdots<t_{p}\leq a,$ $-A$ is the infinitesimal generator of a $C_{0}$-semigroup in a
Banach space $X,$ $u_{0}\in X$ and $f$ : $[0, a]\times X\rightarrow X,$ $g:[0, a]^{p}\times X^{p}\rightarrow X$ are given functions.
For example, $g(t_{i}, u(t_{j}))$ may be given by

$g(t_{1}, \cdots , t_{p}, u(t_{1}), \cdots , u(t_{p}))=\sum_{i=1}^{p}c_{l}u(t_{j})$

where $c_{i}$ ($i=1,$ $\cdots$ , p) are given constants. In this case (2) contains the measurements at
$t=0,$ $ t_{1}\cdots$ $t_{p}$ , rather than just at $t=0$ . For clarity, let us consider another example. In the
theory of diffusion and heat conduction one can encounter a mathematical model of the form
([9])

$Lu+c(x, t)u=f(x, t)$ $ x\in\Omega$ , $0<t<T$ ,

$u(x, t)=\phi(x, t)$ $ x\in\partial\Omega$ , $0<t<T$ ,

$u(x, 0)+\sum_{k=1}^{N}\beta_{k}(x)u(x, t_{k})=\psi(x)$ $ x\in\Omega$ with $t_{k}\in(0, T$ ] $(k=1, \cdots N)$
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where $\Omega$ is a bounded domain in $R^{n}$ and $L$ is a uniformly parabolic operator with continuous
and bounded coefficients. It represents the diffusion phenomenon of a small amount of gas
in a transparent tube. If there is very little gas at the initial time, the measurement $u(x, 0)$

of the amount of the gas in this instant may be less precise than the measurement $u(x, 0)+$

$\sum_{k=1}^{N}\beta_{k}(x)u(x, t_{k})$ of the sum of the amount of this gas. Let us have one more example $fo1$

hyberbolic equations ([6]). Consider the following partial differential equation

$u_{Xt}(x, t)=F(x, t, u(x, t), u_{X}(x, t), u_{t}(x, t))$ , $(x, t)\in Q$

$u(x, 0)+\sum_{i=1}^{p}h_{i}(x, t_{i})u(x, t_{i})=\phi(x)$ , $x\in[0, a]$

$u(O, t)=\psi(t)$ , $t\in[0, a]$

$\psi(0)+\sum_{i=1}^{p}\psi(t_{i})=\phi(0)$

where $Q=[0, a]\times[0, a],$ $t_{i},$ $i=1,$ $\cdots$ , $p$ are finite numbers such that $0<t_{1}<t_{2}<\cdots<$

$t_{p}\leq a$ and $F,$ $\phi,$ $\psi,$ $h_{i},$ $i=1,$ $\cdots$ , $p$ are given functions with appropriate assumptions. In the
theory of elasticity the sum $u(x, 0)+\sum_{i=1}^{p}h_{i}(x, t_{i})u(x, t_{i})$ is more precise to measurement of
a state of a vibrating system than the only one measurement $u(x, 0)$ of the state of the vibrating
system. The sum may be interpreted as the sum of the $p+1$ measurements of positions of
a vibrating elastic string and the functions $h_{j}(x, t_{i})$ can be interpreted as the properties of
the medium in which the string vibrates. For more comments and references on nonlocal
conditions see [4-9, 11].

Abstract quasilinear evolution equations have been studied by many authors [1, 12-15]

and well applied to partial differential equations. Recently Bahuguna $[2, 3]$ , Oka [16] and
Oka and Tanaka [17] discussed the existence of solutions of quasilinear integrodifferential
equations in Banach spaces. An equation of this type occurs in a nonlinear conservation law
with memory

$u(t, x)+\Psi(u(t, x))_{X}=\int_{0}^{t}b(t-s)\Psi(u(t, x))_{x}ds+f(t, x)$ , $t\in[0, a],$ $x\in R$ (3,

$u(O, x)=\phi(x)$ , $x\in R$ $(4_{J}^{\backslash }$

It is clear that if nonlocal condition (2) is introduced to (3), then it will also have better effecl
than the classical condition $u(O, x)=\phi(x)$ . Therefore, we would like to extend the $result_{\iota}^{\sigma}$

for (1)$-(2)$ to a class of integrodifferential equations in Banach spaces.
The aim of this paper is to prove the existence and uniqueness of the mild and classica

solutions of quasilinear integrodifferential equation with nonlocal conditions of the form:

$u^{\prime}(t)+A(t, u)u(t)=f(t,$ $u(t),$ $\int_{0}^{t}k(t, s, u(s))ds)$ , $t\in[0, a]$ $(5_{0}^{\backslash }$

$u(0)+g(u)=u_{0}$ $(6_{0}^{\backslash }$
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where $A(t, u)$ is the infinitesimal generator of a $C_{0}$ -semigroup in a Banach space $X,$ $u_{0}\in X$ ,
$f$ : $I\times X\times X\rightarrow X,$ $k$ : $\Delta\times X\rightarrow X$ and $g$ : $C(I : X)\rightarrow X$ are given functions.
Here $I=[0, a]$ and $\Delta=\{(t, s) : 0\leq s\leq t\leq a\}$ . Equation (5) represents an abstract
formulation of many kinds of partial integrodifferential equations of hyperbolic type. These
types of equations arise in the study of nonlinear behaviour of elastic strings [10] and in the
theory of viscoelasticity [16]. The results obtained in this paper are generalizations of the
results given by Pazy [18], Kato [13] and Bahuguna [3].

2. Preliminaries.

Let $X$ and $Y$ be two Banach spaces such that $Y$ is densely and continuously embedded
in $X$ . For any Banach space $Z$ the norm of $Z$ is denoted by $\Vert\cdot\Vert$ or $||\cdot\Vert_{z}$ . The space of all
bounded linear operators from $X$ to $Y$ is denoted by $B(X, Y)$ and $B(X, X)$ is written as $B(X)$ .
We recall some definitions and known facts from Pazy [18].

DEFINITION 2.1. Let $S$ be a linear operator in $X$ and let $Y$ be a subspace of $X$ . The
operator $\tilde{S}$ defined by $D(\tilde{S})=\{x\in D(S)\cap Y : Sx\in Y\}$ and $\tilde{S}x=Sx$ for $x\in D(\tilde{S})$ is called
the part of $S$ in Y.

DEFINITION 2.2. Let $B$ be a subset of $X$ and for every $0\leq t\leq a$ and $b\in B$ , let
$A(t, b)$ be the infinitesimal generator of a $C_{0}$ semigroup $S_{t,b}(s),$ $s\geq 0$ , on $X$ . The family of
operators $\{A(t, b)\},$ $(t, b)\in I\times B$ , is stable if there are constants $M\geq 1$ and $\omega$ such that

$\rho(A(t, b))\supset(\omega, \infty)$ for $(t, b)\in I\times B$ ,

$\Vert\prod_{j=1}^{k}R(\lambda : A(t_{j}, b_{j}))\Vert\leq M(\lambda-\omega)^{-k}$

for $\lambda>\omega$ and every finite sequences $0\leq t_{1}\leq t_{2}\leq\cdots\leq t_{k}\leq a,$ $b_{j}\in B,$ $1\leq j\leq k$ . The
stability of $\{A(t, b)\},$ $(t, b)\in I\times B$ implies (see [18]) that

$\Vert\prod_{j=1}^{k}S_{t_{j},b_{j}}(s_{j})\Vert\leq M$ exp $\{\omega\sum_{j=1}^{k}s_{j}\}$ $s_{j}\geq 0$

and any finite sequences $0\leq t_{1}\leq t_{2}\leq\cdots\leq t_{k}\leq a,$ $b_{j}\in B,$ $1\leq j\leq k,$ $k=1,2,$ $\cdots$ .
DEFINITION 2.3. Let $S_{t,b}(s),$ $s\geq 0$ be the $C_{0}$-semigroup generated by $A(t, b),$ $(t, b)\in$

$I\times B$ . A subspace $Y$ of $X$ is called $A(t, b)$ -admissible if $Y$ is invariant subspace of $S_{t,b}(s)$ ,
and the restriction of $S_{t,b}(s)$ to $Y$ is a $C_{0}$ -semigroup in Y.

Let $B\subset X$ be a subset of $X$ such that for every $(t, b)\in I\times B,$ $A(t, b)$ is the infinitesimal
generator of $C_{0}$ semigroup $S_{t,b}(s),$ $s\geq 0$ on $X$ . We make the following assumptions:
(E) The family $\{A(t, b)\},$ $(t, b)\in I\times B$ is stable.
(E) $Y$ is $A(t, b)$ -admissible for $(t, b)\in I\times B$ and the family $\{\tilde{A}(t, b)\},$ $(t, b)\in I\times B$ of

parts $\tilde{A}(t, b)$ of $A(t, b)$ in $Y$ , is stable in Y.
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(E3) For $(t, b)\in I\times B,$ $D(A(t, b))\supset Y,$ $A(t, b)$ is a bounded linear operator from $Y$ to $X$

and $t\rightarrow A(t, b)$ is continuous in the $B(Y, X)$ norm $||\cdot\Vert$ for every $b\in B$ .
(E) There isaconstantL $>0suchthat$

$\Vert A(t, b_{1})-A(t, b_{2})\Vert_{Y\rightarrow X}\leq L\Vert b_{1}-b_{2}\Vert x$

holds for every $b_{1},$ $b_{2}\in B$ and $0\leq t\leq a$ .
Let $B\subset X$ and $\{A(t, b)\},$ $(t, b)\in I\times B$ be a family of operators satisfying the conditions

$(E_{1})-(E_{4})$ . If $u\in C(I : X)$ has values in $B$ then there is a unique evolution system $U(t, s;u)$

$0\leq s\leq t\leq a$ , in $X$ satisfying (see Theorem 5.3.1 and Lemma 6.4.2 in [18] pp. 135
201-202)

(i) $\Vert U(t, s;u)\Vert\leq Me^{\omega(t-s)}$ for $0\leq s\leq t\leq a$

where $M$ and $\omega$ are stability constants.

(ii) $\frac{\partial^{+}}{\partial t}U(t, s;u)w=A(s, u(s))U(t, s;u)w$ for $w\in Y,$ $0\leq s\leq t\leq a$ .

(iii) $\frac{\partial}{\partial s}U(t, s;u)w=-U(t, s;u)A(s, u(s))w$ for $w\in Y,$ $0\leq s\leq t\leq a$ .
(E5) For every $u\in C(I : X)$ satisfying $u(t)\in B$ for $0\leq t\leq a$ , we have

$U(t, s;u)Y\subset Y$ , $0\leq s\leq t\leq a$

and $U(t, s;u)$ is strongly continuous in $Y$ for $0\leq s\leq t\leq a$ .
(E) $Y$ is reflexive.
(E7) For every $(t, b_{1}, b_{2})\in I\times B\times B,$ $f(t, b_{1}, b_{2})\in Y$ .

For a mild solution of (5)$-(6)$ we mean a function $u\in C(I : X)$ with values in $Bane$

$u_{0}\in X$ satisfying the integral equation

$u(t)=U(t, 0;u)u_{0}-U(t, 0;u)g(u)+\int_{0}^{t}U(t, s;u)f(s,$ $u(s),$ $\int_{0}^{s}k(s, \tau, u(\tau))d\tau)ds$ .
(7

A function $u\in C(I : X)$ such that $u(t)\in D(A(t, u(t)))$ for $t\in(0, a$ ], $u\in C^{1}((0, a$ ] : $X^{\cdot}$

and satisfies (5)$-(6)$ in $X$ is called a classical solution of (5)$-(6)$ on $I$ . Further there exists $i$

constant $K>0$ such that for every $u,$ $v\in C(I : X)$ with values in $B$ and every $w\in Y$ wt

have
$\Vert U(t, s;u)w-U(t, s;u)w\Vert\leq K\Vert w\Vert_{Y}\int_{s}^{t}\Vert u(\tau)-v(\tau)\Vert d\tau$ . (8

Further we assume that
(E) $g:C(I : B)\rightarrow X$ is Lipschitz continuous in $X$ and bounded in $Y$ , that is, there exis

constants $G>0$ and $G_{1}>0$ such that

$\Vert g(u)\Vert_{Y}\leq G$ ,

$\Vert g(u)-g(v)\Vert_{X}\leq G_{1}\max_{t\in I}\Vert u(t)-v(t)\Vert_{X}$ .

For the conditions (E9) and $(E_{10})$ let $Z$ be taken as both $X$ and Y.
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(E9) $k$ : $\Delta\times Z\rightarrow Z$ is continuous and there exist constants $K_{1}>0$ and $K_{2}>0$ such that
$\Vert k(t, s, u_{1})-k(t, s, u_{2})\Vert_{z}\leq K_{1}\Vert u_{1}-u_{2}\Vert_{z}$ ,

$K_{2}=\max\{||k(t, s, 0)\Vert_{Z} : (t, s)\in\Delta\}$ .
(E) $f$ : $I\times Z\times Z\rightarrow Z$ is continuous and there exist constants $F_{1}>0$ and $F_{2}>0$ such

that

$\Vert f(t, u_{1}, v_{1})-f(t, u_{2}, v_{2})\Vert_{Z}\leq F_{1}(\Vert u_{1}-v_{1}\Vert_{Z}+\Vert u_{2}-v_{2}\Vert_{z})$ ,

$F_{2}=\max_{t\in I}||f(t, 0,0)||_{Z}$ .
Let us take

$M_{0}=\max\{\Vert U(t, s;u)\Vert_{B(Z)}, 0\leq s\leq t\leq a, u\in B\}$ .
(E) $M_{0}(\Vert u_{0}\Vert_{Y}+G)+M_{0}F_{1}ar+M_{0}F_{2}a+M_{0}F_{1}K_{1}a^{2}r+M_{0}F_{1}K_{2}a^{2}\leq r$ and
$q=Ka\Vert u0\Vert YFK1a^{2}+MFa+Ka(pl\Gamma+F1K1ar+F1K2a+F2)<1$ .
Next we prove the existence of local classical solutions of the quasilinear problem (5)$-(6)$ .

3. Existence Theorem.

THEOREM. Let $u_{0}\in Y$ and let $B=\{u\in X : ||u||_{Y}\leq r\},$ $r>0$ . If the assumptions
$(E1)-(E\iota 1)$ are satisfied, then the quasilinear problem (5)$-(6)$ has a unique classical solution
$u\in C([0, a] ; Y)\cap C^{1}((0, a]$ ; $X$).

PROOF. Let $S$ be a nonempty closed subset of $C([0, a] : X)$ dePned by
$S=$ { $u$ : $u\in C$ ( $[0,$ $a]$ : $X$), $\Vert u(t)\Vert_{Y}\leq r$ for $0\leq t\leq a$ }.

Consider a mapping $P$ on $S$ dePned by

$(Pu)(t)=U(t, 0;u)u_{0}-U(t, 0;u)g(u)+\int_{0}^{t}U(t, s;u)f(s,$ $u(s),$ $\int_{0}^{s}k(s, \tau, u(\tau))d\tau)ds$ .

We claim that $P$ maps $S$ into $S$ . For $u\in S$ , we have
$\Vert Pu(t)\Vert_{Y}$

$=\Vert U(t, 0;u)u_{0}-U(t, 0;u)g(u)$

$+\int_{0}^{t}U(t, s;u)f(s,$ $u(s),$ $\int_{0}^{s_{k(s,\tau,u(\tau))d_{T}}})d_{S}\Vert$

$\leq\Vert U(t, 0;u)u_{0}\Vert+\Vert U(t, 0;u)g(u)\Vert$

$+\int_{0}^{t}\Vert U(t, s;u)f(s,$ $u(s),$ $\int_{0}^{s_{k(s,\tau,u(\tau))d\tau}})\Vert ds$

$\leq||U(t, 0;u)u_{0}\Vert+\Vert U(t, 0;u)g(u)\Vert$

$+\int_{0}^{t}\Vert U(t, s;u)[f(s,$ $u(s),$ $\int_{0}^{s_{k(s,\tau,u(\tau))d\tau}})-f(s, 0,0)+f(s, 0,0)]\Vert ds$
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$\leq M_{0}||u_{0}\Vert_{Y}+M_{0}G+M_{0}F_{1}ar+M_{0}F_{1}K_{1}a^{2}r+M_{0}F_{1}K_{2}a^{2}+M_{0}F_{2}a$

$\leq r$ .

Therefore $P$ maps $S$ into itself. Moreover, if $u,$ $v\in S$ , then

$||Pu(t)-Pv(t)\Vert$

$\leq||U(t, 0;u)u_{0}-U(t, 0;v)u_{0}||+\Vert U(t, 0;u)g(u)-U(t, 0;v)g(v)||$

$+\int_{0}^{t}\Vert U(t, s;u)f(s,$ $u(s),$ $\int_{0}^{s}k(s, \tau, u(\tau))d\tau)$

$-U(t, s;v)f(s,$ $v(s),$ $\int_{0}^{s}k(s, \tau, v(\tau))d\tau)\Vert ds$

$\leq\Vert U(t, 0;u)u_{0}-U(t, 0;v)u_{0}\Vert+\Vert U(t, 0;u)g(u)-U(t, 0;v)g(u)\Vert$

$+\Vert U(t, 0;v)g(u)-U(t, 0;v)g(v)||$

$+\int_{0}^{t}[\Vert U(t, s;u)f(s,$ $u(s),$ $\int_{0}^{s}k(s, \tau, u(\tau))d\tau)$

$-U(t, s;v)f(s,$ $u(s),$ $\int_{0}^{s}k(s, \tau, u(\tau))d\tau)\Vert$

$+\Vert U(t, s;v)f(s,$ $u(s),$ $\int_{0}^{s}k(s, \tau, u(\tau))d\tau)$

$-U(t, s;v)f(s,$ $v(s),$ $\int_{0}^{s}k(s, \tau, v(\tau))d\tau)\Vert]ds$

$\leq Ka||u_{0}\Vert_{Y}$ max $||u(\tau)-v(\tau)||$
$\tau\in I$

$+GKa\max_{\tau\in J}\Vert u(\tau)-v(\tau)\Vert+M_{0}G_{1}\max_{\tau\in I}||u(\tau)-v(\tau)\Vert$

$+Ka(F_{1}r+F_{1}K_{1}ar+F_{1}K_{2}a+F_{2})\max_{\tau\in I}||u(\tau)-v(\tau)\Vert$

$+M_{0}F_{1}a(\max_{\tau\in I}||u(\tau)-v(\tau)\Vert)+M_{0}F_{1}K_{1}a^{2}\max_{\tau\in l}||u(\tau)-v(\tau)\Vert$

$\leq[Ka||u_{0}||_{Y}+GKa+M_{0}G_{1}+M_{0}F_{1}K_{1}a^{2}+M_{0}F_{1}a$

$+Ka(F_{1}r+F_{1}K_{1}ar+F_{1}K_{2}a+F_{2})]\max_{\tau\in J}||u(\tau)-v(\tau)||$

$=q\max_{\tau\in I}||u(\tau)-v(\tau)||$ , where $0<q<1$ .

From this inequality it follows that for any $t\in I$

$||Pu(t)-Pv(t)\Vert\leq q\max_{\tau\in I}\Vert u(\tau)-v(\tau)\Vert$

so that $P$ is a contraction on $S$ . From the contraction mapping theorem it follows that 1
has a unique fixed point $u\in S$ which is the mild solution of (5)$-(6)$ on $[0, a]$ . Note th’
$u(t)$ is in $C(I : Y)$ by $(E_{6})$ (see [14] Lemma 7.4). In fact, $u(t)$ is weakly continuous a
a Y-valued function. This implies that $u(t)$ is separably valued in $Y$ , hence it is strongl
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measurable. Then, $\Vert u(t)\Vert_{Y}$ is a bounded and measurable function in $t$ . Therefore, $u(t)$ is
Bochner integrable (see e.g. [19] Chap. V \S \S 4-5). Using relation $u(t)=Pu(t)$ , we conclude
that $u(t)$ is in $C$ ( $I$ : Y).

Now, we consider the evolution equation

$v^{\prime}(t)+B(t)v(t)=h(t)$ , $t\in[0, a]$ (9)

$v(0)=u_{0}-g(u)$ (10)

where $B(t)=A(t, u(t))$ and $h(t)=f(t, u(t),$ $\int_{0}^{t}k(t, s, u(s))ds),$ $t\in[0, a]$ and $u$ is the
unique fixed point of $P$ in $S$ . We note that $B(t)$ satisfies $(H_{1})-(H_{3})$ of [18] (Section 5.5.3) and
$h\in C(I, Y)$ . Theorem 5.5.2 in [18] implies that there exists a unique function $v\in C(I, Y)$

such that $v\in C^{1}((0, a$ ], $X$ ) satisfying (9) and (10) in $X$ and $v$ is given by

$v(t)=U(t, 0;u)u_{0}-U(t, 0;u)g(u)+\int_{0}^{t}U(t, s;u)f(s,$ $u(s),$ $\int_{0}^{s}k(s, \tau, u(\tau))d\tau)ds$

where $U(t, s;u)$ is the evolution system generated by the family $\{A(t, u(t))\},$ $t\in I$ of the
linear operators in $X$ . The uniqueness of $v$ implies that $v=u$ on $I$ and hence $u$ is a classical
solution of (5)$-(6)$ and $u\in C([0, a] : Y)\cap C^{1}((0, a]$ : $X$ ).
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