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1. Introduction.

It is well known that a 6-dimensional sphere S® can be considered as a homogeneous
space G2/SU(3) where G is the Lie group of automorphisms of the octonions O. From
this representation, we can define an almost Hermitian structrure (J, (, )) on a 6-dimensional
sphere by making use of the vector cross product of the octonions. Also it is known that
the almost Hermitian structure of S6 satisfy the nearly Kahler condition ((DxJ )X = 0)
where D is the Riemannian connection of S® with respect to the canonical metric and X
is a tangent vector of S®. A submanifold M in an almost Hermitian manifold N is called
an almost complex submanifold if each tangent space of M is invariant under the almost
complex structure of N. Almost complex submanifolds of S were studied by many authors,
for example, K. Sekigawa ([Se]), J. Bolton et al. ([Bol]), R. L. Bryant ([Br1]), F. Dillen et
al. ([D-V-V]), and A. Gray ([G]). A. Gray proved that there exists no 4-dimenional almost
complex submanifold of §6. Hence the dimension of almost complex submanifold of S°
is either 2 or 6. In particular, we call a 2-dimensional almost complex submanifold a J-
holomorphic curve. R. L. Bryant ([Br1]) constructed superminimal J-holomorphic curves of
any compact Riemann surface to S° by using twistor methods with respect to the G,-moving
frame. Also, J. Bolton et al. ([Bol, 2]) constructed non-superminimal J-holomorphic curves
of 2-dimensional tori to S® by using the soliton theory. Curvature properties of J -holomorphic
curves of S® were studied by K. Sekigawa ([Se]) and F. Dillen et al. ([D-V-V]). In this paper,
we unify their results about J-holomorphic curves, making use of G;-moving frame methods
by R. L. Bryant and a Lemma of Eschenburg et al. [E-G-T] (also see ([Ch])), and give some
results of curvcature properties of a J-holomorphic curve of S6. Also we give two partial
differential equations with respect to the Gauss curvature and the third fundamental form, and
we obtain some G rigidity theorem of J-holomorphic curves of S°, genus formula (which
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is obtained by R. L. Bryant) by making use of another elementary methods, and give some
existence theorem of superminimal points by applying this genus formula.

The author wishes to express his sincere thanks to Professor K. Sekigawa for his many
valuable suggestions, discussions and encouragement, to Professor K. Tsukada and the refrees
for their valuable comments and some pieces of kind advice.

2. Preliminaries.

2.1. Notations. We denote by M, (C) the set of p x g complex matrices and [a] €
M3,3(C) is given by

0 a —ap
[a] = | —a3 0 al
ar —aj 0
a
where a = | ax | € M341(C). Then we have
as

[a]b + [bla =0

where a, b € M341(C). Let (,) be the canonical inner product of O. For any x € O, we
denote by X the conjugate of x. We remark that the octonians may be regarded as the direct
sum H & H where H is the quaternions.

2.2. Structure equationof G,. We recall the structure equations of (Im O, G,) which
is established by R. Bryant ([Br1]). The Lie group G is defined by

Gy = {ge€ GLg(R) : g(uv) = g(u)g(v) foranyu,v € O}.

Now, we set a basis of C ®g ImObys =(0,1)eH®H,E{ =iN,E; = jN, E3 = —kN,
E| =iN,E; = jN and E3 = —kN, where N = (1 — v/—1¢)/2, N = (1 + +/—1¢)/2 €
C ®r O and {1, i, j, k} is the canonical basis of H. A basis (u, f, f) of C ®g ImO is said
to be admissible, if there exists g € G2 C M7,7(C) such that (u, f, f) = (¢, E, E)g. We
identify the element of G, with corresponding admissible basis. Then we have

PROPOSITION 2.1. There exist left invariant 1-forms k and 6 on G3; 0 = (6°) with
values in M3x1(C) and k = (xj'), 1 < i, j < 3, with values in the 3 x 3 skew Hermitian
matrices which satisfy trk = 0, and

0 —v/-1'6 J/=1'6
dw, f, fy=@ £, H|-2/=T6  « 61
24/—16 61 K
=(u7fa f)¢' 2.1
Then & satisfies d® = —P A D, or equivalently,
do =—k ANO+[O]NG. (2.2)

de = -k Ak +30 A0 - (OO (2.3)
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3. Oriented surfaces in S°.

In the sequel, we denote by S6 a 6-dimensional unit sphere with the canonical Riemann-
ian metric (,). Let M = (M, x) be an oriented surface in S® with (isometric) immersion
x: M — S8 We denote by D, V and V-1 the Riemannian connections of S, M and the nor-
mal bundle T+ M, respectivcely. The Gauss and Weingarten formulas are given respectively
by

DxY =VxY +o(X,Y), 3.1)

Dx§ = —AgX + Vxé, (3.2)

where o and Ag are the second fundamental form and the shape operator (with respect to a

normal vector field &), and X, Y are smooth vector fields tangent to M. The second funda-
mental form o and the shape operator A¢ are related by

(0(X,Y),8) =(Ae X, Y).
The Gauss, Codazzi and Ricci equations are given respectively by

(RIX,Y)Z, W)= (X, W)Y, Z)— (X, Z)(Y, W)

+o(X, W), oY, Z2)) —{6(X, Z),0(Y,W)), (3.3)
(Vxo)(¥, Z) = (Vyo)(X, Z), (3.4)
(RT(X, V)&, n) = ([A¢, Ap)X.Y), (3.5)
where
(Vxo)X,Z2) = V;}a(Y, Z)—o(VxY,Z)—0o(Y,VxZ), (3.6)
R (X,Y)§ = [Vx, V¥I€ — Vix ri§ » (3.7)

X, Y, Z, W € X(M) (X (M) denotes the Lie algebra of all smooth vector fields tangent to M)
and &, n are vector fields normal to M (cf. [Sp], Chapter 7).

Let {e}, e2} be a local orthonormal frame field of M. If the immersion x is minimal (see
(1) of Proposition 4.1 in the next section), the Gaussian curvature K is given by

K=1-(lo(er, eDl* + loer, e)?). (3.8)

4. Fundamental properties of J-holomorphic curves of S°.

In this section, we shall derive some elementary properties of J-holomorphic curves
of S8. First we recall the almost Hermitian structrure of §6. Let X be a tangent vector of
S ¢ Im O at x, the almost complex structure J is defined as follows;

JX =X xx

where X is the vector cross product of Im O. We may observe that this almost complex struc-
ture J is orthogonal with respect to the canonical metric on S6. Hence S® = (S, J, (, )) is
an almost Hermitian manifold and this structure satisfy nearly Kahler condition (DxJ)X =0
([Br1]). However the second betti number of S° is zero, this almost Hermitian structure is not
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Kahler. We denote by v; = spang{o(X,Y )|X , Y € T M]} the first normal space. First we
prove the following.

PROPOSITION 4.1. Letx : M — S be a J-holomorphic curve of S°.
(1) For any vector fields X, Y on M, we have

o(JX,Y)=0X,JY)=Jo(X,Y).

In particular the immersion is minimal.
(2) For a normal vector field & € vy, we have

Aje(X) = J(Ae X) .
(3) For a normal vector field & € vy, we have
Vx(JE) =J(VxE) +Ex X.
PROOF. For any vector fields X, Y on M, we have
Dx(JY) = Dx(Y x x) = (DxY) x x + Y x (Dxx)
=(VxY+o(X,Y)— (X, Y)x) xx+Y x X
=J(VxY)+J(O0 X, Y)+Y x X,

where D is the canonical connection of a 7-dimensional Euclidean space R7 ~ Im O. On the
other hand, by the Gauss formula, we get
Dx(JY)=Vx(JY)+o(X,JY)— (X, JY)x.

Since X, Y € TM, we have
YxX=—(X,JY)x.

Therefore we have (1). Next we shall prove (2) and (3). By the weingarten formula, we have
| Dx(JE) = —Ase(X) + VE(JE).
From the definition of the almost complex structure of >S6, we get
Dx(J§) = Dx(§ x x) = Dx(§ x x) — (X, x x)x.
Since £ x x = J(&), we have (X, & x x) = 0, so we get
Dx(J§) = Dx(§ x x)

= (Dx&) x x + & x (Dxx)

= (—As(X) + Vx(E) xx +& x X

=—JA:(X)+ JVEE) +£ x X.

Since & € v;, we easily see that £ x X is a normal vector field, we get the desired results. [
By Proposition 4.1, we have immediately

COROLLARY 4.2. Letx : M — S5 be a J-holomorphic curve of S®. Then we have
(1) The ellipse of curvature o (X, X) (|X| = 1) is a circle in the first normal space v.
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(2) Ifthe point p € M is not a geodesic one, then we have
Ty M = vi(p) @ v2(p)

where v, denote the second normal space which is spanned by e1 x & and J (e, x &) for
&1 €vy.

PROOF. (1) Lete;, Je; be an orthonormal basis of T,M at p € M. Any unit vector
X can be represented by X = cosfe; +sinfJe;. Then we have

o (X, X) = cos’(8)o (e1, e1) + sin(20)o (e, Jey) + sin2 0o (Jey, Jey)
= cos(20)o (e1, e1) + sin(20)o (e1, Je1) .

Since o (e1, Je1) = Jo(e1, e1), we get desired result.

(2) If weput& = o(e1,e1)/lo(el, e1)|, then we have &; € vy. By (1) of Proposition
4.1, we have

v) = spang{&;, J&1}.
Also we have
(e1 x&1,x) =0, (e1 x&1,e1) =0, (e1x&,Je)=0,
(e1 X &1,61) =0, (e1 x&,J&)=0.
Hence we have ). [

COROLLARY 4.3. Ifa point p is not a geodesic one, then the shape operators Ag, are
given by the following form

A 0 0 A : :
Aslz(o —A)’ A1€1=(x 0)’ Aeyxgy =0, and  Ajexg) =0,

where & =o(e1,e1)/|lo(e1,e1)| and X\ =|o(er,e1)| (or equivalently, o(ey,ey) =
—o(Jey, Jer) = Af1,0(er, Jey) = AJ&)).

PROOF. From the definition of &;, we have

(e1, e1)
(g, (e1), e1) = (o (e, e1), &) = <a(e1, er), ,Z%—Zh)
=A (= —(Ag(Je), Jer)),
and
(Ag (e1), Je1) = (o (e1, Jer), &)
= (Jo(e1, e1), &) = <Ja<e1, er), M) -
lo (e, e1)]

Similary, we have

0 A
AJ§1=(A O).

Since the first normal space is perpendicular to the second normal space, we can easily get

Ael XEI = 0 and A_](el xgl) - O. D
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5. G, moving frame.

In this section, we shall give the relation between the ordinary surface theory (section 3)
and G, admissible frame field along the immersion x. We recall that the Lie group G, is a
principal SU (3) right bundle over S6. First we define complexified local SU (3)-frame field
as follows (at points which are not geodesic).

1
3= 5(61 —~v=1Jey), (5.1)
1
2= 5(&1 —~=1J&), (5.2
1
S =—§(61 x & ——1J(e1 x &1)), (5.3)

where e, Jei, &, JE and ey x &, J(e; x &) are local orthonormal frame fields of M, v;
and vy, respectively. Then, { f1, f2, f3} satisfy

Jfi = —1f;

for any i = 1,2,3. We can easily see that {fi, f2, f3} is a SU(3)-frame field, and
{x, fi, f2, f5. f1, f2, f3} is a local admissible G,-frame along the immersion x.

Next we shall write down the structure equations of a J-holomorphic curve of §6 which
may admit geodesic points. The left invariant 1-forms on G; pull back under the immersion
x give forms on the pullback boundle x*(G2) which we continue to denote the same letters.
We obtain the following

PROPOSITION 5.1. Letx : M — S be a J-holomorphic curve of SS. Then we have
the following.

dx = f3(=2+/—=160%) + 3(2/=163), (5.4)
02=0'=0, «3!=0, (5.5)
—_— 3 - N
dfs = x(—/=163)+ ) _fi -k3' Gauss formula), (5.6)
. i=l1
3 . —
dfs =Y fi-xa' + Fi6?, (5.7)
i=1
3 . —
dfy =) fi-x1' — 126>, Weingarten formula). (5.8)
i=l1
Also we have
k33 + 124+l =0, (5.9)
do3 + k33 A3 =0, (5.10)
dic3® + k23 Ak3? =203 A 63, (5.11)
dis? + k32 A k3 + 12 AKa! = —03 A 063, (5.12)
dici' + k2l A2 = —63 A 63, (5.13)

dk3? + (2 — k3}) AK3? =0, (5.14)
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diyl + (k1! =) Akl = 0. (5.15)
We note that k32, kp! € A0 where A0 js g space of 1-forms of type (1, 0) with respect to
the complex structure J of M.

PROOF. By (5.5), we get
do' = —i3' A03 =0, do?=—-k32A0%=0,

so the 1-forms k3!, k32 are (1, 0)-forms on M. Since x(M) is a minimal surface of S5,
we can take the vector field fi is an orthogonal complement of the complex vector space
spanc{ f2, f3} (with respect to the Hermitian inner product), we have

k3 (X) = 2(df3(X), F1) = 2(0(X, f2), f1) =0,
We get the desired result. Ul

We put the connection 1-form «33 = /—1p; of M, the connection k32 = +/—1 p2 of
the 1st normal bundle v, the connection k;! = +/—1p3, of the second normal bundle V2,
respectively. If the immersion x does not have a geodesic point, then we have

p1(X) = (Vxer, Jey), (5.16)
p2(X) = (Vx&1, J&1), (517
p3(X) = (Vyer x &1, J(e1 X &1)) (5.18)

forany X e TM.

LEMMA 5.2. If the immersion x does not have a geodesic point, then we have

k3> =—1p1, K2=~=1p, xi'=~—1p3, (5.19)
K32 = A(=2+/—16%), (5.20)

2 _
! = T (V503 13), fi)(=2+/=16%), (5.21)

where A = /(1 — K) /2.
PROOF. From the structure equations (5.6)—(5.8), and (5.16)—(5.18), we have (5.19).
Next we show (5.20). Since k32 € ALO we get
k3® = 3% (f3)(—24/—16%)
= 2Dy, f3. o) (—24/~16%)
=2(0(f3, f3), f2)(=2v/—=167)

= %(a(el —~V=1Jei, e1 — vV—=1Je1), & + V—1J&)(—2/—16)

= (o (e1, e1) — V=1 (e1, Je1), & + v/ —1J&1)(—/—16)
= A(=2+/—=16%).
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In the same way, we have

k2! = 12! (f3)(—2/=16%)
= 2(VE f. F)(—2/—16%)
1 —
= S(VE_ /oy & — VLIE). F) (-2~ 16%)

1
2

1 _—
= 2{(Ve,0)(er, e1) - V=1(Vje0)(e1, e1), f1)(—24/—16%)

2 —
= (Vo) (et en), ) (=2+/—-16%).

On the other hand, we have (V£,0)(f3, f3) = (V5o )(f3, 75) = 0. This yields
2 —
k2! = (V) (3, f2), fi)(—24/=16%).
We get (5.21).

PROPOSITION 5.3. x: M — S be a J-holomorphic curve of SS.

(1) dp1 = Qlis2(H)> - DR =—-KR2,
1

Q) dpr = 5(1 - 432 ()12 + 4l ()2,
1

(3) dpy = 5(1 - 4! (H)1%) 02,

where 2 = 2/—163 A 63 is a volume element of M.
PROOF. By (5.11) and (5.20), we get

dp) = —v/—1k32 A k32 —2/—16° A 63

= V=132 (f3)632(f3) — 24/—1)0> A 63

= QI3 (1> — D2
=-KS£.

Hence we get (1). Similarly, we have (2) and (3).

) 3 .
= 5V e @ le1 e = V=1Jo(e1, ), i) (=2v=16%)

a

REMARK. Each second cohomology class [—dp;/27] € H*(M?, Z) is a first Chern

class of the corresponding complex line bundle.

Next we show that the function |K21 ( f3)|2 is well defined at isolated geodesic point. We
recall the definition the holomorphic line bundles v; (1'9 and v,1:9). First, we shall define the

su(3) connection on 719 §6 as follows;
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Let { f1, f2, f3} be the SU (3)-frame field of 7(:9 $6. A section s of the bundle 7 (10 56
can be represented by

3
S=Zf,-®s’.
i=1

We set the operator V on 719 § such that

3
Vs = Zfi ® (ds' +kj's?).
i=1
Then V is the connection which satisfies VJ = 0 and preserve the Hermitian inner product
of T(1.0) 56 (see [Brl] or [H]).

Let x : M — 5% be a J-holomorphic curve of $¢ which is not totally geodesic. We
denote by T M the normal bundle of rank 4 over the J-holomorphic curve. Since the tangent
bundle of M is invariant under the almost complex structure, so is T-M. We denote by
T, M the (1, 0) part of the complexified normal bundle T-M ® C. Since we take f; as a
section of T1O M, {1, £} is a local unitary frame of 7-(1:0 M. We can define the induced
conneciton of 7119 M from the above su(3)-connection as follows. A (local) section s of
the bundle 709 M can be represented by

2
s = Z fi®sh.
i=1
We set the operator V on 7+(:9 M such that

2
Vs =) fi®ds' +x;'s)).
i=1
Since M is a Riemmann surface, it can be shown that V defines the compatible holomorphic
structure on T1(:9 M by the Proposition (3.7) (in [K: page 9]). We call a (local) section s
holomorphic one if

s =0, |
where 8, = 3/8z. We show that o (3, 3;) is a holomorphic section of T+(1:0 where 3, =
d/0z. In fact, by (5.7) and (5.8), we have
V(0 (8;, ;) = V(0 (3;, 8,)) = (V570)(3;, 9;)  (since V58, = 0)
= (Vaza)(a_la aZ) = 09
the 3rd equality holds by the Codazzi equation and the last equality holds by (1) of Corollary
4.2. Since we assume that o is not identically zero, the geodesic points are isolated. Let zgp be

an isolated geodesic point on M and (U, z) is an isothermal coordinate of M centered at zg,
then the metric is given by '

ds? = pzdz odz.
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Since o (3;, 9;) is a holomorphic section of T(:9 M, we may put

0(9;, 8;) = (z — z0)"E(2),
on U, where £(z0) (# 0) € T+(1:9, We define (1, 0) part of the first normal bundle v; "9 as
follows
9;,0;)} forany z e U\ {z0}
fiver of v{ 1® over z} = spancio (3, 3
! tz} spanc{§(z0)} at zo.

Then v11'? is well defined on M and it is a holomorphic line bundle. Since the geodesic
point zg is isolated, we may put

= £(2)
V2|£(2)|

where £(z) is a T+(:9_valued holomorphic section and satisfy £(z) # 0 on U. In this case,

we have
2 — 2 _
K32(f3) = —(Da, f3, f2) = £ (DaZ (x* (laz)) , f2) .
P o .

V2

_ V2(z — z0)" |E(2)|
p%1E(2)| '

(0(8;, 8), E(2)) = 5
P

In the same way,

spanc{—x«(9z) X 0(8,,3;)} forany z e U \ {z0}
spanc{—x«(9z) x §(z0)} at zo.

fiver of v2(1,0) over {z} = {

Then v,(1'9 is also we defined. Also the bundle v,(1'? can be considered as the quotient

bundle
T_L(I,O)/UI(I,O) _ vz(l,O) .

Next we shall define |«2!(f3)|? at the geodesic point as follows. We note that
2 —
K2 (f3) = S (Do 2. 1)
Since the vector field f is well defined at zg, we have

. _ —
k2 (f3) = EQR (D3, &, x+(37) x (2)) .

Therefore,

1
2! (f3)1? = W(Daﬁ. xx(9z) X £(2))(Dy,§, xx(3z) x £(2)) .

We can easily see that the function lieal( f3)|2 does not depend on the choice of the frame
fields, so we can define |k, !( f3)|2 whole on M (if M has only isolated geodesic points).
We put IIII)? = |k21(f3)|? (in the extended sense). We recall the definition of functions of
holomorphic type and absolute value type.

DEFINITION 5.4. A smooth complex valued function p : M — C is called a one of
holomorphic type if locally p = po - p1, where pg is a holomorphic function and p; is smooth
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without zeros. A non-negative function f : M — Ry is called a one of absolute value type,
if there exists a function g of holomorphic type with f = |g|. The zero set of such function is
either isolated or the whole of M, and outside its zero, the function is smooth.

Then we have

PROPOSITION 5.5. Letx : M — S% be a J-holomorphic curve of S® which is not
totally geodesic. We assume that the induced metric is given by the following form (locally)
ds? = p2dz odz.

Then the functions and a2l = k1(8,) are of holomorphic type and hence |k32(f3)| =
VA =K)/2 and |k;' (f3)| = |II| are of absolute value type. Moreover they satisfy the
following equations.

6)) 4II? - 1= Alog(l — K) — 6K,

) | Alog |III| = 1 — 4|III)?,

(3) Alog{(1 — K)|III|} = 6K ,

outside the corresponding zero sets. The 1-forms p1, p2, p3 satisfy the following
) - p1— p2 = —2Im{3,(log(as?))dz} ,

5) p2 — p3 = —21m{d; (log(az"))dz} .

In order to prove Proposition 5.5, we recall the following fundamental lemma which is
obtained by Eschenberg et al. ((E-G-T]) or S. S. Chern ([Ch]).

LEMMA 5.6. Let (M, ds?) be a Riemann surface and (U, z) be an isothermal coordi-
nate system. Letp : U — C be a smooth complex valued function which is not identically
zero, and w be a real valued 1-form on M. The function p and a 1-form w satisfy the following
equality

(dp — v/ —1pw) Adz =0,

if and only if
(1) pisa function of holomorphic type.
2) w = —2Im{3,(log(p))dz} .

In particular, by (2), we have
do = —Alog|p|s2.

Now we are in a position to prove Proposition 5.5.
PROOF OF PROPOSITITION 5.5. Since the 1-forms «32, k2! € ALO (M), there exist

local functions a32, a;! such that

k32 =a3z’dz, K2 =asldz.
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From the assumption, a3, a,! are smooth. By (5.14) and (5.15), the following equalities hold
{das®> — V/~1(p1 — p)az’} Adz =0,

{daz' — v=1(02 — p3)az'} Adz = 0. (5.22)

We can apply (2) of Lemma 5.6 to (5.22), we get (4) and (5). By applying (3) of Lemma 5.6
to (5.22), we get (1)—(3). -4

LEMMA 5.7. For any real valued positive function f : M — R. o, we have
J*(dlog f) = 2Im{d,(log f)dz}, ,
where J* is defined by J*a(X) = —a(J X) for any 1-forma and X €¢ TM.
PROOF.

J*(dlog f) = J*{(3;1og f)dz + (3, log f)dz}
= 3, log f(—+/—1dz) + 3; log f(~/—1dZ) = 2Im (aa—z(log f)dz) .0

LEMMA 5.8. Letx : M — S° be a J-holomorphic curve of S°. We assume that the
induced metric is given by the following form (locally)

ds? = p*dzodz.

Then the connection 1-forms are given by the following

p1 = J*dlogp, (5.23)
p2 = 2Im{o, log(pa_g')dz} , (5.24)
p3 = —21m(3, log(p?a2)dz} , (5.25)
0 = Im{3,(log(0*(@3)%a;1))dz} (5.26)

In particular, we have
dp; = (Alog p)2 = —K2 = 2p%|a2|> — D2,
dpy = (Alogpla3)$2 = (—K + Alogla?|)$2,
dp3 = —(Alog p*|a3)2 = (2K — Alogla?))s2.

PROOF. Since the induced metric is given by the above form, we get
p1=J*dlogp.
By (4) of Proposition 5.5 and Lemma 5.7, we have
p2 = p1 + 2Im{ad, log(%)dz} .

Hence, we get (5.24). By (5.9), (5.23) and (5.24), we obtain (5.25). By (5.24), (5.25) and (5)
of Proposition 5.5, we get (5.26). O
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REMARK. The equation (5.26) gives an important role to define geometrical invariants
of G».

6. Local existence and rigidity.

We first remark that a J-holomorphic curve M of S is a totally geodesic, if and only if,
the Gauss curvature of M is identically 1. Therefore we may consider the case that the Gauss
curvature of M is not identically 1. We shall prove the following existence theorem.

THEOREM 6.1 Let M be a connected, simply connected Riemann surface with the
metric of the form
ds? = p?dz o dz.
We assume that the Gauss curvature K is not identically 1 and K < 1. Then functions
»/1 — K and |III| are of absolute value type and that the following equations are satisfied

Alog(l — K) = 6K — 1 + 4|11, (6.1)
Alog I = 1 — 4|II1}?, (6.2)
outside its zero set. Then there exists a J-holomorphic curve of ¢ : M — S° with the Gauss
curvature K = —Alog p and |III| = |k21(8,)/pl.
In order to prove Theorem 6.1, we recall the following theorem. _
PROPOSITION 6.2 ([Gri]). Let G be a Linear Lie group and G denote its Lie algebra.
Let
w=g ldg
be the Maurer-Cartan form where g = (g;;) is a variable non-singular matrix, and N be a

connected, simply connected n-dimensional manifold. If there exists a G valued 1-form
such that

1
ay + E[w, v]1 =0, (integarability condition)
then there exists amap f : N — G such that ’

¥ =fw.

PROOF OF THEOREM 6.1. By Proposition 6.2, to show Theorem 6.1, we may prove
that there is a G, valued 1-form on M which satisfy the integarability condition. First we
define G, valued 1-form on surface M. Let (U, z) be a local isothermal coordinate system
of M. From the assumption, there exists holomorphic functions ko(z), go(z) and nowhere-
zero (complex valued) functions h1(z), g1(z) such that p/(1 — K)/2 = |ho(z)h1(z)| and
o] = |go(z)91(2)]. If zo is a geodesic point, then we have ho(z) = (z — z0)" ap(z) where
ao(z) # 0on U. If z; is a zero point of |III|, i.e., |III|(z;) = O (which will be called a
super-minimal point in the later of this paper), then we have go(z) = (z — z1)* Bo(z) where
Bo(z) # 0on U. By (6.1) and (6.2), we have

A log(Jeo(2) Bo(2)h1(2)g1(2)10%) = 0.
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Since the function ag(z) Bo(z) h1(z) 91(z) does not have a zero point on U, there exists a
holomorphic function f(z) such that 0%a0(2) B1(2) h1(2) 91(z) = eReS D, We put

1
63 = 5\/—1pdz, ! =62 =0,

k33 = —1p; = V/—=1(J*dlogp),
i2? = +/=1p2 = 24/=11Im{3; log(pho(2)h1(2))dz},
ky! = +/=1p3 = —2/—1Im{9, log(p*ho (21 (z))dz} ,

k32 = ho(2)h1(2)dz = —K23,

k3l =0 =13,

k  Ref(z) _
zZ—271)e .
K21 = ( 1) dZ = —Klz ’

pOao(2)h1(2) |
on U, where ho(z) = (z — z20)™ao(z) if zo is a geodesic point in U. By (6.1), (6.2) and direct
calculation, we can easily see that the integrability conditions are satisfied. By Proposition
6.2, there exists amap ¢ : M — G3. From the definition, the image of ¢ transverse to SU (3).
We get the desired result. U

REMARK. From the above observation, we can obtain a J -holomorphic curve associ-
ated to ¢ as follows

7 o @(p) = the first column of the matrix (¢, E, E)o(¢(p))

where o : G2 —> SO(7) C EndrC’ is a faithful representation, ¢ = (0,1) € ImO and
pEM.

We shall prove the rigidity theorem with respect to G,. First, we shall determine the
geometrical invariants up to the action of G;.

Let x : M — S be a J-holomorphic curve of S and {f3, f2, fi} (tesp. {f3, f5. f]}) a
special unitary frame on U (resp. on V) where U, V are sufficiently small open subset of M
such that U N'V # @. Then there exists a8 € S! such that f; = €% f3, f; = €2 fo, f] =
e~ 38 f1 where 1 = ~/—1. From this relation, we have the following relations about 1-forms
onUNYV

0/3 — e—'1993 ,
kP =k33 +/—1d0, «f =i? +24/-1d8, «}' =xi' —34/-1d0,
W2 =e03?, Kl =kl=0, K =i,

Therefore we can easily see that
A =4V=10")? ® k' ® (6°)°

is independent of the choice of the special unitary frame. We call A a geometrical invariant
of a J-holomorphic curve of S® with respect to the action of G,. We remark that A is a
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holomorphic section of the bundle ®°7*1:9 M. In particular, by (5.26), A is a globally
defined holomorphic 6-differential on M. In fact, we may put f3 = (1/p)3;, then we have

_ { —(02(9;, 9z, 87), xx(3;) x 0(d;, 3;))(dz)® (without geodesic point)

—(z — 20)2’”(Daz§(z), xx(0;) X S(z))(dz)6 (where z¢ is a geodesic point) 6.3)

where 03(X, Y, Z) is the components of the 2nd normal space of (Vxo)(Y, Z) for any tangent
vectors X, Y, Z of M. From the above representation of A, we may write A = F(z)d 2% where
F (z) is a holomorphic function on (U, z). By direct calculation, we have

(1 — K)|III|

A =
| Al )

LEMMA 6.3. Let M beaconnected surfaceandxy,xy : M — S6 be two J-holomorphic
curves with same induced metric. Let A1 and A; be the corresponding holomorphic differen-
tials. Then there exists an element g € G, such that go x; = x, ifand only if A1 = Aj.

PROOF. We may assume that ds? = ds? = p?dz o dz and A; = A; on sufficiently
small neighborhood (U, z) of M. We can take the common complexified tangent vector field
f3 = f3. Then we have 6> = 6" and k3> = «}’. Since |as?| = [a?| = p/T - K)/2,
there exists a real valued differentiable function ¢ such that af = e'“a32. If we change
the adapted frame field of x», from {f; = f3, f;, fi} to {f3 = f3,€'? f;, e7'? f]}, we may

assume that a? = a3®. By (5.24) and (5.25), we have k1! = k]!, k22 = «J2. Also, since

A = p3(a32)3a21(dz)6, A1 = A, implies that aél = ap!. Therefore we have k! = Kél.
From the following Proposition 6.4, we see that the subset of M where x, and go x; agree, is
closed and open subset in M, it is coincide with the whole of M. The converse statement is

clear. a

manifold N into G. Then we have

PROPOSITION 6.4 ([Gri]). Let f, f : N — G be two smooth maps of a connected
f=gof
for fixed g € G, if and only if
ffo=ffo

where w is the Maurer-Cartan forms on G.

THEOREM 6.5. Letx : M — S be a J-holomorphic curve and M is a connected
surface.

(1) We assume that x is totally geodesic. Let x' : M — S be a J-holomorphic curve
with the same induced metric as x. Then there exists a g € G, such that x' = go x.

(2) We assume that x is not totally geodesic and |III| = 0. Let x’ : M — S% be a
J-holomorphic curve with the same induced metric as x. Then there exists a g € G, such that
x' = gox.

(3) We assume that x is not totally geodesic and |Ill| is not identically zero. Let x' :
M — S be a J-holomorphic curve with the same induced metric as x. Then there exists a
one parameter family of J-holomorphic curves of xg : M — S (0 € S') with same induced
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metric as x. Moreover, any J-holomorphic curve with the same induced metric belongs to this
family, up to the action of G».

PROOF. (1) By Lemma 4.4 in [Brl], this is proved.

(2) By Lemma 6.3, we get (2).

(3) By (1) of Proposition 5.5, the function |III| is determined by the induced metric.
By the assumption, we can easily see that there exists a real valued function @ € S! such that
A’ = e'? A. Since A’, A are holomorphic 6-differential on M, 6 is a constant. By Theorem
6.1, there exists a 1-parameter family of J-holomorphic curves with the same induced metric
of x and ¢'? A where 6 is a constant. By Lemma 6.3, any J-holomorphic curve with the same
induced metric of x, is congruent to this family up to the action of G,. We get the desired
result. O

7. Some theorems associated to curvature.

In this section, we give some theorems as an application of Proposition 5.5 and unify
some results obtained by K. Sekigawa ([Se]) and F. Dillen et al. ([D-V-V]) concerned with
curvatures of M. It was proved that the Veronese immersion of S? to S and the Kenmotsu

v 6
surface T2 to S° C S, are J-holomorphic curves of S ([Se], [Bo2]). First we prove the
following.

THEOREM 7.1. Letx : M — S° be a J-holomorphic curve of 8. If its induced metric
is complete and the Gauss curvature K satisfies the following condltlons

(1) K is bounded from below,

(2) K =1/6,

3) fM(K'.‘).Q is finite, where K~ (x) = max{—K (x), 0},

(4) |II|? < 1/4. Then the immersion x is congruent to the Veronese immersion of Si

to 8% up to the action of G,.
In order to prove Theorem 7.1, we prepare the following

PROPOSITION 7.2. Letx : M — S% be a J-holomorphic curve of S®. The Gauss
curvature K and the length of third fundamental form |II1|? satisfy the following differential
equations

1
(1) S40 - K)? =2|grad K||I> + (1 — K)?(6K — 1 + 4|II1}?),
1
) 5A|III|“ = 2|grad [IIT|?||? + |IXI{*(1 — 4/I11%)

1
3) EA{(I — K)?|II|%)? = 2||grad(1 — K)?|I)? )% + 12K (1 — K)*|II0|*.
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PROOF. First we shall prove (1). Since the immersion x is minimal, the Gauss cur-
vature K satrisfy K < 1. If K = 1, then (1) is automorphically satisfied. Hence we may
consider the case that K is not identically 1. Then the geodesic points are isolated. On the
other hand, we have

fAS — ligrad £1)?

£2
outside the corresponding zero sets, for any non-negative function f which is not identically
zero. This formula and (1) of Proposition 5.5, we get (1) for the regular points. Since the
L.H.S and the R.H.S of (1) are continuous functions, the equatlity holds on M. In the same
way, we get (2) and (3). O

Alog f =

Now we are in a position to prove Theorem 7.1.

PROOF OF THEOREM 7.1. From the condition (2), we see that the immersion does not
have a geodesic point. If M is a non-compact complete Riemann surface, then the conditions
(1) and (3) imply M is a parabolic Riemann surface by Huber’s theorem ([Hu, Theorem 15]).
By the condition (4) of Theorem 7.1, and the equation (2) of Proposition 7.2, |III|? is a
bounded subharmonic function on M, and hence it is constant. By (2) of Proposition 7.2 and
the assumption (4), we have [III|2 = 0. By (1) of Proposition 5.5, conditions (1) and (2), we
get —log(1l — K) is also a bounded subharmonic function on M, the Gauss curvature K must
be constant. Again by (1) of Proposition 7.2, we have K = 1/6. By (2) of Theorem 6.5, we
get the desired result. U

We give another proof of the following theorems concerning to the curvcature properties
of J-holomorphic curve of S°.

THEOREM 7.3 (of Sekigawa [S] and F. Dillen et al. [D]) Let M be a J-holomorphic
curve of S°. ‘

(1) Miscompleteand1/6 < K <1thenK =1/60rK =1,

(2) IfMiscompactand) < K <1/6then K =0or K = 1/6.

PROOF. (1) By Myers’ Theorem and the assumption, M is diffeomorphic to 2-
dimensional sphere. By Theorem 4.6 in ([Brl]), we have |III|> = 0. By (1) of Proposition
7.2, we get the desired results.

(2) If the genus of M is zero, then by Theorem 4.6 in ([Brl]), |III|2 = 0. Applymg
Theorem 7.1, we have K = 1/6. If the genus of M is one, by the Gauss Bonnet Theorem, we
get K = 0. , O

We give somewhat generalization of Theorem 7.3.

THEOREM 7.4. Let M be a complete J-holomorphic curve of S°. If the Gauss curva-
ture K is nonnegative and |II1|? is bounded from above, then we have the one of the following

(1) K = 0 and congruent to the one parameter family of Kenmotsu surface T?> — §°,
up to the actionof G».

2 (- K32 =o.
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PROOF. From the assumption, we see that M is a parabolic Riemann surface by Hu-
ber’s theorem ([Hu, Theorem 15]). If K is not identically zero, by (3) of Proposition 7.2,
(1 — K)?|IHI|? is a bounded subharmonic function, therefore it is constant on M. We get
(1 — K)?|II? = 0. O

Also we have the following

THEOREM 7.5. Letx : M — S® be a compact J-holomorphic curves in S8. Then we
have the following inequality

2[ |grad K |22 5/ 1 -6K)1 - K)*82.
M M

The equality holds if and only if
(1 - K)*[HI)* = 0.

PROOF. By (1) Proposition 7.2, we get the desired result. O

THEOREM 7.6. Letx : M — S be a J-holomorphic curve of S8. If its induced metric
is complete and the Gauss curvature K satisfies the following conditions

(1) K is bounded from below,

2 K =0,

3) [ (K7)R2 is finite,

4 |HI? < 1/4.
Then K = 0, |II1|? = 1/4 and the immersion x is congruent to the one parameter family of
Kenmotsu surface T? > §° up to the action of G,.

PROOF. By (2) of Proposition 7.2, |III|* is a bounded subharmonic function on M.
Since M is a parabolic Riemann surface by Huber’s theorem ([Hu)), IIII|2 is a constant func-
tion on M. Also, by (2) of Proposition 7.2, we have IIII|2 = 0 or 1/4. If |III|? = 0, by (1)
of Proposition 5.5, we have Alog(l — K) = 6K — 1, therefore 1/(1 — K) is a bounded sub-
harmonic function, K is constant on M. Also, by (1) of Proposition 5.5, we have K = 1/6.
This contradicts the assumption. Hence |III|> = 1/4. By (3) of Proposition 5.5, we have
Alog(l — K) = 6K. Hence 1 — K is a super harmonic function on M. Since M is a para-
bolic, K is constant, so K = 0. We get the desired result by (2) of Theorem 6.5 and Theorem
3.1 in ([Br2)). O

8. Genus formulas of R. L. Bryant ([Br1]).

In this section we give another proof of R. L. Bryant’s Divisor formula. We recall the
Bryant’s formula in our situation.

THEOREM 8.1. Let x : M — S be a compact J-holomorphic curve in S®. If the
Gauss curvature K is not identically 1 and |I1l| is not identically O. Then we have

ey x(w) + x(v2) + x(M) =0,
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2) x(1) =2x(M)+ NQA),

1
(3) x(2) = =3x(M)+NQ) = EN(IIIII)

(or equivalently, 6x (M) 4+ 2N (A) + N(|III]|) = 0), where x (M) is the Euler number of T M
and x (v;) is the degree of the i-th normal bundle, and N(f) is the sum of all orders for all
zeros of f. '

REMARK. R. L. Bryant showed the divisor formulas for any branched J-holomorphic
curve of S6. We use the formulas for the case that J -holomorphic curve has no branched point
in this paper.

To prove Theorem 8.1, we recall the following elementary lemma which is obtained by
Eschenberg et al. ([E-G-T1]).

LEMMA 8.2. Let f be a non-negative function of an absolute type on M. Then we
have ’ :

f Alog f2 = -2aN(f).
M

PROOF OF THEOREM 8.1. Since A and |III| are functions of absolute value type, we
can apply to Lemma 8.2 to the functions A and |III|. From the definition of the degree, we
have ‘ '

27tx(v1)=—f dp2=/ (2K — AlogA)$2
M M

= 47 x (M) — / (AlogA)$2
M
=4nx(M)+2rN(}L).
By (1) and (2) of Proposition 5.5, we get
2 x(v) = —/ dpz = —f (3K — Alog))$2
M M
= —6mx (M) —-27N()

1 2
== | a-4mpse
2/m
1
= —-—/ Alog |III|$2 = a N(|III}) .
2/m

By (5.9) of Propostion 5.1, we get (1). Hence we get the desired results. O

COROLLARY 8.3. Letx : M — S be a compact J-holomorphic curve of SS. If the
Gauss curvature K < 1/6. Then we have

12(g— 1) = N(III))

where g is a genus of M. In particular, g z' 2,then there exists a superminimal point. More-
over if the immersion does not have a geodesic point and |IIl| # O then the genus of M = 1.
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PROOF. In order to prove Corollary 8.3, we show that |III| does not identically zero. If
the function |III| is identically zero, then (1) of Proposition 5.5, we have

f (6K —1)2 =0.
M

This contradicts the assumption. Hence we see that |III| is not identically zero. So we can
apply (3) of Theorem 8.1, we get the desired result.

Since the functions A and |III| are positive functions of M, by (1) and (2) of Proposition
5.4, we have g = 1. : O

9. Existence of superminimal points and the genus of M.

In this section, we consider the relation between the existence of superminimal points
and the genus of M without geodesic points. First we give some equivalent conditions of a
superminimal point.

DEFINITION 9.1. The point p € M is called a superminimal one of J-holomorphic
curve if |[III(p)| = 0.

We have the following.

PROPOSITION 9.2. Letx : M — S8 be a J-holomorphic curve in S® which is not
totally geodesic. For a point p of M which is not geodesic, the following conditions are
equivalent.

(1) p is a superminimal point.

(2) |o2(X, X, X)| is constant for any unit tangent vector X € T, M.

(3) The holomorphic 6-differential

A = —(02(3;, 87, 8;), 8; x (8, 3;))(d2)®

is zero at p € M, where z is a local isothermal coordinate system centered at p which is
compatible with the given orientation.

PROOF. Since |III| = 2|F(2)|/(A2p%) and (6.4), the condition (1) is equivalent to (3).
The 3rd fundamental form o3 is given by

02 =2{(V£,0)(f3, £3), F1) 1 ® (—2v/—=167)
+2((V50)(f3, £3), f1) i ® (—24/—-16%)°
+2((V50) (P, 13, F) fr ® 24/ =163)°
+2((V50) (3, 1), A1) FL © @V=163)°.

We may put f3 = (1/p)dz, then

— 1
((V50)(f3, f3). i) = IpTSF(Z)’
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where F(z) is a holomorphic function on some neighborhood near p. Since f; is an element
of the second normal space, we have

(Vi) (f3, 3), f1) = (V40 (f, ), 1) — 2006(V 5, f3, f3), F1)
=—(0(f3, f3), VI 5 f1).
By (5.8), we get
ViR fi = fual(fs) + faki2(f3) — 203 (f3)
= fuet (f3) + frer®(f3) = 5.

This yields
(V) 1), f1) =
Hence
02:%F(z)f1 ® (—2v/—16%)° + %K ® (—27/=163%)3
— %fl ® V=163 + %ﬁzﬁﬁ@ 2V=163%)3.
So we get
Do fo S = L2+ 5T

Since we can put X = f3¢' + fz3¢7?, then
02(X, X, X) = 02(f3, f3, [’ + o2 (F, Fo, Fa)e ™0
2 [y p— 2 ——— A
=(=_F i 316 = F _ —-316
(Ap6 @f + 2f1)e +(Ap6 (2) f1 2f1)e
2 1A 2 —— A —_—
_ F(2)e30 — Y —36 F()e—310 4 1 36 .
( v (2)e € Jfi+ WG (e " + e ) h
Finally, we have

4F@P | 2 |F@)I
W+z~ -2 P sin(c + 66) ,

where F(z) = |F(z)|e'®. From this we see that condition (2) is equivalent to (3). Hence we
get desired results.

lo2(X, X, X)|? =

THEOREM 9.3. Letx : M — S° be a compact J-holomorphic curve in S® with genus
g. Then we have

(1) The immersion x is superminimal if g = 0. ([Brl]).

(2) The immersion x is superminimal or otherwise the immersion x is nowhere super-
minimal on M if g = 1.



158 HIDEYA HASHIMOTO

(3) IfK < 1, g > 2 and there exists a point at which the immersion is not supermin-
imal, then the multiplicity of each zero of the third fundamental form is divisible by 6 and
furthermore the equality

i ki=12(9—1)
holds, where p; (1 <i <) are supe:‘;l;nimal points of x with multiplicity k;.
PROOF. By Riemann Roch theorem, we can get (1) and (2). By Theorem 8.1, we may
show that k; is divisible by 6. In fact, if F(p;) = O then we can put
F(2) = (z— p)N g(2)
where g(z) # 0 on an isothermal coordinate system (U, z) centered at p; where U is a suffi-

ciently small simply connected neighborhood of p;. Since we have
4FQI A L IFQ@)
A2pl2 + 4 7 pb

where X = (1/p){e'?8, + ¢7'93,} and F(z) = |F(z)|e'®, where a € R (mod 27). If we put

lo2(X, X, X)? =

sin(a + 660)

1 —
e1 = —{e'%0, + e7'%73,)
P
where 8y = —(/6) — (7t/12). Then the vector field e; is differentiable on U \ { p; } and satisfy
IGZ(ela €y, el)l = |r)r(1|a_x1 IGZ(Xa Xa X)I .

Since 1
o= —E{log F(z) —log F(2)},

we have

1 1 S 1
dfy = —— = — - _——
o da 12(d log F(z) — dlog F(z2)) D (

F'(z) F'(2)
6

F(z) F(2)
on U \ {pi}. Therefore we have
1 1
6p = ———
0 127 3B,

_ [ F'(z)dz_/ F’(Z)dZ
24 3B, F(2) 9B, F(z) )

Since F(z) is a holomorphic function, we have
1 F'(2)

2 3B, F(Z)

27 9B,

dz=kel,.

So we get
1

1
— doy=-keZ,.
2r 3B, 0 6 € 4+ -
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COROLLARY 9.4. Letx : M — S® be a compact J-holomorphic curve in S® with
genus 9. If K < 1/6 and g > 2, there exist at most 2(g — 1) superminimal points.

PROOF. Since K < 1/6, superminimal points are isolated. In fact, if |III[? = 0, then,
by (1) of Proposition 5.5 the Gauss curvature K is constant (because M is compact), and

hence K =

result.
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1/6. This contradicts the assumption. By (3) of Theorem 9.3, we get the desired
a
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