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Let g be a power of a fixed prime number p. Let G be the unitary group U(n, g2)
of degree n with respect to a quadratic extension qu /Fq (Fg4e denotes a finite field with g°
elements). The character table of G can essentially be obtained from the character table of
the general linear group GL(n, g) by a simple formal change that g is everywhere replaced
by —g (Ennola conjecture [2]; V. Ennola [2], G. Lusztig and B. Srinivasan [10], R. Hotta and
T. A. Springer [7], G. Lusztig, D. Kazhdan, N. Kawanaka [8]; for n < 5, the character table
of G had been calculated by Ennola ([2]: n = 2, 3) and S. Nozawa ([12, 13]: n = 4, 5)). The
purpose of this paper is to give some results concerning the Schur indices of the irreducible
characters of G.

In the following, if x is a complex irreducible character of a finite group and F is a field
of characteristic O, then F(x) will denote the field generated over F by the values of x and
mr(x) will denote the Schur index of y with respect to F.

Let x be any one of the irreducible characters of G. Then the following two results are
known:

THEOREM A (R. Gow [5, Theorem A]). We have mqg(x) < 2.
THEOREM B ([18, Theorem 3]).  For any prime number | # p, we have mq,(x) = 1.

The local index mgr(x) can be calculated by the method of Frobenius and Schur (see,
e.g., Feit [3, pp. 20-21]): put v(x) = (1/|G})) - deG x(g?); then v(x) = 1,0 or —1; if
v(x) = 1 or 0, then mr(x) = 1 and if v(x) = —1, then mr(x) = 2. But I think that
when 7 is large the actual practice of this method is difficult. Of course, if R(x) = C, then
mRr(x) = 1. In the remark at the end of §2 of this paper we shall give, in terms of Ennola’s
parametrization of the irreducible characters of G ([2]; see §1, 1.5), a necessary and sufficient
condition subject for that R(x) = R or C.

As to the local index mq, (x), the following fact is implicit in [16, §3] in the case where

p#2.
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THEOREM C. If[Qp(x) : Qplis even, thenmq,(x) = 1.

This theorem will be proved in §4. Using Ennola’s parametrization, one can see the
action of the Galois group G (F/Q)) of a certain finite Galois extension F of Q, over Q, on
the x explicitely (see Remark at the end of §2), so we can determine [Q,(x) : Qp].

In §2, we shall determine the local indices mgr(x) and mq » (x) completely in the case
where p = 2 (Theorem 3). By N. Kawanaka’s “multiplicity-one theorem” for the generalized
Gelfand-Graev characters y4 of G (see §1, 1.4 and Theorem 1), the problem will be reduced
to the rationality-problem of the unipotent characters of G, and we use a result of [17]. In
§3, using the characters y4, we shall obtain some partial results concerning the local Schur
indices of some of the x in the case where p # 2 (Theorem 4).

In §5, we shall give some sufficient conditions subject for that mg(x) = 1 (Theorems 7,
8). Logically, Theorems 7, 8 are contained in the results in §§2, 4. But Theorems 7, 8 seem
to be useful. They depend on the following fact:

THEOREM D. (i) Assume that p = 2. If Q(x) contains a (q + 1)-th root of unity
# 1, then mqg(x) = 1.
(ii) Assume that p # 2. If Q(x) contains a (q + 1)-th root of unity # x1, then mq(x) = 1.

This theorem will be proved in §4. Let ¢ be an element of order g + 1 in F 2 and let £ be
a primitive (g + 1)-th root of unity in C. Let x be an element of G whose characteristic roots
are of the form &’. When n < 5 we can see the character table of G directly ([2, 12, 13]). Let
z be a generator of the centre of G. Then, by Schur’s lemma, we must have x(z) = Cix (1)
for some i. Assume, for instance, that p # 2. If ¢/ # %1, then, by Theorem D, we have
mqQ(x) = 1. Even in the case where ¢! = +1 we find that in some cases there is some x as
above such that x(x) = +¢/. So, if ¢/ # %1, then we can use Theorem D. Theorems 7, 8
are generalization of these practical facts to a general n.

Our results of this paper depend on Ennola’s character theory of G ([2]); in the appendix
we shall review his formulation.

I wish to thank the referee for his kind advice to the original and the second versions of
the present paper.

1. The irreducible characters of U (n, g%).

1.1. Partitions. Let n be a non-negative integer. If n = n; + ny + --- + ng where

ni, ny, - -+ , ng are non-negative integers, then the symbol [n, ny, - - - , ng] will be called a
partition of n; if the sequence 1’,2/, - - - , s’ is any permutation of the sequence 1,2, --- , s,
then we make a promise that [ny/, ny, --- ,ny] = [ny,ny,---, ng]; we also promise that
[n1,n2, -+ ,n5,0,0,---,0] = [ny,n2,---, ng]. If a partition p of n has r| parts equal to 1,
r parts equal to 2, r3 parts equal to 3, - - -, then p will be often denoted as [171 2"2...n""] or

[171 272373 ... ], and in this case we put

(1.1.1) 2o = 17 (r)1272(r2)!1 373 (r3)! - - n"" ().
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If p is a partition of n, then we write |p| = n. For n = 0, 0 will also denote the unique
partition of the number zero. For any n = 0, P, will denote the set of all partitions of n. We
set P = J,>0 Pn-

Let n be a non-negative integer. Then P, has a lexicographical ordering: for i, v € P, if
w=I[my, -+ ,mglwithm; 2---2mg =20andv =1[ny, - - ,n]withny 2..--2n, 20,
then we have © > v if m; > ny or there is a number i such that m; = ny,--- ,m; = n;
and m; 1 > n;41. If u is a partition of n, then i will denote the conjugate partition of u; if
f = [ki1, ka, - - - , ks], then we put

N kitki — 1)

(1.1.2) nM_;T.

Let m, n be non-negative integers. Let u be a partition of m and let v be a partition of
n, and suppose that u = [my, --- ,ms] and v = [ny, - - - , n;]. Then we denote by u + v the
partition [my,--- ,mg,ny,--- ,nJofm+n. ffs=t,m 2--- Zmgandn; 2 --- 2 ng,
then p-v will denote the partition [m+ny, - - - , mg+ns] of m+n; for example, if u = [1, 2, 3]
and v = [6, 4, 7, 5], then, noting that [1, 2, 3] = [3,2,1,0] and [6,4,7,5] = [7, 6, 5, 4], we
have u -v = [3+ 7,24+ 6,14+ 5,0+ 4] = [10,8,6,4]. If d is a positive integer and
m = [p1, p2, -+, Ps] is a partition of a non-negative integer v, then d - & will denote the
partition [dp1, dp2, - - -, dps] of dv.

1.2. Irreducible characters of the symmetric groups. Let n be a positive integer.
Then S, denotes the symmetric group of order n!. The conjugacy classes of S, and the
irreducible characters of S, can be naturally parametrized by the partitions of n (see, e.g.,
[11D;for A, p € Py, x }; denotes the value of the irreducible character x* of S, corresponding
to A at the class of S, corresponding to p. We have

(1.2.1) x> =sgn-x* (e Py;
(1.2.2) sgn(d - ) = (=1)“ DVsgn(r) (7 € Py).
[(1.2.2) can be easily checked by the induction on v.]
Let n, ny, na, - -+ , ng be positive integers such that n = nj + nz + - -- + ns. Then the

product S, X Sp, X - -+ X S, can be naturally viewed as a subgroup of S,,. Set P ny,... .n,) =
Py X Py, X ---x P, . For A € Py, set

(12.3) x| Sny X Sny X -+ X Sy,
= the restriction of x)‘ t0 Sy, X Spy X oo X Sy,

_ A A A A
_ 3 g, O X X2 X o % X9).
(A1,A2, ,As)ep(nl,nz,-n ns)

Here the Ci1 ap-hg AT€ SOME non-negative integers. By Frobenius reciprocity Law, (1.2.3) is
equivalent to the following:
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Sn s
(124) Indsnlenzx---xs,,s (XM X XAZ X oo e X X)» )
= Z Cil Az...ASXA (A1, A2, -0, As) € P(nl,nz,-u,ns)) .

r€eP,

For a partition u of some non-negative integer, let s, denote the S-function correspond-
ing to wu (see [11, p. 24]). Then the formula (1.2.4) is equivalent to:

(1.2.5) ShySay o Say = Z C;tl )Lzm}“s;‘
AEP,
(see[11,1,(7.3),p. 61; 1,9, p. 68]). The integers cﬁ:l Aged, CAN be calculated by the Littlewood-
Richardson rule ([11, (9.2), p. 68]). So, by [14, (2.4)], we get:
LEMMA 1. IfA > X1 A2 Asork <Ai+Xra+---+Ag,thenc) ,, , =0.If
A=Al Ay----- AsordA=MAi+Ar+ -+ Ay, then Cillz'"/\s =1.

LEMMA 2 ([14, (2.5)], A. V. Zelevinsky [21, 4.11). Let d, v be positive integers, and

letv e P,, . € Pyy. Then
Z 1 VoA [ 1 ifA.=d'\),
iep, 0 ifA>d-v.

1.3. Hall polynomials and Green polynomials. Let ¢ be a variable over C. Let
n,ni, na, -, ns be positive integers such that n = ny +ny +--- + n;. For A € P, and
Ai € Py, 1 S0 S s, Let g}q Ap-a, () be the Hall polynomial in ¢ (see J. A. Green [6, pp.
411-2]; also see [11, 11, 4]).

LEMMA 3 ([6, Theorem 4]; also see [11, 11, (4.3), p. 93]). Let the notation be as in
(1.2.3). Ifc%1 gy = 0, then the polynomial gi‘\] Mg (t) vanishes identically. Ifci‘1 gk #*
0, then the polynomial gﬁl Ageerhs (t) has the leading term cil Agehg AT TRAy T T s

AS ny ay.ay = Ny, + Ny, + -+ + n,,, we have from Lemmas 1, 3 the following fact:

LEMMA 4. [fA =A1-Ay-----Astheng), . =1 FA>X -Ap----Asor

A<Ai4Ara+- 4 A, theng) ., () =0.

S

The following formula can be proved by a method similar to that in the proof of formula
(16) of [6, p. 421]:

(1.3.1) Iraa®= Y G Ogh .
§€Pn) 4 tn;_,
Set ¢o(¢) = 1 and, for a positive integer r, set
(1.3.2) o) =A—-0A—=1>)---(1—1¢).
For A € P, set

(1.3.3) ar(t) = "2 [ [ di—kipy ¢H)

i=1
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if X = ki, k] With ki 2 -+ 2k > O (Kt = 0).
For A, p € P,, let Qﬁ (¢) be the Green polynomial of GL(n, q) in ¢ ([6, Definition 4.2;
also see [11, III, 7, p. 132]). For p = [1"1 22 ... n'"] € P,, set

(1.3.4) cp(t) = t—-Dn (t2 —DR2...@"=1)",
Then, by Theorem 10 of [6] (also see [11, III, (7.10), p. 132]), we have
1 Z ,
(1.3.5 — 0" 0 () =68, - —2— (p,0 € Pp).
) l;& a0 20N =50 05 (00 € Py

For A € P,, let u) be one of the unipotent elements of GL(n,q) whose Jordan
canonical forms are of type A; for p € P,, let Q, g1, be the class function on GL(n, q)
defined by Qp cL,(ur) = Qﬁ(q) for A € P,, and Q, Gr,(x) =0 if x is a non-uni-
potent element of GL(n, g). Then the left hand side of (1.3.5) is equal to the inner product
(Qp.GL,» 5,GL,)GL(n,q)- We note that, by the truth of Ennola conjecture, Qﬁ (—q) is a Green
polynomial of U (n, g?).

By Lemma 4.4 of [6], we have

(1.3.6) b= Y gL (p€ PO E P vEPrim).
(A )E P m)

Then, by the induction on s, it follows from (1.3.1), (1.3.6) that

(1.3.7) QX iy () = > g5 a, QLD - Ok ()

(Al,---,As)eP(,,l,l..,,,s)
(A€ Py, pi€ Py, 1<i<5s).
" For p, A € Py, set (see [11, 1L, (7.8), p. 132])
(1.3.8) XA =t Qhe™h.

LEMMA 5 ([14, (2.13)]; cf. N. Kawanaka [8, (3.2.19)]). Let d, v be positive integers,
andletv € Py, A € Py,. Then

1
Y =i X () =

weP, <7

1 ifAi=d-v
0 ifA>d-v.

Using Lemmas 4, 5 and (1.3.7), by the consideration in [14, p. 705], we have

LEMMA 6. Letdy,---,ds, v1, -+, vs be positive integers and let A € Py y,+...+dv,
and v; € Py;, 1 £ i < 5. Then we have
Z 1 Vi Vs X)n (t)
Xry "0 Xy 2 dy -+ +ds -1
le’l “ e Zns

(1, T EP 0
_ 1 ifA=(d;-vy) - - (ds - vg),
10 ifir> dy-vy)----- (ds - vs).

1.4. Generalized Gelfand-Graev characters. In this subsection we shall review
Kawanaka’s construction of the generalized Gelfand-Graev characters of U (n, qz) ([8D.
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Let G = GL,(F,), where F, is an algebraic closure of a finite field F, with g elements
of characteristic p, and let L be the Lie algebra of all » x n matrices over F_‘q. LetF:G—> G
be the Frobenius endomorphism of G with respect to a twisted F,-structure on G, so that
GF = {g € G| F(g) = g} is isomorphic to U(n, g?). L can be regarded as the Lie algebra of
the algebraic group G and F acts on L.

Let Go be the set of unipotent elements of G and let Ly be the set of nilpotent elements
of L. Let n be an element of F,2 suchthatn? +n = 1, and let f : Go — Lo be the bijection
given by f(x) = (x — 1)(n%x + n)~L. One can choose F so that F o f=foF.

Let A € Lo . Then, by the theory of Jordan canonical forms, there are positive integers
di,da, --- ,ds suchthatdy + dy + - - - + d; = n and column vectors e, ea, - - - , e5s of size n
over F,, such that A%e; =0for1 <i < sandthatthe AJe;, 1 <i <5,05j<di -1,
form a basis of the (column) vector space F," over F,. Let A : F; — G be the morphism of
=X .

F, given by
Mnmq=x“mWAq,1§i§s,0§j§¢—1ueﬁb.
For an integer i, set
L(i)a={M e L|Axx)MA(x)"' =x'M,x € F,}.

Then we have L = ;.7 L(i)a (T. A. Springer and R. Steinberg [19, IV, E-83]). Fori = 1,
set

u =P L3()a,
j2i
and let
U =r"Tw),

where we assume that f is defined over Fy. Then, for eachi = 1, U; is an F-stable unipotent
subgroup of G, and, for j = i, U; is a normal subgroup of U; ([8, 1]). Fori = 1, set
U; =U;F. Set G = GF.

Let« : L xL — Fq be the bilinear mapping on L given by x (M, N) = Tr(M N) (in
the following application, we have, for ¢ = [g;j] € G, F(g) = w’[gijq]"lw‘l, where w
is a permutation matrix, so that, for x = [x;;] € L, F(x) = —w'[x; jq]w‘l; hence we have
k(F(M), F(N)) = k(M, N)4, that is, « is defined over F,;). Let xo be a fixed non-trivial
additive character of F, with values in C. Let £4 be the linear character of U, defined by

(1.4.1) Ea(u) = xo(k(A*, f())), uel,,

where A* = —'A (in the following application, we have F(A*) = A*). Let m(A) =
(1/2) dimz L(1) 4 (an integer). Then there is a linear subspace s of L(1)F, of dimension
m(A) over F,, such that
k(A*,[M,N])=0, M,Nes
([8, p. 180]). Let
Urs = f (s +wh).
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Then U 5 is a subgroup of U, and the linear character £ 4 can be extended to a linear character
&, of Urs ([8, (1.3.2)(i), (iii)]). We put

(1.4.2) ya =Indj (§7).
We also write ya = ¥y, 4t = [d1, da, -+ , ds] € Pa.

Let
(1.4.3) : 04 =0, = Indy} (£7).

Then, by [8, (1.3.7)], we have

q"PEa(u) (u € Ua)

0 (uelU—-Uy).

It follows that 64 is an irreducible character of U; ([8, (1.3.8)]). We note that if p = 2 then

64 is Q-valued.
For u, A € P,, we have ([8, (3.2.14), p. 194]):

(1.4.4) Ba(u) = I

1
(1.4.5) yu(ur) = (=12 3" —sgn(p)lc, (—g)1 X4 (—q) Q5 (—q) .
PEP, Zp
Here u, is a unipotent element of G = U(n, qz) which belongs to the class (( — D*) (cf.
Appendix). ‘ :

THEOREM 1 ([8, (3.2.18)(iii), (3.2.24)(1)]). For any irreducible character x of G,
there is a partition u(x) of n such that (yu(x), x)c = 1.

In (1.6) below, we shall give w(x) explicitely (cf. [8, (3.2.18)(iii)]).

1.5. Ennola’s parametrization. Let G = U(n, g%). In this subsection we review
Ennola’s parametrization of the irreducible characters of G ([2]). As to his character theory
of G, we shall review it in the appendix.

Let s be a positive integer. Then a set g = {k, k(—q), k(—q)2, cee k(——q)s_l} of integers
will be called an s-simplex with the roots k(—g)i, 0 < i < s — 1, if the k(—g)* are all distinct
modulo g* — (—1)%; we write d(g) = s. For two s-simplexes g = {k, k(—q), - -- , k(—q)*~1},
g = {k,k(—q), - ,k'(—g)*"1}, we understand g = ¢’ if and only if k¥’ = k(—g)* (mod
q° — (—1)°) for some non-negative integer u. Let S be the set of all s-simplexes for s 2 1.
Let X be the set of all functions v : S — P such that A

D Iv(gld(g) =n.

ges
For v € X, set (formally)
(1.5.1) xV=(-°-g"(g)---)=(91"‘ "‘ngN)’
where g1, -+, gy are all the g € S such that v(g) % Oand, for 1 £ i < N, v; = v(gi). Xv

is called a dual class of G. The x,, v € X, parametrize the irreducible characters of G. For
v € X, we identify x, with the irreducible character of G corresponding to it.
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Let x be any irreducible character of G, and suppose that x = (g;"! ---gn"V). For
1<i < N,putd; =d(g;)and v; = |v;]. Let L € P,. Then we have

1 R
(1.5.2)  x(u) =n(x) > X XN O bty ny (—D)
N .

z PEEERY
(w1, ANIEPW, - up) 4 ™

where n(x) = =£1 such that x (4;) > 0if A = [1"].

For GL(n, q), the formula corresponding to (1.5.2) is well known. Ennola’s formulation
for a character theory of G is obtained from Green’s character theory of GL(n, q) formally
by changing g everywhere by —gq. So the proof of (1.5.2) can be obtained, for instance, from
the calculations in [14, pp. 703-5].

1.6. Proof of Theorem 1. Let p € P,. Let Q, = Q, vy, be the class function on
G = U(n, q°) given by Q,(us) = Q5(—q), A € P,, and Q,,(g) = 0if gis not unipotent.

Let u € P, and let x be any irreducible character of G. Suppose that x = (g;1"! - - - gN"V),
and, for 1 £i £ N, putd; = d(g;) and v; = |v;|. Then, by (1.4.5) and (1.5.2), we have

1 -

Y X)o == Y vul@dx(@™H
Gl 7¢
unipotent

(cf.as y, = Indgl (6,) and U is a unipotent group, y,(g) = 0 if g is not uhipotent)

1
= (=12 N " —sgn(o)lcp(—g) 1 Xk (—g)
peP, 2P

1 )
x n(x) > X Xan (o Qamiety )G
N

(nl"“v”N.)GP(Ul"".vN) Zay o 2w
By (1.3.5), (1.2.2) and (1.2.1), the last expression is equal to:
(=1 H 2 ()

1 1
X E : —sgn(p)|cp (—IXG(=q) - ————xz! -+ Xgh - ———
(1, ANYEP(y; ... ) Zp Zmy "t Loy Icp(—CI)I
p=dy-my++dyN-TN

= (= 1wty () (— 1y Zim G
1 5 Pn ol
) 2 X (D)
(1, IN)EPwy e o) T N

Thus, by Lemma 6, if we put
(1.6.1) u(x)=Wy-v)-----(dn-vn),

then the last expression is equal to 1 if © = u(x) (in fact, to £1; but y, and x are actual
characters, so that (y,, x)¢ 2 0), and 0if u > u(x).
This proves Theorem 1.
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By this proof, we find that

(1.6.2) n(x) = (=1)meo+Hr/ 245 @@=y

2. Thecase p =2.

Let G = U(n, g = U, (Fy). Let g = {0} be the 1-simplex with the root 0. For a € Py,
set

AV Pa = (9%) .
Then the py, @ € P,, are exactly the unipotent characters of G.

THEOREM 2 ([17, Corollary]). Let a € P,. Let n’ = the number of squares in the
Young diagram of o which have an odd hook length minus the number of squares which have
an even hook length. Then we have mq(py) = 1 if [n'/2] is even. If [n/2] is odd, then we
have mr(py) = mq, (pa) = 2 and mq,(po) = 1 for any prime number | # p.

COROLLARY. Assume that p = 2. Let u be a partition of n, and let 6,, be the irre-
ducible character of U defined in (1.4.3). Put a = j1, and let n’ be the corresponding number
defined in Theorem 2. Then we have mQ(6,) = 1 if [n'/2] is even. If [n'/2) is odd, then we
have mr(6,) = mqQ,(0,) = 2 and mq,(6,) = 1 for any prime numberl # 2.

PROOF. By Theorem 1, we have (Y., pa)G = 1. Hence (6, pa | Ui)y, = 1. We note
that Q(6,) = Q(ps) = Q. Let B (resp. C) be the simple component of the group algebra
Q[U1] (resp. Q[G]) associated with 6, (resp. pq). Let [B] (resp. [C]) be the class of B (resp.
of C) in the Brauer group Br(Q) of Q. Then, by a result of E. Witt (see, e.g., T. Yamada [20,
Proposition 3.8]), we have [B] = [C]. Thus the assertion follows from Theorem 2.

THEOREM 3. Assume that p = 2. Let x be any irreducible character of G = U (n, g?),
and suppose that x = (g1*'---gn"N). Put u = (d(g1) - V1) - -+ - (d(gn) - VN). Then the
local Schur indices of 6,, can be determined by the corollary to Theorem 2. We have:

(i) IfmQ(8y) =1, thenmqg(x) = 1.

(i1) Suppose that mqg(0,) = 2. Then we have mq,(x) = 1 for any prime number
I # 2, we have mr(x) = 1 or 2 according as R(x) = C or R, respectively, and we have
mqQ,(x) = 1 or 2 according as [Q2(x) : Q2] is even or odd, respectively.

PROOF. By Theorem 1, we have (yu, x)¢ = 1, and y, = (G,L)G. Suppose that
mqQ(6,) = 1. Then 6, is realizable in Q. Hence y, is realizable in Q. Therefore, by a
property of the Schur index (see, e.g., Feit [3, (11.4), p. 62]), we have mq(x) = 1.

Suppose that m@(6,) = 2. Then mr(8,) = mqQ,(6,) = 2 and mq,(6,) = 1 for any
prime number / # 2. Let / be any prime number # 2. Then 6, is realizable in Qy, so y,, is
realizable in Q;. Hence we have mq,(x) = 1. Let D (resp. E) be the simple component of
R(x)[G] (resp. of R(x)[U1]) associated with x (resp. 8,,). Then, as (6, x | Uy, =1 and
R(x)(x) = R(x)(6,) = R(x), by the result of Witt, we have [D] = [E] in Br(R(x)). If
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R(x) = C, then [D] = 0 and mr(x) = 1. If R(x) = R, then E, hence D is similar to the
quaternion algebra over R, and mr(x) = 2.

. Let M (resp. N) be the simple component of Q2(x)[G] (resp. of Q2(x)[U1]) associated
with x (resp. with 6,,). Then, by the result of Witt, we have [M] = [N] in Br(Q2(x)). Let
Ny be the simple component of Q2[U] associated with 6,,. Then the Hasse invariant of Ny is
congruent modulo 1 to 1/2. As N >~ Qz(x) ®02 No, the invariant of N is congruent modulo
1 to [Q2(x) : Q2] x 1/2. Therefore mq,(x)(6x) = 1 or 2 according as [Q2(x) : Q2] is even
or odd, respectively.

This completes the proof of Theorem 3.

REMARK. Let be the generator of the Galois group G(C/R) of C over R. For an s-
simplex g = {k,k(—q), k(—q)*,--- . k(—q) "'}, let —g = {—k, —k(—q), —k(—g)?, - -,
—k(—g)*~1}, an s-simplex. Then it is easy to see from [2] (cf. Appendix) that if x =
(---g"9 ...)is an irreducible character of G, then x* = (--- (—g)*@ . ..). Thus x is real if
and only if v(g) = v(—g) forall g € S. .

Let o be a primitive element of the subfield of F, with "' elements, and let o' be the
generator of G(Q,(w)/Qp) given by w’ = w?. We note that all the irreducible characters
of G = U(n, qz) take their values in the field Q(w) (see Appendix). For an s-simplex g as
above, we let pg = {pk, pk(—q), pk(—q)?, --- , pk(—g)*~!}. Then we see from [2] (cf.
Appendix) that, for x as above, x° = (---(pg)"@ -..). Let m be the least positive integer
such that x“m = x. Thenm = [Q2(x) : Q2].

3. Thecase p # 2.

Let u = [d),d>, - - - , ds] be a partition of n with d; > 0, 1 < i £ 5. We first assume
that u # [1"]. Let
s di —
» - . » “
wi 1
wa -0 0 1
w= , w; = ' , 1Zi<s,
0 . 0
i ws | |1 i

and let F be the endomorphism of G = GL,(F,) given by F([g;;1) = w'[g:;9] w1,
Then GF is isomorphic to U (n, q2) [in fact, if w = x~VF(x), x € G, then ad x induces an
isomorphism of GF with G*’, where F’ is the endomorphism of G given by F’([g;;]) =
lgij? 17! (note that if we choose the “standard basis” then GF '=U (n, q2) (ctf. [2, p- 4])].
F actson L = Lie G by F([x;;]) = —w’[x,-jq]w—l. Let £ be a non-zero element of I_4‘q such
that £ + & = 0, and let
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~ 4 N
_ - 0 7]
A
‘ E 0 0
Ar 0 £ 0
A= , Ai = § s 1 § i <s
0 A 0 .
L s _ | £ 0]
Then F(A) = A. Let A be the morphism of F,* into G given by
1 2 s s '
A'(x):.‘dlag(-xk{9 sxkdl’xk%'s"' ’xkdz"" ,xkl,... 9xkdx) (xqux),

where,for1 £i <s5,1 £ j < d;, k; = 1—d; +2(j —1). Then A is the morphism associated
with A (see 1.4). Let L(i)a, u;, U; etc., be as in 1.4.

Assume that p # 2. First, we assume that all the d; are odd. Let p be a fixed primitive
element of F 2. For 1 <i <5, if d; = 2r + 1, then we put -

m; = diag(p" @ ~D/B=D [e=D@=D/(p=D .. @-D/p=D
1, p~9@-D/P=D ,=2a@*=D/(p=D .. ,=ra@®=D/(p=D)y .
Let m = diag(mi, m2, --- , mg). Then we have F(m) = m and m normalizes each L(i) 4.
And we have
(3.1 mlA*m =v1A*, v = p@-D/(P=D)

Set M = U (m). We note that, as all the d; are odd, U; = U,, so 84 = £4. We have, for
u € U,

0% () = Ea(mum™")
= xo(k ([A*, f(mum™")])) (by (1.4.1))
= xo(k ([A*, mf (w)m™'1))
= xok(Im~'A*m, fW)]) ,
= xo( (v~ A*, fF(W)]) (by (3.1))
= xo(v "'k ([A*, f(w)]))
= xo(k ([A*, f()])*
=0,%(u),

where « is a certain generator of G(Q(£p)/Q) (¢, is a primitive p-th root of unity in C).
We note that, as 1 # [1"], by (1.4.4), we have Q(04) = Q(¢p) # Q. So it follows that
64M is an irreducible character of M with values in Q (cf. mP~! = 1). Moreover we have
mQ(8a™) = 1. In fact, we see easily that the simple component of Q[M] associated with 84
is isomorphic over Q to the cyclic algebra (1, Q(¢p), @) over Q ([20, Propositions 1.3, 3.4 and
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3.5]), which clearly splits in Q. Therefore 04M is realizable in Q, hence Y4 is realizable in
Q. If u = [17], then y,, is the character of the regular representation of G = G¥, so y,, is
realizable in Q.

Next, we assume that all the d; are even. For 1 < i < s, if d; = 2r, then we put

m; = diag(p(q_1)/(”‘1)+("1)(‘12‘1)/(’"1),
- — —2Va2— _ — _ —a(g— _
p(q D/(p—D+0r—-2)@ —1)/(p 1),,,, ’p(q D/(p 1)“0 q(q—-1)/(p 1),

—q(q—l)/(P—1)+(q2—1)/(1’-—1)’ e —Q(q—1)/(P—1)+(r—1)(qz—1)/(p—1)) )

o . P

And let m’ = diag(m,’,m2’, --- ,my’). Then F(m') = m’ and m'~1A*m’ = v-1A*. We
see thatc = m’P~lisa generator of the centre C of G. We note that, as all the d; are even,
Up = Uy and 4 = £4. And we have 04™ = 04%. Set M’ = Us(m’). Let ¢ be a fixed
primitive (g + 1)-th root of unity in C, and, for 1 £ j < g + 1, let ¢; be the linear character
of C = (c) defined by ¢;(c) = ¢/, and set u; = (6a¢;)™ . Then we see that the u; are
mutually different irreducible characters of M’ and 6, "= m1+ 2 + -+ pg4 (cf. [16,
§3]). For1 £ j < g+ 1, we have Q(uj) = Q(¢Y). For1 £ j < g + 1, let B; be the
simple component of Q(;’j )[M'] associated with u j- Then we see that (cf. [16, §3]), for
1 £ j £ g+ 1, Bj is isomorphic over Q(¢/) to the cyclic algebra (£/, Q(¢/)(¢p), ;) over
Q(¢”), where a; is the extension of & to Q(£/)(¢p) such that «j(¢/) = ¢/. By Lemma 1 of
[16], we see that, for1 < j S g+1, j # (g+1)/2, B; splits in Q(¢/), and, for j = (g+1)/2,
Bj has the Hasse invariants 1/2 mod 1 at 0o, p, and O mod 1 at any other rational prime.
Thus we get

THEOREM 4. Assume that p#2. Let x be any irreducible character of G = U (n, ¢?),
and suppose that x = (g1" --- gN"V). Let p = (d(g1)-V1)- - - - -(d(gN)-VN). Then, if all the
parts of . are odd, we have mq(x) = 1. Assume that all the parts of u are even. Let ¢ be a
generator of the centre of G. Then, if x(c) # —x (1), we have mqQ(x) = 1. If x(c) = —x (1),
then we have mq,(x) = 1 for any prime number | # p, we have mgr(x) = 2 or 1 according
as x is real or not, respectively, and we have mq, = 2 or 1 according as [Qp(x) : Qp] is
odd or even, respectively.

PROOF. By Theorem 1, we have (y,, x)¢ = 1. If all the parts of u are odd, then y,,
is realizable in Q, so, by the property of the Schur index, we have mg(x) = 1. Assume
that all the parts of u are even. Then we see from Schur’s lemma that (x | M, uj)m = 1if
and only if x(c) = ¢/ x (1) (we must change ¢ by another primitive (g + 1)-th root of unity
if necessary), and, if this is the case, by the result of Witt, we have mg(x) = mg)(x) =
mEgx)(uj) for all fields E of characteristic zero. Therefore, if j # (q + 1)/2, then we
have mg(x) = 1. Assume that j = (g + 1)/2, that is, x(c) = —x(1). Then we have
mR(x)(1j) = 1 or 2 according as R(x) = C or R, respectively, mq,(x)(x;) = 1 or 2
according as [Qp(x) : Qp] is even or odd, respectively, and mq,()(1;) = 1 for any prime
number / # p.

REMARK. x(c) is calculated in Proposition 1 below.
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Let  be a partition of n. We assume that some parts of u are odd and some parts of u
are even. Then Q(6,) = Q(&p) (see (1.4.4)) (we are assuming that p # 2). Even in this case
there is an element m” of order (¢ + 1)(p — 1) such that 6, = 6,% (@) = G(Q(£p)/Q)).
Set M” = U;(m”). Then we have an irreducible decomposition 8, "=y 4+ Yg+1-
It seems likely that it is not so hard to determine the local Schur indices of each v;. But
¢” = m”P~! is not central, so it seems to be very difficult to determine the number j such
that (x | M", ;) = 1 for a given irreducible character x of G = U (n, g%). So to treat this
case is an open problem.

We say that a partition u of »n is involutive if the parts of i can be arranged so that

uw=I[ny,---,n5,n541,ng, -+, n1]. Then the following result is proved in [18]:

THEOREM 5 ([18, Theorem 4]). Let x = (g1"! --- gn"N) be an irreducible character
of G=U(n,q?. Let . = (d(g1) - 91) - -+~ - (d(gn) - V). Assume that p is involutive, and
suppose u = [ny, -+ ,ng,ng41, ng, --- ,n1]. Then:

(i) Ifp=2,ornisodd,orns i =0, then we have mg(x) = 1.

(ii) Assume that p # 2, n is even, and ng+| # 0. Let ¢ be a generator of the centre
of G. Then, if x(c) # —x (1), we have mq(x) = 1. Assume that x(c) = —x(1). Then we
have mq,(x) = 1 for any prime number | # p, we have mr(x) = 2 or 1 according as x
is real or not respectively, and mq,(x) = 2 or 1 according as [Qp(X) : Qpl is odd or even
respectively.

4. Proofs of Theorems C, D.

We first prove Theorem C. In the case where p = 2, the theorem follows from Theorem
3. So we assume that p # 2. Let us review some results of [16, §3]. Let U be a Sylow
p-subgroup of G = U(n, g?). Let ¢p be a fixed primitive p-th root of unity in C, and let «
be a generator of G(Q(¢,)/Q). Let ¢ be a fixed primitive (g + 1)-th root of unity in C. If n
is odd, then, for any linear character ¢ of U, ¢C is realizable in Q. Suppose that n is even.
Then there is an element m in the normalizer Ng(U) of U in G such that m®P~D@+D — 1,
¢ = mP~! is a generator of the centre C of G, and ¢ = ¢ for any linear character ¢ of U.
Set M = U{(m). Let ¢ be any non-principal linear character of U. For 0 £ j £ g, let ¢;
be the extension of ¢ to UC given by ¢;(c) = ¢/, and let u; = ¢;™. Then po, - - - , uq are
mutually different irreducible characters of M and ¢ = puo+ .-+ + pg. For 0 £ j < g,
putk; = Q(u;) = Q(¢/), and let B ;j be the simple component of k;[M] associated with
wj. Then, if j # (g + 1)/2, B; splits in kj, and if j = (g + 1)/2, B; has non-zero Hasse
invariants only at two places 0o, p of k; = Q: we have mr(u(g+1)/2) = mQ, (L(g+1)/2) = 2
and mq, (1 (¢g+1)/2) = 1 for any prime number / # p.

Let E be a finite extension of Q, such that [E : Q,] is even. We show that oM is realiz-
able in E. In fact, we note that ¢ is Q-valued and that mg (i(g+1y2) = 1, some(u;) = 1
for0 < j £ g. Let Xy,---, X, be all the G(E(¢)/E)-orbits on ug, - -+ , ug. Then, by
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a theorem of Schur (see, e.g., Feit [3, (11.4)]),for1 £ i < 5, ¥; = Zuex,- W is an irre-
ducible E-character of M (that is, v; is the character of s simple E[M]-module). Therefore
®M = Yy + - - - + V5 is the character of some actual E[M]-module, that is, oM is realizable
in E. Therefore ¢¢ = (¢M)C is realizable in E.

To prove Theorem C (in the case when p # 2) we repeat the argument in the proof of
the main theorem of [15]. Let x be any irreducible character of G such that [Q,(x) : Q]
is even. Put E = Qp(x). Then, by Theorem C of [14] and Ennola’s conjecture, there is a
unipotent element u of G such that x (u) is a power of g up to +1 (also see Lemma 9 below).
LetG = GLn(Fq) and let F be the endomorphism of G given by F([g;;]) = ’[g,-jq]‘l. We
assume that G = G¥. Then u can be chosen so that there are a standard parabolic subgroup
P of G and an F-stable Levi subgroup H of P such that u is a regular unipotent element of H
(see [15, p. 362]). There are positive integers ny, - - - , ng such that H = HF is isomorphic to
the product U (ny, g2) x - - - x U(ng, g?) (see [15, p. 361]). Let Uy be the Sylow p-subgroup
of H containing u. Let A be the set of all linear characters of Uy and let R be the set of
all non-linear irreducible characters of Up. As we have seen above, for any A € A, AC is
realizable in E, and, by Theorem A’ of Lehrer [9], we have p(u) = O for all p € R. Set

XU =3 "amr+) bop,

_ reA PER
where the a, and the b, are some non-negative integers. Then we have

+(apowerof q) = x(u) = Z aA(u) +0.
reA
Let A € A. Then, as AC is realizable in E, by the property of the Schur index, mg(x) divides
(A%, x)¢ = (A, x | Un)uy = ay. Thus we have an expression

+(a power of ¢)/mE(x) = Y _(an/me(X)AW),
' A€A

where the right hand side is an algebraic integer and the left hand side is a rational number.
Hence mg(x) divides a power of g, odd. But, by Theorem A, mg(x) divides 2. Hence
mg(x) = 1.

This completes the proof of Theorem C.

We next prove Theorem D.

LEMMA 7. Assume that p = 2. Let p be a partition of n, and let 6,, be as in (1.4.3).
Let k be a finite extension of Q such that k contains a (q + 1)-th root of unity # 1. Then
mr(6,) = 1.

PROOF. We know that mr(6,) = mq,(6y) < 2 and mq,(6,) = 1 for any prime
number / # 2 (Corollary to Theorem 2). Let ¢ be a (g + 1)-th root of unity # 1 contained in
k. Then, as g + 1 is odd and > 2, k is not real, so we must have my, (6) = 1 for any infinite
place w of k (k,, is the completion of k at w). The Galois group G(Q2(¢)/Q2) is generated
by the automorphism o : ¢ — ¢2. Suppose that ¢ = 2¢. Then ¢ = ¢4 = ¢~!, s0 0¥ is
the involution ¢ — ¢~!, an element of G(Q2(2)/Q2) of order 2. Thus |G(Q2(¢)/Q2)| =
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[Q2(¢) : Q2] must be even. Therefore, if w is any finite place of k lying above 2, then
[kw : Q2] is even, so my, (8,) = 1. Therefore m(6,) = 1.
Similarly we get

LEMMA 8. Assume that p # 2. Let k be a finite extension of Q such that k contains a
(g + 1)-th root of unity # +1. Then, for any linear character ¢ of U, ¢© is realizable in k.

Theorem D now follows from Lemmas 7, 8. In fact, by using these lemmas, it suffices
to repeat the argument in the proof of Theorem C.

REMARK. By the final remark in §2, for any irreducible character x of G, we can
determine whether R(x) = R or C and whether [Q,(x) : Qp] is odd or even by using
Ennola’s parametrization of x. Thus in the case when p # 2 we can say that (in principle) we
have sufficient conditions subject for that mr(x) = 1 and mq ,(x) =1

The following fact may be of some use:

THEOREM 6. Assume that p # 2. Let ¢ be a generator of the centre of G = U (n, q2).
Let x be any irreducible character of G, and suppose that x = (g1"' ---gN"N). Let u =
(d(g1)-v1)- -+ -(d(gN) - vN). Suppose either that all parts of u are odd or that all parts of
w are even and x (c) # —x (1). Then we have mg(x) = 1.

PROOF. Suppose that 4 = [ny,---,ns] withn; > 0,1 £ i < 5. Let the notation be
the same as in the proof of Theorem C in the case when p # 2. Then, by Lemma 9 below, we
have x (u) = £(p-part of x (1)) and

(%) Xw) =) ai(u).
reA
We have Uy = V; x --- x V;, where, for 1 <i < s, V; is a Sylow p-subgroup of U (n;, g2).
Let A € A. Then we have A = A X --- x Az, where, for 1 £i £ s, A; is a linear character of
V;, and we have
AH = 2 Uma®) ) Usd®)

Suppose that all the n; are odd. Then each ;Y ®i,9%) is realizable in Q, hence AG =
(A")C is realizable in Q. Therefore mQ(x) divides all a;, so that mqg(x) = 1 (cf. p # 2).

We next suppose that all the n; are even. Let o be a generator of G(Q(¢,)/Q), where
¢p is a primitive p-th root of unity. Let i be any integer such that 1 < i < s. Then there is a
semisimple element m; in Ny(n, 42)(Vi), of order (p — 1)(g + 1), such that A, = A;* for
any linear character A; of V; and ¢; = m;?"lisa generator of the centre of U (n;, qz). Let
m = diag(my, --- , mg). Then we may assume that ¢ = mP~lisa generator of the centre
of G = U(n, ¢*) by changing some of the m; by their powers if necessary. Then we have
A™ = A% for all A € A (« might be changed by its power if necessary). Let ¢, - - - , ¢, be
the characters of C = (c) defined by ¢;(c) = ¢/, 0 < j < g, where ¢ is a previously fixed
primitive (g + 1)-th root of unity. Let p be any irreducible character of Uy. Let N = UyC.
Then we have pV = pgg + --- + pPq. If p is not linear, then, by Lehrer’s result, we have
oNw) = (@ + 1)p(u) = 0. Suppose that x(c) = ;‘jx(l) (cf. Schur’s lemma). Then, by
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Schur’s lemma, we must have a, = ((Aqu)G, x) = (Adj, x | N)y for p = A € A. Thus we
have (cf. (%)) ’
X@) = (x| N)@)=)_ar A¢j)u).
LeA

Suppose that j # (g +1)/2,1i.e. x(c) # —x(1). Set M =Uyg(m). LetL € A. If L =1,
then 1¢; is realizable in k; = Q(¢/), so (1¢j)G is realizable in kj, and mqQ(x) = mi; (X)
divides a;. If A # 1, then (¢ ,)M is an irreducible character of M which is realizable in k;
(cf [16, §3]). So, if A # 1, (Aq&,)G is realizable in kj, and mq(x) = mk; (x) divides a;. Put
m’ = mq(x). Then, in the expression

+(a power of 9)/m’ = ) " (ar/m)(A;)(w),

ey
the right hand side is an algebraic integer and the left hand side is a rational number. Hence
m’ divides a power of g, odd, hence, by Theorem A, m’ = 1.
This completes the proof of Theorem 6.

5. Some other sufficient conditions.

The results of this section is logically contained in some of the results of the previous
sections (see §4, Remark below Lemma 8), but they are more practical, so will be useful. We
shall omit the detailed calculations (cf. Appendix).

Let € be an element of F ;> of order ¢ + 1, and let £ be a certain primitive (g + 1)-th root
of unity in C. Let n be a positive integer, and let M be a positive integer. Let I1, --- , Iy be
integers such that/; #1; (mod g + 1)for1 S i # j £ M, and let A, - - - , Ap be partitions
of some natural numbers such that [A;|+ - - -+ |Ap| = n. Let ¢ be the class of G = U (n, qz)
parametrized by ((t — e1)*1 ... (t — /M) M) (¢ is a variable over F,) (cf. Appendix). _

Let x be any irreducible character of G, and suppose that x = (g,"!---gn"N). For
1 £i £ N,putd; =d(g;) and v; = |v;|. Set

(5.1) A(x,0) = {1, -+, vim; V21, ¢, vaMs S UNL 0, UNM) |
vij€Z, v;j Z01ZiSN,1SjEM),
. |
D vij=divi 1£i <N)di|v; 1<i <N,
j=1
N
1S7EM),D vj=r1 (A2 j <M},
i=1

and, for (v;;) € A(x, c), put

M
(5.2) ei((ij)) =k Y _ljvij/di (1Zi<N),

j=1
where, for 1 £ i < N, k; is aroot of the simplex g;. For1 £ i < N, put ; = n((g;*)) (cf.
Appendix, (A.5.3)). Let (v;j) € A(x,c). Fix j,1 £ j £ M, let (¢/) = (&1j,--- ,&Nj) €
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P(o,; /dy, - un;/d)» and put n(E7) = n((g1*V - gn"¥))n((g1517)) - - - n((gn¥™)). Then, by
a rather long calculation, we get

(5.3) X© =n0Om -y Y. gTimae)
(vij)eA(x,c)
VN

v
X Z Cerib1m " CentEnm
(Eij)el—[,‘,j P'U,'j/d,'

M
% l_[ n(f;-j)(glé‘lj . gNENf)(u,\,-) .
j=1

PROPOSITION 1. Let x be any irreducible character of G = U (n, g%), and suppose
that x = (g1"' ---gN"N). For 1 £i < N, let k; be a root of the simplex g; and put v; = |v;|.
Let | be an integer and let A be a partition of n. Let ¢ be the class ((t — eH*) of G and let u,,
be a unipotent element of type A. Then we have

N ...
x(c) = ¢! Zimkiviy ).
Here ¢ is a certain primitive (q + 1)-th root of unity in C.
PROOF. We have A(x, ¢) = {(d1v1, --- , dnvvn)} and the assertion follows from (5.3).

REMARK. In Proposition 1, we let/ = 1 and A = [1"]. Then the element x in ¢ is a
generator of the centre of G. And we have

x(0) = g T kv (1),
Thus, in the case when p ;é' 2, we have x(x) = —x (1) if and only if (g + 1)/2 | ZlN=1 kiv;
andg + 11 ZIN=1 kiv;.
PROPOSITION 2. Let x be any irreducible character of G = U (n, g2), and suppose
that x = (1™ ---gN"™). For 1 £i £ N, putd; = d(g;), vi = |vi|, and let k; be a root of

the simplex g;. Assume that, for 1 <i < N, v; = [v], v, -+, ”z{s,-] withv), 2 v, 2.+ 2
vlfsl_ > 0. Put M = Max{sy, -~ ,sny}. For1 £ j S M,putm; = dlv’1j+d2v§j+---+d1vv}\,j
(fj > si, we set vlfj = 0). Letly,---,Ily be integers such that I; # lj (mod g + 1) for

1 <i# j< M. Letcbe the class ((t — e )mil(s — ghymal .. (¢ — glm)immly Then we have

x(c) = :I:;vazlki T v i
LEMMA 9. Let x be any irreducible character of G = U (n, q%), and suppose that
X =(01" - --gN"N). Let u = (d(g1) -v1) - --- - (d(gnN) - vN), and let A be a partition of n.

Then we have x(u,) = x(p-partof x(1)) if A = w, and = 0 if A > .

This lemma can be proved by a calculation similar to that in the proof of Theorem C of
[14].

PROOF OF PROPOSITION 2. Let (v;;) € A(x,c), and let (§;;) € ]"[,-,j PUij/di' Then,
by Lemma 9, we have (g1 - - - gn®N))(upm,)) = 0if [m;] > (di - &1;) - -+ - (AN - En))
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(1 £j £ M) Letusfix j (1 £ j £ M), and suppose that [m;] = (d1-§1j)- --+ - (dn - Enj).
Thenwehaveg-‘,, = [vij/dil, 1 < < N.
Next, we fix i (1 £i £ N). Suppose that CEl b ;é 0 in the expression (5 3). Then by

Lemma 1, we must have &1 + - -+ + &up = [vir/di, -+ , vim/di]1 £ v;. We have:
mp = dlv/“ + dzvél e R de;Vl
V11 1)21 UN1
2dy-—+d>- dv - ——
2 d a4 + dz +---4+an- dn

=v+va+---+uNr=mg.

This forces that v;1/d; = v];, 1 £ i < N. Wenote that, for 1 £ i £ N, v;1/d; =
Max{v;1/d;, --- , vim/di}. So we have:

my = dyv}, + davy, + o+ dyvy,

V12 UN2
>d - —+4d d ,
= aj - a4 + d2 + -+ dN =m
which forces that v}, = vj2/d;, 1<i < N, and, for 1 £i £ N, viz/d;i = Max{v;2/d;,
vi3/d;, - - - , vim/d;}. By repeating similar considerations, we conclude that [v;;, - - - , vig] =

di-vi,1 i < N,and§;; = [v;j], 1Si<N,1=5 j S M. Thuswehave &1+ -+&p = v,
hence, by Lemma 1, we have c;":lmsm =1,15i<N.

The assertion in Proposition 2 now follows from (5.3) by using Lemma 9.

By Theorem D and Propositions 1, 2, we get the following two facts:

THEOREM 7. Let x be any irreducible character of G = U (n, q2), and suppose that
x = (g1™---gnN*N). For1 £ i £ N, let k; be a root of the simplex g; and put v; = |v;|.
If p =2 (resp. p # 2), assume that q + 1 { Z,A_’_:l kiv; (resp. (¢ + 1)/2 ¢ ZlNzl kiv;). Then
mqQ(x) = 1.

THEOREM 8. Let x be any irreducible character of G, and suppose that x =
(911 ---gN"N). For1 £i = N, let k; be a root of g; and suppose that v; = [v], v}y, -,
vtfsl,] with v;, 2 vj, 2 -+ 2 vlfSi > 0. Let M = Max{sy, s2,---,5N}. Suppose that
there are integers 1y, --- ,lp such thatl; # 1j (mod g + 1) for 1 £ i # j £ M and that
g+ 110 ki 0L ) resp. (@ + 1)/2 + 7L ki 0L 1)) if p =2 (resp. p # 2)
(we set v,fj = 0if j > s;). Then we have mq(x) = 1.

Appendix.

In this appendix we review V. Ennola’s formulation for the character theory of U (n, g2)
([2]). For each positive integer n, we let G, = U(n, qz). In his formulation, Ennola replaced
q in Greens’ character theory for GL(n, q) [6] everywhere by —gq.

A.1. Conjugacy classes of G,. Lett be a variable over Fq. For a monic polynomial
f(@&) =t?+at? 1+ . .+ag over F 2 with ag # 0, we set F@® =ag Y (@g9t%+ag_19t9 "1 +
-- + 1). Then we say that a monic polynomial g (¢) over qu is U-irreducible if either g (¢)
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is irreducible over F 72 and g(¢) = g(@) or g(t) = f(2) f (t) where f(t) is an irreducible
polynomial over F . such that f () # f(#). (Thus the polynomial ¢ — & is U-irreducible.)

Let V be the set of all U-irreducible polynomials over F 2, excepting the polynomial .
Write d( f) for the degree of f € V. Then the conjugacy classes of G, can be parametrized
by the functions v : V — P satisfying

> O =n.
fev
Let Y be the set of all such functions v; if the class ¢ of G, corresponds to v € Y, then we
write
c=C-- Doy =AY v,
where f1, -, fy areallthe f € V suchthat v(f) #0and,for1 <i £ N, v; = v(fy).

A.2. Dual classes. Let X be as in 1.5. For v € X, the symbol
e=(---g"9...)

will be called the dual class of G, corresponding to v. As we have stated in 1.5, and as we
shall see below, the dual classes of G, parametrized the irreducible characters of G,. (In 1.5,
we identified a dual class of G, with the irreducible character of G,, corresponding to it.)

A.3. Substitutions. Let p = [1"12"2...n""] be a partition of n. Set

X,D = {xllv cr oy Xy X21, 00 » X2ryy *t " »Xnly * - ,xnr,,},
where the x;; = x;;* are n independent variables (if r; = O for some i, then, for such i, the
xij do not occur in X®). For x in X?, if x = x;;, then we write d(x) = i. We say that a
mapping « : XP — V is a substitution of X if d(x(x)) |d(x) for all x € X”. For such an ¢,

for f € V, we let
p(a, f) = [IM@Nn@N3n@H ],

where, fori =1,2,3,---,

ri(, f) = l{x € X |a(x) = f,dx) = id(H} .

We say that two substitutions «, @’ of X” are equivalent if p(a, f) = p(a/, f) forall f € V.
The equivalent class m of a substitution o of X” will be called the mode of «, and we write
p(m, f) = p(a, f), f € V. A substitution of X? intoaclassc = (--- f*@) ...) of G, isa
substitution o of X satisfying

lole, HI=1ve(H], feV.

Then we can consider the mode of a substitution of X” into c.
Let
YP ={y11, - s Yirys Y215 "+ s Y2rps =t s Ynls " * » Ynry}

be the set of n new variables y;; = y;;”. Then, as in the case of X?, we can consider the mode
of a substitution of Y” into a dual class of G,,.



34 ZYOZYU OHMORI

A.4. Basic uniform functions. Let K be a finite field with ¢! elements (and we
consider F; as a subfield of K), and we fix an isomorphism @ of K> into C*.
If d is a positive integer, then, for an integer £ and a non-zero element £ of K, we let

d—1

(A.4.1) Sak:6) =Y O '),
i=0

Let p = [1"12"2...n""] be a partition of n. Then, for a vector h* = (h1y,--- , b1y,
ha1, -+, hopyy o+, Bnt, -+ -, hpy,) of integers h;j (if r; = O for some i, then, for such i, the
hi; do not occur in h”), we define a function B, (h”) on the set of vectors £ = (§11, - - - , &1y,
&1, &2y, -+, Ent, -+, Enr,) Of non-zero elements &;; of K (if r; = O for some i, then,
for such i, the &;; do not occur in £°) by

n
(A4.2) By(h*)(&°) =[] [ D" Sahar: Eav) - Salhar : sd,df)] :
d=1 L1, ,rg

where, for 1 < d < n, the sum is taken over all the permutations 1/, - -+ , rg’ of 1, - - , rg (if

rq = 0, we put Zl,,,_.,,d, *=1).
Ifc = (--- f...)isaclass of G,, and if m is the mode of a substitution o of X” into

c, then we denote by X#m the vector £ = (&11, -+ , 1,621, -+ , &2y -+ L Enls o+ 5 Enry)s
where, for1 =i = n, 12 j Sr;, &jisaroot of a(x;;)(e V).
Now, for a vector h* = (hy1, -+, hiry, h21, -+ s B2y, o+, Bnt, + -+, Bpp,) of n integers

hij, we define a class function B?(h*) of G, by

(A4.3) B (h*)(c) = ) _ Q(m, c)B,(h*)(x*m),

where the sum is taken over all the modes m of substitutions of X? into a class ¢ =
(...f"c(f)...)ofGn and

(A4.4) Q(m,c) = QU (—q)* ).

feV Zp(m:f)

We note that B (h*) coincides with the Deligne-Lusztig virtual character R"} of G, ([1]; see
[8, p. 203]).

A.5. The irreducible characters of G,. Letv € X, andlete = (---¢"9) ...) be
the corresponding dual class of G,,.

If p = [1712"2...n"] is a partition of n, and if m is the mode of a substitution o of Y”?
into e, then we denote by h°m the vector (hyy, -+, ki, hot, -+ S horys o+ s hnt, -+ 5 Bny,)
of integers h;; defined, k;; being a root of a(y;;), by

(—q) —1 1<

(A.5.1) hij = kij - (__q)d(a(yij)) -1’
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(if r; = O for some i, then, for such i, we do not consider k;;’s), and we let

1w
(A.5.2) x(m,e)= || —x2? .
L.[Szp(m,g) p(m-9)

Then we define a class function x, = x. of G, by

(A5.3) Xv=1)_ D x(m e)B°(h’m),
pEP, M
where, for a partition p of n, the second sum is taken over all the modes m of substitutions of
Y” into the dual class e, and n = %1 so that the value of the right hand side at the class {1,}
of G, is positive (we write n = n(xv)).
As we have stated in 1.5, the x,, v € X, are precisely the 1rredu01ble characters of G,
(Ennola conjecture [2, p. 11]).

A.6. o-products. Letn,np,---,ny be positive integers such thatn = ny+---+ny.
Ifc=(--f%P...yisaclass of G,, and, for 1 <i < N,¢; = (--- f%H...)is aclass of
G;, then we let

c(f) d
(A.6.1) gﬁl...c,v = I_[ g:l(j:)...vN(f)((_Q) (f)) .
fev

Let xp = (---g"9 ...) = (g1"---gn"N) be an irreducible character of G,. For
1 <i < N,putn; =d(g;)|vi| and let x; = (g;"), and irreducible character of G,,. Then we
have

(A6.2) Xv(©) =y Z 9% ey xi(c) - xn(en)

Ct, CN
where the sum is taken over all rows ¢y, - - - , ¢y of classes respectively of G, - - - , G, and

ny = (=1 s =nn—1)/2 =YX nin — 1)/2.
As to the proof of (5.3), we first treat the case when x = (g¢"), and, using (A.6.2), we
next treat the general case.
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