
TOKYO J. MATH.
VOL. 23, No. 1, 2000

The Fundamental Groups of Certain One-Dimensional Spaces
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Abstract. An infinitary version of edge path groups is introduced for applications to non-locally simply con-
nected spaces (see Figure 1 in the text).

(1) Edge path groups in this paper are subgroups of the free $\sigma$ -product of copies of the integer group $Z$ , which
is isomorphic to the fundamental groups of the Hawaiian earring of I-many circles for some index set $I$ .

(2) Let $Y$ be a subspace of the real line in the Euclidean plane $R^{2}$ and $C$ the set of all connected components
of $Y$ . Then, the fundamental group of $R^{2}\backslash Y$ is isomorphic to a free product of infinitely many non-trivial groups, if
and only if there exists an accumulation point of $C$ in $ Y\cup$ {oo} $\cup-\infty$ .

1. Introduction and summary.

As we have shown in [8], the fundamental group of a l-dimensional compact space is
isomorphic to a subgroup of the inverse limit of finitely generated free groups. However, the
result gives us little information about its group theoretic properties so far, even if $X$ is a Peano
continuum, i.e. a locally connected, connected, compact metric space. On the other hand,
we have investigated the fundamental groups of certain non-locally simply connected spaces
using the notion of free a-products [4, 3, 6, 7] and have gotten some group theoretic results.
In the present paper, we are interested in an infinitary version of edge path groups. The edge
path group is defined for an infinite simplicial complex. Our infinitary version is not aimed
at an investigation of infinite simplicial complexes, but at that of spaces which are not locally
simply connected, particularly l-dimensional spaces like (1), (2) and (3) in Figure 1, where
there are infinitely many small circles or triangles. The space (1) is called the Hawaiian earring
and is the plane continuum $H=\bigcup_{n=1}^{\infty}C_{n}$ , where $C_{n}=\{(x, y) : (x-1/n)^{2}+y^{2}=1/n^{2}\}$ .
The spaces (2) and (3) are similar to the Sierpinski gasket and its three-dimensional analogue.
To state our main results, we recall a free $\sigma$ -product of groups $G_{i}(i\in I)[4]$ . The notation

$X\Subset Y$
’ means that $X$ is a finite subset of Y. We assume $G;\cap G_{j}=\{e\}$ for distinct $i,$ $j\in I$ .

A a-word $W$ : $\overline{W}\rightarrow\cup\{G_{i} : i\in I\}$ is a function such that $\overline{W}$ is a countable linearly ordered
set and $\{\alpha\in\overline{W} : W(\alpha)\in G_{i}\}$ is finite for each $i\in I$ . The set of $\sigma$ -words is denoted by
$\mathcal{W}^{\sigma}$ $(G_{j} : i\in I)$ . For $F\Subset I,$ $W_{F}$ is the word of finite length obtained by picking all elements
in $\bigcup_{i\in F}G_{i}$ from $W$ , i.e. $\overline{W_{F}}=\{\alpha\in\overline{W} : W(\alpha)\in\bigcup_{i\in F}G_{i}\}$ and $W_{F}=Wr\overline{W_{F}}$ . Two
$\sigma$ -words $V,$ $W$ are equivalent, if $V_{F}=W_{F}$ holds in the free product $*\iota\in FG_{i}$ for every
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(1) (2) (3)

FIGURE 1

$F\Subset I$ . The equivalence class containing $W$ is denoted by $[W]$ . The group operation on
the equivalence classes is defined by the concatenation. Then, { $[W]$ : $W\in \mathcal{W}^{\sigma}(G_{i}$ : $ i\in$

$I)\}$ forms a group which we call the free $\sigma$ -product $X_{i\in I}^{\sigma}G_{i}$ . The fundamental group of the
Hawaiian eaming of I-many circles is isomorphic to $X_{i\in I}^{\sigma}Z_{i}$ , where $Z_{i}$ is a copy of the integer
group Z. We refer the reader for this fact as well as basic properties of free $\sigma$ -products to
[4]. Throughout the present paper, we use the word ‘a word’ for ’a $\sigma$ -word.’ We also write
‘a word $W$ ’ instead of ’an element $[W]$ as the usual case of a word of finite length, when no
confusion will occur. The notation $V\cong W$ means that words $V$ and $W$ are the same, i.e. there
is an order isomorphism $i$ : $\overline{V}\rightarrow\overline{W}$ such that $V(\alpha)=W(i(\alpha))$ for $\alpha\in\overline{V}$. The first theorem
can be regarded as an infinitary version of a theorem for edge path groups.

THEOREM 1. 1. $LetX$ be a space with thefollowingproperties: There exist arcs $ A_{i}(i\in$

$I)$ with the endpoints $\dot{A}_{i}=\{u_{i}, v_{i}\}$ and a closed set $D$ such that
(1) $X=D\cup\bigcup_{i\in J}A_{i}$ and $D\cap A_{i}=A_{i}$ for each $i$,
(2) $A_{i}\backslash \dot{A}_{i}$ is open and $u_{i}\neq v_{i}$ for each $i$,
(3) $D$ contains no arc.

Then, thefundamental group of $X$ is isomorphic to a subgroup of $X_{i\in I}^{\sigma}Z_{i}$ .
The next theorem generalizes [4, Corollary 2.5] which implies the same result for the

fundamental group of the Hawaiian earring.

THEOREM 1.2. Let $X$ be a Peano continuum satisfying the hypothesis ofTheorem 1.1.
Suppose that there exists $K\subset I$ such that $D\cup\bigcup_{i\in K}A_{i}$ is contractible and locally connected.
Then, for any homomorphism $h$ : $\pi_{1}(X, x)\rightarrow*{}_{n<\omega}H_{n}$ there exists $ m<\omega$ such that ${\rm Im}(h)\leq$

$*{}_{n<m}H_{n}$ . Consequenthy, the fundamental group of $X$ is not isomorphic to a free product of
infinitely many non-trivial groups.

Consequently,

COROLLARY 1.3. None of the fundamental groups of the spaces (1), (2) and (3) in
Figure 1 is isomorphic to a free product of infinitely many non-trivial groups.

The situation of Theorems 1.1 and 1.2 would be better understood by applying these
theorems to the spaces (1), (2) and (3) in Figure 1. See Figure 2 at the proof of Corollary 1.3
in section 2 for it. A set $D$ is the set of dotted points and the edges are the arcs connecting the
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dotted points. In Section 3 we continue an investigation of the fundamental groups of certain
subspaces of the plane [6] and prove

THEOREM 1.4. Let $X=R^{2}\backslash Y\times\{0\}$ for $Y\subset R,$ $x\in X$ and $C$ be the set of all
connected groups of $Y$

Then, $\pi_{1}(X, x)$ is isomorphic to a free product of infinitely many non-trivial groups, $\iota f$

and only if there exists an accumulation point of $C$ in $ Y\cup t\infty$ } $\cup t-\infty$ }.

In the last section, we investigate homomorphisms from $\pi_{1}(H, 0)$ to $\pi_{1}(X, x)$ for spaces
$X$ satisfying the conditions in Theorem 1.1. As a corollary, we prove: None of the fundamen-
tal groups of the spaces (2) and (3) in Figure 1 is isomorphic to $\pi_{1}(H, 0)$ (The point $0$ denotes
the origin $(0,0))$ .

The following question is still open. The same question was also asked by J. Cannon and
G. Conner [1].

QUESTION 1.5 ([6]). (See the addendum.) Is the fundamental group of the Sierpinski
gasket (or carpet) isomorphic to a subgroup of that of the Hawaiian earring?

REMARK 1.6. Let $H_{I}$ be the Hawaiian earring of I-many copies $C_{i}(i\in I)$ of the
circle $\{(x, y) : (x-1)^{2}+y^{2}=1\}$ . More precisely, we identify all points corresponding to
$(0,0)$ to a single point $0$ and the topology is described by specifying neighborhood bases. The
neighborhood base of each point $x\neq 0$ is the same as the standard base of the circle and a
neighborhood of $o$ is of the form: $\bigcup_{i\in F}U_{i}\cup\bigcup_{j\in I\backslash F}C;$ , where $F$ is a finite subset of $I$ and
$U_{i}$ is a neighborhood of (0.0) in $C$; with respect to the standard topology of the circle. Under
the condition of Theorem 1.1, let $\sigma$ : $X\rightarrow H_{I}$ be the continuous map so that $\sigma(D)=\{0\}$

and $\sigma rA_{j}$ is a relative homeomorphism of $(A_{j},\dot{A}_{j})$ to $(C_{i}, \{0\})$ . The proof of Theorem 1.1
implies that $\sigma_{*}$ : $\pi_{1}(X, x)\rightarrow\pi_{1}(H_{I}, 0)$ is injective for $x\in D$ .

REMARK 1.7. Theorem 1.2 generalizes [4, Corollary 2.5], which treats only the case
of the Hawaiian earring. In a recent preprint, J. Cannon and G. Conner [1, Theorem 5.1]
proved a closely related statement to Theorem 1.2 for Peano continua by a rather different
method. The infinitary version of edge path groups of the present paper was used in [5] for
the free topological linear space over a pseudo arc.

2. Proof of Theorems 1.1 and 1.2.

For a path $f$ : $[s, t]\rightarrow X$ , define $\tilde{f}$ : $[0,1]\rightarrow X$ by: $\tilde{f}(u)=f((1-u)s+ut)$ . We
simply say two paths $f$ : $[s, t]\rightarrow X$ and $g$ : $[s^{\prime}, t^{\prime}]\rightarrow X$ are homotopic, if $f(s)=g(s^{\prime})$

and $f(t)=g(t^{\prime})$ and the two paths $f$ and $\tilde{g}$ are homotopic relative to $\{0,1\}$ . For a space
$X$ satisfying the hypothesis of Theorem 1.1, we introduce some auxiliary notions. We fix a
base point $x_{0}\in D$ . For a loop $f$ with base point $x_{0},$ $[f]\in\pi_{1}(X, x_{0})$ denotes its homotopy
class relative to $\{0,1\}$ . For each $A_{i}$ , let $\varphi$; : $[0,1]\rightarrow A_{i}$ be a homeomorphism. A path
$f$ : $[s, t]\rightarrow X$ with $f(s),$ $f(t)\in D$ is proper, if the following hold: For any $s<a<t$ with
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$f(a)\in A_{i}\backslash \dot{A}_{i}=int(A_{i})$ , there exist $s\leq u<v\leq t$ such that $u<a<v,$ $f(u),$ $f(v)\in A_{i}$ ,

$f(u)\neq f(v)$ and ${\rm Im}(f\lceil(u, v))\subset int(A_{i})$ .
LEMMA 2. 1. Let $X$ be a space satisfying the hypothesis ofTheorem 1.1. Then, for any

path $f$ : $[0,1]\rightarrow X$ with $f(0),$ $f(1)\in D$ , there exists a proper path $g$ which is homotopic to
$f$

PROOF. Let $O=\bigcup_{i\in I}int(A_{i})$ and $f^{-1}(O)=\bigcup_{m<\mu}(a_{m}, b_{m})$ , where $(a_{m}, b_{m})\cap$

$(a_{n}, b_{n})=\emptyset$ for $m\neq n$ and $\mu\leq\omega$ . Define a homotopy $H$ : $[0,1]\times[0,1]\rightarrow X$ by:

$H(s, t)=\left\{\begin{array}{ll}f(s) & if s\in(a_{n}, b_{n}) and f(a_{n})\neq f(b_{n})\\\varphi_{i}((1-t)\varphi_{i}^{-1}f(s)) & if s\in(a_{n}, b_{n}) and f(a_{n})=f(b_{n})=u_{i}\\\varphi_{j}(t+(1-t)\varphi_{i}^{-1}f(s)) & if s\in(a_{n}, b_{n}) and f(a_{n})=f(b_{n})=v;\\f(s) & otherwise.\end{array}\right.$

Since the diameters of ${\rm Im}(f)\cap A_{i}$ converge to $0,$ $H$ is continuous and $g(s)=H(s, 1)$ is a
proper path. $\square $

For a proper path $f$ : $[s, t]\rightarrow X$ with $f(s),$ $f(t)\in D$ , we define a word $W^{f}$ as follows:
Let $O=\bigcup_{i\in I}int(A_{i})$ and $f^{-1}(O)=\bigcup_{m<\mu}(a_{m}, b_{m})$ , where $(a_{m}, b_{m})\cap(a_{n}, b_{n})=\emptyset$ for

distinct $m,$ $n$ and $\mu\leq\omega$ . Let $\overline{W}^{f}=\mu$ and $m\prec n$ if $a_{m}<a_{n}$ for $m,$ $ n\in\mu$ . Let

$W^{f}(m)=\left\{\begin{array}{l}iifImfr[a_{m},b_{m}]=A_{i}andf(a_{m})=u_{i}\\-iifImfr[a_{m},b_{m}]=A_{i}andf(a_{m})=v_{i}\end{array}\right.$

where $i$ is the generator of $Z_{i}$ .
Though the next lemma is almost the same as [5, Lemma 4.5], we present its proof for

the reader’s convenience.

LEMMA 2.2. Letfbe a properpath with $f(0),$ $f(1)\in D.$ If $W^{f}=e$ , then $f$ is a loop,
$i.e$. $f(0)=f(1)$ .

PROOF. Suppose that $ior-i$ appears in $W^{f}$ . Since $W^{f}=e$ , we have $0\leq c_{0}<$

$c_{1}<\cdots c_{2n}<c_{2n+1}\leq 1$ so that $f(c_{2j})=f(c_{2j+1})E\{u_{i}, v_{i}\},$ $W^{fr[c_{2j},c_{2j+1}]}=e$ and
${\rm Im}(fr[0, c_{0}])\cap int(A_{i})={\rm Im}(f[[c_{2j-1}, c_{2j}])\cap int(A_{i})={\rm Im}(f[[c_{2n+1},1])\cap int(A_{i})=\emptyset$ .
Let $g(x)=f(c_{2j})=f(c_{2j+1})$ for $c_{2j}\leq x\leq c_{2j+1}$ and $g(x)=f(x)$ otherwise. Then, $g$ is
a proper path and $W^{g}=e$ and ${\rm Im}(g)\cap int(A_{i})=\emptyset$ . We enumerate $i’ s$ in $I$ for $which\pm i’ s$

appear in $W^{f}$ without repetition and let $\{i_{n} : n<v\}$ to be its enumeration, where $ v\leq\omega$ .
Let $f_{0}=f$ . Inductively, we apply the above reformation to $f_{n}$ using $A_{i_{n}}$ in the n-th step and
obtain $f_{n+1}$ . There would be a case $where\pm i_{n}$ does not appear in $W^{f_{n}}$ . We let $f_{n+1}=f_{n}$

on that case. By the construction, it is easy to see that $f_{n}(n<\omega)$ converge to a continuous
function $f_{\infty}$ . Then, ${\rm Im}(f_{\infty})\subseteq D,$ $f_{\infty}(O)=f(0)$ and $f_{\infty}(1)=f(1)$ . Since $D$ contains no
arc, $f(0)=f(1)$ . $\square $

The following lemma is basically the same as in the one for edge path groups and its
proof is similar to the proof in [8, Appendix $B$ ].



FUNDAMENTAL GROUPS 191

LEMMA 2.3. Let $f$ : $[0,1]\rightarrow X$ be a proper loop which is homotopic to the constant
map. Then, $W^{f}=e$ holds in $X_{i\in I}^{\sigma}Z_{i}$ .

PROOF. By Lemma 2.1, we may assume that $f$ is a proper loop. Let $F\Subset I,$ $X_{F}$ be the
quotient space of $X$ obtained by identifying $D\cup\bigcup_{i\not\in F}A_{i}$ with one point and $\sigma_{F}$ : $X\rightarrow X_{F}$ be
the quotient map. Then, $\sigma_{F}f$ is a null homotopic loop in a finite bouquet, whose fundamental
group is canonically isomorphic $to*i\in FZ_{i}$ . Therefore, $(W^{f})_{F}=e$ for each $F\Subset I$ , which
implies $W^{f}=e$ . $\square $

Let $P_{x0}$ be the set of all proper loops with base point $x_{0}$ . By this lemma, a homomorphism
$\xi$ : $\pi_{1}(X, x_{0})\rightarrow X_{i\in I}^{\sigma}Z_{i}$ is defined by the formula:

$\xi([f])=W^{f}$ for $f\in P_{x0}$ , where $[f]$ denotes the homotopy class containing $f$ .
LEMMA 2.4. Let $f$ : $[0,1]\rightarrow X$ be a proper path. Then, there exists a proper path

$g:[0,11\rightarrow X$ such that
1. $g(O)=f(0)$ and $g(1)=f(1)$ ;
2. $W^{g}$ is the reduced word ofW ; and
3. $g(x)=f(x)$ or $g(x)=f(s_{0})=f(t_{0})$ , where $s_{0}=\min\{s$ : $g(y)=g(x)f$ or $ s\leq$

$y\leq x\}$ and $ t_{0}=\max$ { $t$ : $g(y)=g(x)f$ or $x\leq y\leq t$ }.

PROOF. We recall a reduction procedure of a non-reduced word [4, p. 245]. When $W^{f}$

is reduced, there is nothing to prove. Otherwise, there exists a non-empty subword of $W^{f}$

which is equivalent to the empty word, i.e. there are $0\leq s_{0}<t_{0}\leq 1$ such that $f(s_{0})=$

$f(t_{0})\in D$ and $W^{fr[s_{0},t_{0}]}=e$ by Lemma 2.2. Let $g(x)=f(x)$ for $0\leq x<s_{0}$ or $t_{0}<x\leq 1$

and $g(x)=f(s_{0})$ for $s_{0}\leq x\leq t_{0}$ . Repeat transfinitely the process obtaining $g$ from $f$ . It will
stop in countable steps. Then, we get the desired path, the continuity of which follows from
that of the original $f$ . $\square $

LEMMA 2.5. Let $f\in P_{x0}$ with $W^{f}=e$ and $\rho$ be a compatible metric on ${\rm Im}(f)$ .
Suppose that $\rho(x_{0}, f(c_{0}))=\max\{\rho(x_{0}, f(u)) : u\in[0,1]\}=d>0$ and $\rho(x_{0}, f(u))<d$

for $0\leq u<c_{0}$ . Then, the one of the following holds:
(1) There exist $s_{0},$ $t_{0}$ such that $s_{0}<c_{0}<t_{0},$ $f(s_{0})=f(t_{0})\in D,$ $\rho(x0, f(s0))=d/2$ ,

and $W^{fr[s_{0},t_{0}]}=e$ .
(2) $Thereexists_{0},$ $s_{1},$ $t_{0},$ $t_{1}andA_{j}$ satisffiing:
$\bullet$ $s_{0}<s_{1}\leq t_{1}<t_{0},$ $f(s_{0})=f(t_{0})\in\{u_{j}, v_{j}\},$ $f(s_{1})=f(t_{1})\in\{u_{j}, v_{j}\}$ , and

${\rm Im}(fr[s_{0}, s_{1}])={\rm Im}(fr[t_{1}, t_{0}])=A_{j}$ ;
$\bullet s_{0}<c_{0}$ ;
$\bullet$ there is $s_{0}<s<c_{0}$ such that $f(s)\in A_{j}$ and $\rho(x_{0}, f(s))=d/2$ ;
$\bullet W^{fr[s_{1},t_{1}]}=e$ .

PROOF. Case 1: $f(c_{0})\in D$ . Let $g:[0, c_{0}]\rightarrow X$ and $h$ : $[c_{0},1]\rightarrow X$ be the paths
given by Lemma 2.4, which are corresponding to $fr[0, c_{0}]$ and $fr[c_{0},1]$ respectively. We
remark that $W^{fr[0,c_{0}]}\neq e$ and $W^{fr[c_{0},1]}\neq e$ by Lemma 2.2.
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l(i). If there exists $0<s<c_{0}$ such that $g(s)\in D$ and $\rho(x_{0}, g(s))=d/2,$ $g(s_{0})=$

$g(s)=f(s_{0})$ and $W^{fr[s_{0},c_{0}]}=W^{gr[s_{0},c_{0}]}$ hold for $ s_{0}=\min${$x$ : $g(y)=g(s)$ for $x\leq y\leq s$ }.
Since $W^{g}$ and $W^{h}$ are reduced and $W^{g}W^{h}=W^{f}=e,$ $W^{g}$ is the inverse word $(W^{h})^{-1}[4$ ,

Corollary 1.5]. Therefore, there exists $c_{0}<t_{0}<1$ such that $h(t_{0})=f(t_{0})=g(s_{0})$ and
$W^{hr[c_{0},t_{0}]}$ is the inverse word of $w^{gr[s_{0},c_{0}]}$ . Then, $W^{f([s_{0},t_{0}]}=W^{g}W^{h}=e$ holds,

that is, the case (1) holds.
l(ii). Otherwise, there exists $0<s<c_{0}$ and $A_{j}$ such that $g(s)\in int(A_{j})$ and

$\rho(x_{0}, g(s))=d/2$ . Since $g$ is proper, we get the unique $s_{0}<s_{1}$ such that $g(s_{0}),$ $g(s_{1})\in A_{j}$ ,

$s_{0}<s<s_{1}\leq c_{0},$ ${\rm Im}(f\lceil[s_{0}, s_{1}])=A_{j}$ . Since $g(s)\in int(A_{j}),$ $f(x)=g(x)$ for
$s_{0}\leq x\leq s_{1}$ . As in Case l(i), we get $t_{0},$ $t_{1}$ so that $c_{0}\leq t_{1}<t_{0},$ $h(t_{0})=g(s_{0}),$ $h(t_{1})=g(s_{1})$ ,

${\rm Im}(fr(t_{1}, t_{0}))=int(A_{j})$ and $W^{h\square [c_{0},t_{1}]}$ is the inverse word of $W^{gr[s_{1},c_{0}]}$ .
Case 2: $f(c_{0})\in A_{k}$ for some $k$ . Let $c_{1}=\min\{u : c_{0}<u, f(u)\in D\}$ . Let $ g:[0, c_{1}]\rightarrow$

$X$ and $h$ : $[c_{1},1]\rightarrow X$ be the paths obtained by applying Lemma 2.4 for $fr[0, c_{1}]$ and
$fr[c_{1},1]$ respectively. Then, $W^{gr[0,c_{1}]}\neq e$ and $W^{hr[c_{1},1]}\neq e$ by the assumption on $c_{0}$ of
this case. Then, we deal with two cases similarly to the sub-cases in Case 1. We omit the
detail, but just remark that $c_{0}<s_{1}$ may hold. $\square $

The remaining part of the proof of Theorem 1.1 is analogous to those in [4, 3, 6, 8].

PROOF OF THEOREM 1.1. It suffices to show that a homomorphism $\xi$ : $\pi_{1}(X, x_{0})\rightarrow$

$X_{i\in I}^{\sigma}Z_{i}$ is injective. Let $f\in P_{x0}$ with $W^{f}=e$ . We shall show that $f$ is null homotopic. Since
${\rm Im}(f)$ is metrizable, we take a compatible metric $\rho$ on ${\rm Im}(f)$ . We define parts of a homotopy
$H$ : $[0,1]\times[0,1]\rightarrow X$ between $f$ and the constant map at $x_{0}$ and also auxiliary notions by
induction. To describe our inductive definition, we introduce some notion.

Let Seq be the set of Pnite sequences of nonnegative integers. For $\sigma\in Seq,$ the length
of $\sigma$ is denoted by $|\sigma|$ and $\sigma=(\sigma(0),$ $\cdots$ , $\sigma(n-1)\rangle$ , where $n=|\sigma|$ . The sequence
obtained by adding $i$ to $\sigma$ is denoted by $\sigma*(i\rangle$ and the empty sequence is denoted by $\langle$ $\rangle$ . Let
$R_{\langle\rangle}=[0,1]\times[0,1]$ . Let $H(s, 1)=f(s)$ and $H(s, 0)=H(0, t)=H(1, t)=f(0)$ for
$0\leq s,$ $t\leq 1$ and also $f_{()}=f$ .

(Stage ( )) In this stage we define rectangles $R_{\sigma}$ for each sequence $\sigma$ of length 1 and
define the map $H$ on the closure of the complement $of\cup\{R_{(n)} : n<\omega\}$ .

(Sub-stage $0$) Let $d=\max\{\rho(f(0), f(s)) : s\in[0,1]\}$ . If $d=0,$ $f$ is constant and so
we just define $H(s, t)=f(s)$ . (Since we shall mimic this stage again, this obvious definition
is necessary.) Otherwise, our construction is divided into cases according to the two cases in
Lemma 2.5. In the case (1), we define

$H(s, t)=\left\{\begin{array}{ll}f(s), & for s\in[0, s_{0}]\cup[t_{0},1] and 1/2\leq t\leq 1 ,\\f(s_{0})=f(t_{0}) , & for s_{0}\leq s\leq t_{0} and t=1/2,\end{array}\right.$

and also $f_{(0\rangle}=fr[s_{0}, s_{1}]$ and $R_{(0)}=[s_{0}, s_{1}]\times[1/2,1]$ .
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In the case (2), we dePne $H(s, t)$ as follows. Here we assume $\varphi_{j}(0)=f(s_{0})$ and
$\varphi_{j}(1)=f(s_{1})$ , but the other case can be treated similarly. Let

$H(s, t)=\left\{\begin{array}{ll}f(s) , & for s\in[0, s_{1}]\cup[t_{1},1] and 1/2+1/4\leq t\leq 1 ,\\f(s_{1}), & for s_{1}\leq s\leq t_{1} and t= 1/2+1/4,\\f(s), & for s\in[0, s_{0}]\cup[t_{0},1] and 1/2\leq t\leq 1/2+1/4 ,\\\varphi_{j}(4(t-1/2)\varphi_{j}^{-1}f(s)), & for s\in[0, s_{1}]\cup[t_{1},1] and 1/2\leq t\leq 1/2+1/4 ,\end{array}\right.$

and also $f_{\langle 0\rangle}=fr[s_{1}, t_{1}]$ and $R_{\langle 0\rangle}=[s_{1}, t_{1}]\times[1/2+1/4,1]$ . In case $s_{1}=t_{1}$ , we have
defined $H$ on $[0,1]\times[0,1]$ .

(Sub-stage $n+1$ ) We have defined $H(s, 1/2^{n+1})$ for $0\leq s\leq 1$ in Sub-stage $n$ . We
make the above procedure in Sub-stage $0$ for $[0,1]x[0,1/2^{n+1}]$ instead of $[0,1]\times[0,1]$

and the loop $s->H(s, 1/2^{n+1})$ instead of $f(s)=H(s, 1)$ to define a partial homotopy,
$f_{\langle n+1\rangle}$ and the rectangle $R_{(n+1\rangle}$ . Then, $H$ is defined on a subset of the rectangle $[0,1]\times$

$[1/2^{n+1},1/2^{n+2}]$ and in particular $H(s, 1/2^{n+2})$ is defined for $0\leq s\leq 1$ .
Here, we notice that the diameters of the loops $s\vdash+H(s, 1/2^{n})(n<\omega)$ converge to

$0$ and consequently the loops themselves converge to $f(0)$ . To see this, assume the contrary.
Since the above procedure does not increase the diameter of a loop, the assumption implies
that the diameters of the loops $s\vdash\rightarrow H(s, 1/2^{n})$ converges to a positive number $d_{0}>0$ . It
means that the image ${\rm Im} f$ travels infinitely many times between points distant from $f(0)$

by at most $d_{0}/2$ and points distant from $f(0)$ by at least $d_{0}$ . However this contradicts the
continuity of $f$ .

(Stage $\sigma$ ) We have defined aloop $f_{\sigma}$ with its domain $[a_{\sigma}, b_{\sigma}]$ and a rectangle $R_{\sigma}$ of form
$[a_{\sigma}, b_{\sigma}]\times[y_{\sigma}, z_{\sigma}]$ . Here, $H(s, z_{\sigma})=f_{\sigma}(s)$ for $a_{\sigma}\leq s\leq b_{\sigma}$ and $H(s, y_{\sigma})$ is constant for
$a_{\sigma}\leq s\leq b_{\sigma}$ . If $a_{\sigma}=b_{\sigma}$ , i.e. int $(R_{\sigma})=\emptyset$ , there is no sub-stages and we do not define $R_{\tau}$

and so on for any extensions $\tau$ of $\sigma$ . Otherwise, we work as in Stage $\langle\rangle$ replacing $f_{\langle\rangle}$ by $f_{\sigma}$

and $R_{\langle\rangle}$ by $R_{\sigma}$ . That is, we define the rectangles $R_{\sigma*\langle n\rangle}$ , loops $f_{\sigma*\langle n\rangle}$ and a partial homotopy
$H$ on $R_{\sigma}$ applying Lemma 2.5 repeatedly.

When the all stages are performed, we define the map $H$ on a dense subset of $[0,1]\times$

$[0,1]$ . However, there are still many points on which $H$ has not been defined. Let $x$ be such
a point. For each $n$ , there exists a unique $\sigma_{n}\in Seq$ such that $|\sigma_{n}|=n$ and $x$ belongs to the
interior of $R_{\sigma_{n}}$ . By the uniform continuity of $f$ , the diameters of the loops $f_{\sigma_{n}}$ converge to $0$ .
Therefore, there exists a unique convergent point in ${\rm Im}(f)$ . Let $H(x)$ be the point.

Now, we verify the continuity of $H$ . The continuity at the points defined right now is
clear from the definition. Hence, it suffices to show the continuity at the boundaries for each
rectangle $R_{\sigma}=[a_{\sigma}, b_{\sigma}]\times[y_{\sigma}, z_{\sigma}]$ . Since $R_{\tau}\subseteq R_{\sigma}$ holds if $\tau$ is an extension of $\sigma$ and
int $(R_{\sigma})\cap int(R_{\tau})\neq\emptyset$ holds if and only if one of $\sigma$ and $\tau$ is an extension of the other. It
suffices to verify the continuity in each $R_{\sigma}=[a_{\sigma}, b_{\sigma}]\times[y_{\sigma}, z_{\sigma}]$ . It is easy to see that $H$ is
continuous on the side edges $\{a_{\sigma}, b_{\sigma}\}\times(y_{\sigma}, z_{\sigma}$ ], because $H$ is defined on a neighborhood of
each point of those edges at some stage. Observe that the loops $f_{\sigma*\langle n\rangle}(n<\omega)$ converge to the
base point of $f_{\sigma}$ for each $\sigma\in Seq$ . Then, the continuity of $H$ at the lower edge $[a_{\sigma}, b_{\sigma}]\times\{y_{\sigma}\}$

follows from the argument of the continuity at the end of Sub-stage $0$ . What remains to be
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proved is the continuity at each point $x$ at the upper edge such that $H$ is not totally defined
on a neighborhood of $x$ at any stage. In this case, there exists a unique sequence $\sigma_{n}\in Seq$

$(n<\omega)$ such that $|\sigma_{n}|=n$ and $x$ belongs to the upper edge of $R_{\sigma_{n}}$ . Moreover, $x$ is not a
comer point of $R_{\sigma_{n}}$ . Therefore, the continuity at $x$ follows from the convergence of the values
on edges of $R_{\sigma_{n}}s$ . $\square $

To prove Theorem 1.2, we first show that $\pi_{1}(X, x_{0})$ can be canonically embeddable into
$X_{i\in J\backslash K}^{\sigma}Z_{i}$ . As we have shown right now, a homomorphism $\xi$ : $\pi_{1}(X, x_{0})\rightarrow X_{i\in I}^{\sigma}Z_{j}$ is an
injection. Let $J=I\backslash K$ and $p_{J}$ : $X_{i\in I}^{\sigma}Z_{j}\rightarrow X_{i\in J}^{\sigma}Z_{i}$ be the projection. We show that $ p_{J}\xi$ is
injective.

LEMMA 2.6. If $p_{J}(W^{f})=e$ for $f\in P_{x0}$ , then $W^{f}=e$ holds.

PROOF. Suppose that $W^{f}=e$ does not hold. By Lemma 2.4, we may assume $W^{f}$ is
reduced. Then, there exists a finite subset $F$ of $I$ such that $(W^{f})_{F}\neq e$ . Since $D\cup\bigcup_{i\in K}A_{i}$

is contractible, $D\cup\bigcup_{i\in K}A_{i}\backslash \bigcup_{i\in F\cap K}int(A_{j})$ consists of finitely many contractible closed
subspaces $T_{k}(0\leq k\leq n)$ . By identifying each $T_{k}$ as a point $q_{k}$ , we get the quotient space $X^{*}$

of $X$ and the quotient map $q$ : $X\rightarrow X^{*}$ . Now, $W^{qf}\neq e$ . Since $W^{qf}\in*F\cap KZ*X_{i\in J}^{\sigma}Z_{i}$ , the
reduced word of $W^{qf}$ can be presented as $W_{0}W_{1}\cdots W_{n}$ satisfying the following properties:

1. Members $of*F\cap KZ$ and $X_{i\in J}^{\sigma}Z_{i}$ appear altemately.
2. There exist $t_{0}=0<t_{1}<\cdots<t_{n}=1$ such that $qf(t_{m})\in\{q_{k} : 0\leq k\leq n\}$ and

$W^{qfr[t_{m},t_{m+1}]}=W_{m}$ .
Since $D\cup\cup\{A_{i} : i\in K\}$ is contractible and $W_{0}W_{1}\cdots W_{n}$ is reduced, $qf(t_{k})\neq qf(t_{k+1})$

for $k$ with $W_{k}\in*F\cap K$Z. On the other hand, since $p_{J}(W^{qf})=p_{J}(W^{f})=e$ , there are
$W_{m-1},$ $W_{m+1}\in X_{i\in J}^{\sigma}Z_{i}$ such that a word $W_{m-1}W_{m+1}$ is not reduced. Since $W_{m-1}$ and $W_{m+1}$

themselves are reduced, we conclude $qf(t_{m})=qf(t_{m+1})$ by [4, Corollary 1.7], which is a
contradiction. $\square $

DEFINITION 2.7. A loop $f\in P_{x0}$ has the essential size less than $\epsilon$ , if there exist
$s<t$ and $y_{0}\in D$ such that $f(s)=f(t)=y_{0},$ $fr[0, s]$ and $fr[t, 1]$ are paths in
$D\cup\cup\{A_{i} : i\in K\}$ and the diameter of ${\rm Im}(fr[s, t])$ is less than $\epsilon$ . An essential part of $f$

is a path $fr[s, t]$ .
LEMMA 2.8. Let $h$ : $\pi_{1}(X, x_{0})\rightarrow*{}_{n<\omega}H_{n}$ be a homomorphism such that ${\rm Im}(h)$ is

not contained in $any*{}_{n<m}H_{n}$ . Then, for any $\epsilon>0$ and $m$ there exists $f\in P_{x0}$ such that the
essential size offis less than $\epsilon$ but $h([f])\not\in*{}_{n<m}H_{n}$ .

PROOF. Assume the negation of the conclusion. Then, there exist $\epsilon_{0}>0$ and $m$ such
that $h([f])\in*{}_{n<m}H_{n}$ holds if $f\in P_{x0}$ has the essential size less than $\epsilon_{0}$ .

Since $D\cup\cup\{A_{i} : i\in K\}$ is locally path-connected, there exists $\epsilon_{1}<\epsilon_{0}/2$ satisfying
the following:

For any $u,$ $v\in D$ with $\rho(u, v)<\epsilon_{1}$ , there exists a path $g$ from $u$ to $v$ in
$D\cup\cup\{A_{j} : i\in K\}$ such that the diameter of ${\rm Im}(g)$ is less than $\epsilon_{0}/2$ .
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Since $X$ is locally path-connected, the diameters of $A_{j}’ s$ converge to $0$ . Therefore, there exists
$J^{\prime}\Subset J$ such that the diameters of $A_{i}’ s$ are less than $\epsilon_{1}$ for $i\in J\backslash J^{\prime}$ . For each $A;(i\in J)$ , let
$f_{i}\in P_{x_{0}}$ be so that $f_{i}r[0,1/3]$ is a path from $x_{0}$ to $u_{i}$ in $D\cup\cup\{A_{i} : i\in K\},$ $f_{i}$ I [2/3, 1] is
a path from $v_{i}$ to $x0$ in $D\cup\cup\{A_{i} : i\in K\}$ , and $f_{i}(s)=\varphi_{i}(3(s-1/3))$ for $1/3\leq s\leq 2/3$ .
Since the essential size.of $f_{i}$ is less than $\epsilon_{0}$ for $i\in J\backslash J^{\prime}$ , we can choose $m_{0}\geq m$ so that
$h([f_{i}])\in*{}_{n<m0}H_{n}$ for all $i\in J$ .

For any $f\in P_{x_{0}}$ , there are $0=t_{0}<t_{1}<\cdots<t_{k}=1$ such that for $0\leq j<k$

$fr[t_{j}, t_{j+1}]$ is homotopic to some $\varphi_{i}$ or $\varphi_{i}^{-1}(i\in J^{\prime})$ ,
or ${\rm Im}(fr[t_{j}, t_{j+1}])\cap\cup\{int(A_{i}) : i\in J^{\prime}\}=\emptyset$ and
$f[[t_{j}, t_{j+1}]$ is a path with its size less than $\epsilon 1$ .

Then, we can adjust the above sequence $0=t_{0}<t_{1}<\cdots<t_{k}=1$ so that $f(t_{j})\in D$ ,
and each $fr[t_{j}, t_{j+1}]$ is homotopic to some $\varphi;(i\in J)$ or is a path with its size less than $\epsilon_{0}$ .
Since $D\cup\cup\{A_{j} : i\in K\}$ is contractible, we can decompose $f$ to proper loops $g$ which are
homotopic to some $f_{i}$ or homotopic to a proper loop with the essential size less than $\epsilon_{0}$ , i.e.
$h([g])\in*_{n<m_{0}}H_{n}$ in either case. Therefore, $h([f])\in*{}_{n<m}H_{n}$ holds for any proper loop $f$

with base point $x_{0}$ , which is a contradiction. $\square $

LEMMA 2.9. Let $f_{n}\in P_{x_{n}}(n<\omega)$ and $f_{n}^{\prime}\in P_{x0}(n<\omega)$ , where $x_{n}\in D.$ Suppose
that $({\rm Im}(f_{n}) : n<\omega)$ converges a point $y_{0}\in D$ and $f_{n}^{\prime}\lceil[1/3,2/3]$ and $f_{n}$ are homotopic
for each $n$ and ${\rm Im}(f_{n}^{\prime}r[0,1/3])\cup{\rm Im}(f_{n}^{\prime}r[2/3,1])\subseteq D\cup\cup\{A_{i} : i\in K\}$ . Then, there
exists a homomorphism $h$ : $X_{n<\omega}Z_{n}\rightarrow\pi_{1}(X, x_{0})$ such that $h(\delta_{n})=[f_{n}^{\prime}]$ for each $ n<\omega$ ,
where $\delta_{n}$ is the generator of $Z_{n}\leq X_{n<\omega}Z_{n}$ .

PROOF. By the local connectivity of $X$ , we can take $f_{n}^{\prime\prime}\in P_{\mathcal{Y}0}$ so that $f_{n}^{\prime\prime}[[1/3,2/3]$

and $f_{n}$ are homotopic and ${\rm Im}(f_{n}^{\prime\prime}r[0,1/3])\cup{\rm Im}(f_{n}^{\prime\prime}r[2/3,1])\subseteq D\cup\cup\{A_{j} : i\in K\}$ and
${\rm Im}(f_{n}^{\prime\prime})$ converge to $y_{0}$ . Let $\psi$ : $H\rightarrow X$ be the continuous map defined by:

$\psi(\frac{1}{n}\cos(\pi+2\pi s)+\frac{1}{n},$ $\frac{1}{n}\sin(\pi+2\pi s))=f_{n}^{\prime\prime}(s)$ ,

that is, $C_{n}$ is mapped as in the same way as mapped by $f_{n}^{\prime\prime}$ . Then, the induced homomor-
phism $\psi_{*}$ : $\pi_{1}(H, 0)\rightarrow\pi_{1}(X, y_{0})(\simeq\pi_{1}(X, x_{0}))$ is the desired homomorphism through the
canonical isomorphism between $\pi_{1}(H, 0)$ and $X_{n<\omega}Z_{n}$ [$4$ , Theorem A. 1]. $\square $

PROOF OF THEOREM 1.2. Suppose that Im(h) $isnotcontainedinany*{}_{n<m}H_{n}$ for a
homomorphism $h$ : $\pi_{1}(X, x_{0})\rightarrow*{}_{n<\omega}H_{n}$ . According to Lemma 2.8, for each $m$ there exists
$g_{m}\in P_{x_{0}}$ such that $g_{m}$ has the essential size less than $1/m$ , but $h([g_{m}])\not\in*{}_{n<m}H_{n}$ . Let $g_{m}^{\prime}$ be
an essential part of $f$ . Since the diameters of ${\rm Im}(g_{m}^{\prime})$ converge to $0$ , there exist a point $y_{0}\in D$

and a subsequence $m_{n}(n<\omega)$ such that ${\rm Im}(g_{m_{n}}^{\prime})$ converge to $y_{0}$ . By Lemma 2.9, we get a
homomorphism $\psi$ : $X_{n<\omega}Z_{n}\rightarrow\pi l(X, x_{0})$ such that $\psi(\delta_{n})=[g_{m_{n}}]$ for each $ n<\omega$ . But,
this contradicts [4, Corollary 2.5], which says that ${\rm Im}(h\cdot\psi)$ is contained in $some*{}_{n<m}H_{n}$ . $\square $

PROOF OF COROLLARY 1.3. For the Hawaiian earring, let $D$ be the set consisting
of all the points dotted in Figure 2(1) and $A_{i}(i\in K)$ be the edges in Figure 2(1). Then,
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FIGURE 2

$D\cup\cup\{A_{i} : i\in K\}$ satisfies the conditions in Theorem 1.2 and we get the conclusion. For
the spaces (2) and (3) in Figure 1, let $D$ be the points dotted in Figure 2(2) and 2(3) and take
$K\subset I$ so that $A_{i}(i\in I\backslash K)$ are the edges which are parallel to the line $BC$ and the plane
$BCD$ respectively. Then, $D\cup\cup\{A_{j} : i\in K\}$ satisfies the conditions in Theorem 1.2 and we
get the conclusion. $\square $

3. Proof of Theorem 1.4.

In this section, we continue to investigate the fundamental groups of the subspaces $R^{2}\backslash $

$Y\times\{0\}$ of the plane [6]. In that paper, we characterized $Y\subset R$ for which the fundamental
group of $R^{2}\backslash Y\times\{0\}$ is isomorphic to that of the Hawaiian earring. Here, we shall characterize
$Y\subset R$ for which the fundamental group has the property in Theorem 1.4. First, we recall
results from [6]. Let $C$ be the set of all connected components of $Y$ and take a countable subset
$D$ of $Y$ so that

1. $ D\cap(u, v)\neq\emptyset$ if and only if $ Y\cap(u, v)\neq\emptyset$ for $u,$ $v\in R\backslash Y$ ,

2. $D\cap(u, v)$ is a singleton if and only if $(u, v)\subset Y$ for $u,$ $v\in R\backslash Y$ ,

3. $D\cap CisemptyforanunboundedC\in C$ .
Then, $\pi_{1}(X, x)$ can be canonically represented as a subgroup $\{[W] : \mathcal{U}(D, Y)\}$ of a free $\sigma-$

product $X_{d\in D}^{\sigma}Z_{d}$ [ $6$ , Theorem 3.2], where $[W]$ denotes the equivalence class containing $W$ .
In the following we use the subset $\mathcal{U}(D, Y)$ of $\mathcal{W}(Z_{d} : d\in D)$ in [6], the definition and some
properties of which are recalled below for the reader’s convenience.

For alinearly ordered set $S$ , let $S^{-1}$ be the linearly ordered set consisting $of-s$ for $s\in S$

such $that-s<-t$ if and only if $t<s$ . Let $|s|=|-s|=s$ for $s\in S$ . We remark $that-s$

is a letter consisting of ’-, and $’+$ , but is not a real number even if $s$ is a real number. Let
$Z_{d}$ is a copy of $Z$ whose generator is $d\in D$ . Let $W\in \mathcal{W}(Z_{d} :\in D)$ be a word such that each
$W(\alpha)$ is $dor-d$ for some $d\in D$ . A word $V\in \mathcal{W}(Z_{d} : d\in D)$ is a component of $W$ , if $V$ is
a maximal subword of $W$ which satisfies the following:
$(+)$ There exist $u,$ $v\in R\backslash Y$ such that $u<v$ and $V$ : $\overline{V}\rightarrow(u, v)\cap D$ is the order
isomorphism,
or
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(-) There exist $u,$ $v\in R\backslash Y$ such that $u<v$ and $V$ : $\overline{V}\rightarrow((u, v)\cap D)^{-1}$ is the order
isomorphism.
The set $\mathcal{U}(D, Y)$ consists of $W\in \mathcal{W}(Z_{d} : d\in D)$ which satisfies the following:

(1) Each $W(\alpha)$ is $dor-d$ for some $d\in D$ ,
(2) For any $\alpha\in\overline{W}$, there exists a component $V$ of $W$ such that $\alpha\in\overline{V}$,
(3) Let $\alpha_{n}\in\overline{W}(n<\omega)$ be an increasing or decreasing sequence. If $\alpha_{n}’ s$ belong to

different components $V_{n}’ s$ , i.e. $\alpha_{n}\in\overline{V_{n}}$ with $V_{m}\neq V_{n}(m\neq n)$ , there exists $x\in R\backslash Y$ such
that $\lim_{n\rightarrow\infty}|W(\alpha_{n})|=x$ .
Let $x\in X$ be a point in the upper half plane. (The choice of $x$ is made for the convenience of
the definition of a word $W^{f}.$ ) The important facts are

1. $\mathcal{U}(D, Y)$ consists of all the $W^{f}’ s$ for loops $f$ in $X$ with base point $x$ ;
2. an isomorphism $\pi_{1}(X, x)\simeq\{[W] : \mathcal{U}(D, Y)\}$ is given by $f\vdash+W^{f}$ .

Here, $W^{f}$ is given by the following.
Let $\bigcup_{\alpha\in L}(a_{\alpha}, b_{\alpha})=f^{-1}(R\times(-\infty, 0))$ , where $(a_{\alpha}, b_{\alpha})\cap(a_{\beta}, b_{\beta})=\emptyset$ for
$\alpha\neq\beta$ . Let the domain $\overline{W^{f}}$ of the word $W^{f}$ is a subset of $L\times R$ defined by

$\left\{\begin{array}{ll}\{\alpha\}\times(D\cap(f(a_{\alpha}), f(b_{\alpha}))) & if f(a_{\alpha})<f(b_{\alpha}) ,\\\{\alpha\}\times(D\cap(f(b_{\alpha}), f(a_{\alpha})))^{-1} & otherwise,\end{array}\right.$

and let $(\alpha, u)<(\beta, v)$ , if $a_{\alpha}<a_{\beta}$ , or $\alpha=\beta$ and $u<v$ . Finally, let
$W^{f}(\alpha, u)=u$ .

From now on, we use the notation $\mathcal{U}(D, Y)$ not only as a set of words but also as a subgroup
of $X_{d\in D}^{\sigma}Z_{d}$ , since no confusion will occur. Though the next lemma can be proved in a purely
algebraical manner, a precise description of $\mathcal{U}(D, Y)$ is needed for such a proof. Therefore,
we prove the lemma with the help of a topological argument.

LEMMA 3.1. Let $X=R^{2}\backslash Y\times\{0\}$ for $Y\subset R,$ $y\in Y$ and $x\in X$ be in the upper half
plane. Suppose that there exist $u,$ $v\in R\backslash Y$ such that $u<y<v$ . Then,

$\pi_{1}(X, x)\simeq \mathcal{U}(D\cap(-\infty, y),$ $Y\cup[y, \infty$)) $*Z*\mathcal{U}(D\cap(y, \infty),$ $Y\cup(-\infty, y$ ])

holds.

PROOF. $LetW^{*}$ beaword defined by: $\overline{W^{*}}=D\cap(u, v),$ $ W^{*}(\alpha)=\alpha$ for $\alpha\in\overline{W^{*}}$. We
show $\mathcal{U}(D, Y)\simeq \mathcal{U}(D\cap(-\infty, y),$ $ Y\cup[y, \infty$)) $*\langle W^{*}$ ) $*\mathcal{U}(D\cap(y, \infty),$ $Y\cup(-\infty, y$ ]) holds.
For $W\in \mathcal{U}(D, Y)$ , there is aloop $f$ in $X$ with its base point $x$ such that $W^{f}\cong W$ . Therefore,
$\max\{a : a\leq y, (a, 0)\in{\rm Im}(f)\}<y<\min\{a : a\geq y, (a, 0)\in{\rm Im}(f)\}$ holds and we can
choose $d_{0}\in D$ so that $\max\{a : a\leq y, (a, 0)\in{\rm Im}(f)\}<d_{0}<\min\{a$ : $a\geq y,$ $(a, 0)\in$

${\rm Im}(f)\}$ . Hence, there is a regular decomposition (see [6, Definition 3.8]) $W_{0}\cdots W_{n}$ of $W$

such that $e$ach $W_{i}$ satisfies exactly one of the following:
1. $W_{i}\in \mathcal{U}(D\cap(-\infty, y),$ $ Y\cup[y, \infty$));
2. $W_{i}\in \mathcal{U}(D\cap(y, \infty),$ $YU(-\infty, y$ ]);
3. $W_{i}isacomponentofWcontainingd_{0}or-d_{0}$ .

We remark that the number $n$ does not depend on the decompositions of this kind. In case $W_{i}$

is a component of $W$ , there exist $U;,$ $V_{i}\in \mathcal{U}(D, Y)$ such that:



198 KATSUYA EDA

1. $W_{i}=U_{j}W^{*}V_{i}$ or $W_{i}=U_{i}(W^{*})^{-1}V_{i}$ ;
2. If $U_{i}$ is non-empty, $U_{i}$ belongs to exactly one of $\mathcal{U}(D\cap(-\infty, y),$ $ Y\cup[y, \infty$)) and

$\mathcal{U}(D\cap(y, \infty),$ $Y\cup(-\infty, y$ ]). The same holds for $V_{i}$ .
Therefore, we get a homomorphism from $\mathcal{U}(D, Y)$ to $\mathcal{U}(D\cap(-\infty, y),$ $ Y\cup[y, \infty$)) $*(W^{*}\rangle$ $*$

$\mathcal{U}(D\cap(y, \infty),$ $Y\cup(-\infty, y$ ]) and now it is easy to see that this is an isomorphism. The lemma
follows from [6, Theorem 3.2]. $\square $

LEMMA 3.2. Let $X=R^{2}\backslash Y\times\{0\}$ and $x\in X$ for $Y\subseteq R$ . Suppose that $Y$ contains an
increasing sequence $y_{n}(n<\omega)$ such that $\lim_{n\rightarrow\infty}y_{n}=\infty$ and $(y_{n}, y_{n+1})\cap(R\backslash Y)\neq\emptyset$ for
each $n$. Then, $\pi_{1}(X, x)$ is isomorphic to an infinite free product ofnon-trivial components.

PROOF. Choose $u_{n}\in R\backslash Y$ so that $y_{n}<u_{n}<\mathcal{Y}n+1$ and $1et\overline{W_{n}}=(u_{n}, u_{n+1})\cap D$ and
$W_{n}$ : $\overline{W_{n}}\rightarrow D$ be the identity. Then, each $W_{n}$ belongs to $\mathcal{U}(D, Y)$ . It is easy to see that

$\mathcal{U}(D, Y)\simeq*n<\omega(W_{n}\rangle*\mathcal{U}(D\cap(-\infty, y_{0}),$ $ Y\cup[y_{1}, \infty$)) $*$

$*_{n<\omega}\mathcal{U}(D\cap(y_{n}, y_{n+1}),$ $Y\cup(-\infty, y_{n}$ ] $\cup[y_{n+1}, \infty$)),

which implies the lemma. $\square $

Next, we define a size of $W\in \mathcal{U}(D, Y)$ and prove a lemma corresponding to Lemma 2.8
in Section 2. Let the size of $W\in \mathcal{U}(D, Y)$ be the diameter of the subset $\cup\{C$ : $|u|\in C\in$

$C$ for $u\in{\rm Im}(W)$ } of the real line.

LEMMA 3.3. Suppose that every accumulation point of $C$ belongs to $R\backslash Y$ . Let $h$ :
$\mathcal{U}(D, Y)\rightarrow*{}_{n<\omega}H_{n}$ be a homomorphism such that ${\rm Im}(h)$ is not contained in $any*{}_{n<m}H_{n}$ .
Then, for any $\epsilon>0$ and $m$ there exists $W\in \mathcal{U}(D, Y)$ of the size less than $\epsilon$ such that
$h(W)\not\in*H$ .

PROOF. Assume the negation of the conclusion. Then, there exist $\epsilon_{0}>0$ and $m$ such
that $h(W)\in*{}_{n<m}H_{n}$ holds if the size of $W\in \mathcal{U}(D, Y)$ is less than $\epsilon_{0}$ . By the hypothesis
of $C$ , the lengths of $C’ s$ in $C$ converge to $0$ . Therefore, there exists $C^{\prime}\Subset C$ such that the
diameter of $C\in C\backslash C^{\prime}$ is less than $\epsilon_{0}$ . Let $\overline{V_{C}}=C\cap D$ and $V_{C}$ : $\overline{V_{C}}\rightarrow D$ be the identity. We
remark that a word $V_{C}$ may not belong to $\mathcal{U}(D, Y)$ . We choose $u_{C},$ $v_{C}\in R\backslash Y(C\in C^{\prime})$ so that
$C\subseteq(u_{C}, v_{C})$ and $(u_{C}, v_{C})\cap(u_{C^{\prime}}, v_{C^{\prime}})=\emptyset$ for distinct $C,$ $C^{\prime}\in C$ and let $\overline{W_{C}}=(u_{C}, v_{C})\cap D$

and $W_{C}$ : $\overline{W_{C}}\rightarrow D$ be the identity. Now, $W_{C}$ belongs to $\mathcal{U}(D, Y)$ . Then, we can choose
$m_{0}\geq m$ so that $h(W_{C})\in*_{n<m_{0}}H_{n}$ for all $C\in C^{\prime}$ .

For any $W\in \mathcal{U}(D, Y)$ , we have a regular decomposition $U_{0}\cdots U_{k}$ of $W$ so that the size
of $W_{i}$ is less than $\epsilon_{0}$ or $W_{i}$ contains only one word in $\{V_{C}, (V_{C})^{-1} : C\in C^{\prime}\}$ as a subword.
Then, we adjust $U_{i}’ s$ and get words $W_{0}\cdots W_{l}$ such that:

1. $W=W_{0}\cdots W_{l}$ ;
2. the size of $W_{i}$ is less than $\epsilon_{0},$ $W_{i}\cong W_{C}$ or $W_{i}\cong(W_{C})^{-1}$ for some $C\in C^{\prime}$ .

Therefore, $h(W)\in*_{n<m_{0}}H_{n}$ holds for any $W\in \mathcal{U}(D, Y)$ , which is a contradiction. $\square $

PROOF OF THEOREM 1.4. In case $\infty or-\infty$ is an accumulation point of $C$ , Lemma
3.2 implies the conclusion. Suppose that there exists an accumulation point $y0\in Y$ of $C$ .
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We only deal with the case where there is an increasing sequence $C$ which converges to
$y_{0}$ . If $[y_{0}, \infty$ ) $\subset Y$ , the conclusion follows from Lemma 3.2. Otherwise, there are $u,$ $v\in R\backslash Y$

such that $u<y_{0}<v$ . By Lemma 3.1, $\pi_{1}(X, x)\simeq \mathcal{U}(D\cap(-\infty, y_{0}),$ $Y\cup[y_{0}, \infty$)) $*Z*$
$\mathcal{U}(D\cap(y_{0}, \infty),$ $Y\cup(-\infty, y_{0}$ ]) holds. Again by Lemma 3.2, $\mathcal{U}(D\cap(-\infty, y_{0}),$ $ Y\cup[y_{0}, \infty$))
is isomorphic to a free product of infinitely many non-trivial components.

On the other hand, suppose that there is no accumulation point of $C$ in $ Y\cup t\infty-\infty$ }
and $h$ : $\mathcal{U}(D, Y)\rightarrow*{}_{n<\omega}H_{n}$ be an isomorphism for non-trivial $H_{n}’ s$ . By Lemma 3.3, for
each $m$ there exists $W_{m}\in \mathcal{U}(D, Y)$ such that $W_{m}$ has the size less than $1/2^{m}$ , but $ h(W_{m})\not\in$

$*{}_{n<m}H_{n}$ . Then, there exist a point $y_{0}$ and a subsequence $m_{n}(n<\omega)$ such that ( $|u|$ : $ u\in$

${\rm Im}(W_{m_{n}}))$ converge to $y_{0}$ . Since $y_{0}$ is an accumulation point of $C,$ $y_{0}$ does not belong to Y.
Therefore, each $dor-d$ appears only in finitely many $W_{m_{n}}s$ . By [4, Proposition 1.9], we
get a homomorphism $\psi$ : $X_{n<\omega}Z_{n}\rightarrow X_{d\in D}Z_{d}$ such that $\psi(\delta_{n})=W_{m_{n}}$ for $e$ach $ n<\omega$ .
Moreover, ${\rm Im}(\psi)\subset \mathcal{U}(D, Y)$ holds, since $\psi$ is standard in the sense of [6, Definition 2.2]
(See the next section). But, this contradicts [4, Corollary 2.5], which implies that ${\rm Im}(h\cdot\psi)$ is
contained in $some*{}_{n<m}H_{n}$ . $\square $

4. Spatial homomorphisms and $s$tandard homomorphisms.

First, we recall the notions in the title above from [6]. Let (X, x) and $(Y, y)$ be pointed
spaces. A homomorphism $h$ : $\pi_{1}(X, x)\rightarrow\pi_{1}(Y, y)$ is spatial, if there exists a continuous
map $f$ : $X\rightarrow Y$ with $f(x)=y$ such that $f_{*}=h$ , where $f_{*}$ : $\pi_{1}(X, x)\rightarrow\pi_{1}(Y, y)$ is a
homomorphism naturally induced from $f$ .

For a word $W\in \mathcal{W}^{\sigma}$ $(G_{i} : i\in I)$ , the i-length $l_{i}(W)$ is the number of elements of $G_{i}$

which appear in $W$ . For an element $x$ in the free $\sigma$ -product $X_{i\in I}^{\sigma}G_{i},$ $l_{i}(x)$ is defined as $l_{i}(W)$

for the reduced word $W$ of $x$ [$4$ , p. 247]. A sequence $(x_{j} : j\in J)$ of elements of $X_{i\in I}^{\sigma}G_{j}$ is
proper, if $\{j\in J : l_{i}(x_{j})\neq 0\}$ is finite for each $i\in I$ .

Let $G_{i}(i\in I)$ and $H_{j}(j\in J)$ be groups. A homomorphism $h$ : $X_{i\in I}^{\sigma}G_{j}\rightarrow X_{j\in J}^{\sigma}H_{j}$

is standard, if $(h(g_{i}) : i\in I)$ is proper for any $9i\in G_{i}(i\in I)$ and $h(W)=V$ for a word
$W\in \mathcal{W}^{\sigma}$ $(G_{i} : i\in I)$ , where $V$ is the word in $\mathcal{W}^{\sigma}(H_{j} : j\in J)$ defined as follows:

(1) $\overline{V}=\{(\alpha, \beta) : \alpha\in\overline{W}, \beta\in\overline{V_{\alpha}}\}$ , where $V_{\alpha}$ is the reduced word of $h(W(\alpha))$ ,
(2) The order $(\alpha, \beta)<(\alpha^{\prime}, \beta^{\prime})$ is lexicographical, i.e. $\alpha<\alpha^{\prime}$ , or $\alpha=\alpha^{\prime}$ and $\beta<\beta^{\prime}$ ,
(3) $V(\alpha, \beta)=V_{\alpha}(\beta)$ for $(\alpha, \beta)\in\overline{V}$ .
In case $G$ ; and $H_{j}$ are copies of $Z$ for each $i$ and $j$ , there is an easy criterion for detecting

standard homomorphisms.

LEMMA 4.1. Let $h$ : $X_{n<\omega}Z_{n}\rightarrow X_{i\in J}^{\sigma}Z_{i}$ be a homomorphism. Then, $h$ is standard if
and only if $(h(\delta_{n}) : n<\omega)$ is a proper sequence.

PROOF. The one direction is clear by the definition. If $(h(\delta_{n}) : n<\omega)$ is a proper se-
quence, this sequence can be extended to a standard homomorphism naturally [4, Proposition
1.9]. By [6, Lemma 2.5], $h$ should be the standard homomorphism. $\square $
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For $a\in X_{i\in I}^{\sigma}Z_{i},$ $supp(a)$ is the set of $i\in I$ for which an element of $Z$; appear in the
reduced word for $a$ . Let $\varphi$ : $\pi_{1}(H, 0)\rightarrow X_{n<\omega}Z_{n}$ be the canonical isomorphism, that is, $\delta_{n}$

corresponds to a winding of the n-th circle $C_{n}$ of $H$ and let $\xi$ : $\pi_{1}(X, x_{0})\rightarrow(W^{f}$ : $ f\in$

$P_{x0})\rightarrow X_{i\in I}^{\sigma}Z_{i}$ the isomorphism given by Theorem 1.1 for $x_{0}\in D$ .
THEOREM 4.2. Let $X$ be a space satisfying the hypothesis of Theorem 1.1. Let $g$ :

$\pi_{1}(H, 0)\rightarrow\pi_{1}(X, x_{0})$ and $h$ : $X_{n<\omega}Z_{n}\rightarrow(W^{f} : f\in P_{x0})$ be homomorphisms such that
$\xi g=h\varphi$ .

Then, $g$ is spatial $\iota f$ and only if $h$ is standard.

PROOF. Suppose that $g=f_{*}$ for a continuous map $f$ : $H\rightarrow X$ with $f(0)=x_{0}$ . Since
$(f(C_{n}) : n<\omega)$ converges to $x_{0},$

$h$ is standard. Conversely, suppose that $h$ is standard. It
suffices to show that $(supp(h(\delta_{n})) : n<\omega)$ converges to $x_{0}$ , when all $h(\delta_{n})s$ are non-trivial,
since the reduced word for $h(\delta_{n})$ is $W^{f_{n}}$ for some $f_{n}\in P_{x_{0}}$ by Lemma 2.4. Suppose that
$supp(h(\delta_{n}))\not\leqq O$ for an open neighborhood $O$ of $x_{0}$ and infinitely many $n’ s$ . We choose a
smaller neighborhood $P$ of $x_{0}$ so that $\overline{P}\subseteq O$ . By [6, Lemma 2.4], there exist $W_{n}$ and $V_{n}$

$(n<\omega)$ such that
1. $h(\delta_{n})=W_{n}^{-1}V_{n}W_{n}$ ,

2. $W_{n}^{-1}V_{n}W_{n}$ is quasi-reduced,
3. $V_{n}W_{n}$ is reduced,
4. $V_{n}V_{n}$ are reduced or $V_{n}$ is a single word.

We can inductively choose an increasing sequence $n_{k}<n_{k+1},$ $m_{k}$ and $i_{k},$ $j_{k}\in I$ so that
1. $m_{0}=1,$ $i_{k}\neq j_{k},$ $A_{i_{k}}\not\leqq O,$ $ A_{j_{k}}\cap P\neq\emptyset$ ,

2. the right end $V_{n_{k}}W_{n_{k}}$ of $W_{n_{k}}^{-1}V_{n_{k}}^{m_{k}}W_{n_{k}}$ remains in the reduced word of

$W_{n_{0}}^{-1}V_{n_{0}}^{m_{0}}W_{n_{0}}\cdots W_{n_{k}}^{-1}V_{n_{k}}^{m_{k}}W_{n_{k}}$ ,

3. $i_{k},$ $j_{k}\not\in supp(h(\delta_{m}))$ for any $m\geq n_{k}$ .
Choose $f\in P_{x0}$ so that $W^{f}$ is the reduced word for $h(\delta_{0}^{m_{0}}\cdots\delta_{k}^{m_{k}}\cdots)$ . Since $W^{f}=$

$h(\delta_{0}^{m_{0}}\cdots\delta_{k}^{m_{k}})\cdot c$ , where neither $i_{k}$ nor $j_{k}$ appears in the reduced word for $c,$ $i_{k}$ and $j_{k}$ ap-
pear in $W^{f}$ . Therefore, $f$ travels the inside of $P$ and the outside of $O$ infinitely many times
altemately, which is impossible. $\square $

Next, we shall show that any homomorphism $h$ : $X_{n<\omega}Z_{n}\rightarrow\langle W^{f} : f\in P_{x0}\rangle$ is a con-
jugate to a standard homomorphism. To show this, we state an easy lemma, whose proof is
omitted.

LEMMA 4.3. $LetX$ be a space satisfying the hypothesis ofTheorem 1.1. If $W^{f}\cong UV$

for a proper path $f$ : $[0,1]\rightarrow X$ , where $U$ and $V$ are non-empty, then there exists $0<a<1$
such that $f(a)\in D,$ $W^{fr[0,a]}\cong U$ , and $W^{ft[a,1]}\cong V$ .

THEOREM 4.4. Let $X$ be a space satisfying the hypothesis of Theorem 1.1. For any
homomorphism $h$ : $X_{n<\omega}Z_{n}\rightarrow(W^{f}$ : $ f\in P_{x0}\rangle$ , there exist $y_{0}\in D$ and a standard
homomorphism $\overline{h}$ : $X_{n<\omega}Z_{n}\rightarrow(W^{f}$ : $ f\in P_{\mathcal{Y}0}\rangle$ such that $h$ is conjugate to $\overline{h}$ . More
precisely, there exists a proper pathffrom $x0$ to $y0$ such that $h(x)=(W^{f})^{-1}\overline{h}(x)W^{f}$ for all
$x\in X_{n<\omega}Z_{n}$ .
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PROOF. Since $\langle W^{f} : f\in P_{x_{0}}\rangle\leq X_{i\in I}^{\sigma}Z_{j},$ $h$ is a conjugate to a standard homomor-
phism $\overline{h}$ : $X_{n<\omega}Z_{n}\rightarrow X_{i\in I}^{\sigma}Z_{i}$ , i.e. $h(x)=W^{-1}\overline{h}(x)W$ for $x\in X_{n<\omega}Z_{n}$ , by [6, Theorem
2.3]. In case $h(\delta_{n})$ is trivial for almost all $n,$ $h$ itself is standard. Otherwise, the reduced word
$W$ is unique and obtained by a certain limit. In the proof of [6, Theorem 4.1] (pp. 20-21), we
actually proved:

For any homomorphism $h$ : $X_{n<\omega}Z_{n}\rightarrow X_{i\in I}^{\sigma}Z_{j}$ satisfying $h(\delta_{n})\neq e$ for
infinitely many $ n<\omega$ and th$e$ corresponding $W$ , there exists $u\in X_{n<\omega}Z_{n}$

such that the reduced word for $h(u)$ is of the form U $W$ for some word $U$ .
Now, by Lemmas 2.4 and 4.3, we get a proper path $f$ and $y_{0}\in D$ such that $W^{f}\cong W$ and $f$

is a path from $y_{0}$ to $x_{0}$ . Define $\overline{h}(x)=Wh(x)W^{-1}$ . Then, $\overline{h}$ is a standard homomorphism to
( $W^{f}$ : $ f\in P_{\mathcal{Y}0}\rangle$ , and we get the conclusion. $\square $

COROLLARY 4.5. None of the fundamental groups of the spaces (2) and (3) in Figure
1 is isomorphic to $\pi_{1}(H, 0)$ .

PROOF. Let $h$ : $\pi_{1}(H, 0)\rightarrow\pi_{1}(X, x_{0})$ be an isomorphism, where $X$ is One of the
spaces (2) and (3) in Figure 1. Then, $h$ is a conjugate to a spatial homomorphism by Theorems
4.2 and 4.4. Hence, there is an isomorphism which is spatial. So, we may assume $h=f_{*}$ for
a continuous map with $f(0)=x_{0}$ . Choose $y0\in D$ with $y0\neq x_{0}$ so that $X$ is no semi-locally
connected at $y_{0}$ . There exist a retraction $r$ : $X\rightarrow R=P\cup E$ and a neighborhood $O$ of $x_{0}$

such that
1. $P$ is a neighborhood of $y_{0}$ ,
2. $E$ is a l-dimensional compact polyhedron,
3. $r(O)\subseteq E$ .

Since $rf(C_{n})\subseteq E$ for almost all $n,$ ${\rm Im}((rf)_{*})$ is finitely generated. However, since $R$ contains
$P,$ $\pi_{1}(R, y_{0})$ is infinitely generated, which is a contradiction. $\square $

REMARK 4.6. Theorems 4.2 and 4.4 generalize [6, Corollary 2.11] and [6, Theorem
4.1] is another $ge$neralization of [6, Corollary 2.11].

ADDENDUM. $Re$cently, the author has answered Question 1.5 negatively [2]. More
precisely, the following has been shown. Let $X$ be a one-dimensional space which contains
a copy $C$ of a circle and $X$ be not locally semi-simply connected at any point on $C$ . Then,
the fundamental group $\pi_{1}(X, x_{0})$ for $x_{0}\in C$ cannot be embeddable into $X_{i\in I}^{\sigma}G_{i}$ for n-slender
group$sG_{i}(i\in I)$ . Consequently, $\pi_{1}(X, x_{0})$ for $x_{0}\in C$ cannot be embeddable into the
fundamental group of the Hawaiian earring.
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