On Sectional Curvature of Boggino-Damek-Ricci Type Spaces

Masataka UNO

Osaka University
(Communicated by T. Nagano)

1. Introduction.

Boggino [B] proved that simply connected solvable Lie groups associated to 1 dimensional extensions of Lie algebras of Heisenberg type admit Einstein metrics with non-positive sectional curvature. These spaces contain the class of non-compact symmetric space of rank 1 and are called Damek-Ricci spaces after Damek and Ricci proved that these are harmonic spaces.

We consider a class of solvable Lie groups which includes Damek-Ricci spaces. Let $\{n, \langle , \rangle_n\}$ be a 2-step nilpotent metric Lie algebra, $\mathfrak a$ a 1 dimensional real vector space and A a non-zero vector in $\mathfrak a$. We denote the center of $\mathfrak n$ and the orthogonal complement of the center in $\mathfrak n$ by $\mathfrak z$ and $\mathfrak v$ respectively. For $k \in \mathbb{R}^+$ we define a representation f of $\mathfrak a$ on $\mathfrak n$ by

$$f(A)V = \frac{k}{2}V$$
 $f(A)Z = kZ$ for all $V \in \mathfrak{v}$ and $Z \in \mathfrak{z}$.

Since \mathfrak{a} acts on \mathfrak{n} as a derivation by f, the semi-direct sum $\mathfrak{s}_k(A;\mathfrak{n}) = \mathfrak{n} \times_f \mathfrak{a}$ of \mathfrak{n} and \mathfrak{a} becomes a solvable Lie algebra. We define an inner product $\langle , \rangle_{\mathfrak{a}}$ on \mathfrak{a} by $\langle A, A \rangle_{\mathfrak{a}} = 1$ and an inner product \langle , \rangle on $\mathfrak{s}_k(A;\mathfrak{n})$ by the direct sum of $\langle , \rangle_{\mathfrak{a}}$ and $\langle , \rangle_{\mathfrak{n}}$. We consider the simply connected Lie group with the induced left invariant metric associated to $\{\mathfrak{s}_k(A;\mathfrak{n}), \langle , \rangle \}$. We denote it by $\{S_k(A;\mathfrak{n}), g\}$ and call it a Boggino-Damek-Ricci type space (abbreviated to a BDR-type space).

Mori [M] and Yamada [Y] studied existence of Einstein metrics with non-positive sectional curvature in BDR-type spaces. By the result of Heintze [H], BDR-type spaces have non-positive sectional curvature for sufficient large k, and we can ask the following question:

Can we determine the smallest value of k such that sectional curvature of BDR-type space is non-positive?

In this paper we answer this question in the case that the nilpotent part of BDR-type space is a Lie algebra of echelon type.

We define a Lie algebra of echelon type. For K = R or C, we consider a natural gradation of $\mathfrak{sl}(n+m+l;K)$. Let

$$\mathfrak{g}_{0}(\mathbf{K}) = \begin{cases}
\begin{pmatrix} P & 0 & 0 \\ 0 & Q & 0 \\ 0 & 0 & R \end{pmatrix} \middle| trP + trQ + trR = 0, P \text{ is an } n \times n \text{ matrix, } Q \text{ is } \\ an m \times m \text{ matrix and } R \text{ is an } l \times l \text{ matrix.} \end{cases}, \\
\mathfrak{g}_{1}(\mathbf{K}) = \begin{cases}
\begin{pmatrix} 0 & A & 0 \\ 0 & 0 & B \\ 0 & 0 & 0 \end{pmatrix} \middle| A \text{ is an } n \times m \text{ matrix and } B \text{ is an } m \times l \text{ matrix.} \end{cases}, \\
\mathfrak{g}_{2}(\mathbf{K}) = \begin{cases}
\begin{pmatrix} 0 & 0 & C \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \middle| C \text{ is an } n \times l \text{ matrix.} \end{cases}, \\
\mathfrak{g}_{-1}(\mathbf{K}) = \begin{cases}
\begin{pmatrix} 0 & 0 & 0 \\ D & 0 & 0 \\ 0 & E & 0 \end{pmatrix} \middle| D \text{ is an } m \times n \text{ matrix and } E \text{ is an } l \times m \text{ matrix.} \end{cases}, \\
\mathfrak{g}_{-2}(\mathbf{K}) = \begin{cases}
\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ F & 0 & 0 \end{pmatrix} \middle| F \text{ is an } l \times n \text{ matrix.} \end{cases}.$$

Then $\mathfrak{sl}(n+m+l;\mathbf{K})=\sum_{i=-2}^2\mathfrak{g}_i(\mathbf{K})$ is a graded Lie algebra and $\mathfrak{n}(n,m,l;\mathbf{K})=\mathfrak{g}_1(\mathbf{K})\oplus\mathfrak{g}_2(\mathbf{K})$ is a 2-step nilpotent Lie algebra. We call $\mathfrak{n}(n,m,l;\mathbf{K})$ a Lie algebra of echelon type. Our main results are the followings.

THEOREM 3.2. BDR-type space $\{S_k(A; \mathfrak{n}(n, m, l; \mathbf{R})), g\}$ has non-positive (negative) sectional curvature if and only if $k \ge 1/\sqrt{2}$ ($k > 1/\sqrt{2}$) respectively.

THEOREM 4.3. BDR-type space $\{S_k(A; n(u, m, l; \mathbb{C})), g\}$ has non-positive (negative) sectional curvature if and only if $k \geq 1$ (k > 1) respectively.

Let $\sum_{k=-2}^{2} \mathfrak{g}_k$ be a second kind simple graded Lie algebra constructed by simple Lie algebras. Then the Lie algebra $\mathfrak{n} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ is 2-step nilpotent. Mori [M] has studied Einstein metrics with non-positive sectional curvature in BDR-type spaces whose nilpotent part is $\mathfrak{n} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$, in the case that the graded Lie algebras are defined by certain parabolic subalgebras. BDR-type spaces $\{S_k(A; \mathfrak{n}(n, m, l; \mathbf{R})), g\}$ are also obtained by BDR-type spaces induced by type A_n algebras, but normalization of metric in [M] is different from ours.

Note that $n(1, m, 1; \mathbf{R})$ is a 2m + 1 dimensional Heisenberg algebra. Wolter [W] proved the following.

THEOREM 3.1 (Wolter). Let \mathfrak{n}_1^m be a 2m+1 dimensional Heisenberg algebra. Then $\{S_k(A;\mathfrak{n}_1^m),g\}$ has non-positive (negative) sectional curvature if and only if $k \geq 1/\sqrt{2}$ ($k > 1/\sqrt{2}$) respectively.

In section 3 we give a proof of Theorem 3.2. Notice that Wolter's theorem is a special case of Theorem 3.2.

In section 4, as a generalization of the Boggino's theorem (i.e. a Damek-Ricci space has non-positive sectional curvature), we prove the following theorem.

THEOREM 4.2. If \mathfrak{n} satisfies that $|J_Z V| \leq |Z||V|$ for all $V \in \mathfrak{v}$ and $Z \in \mathfrak{z}$, then for $k \geq 1$ BDR-type spaces $\{S_k(A; \mathfrak{n}), g\}$ have non-positive sectional curvature.

Notice that BDR-type space $\{S_k(A; n(n, m, l; \mathbb{C})), g\}$ is an example of satisfying the assumption of Theorem 4.2.

I wish to express my gratitude to Professor Yusuke Sakane for his valuable discussion and encouragement. I also wish to thank the referee for his helpful advice.

2. Boggino-Damek-Ricci type spaces.

In this section we discuss properties of sectional curvature of BDR-type spaces.

Let $J: \mathfrak{z} \to \operatorname{End}(\mathfrak{v})$ be a linear mapping defined by

$$\langle J_Z V_1, V_2 \rangle = \langle Z, [V_1, V_2] \rangle$$
 for all $V_1, V_2 \in \mathfrak{v}$ and $Z \in \mathfrak{z}$.

Note that J_Z is skew-symmetric and the linear mapping J characterizes the 2-step nilpotent Lie algebra \mathfrak{n} .

DEFINITION 2.1. A 2-step nilpotent metric Lie algebra is called Heisenberg type, if $J_Z^2 = -|Z|^2 id$ for all Z in 3.

DEFINITION 2.2. If n is a Lie algebra of Heisenberg type and k = 1, a BDR-type space $\{S_k(A; n), g\}$ is called a Dannek-Ricci space.

We summarize basic properties of Lie algebras of Heisenberg type.

LEMMA 2.3. Let $V, V' \in \mathfrak{v}$ and $Z, Z' \in \mathfrak{z}$. Then

- (i) $\ker(ad_V)^{\perp} = J_3V$,
- (ii) if |V| = 1, the mapping ad_V is a linear isometry from $\ker(ad_V)^{\perp}$ onto 3,
- (iii) $|J_Z V| = |V||Z|$,
- (iv) $\langle J_Z V, J_Z V' \rangle = |Z|^2 \langle V, V' \rangle$,
- (v) $\langle J_Z V, J_{Z'} V \rangle = |V|^2 \langle Z, Z' \rangle$,
- (vi) $[V, J_Z V] = |V|^2 Z$,
- (vii) $J_Z J_{Z'} + J_{Z'} J_Z = -2\langle Z, Z' \rangle id$.

PROOF. See [CDKR, 3-4].

We compute the Levi-Civita connection ∇ and the sectional curvature κ_k of a BDR-type space $\{S_k(A; \mathfrak{n}), g\}$.

LEMMA 2.4. (i) Let $V_1, V_2 \in v, Z_1, Z_2 \in and r_1, r_2 \in \mathbb{R}$. Then

$$\nabla_{V_1+Z_1+r_1A}(V_2+Z_2+r_2A) = -\frac{1}{2}J_{Z_1}V_2 - \frac{1}{2}J_{Z_2}V_1 - \frac{1}{2}kr_2V_1 + \frac{1}{2}[V_1, V_2] - kr_2Z_1 + \frac{1}{2}k\langle V_1, V_2\rangle A + k\langle Z_1, Z_2\rangle A.$$

(ii) For a plane π spanned by the orthonormal vectors $X_1 = V_1 + Z_1 + rA$ and $X_2 = V_2 + Z_2$, where $V_1, V_2 \in \mathfrak{v}$, $Z_1, Z_2 \in \mathfrak{z}$ and $r \in \mathbf{R}$, the sectional curvature $\kappa_k(\pi)$ of the BDR-type space is given by

$$\begin{split} \kappa_k(\pi) &= -\frac{3}{4} |[V_1,\,V_2] + kr Z_2|^2 - \frac{1}{4} k^2 r^2 |V_2|^2 - \frac{1}{4} k^2 r^2 |Z_2|^2 \\ &\quad + \frac{1}{4} |J_{Z_1} V_2|^2 + \frac{1}{4} |J_{Z_2} V_1|^2 - \langle J_{Z_1} V_1,\,J_{Z_2} V_2 \rangle + \frac{1}{2} \langle J_{Z_1} V_2,\,J_{Z_2} V_1 \rangle \\ &\quad - k^2 \left(\frac{1}{2} |Z_1|^2 |V_2|^2 + \frac{1}{2} |Z_2|^2 |V_1|^2 + \frac{1}{4} |V_1|^2 |V_2|^2 + |Z_1|^2 |Z_2|^2 \right. \\ &\quad - \langle V_1,\,V_2 \rangle \langle Z_1,\,Z_2 \rangle - \frac{1}{4} \langle V_1,\,V_2 \rangle^2 - \langle Z_1,\,Z_2 \rangle^2 \right) \,. \end{split}$$

PROOF. (i) By considering $X, Y, W \in \mathfrak{s}_k(A; \mathfrak{n})$ as left invariant vector fields on the BDR-type space $\{S_k(A; \mathfrak{n}), g\}$, we have

$$2\langle \nabla_X Y, W \rangle = \langle [X, Y], W \rangle - \langle [Y, W], X \rangle - \langle [X, W], Y \rangle$$

and hence

$$\nabla_{V_1+Z_1+r_1A}(V_2+Z_2+r_2A) = -\frac{1}{2}J_{Z_1}V_2 - \frac{1}{2}J_{Z_2}V_1 - \frac{1}{2}kr_2V_1 + \frac{1}{2}[V_1, V_2] - kr_2Z_1 + \frac{1}{2}k\langle V_1, V_2\rangle A + k\langle Z_1, Z_2\rangle A.$$

(ii) Let R be the Riemannian curvature tensor of the BDR-type space $\{S_k(A; \mathfrak{n}), g\}$. Then we have

$$\kappa_{k}(\pi) = \langle R(X_{1}, X_{2})(X_{2}), X_{1} \rangle
= \langle \nabla_{X_{1}} \nabla_{X_{2}} X_{2} - \nabla_{X_{2}} \nabla_{X_{1}} X_{2} - \nabla_{[X_{1}, X_{2}]} X_{2}, X_{1} \rangle
= |\nabla_{X_{1}} X_{2}|^{2} - \langle \nabla_{X_{1}} X_{1}, \nabla_{X_{2}} X_{2} \rangle - \langle \operatorname{ad}_{X_{2}}^{2} X_{1}, X_{1} \rangle - |[X_{1}, X_{2}]|^{2}.$$

By Lemma 2.4(i) we see that

$$\kappa_{k}(\pi) = \left| -\frac{1}{2} J_{Z_{1}} V_{2} - \frac{1}{2} J_{Z_{2}} V_{1} + \frac{1}{2} [V_{1}, V_{2}] + \left(\frac{1}{2} k \langle V_{1}, V_{2} \rangle + k \langle Z_{1}, Z_{2} \rangle \right) A \right|^{2} \\
- \left\langle -J_{Z_{1}} V_{1} - \frac{1}{2} k r V_{1}, -J_{Z_{2}} V_{2} \right\rangle \\
- \left\langle \left(\frac{1}{2} k |V_{1}|^{2} + k |Z_{1}|^{2} \right) A, \left(\frac{1}{2} k |V_{2}|^{2} + k |Z_{2}|^{2} \right) A \right\rangle \\
- \left| \frac{1}{2} k r V_{2} + [V_{1}, V_{2}] + k r Z_{2} \right|^{2}$$

$$= \frac{1}{4} |J_{Z_1} V_2|^2 + \frac{1}{4} |J_{Z_2} V_1|^2 - \langle J_{Z_1} V_1, J_{Z_2} V_2 \rangle + \frac{1}{2} \langle J_{Z_1} V_2, J_{Z_2} V_1 \rangle$$

$$- k^2 \left(\frac{1}{2} |Z_1|^2 |V_2|^2 + \frac{1}{2} |Z_2|^2 |V_1|^2 + \frac{1}{4} |V_1|^2 |V_2|^2 + |Z_1|^2 |Z_2|^2 \right)$$

$$- \langle V_1, V_2 \rangle \langle Z_1, Z_2 \rangle - \frac{1}{4} \langle V_1, V_2 \rangle^2 - \langle Z_1, Z_2 \rangle^2$$

$$- \frac{3}{4} |[V_1, V_2] + kr Z_2|^2 - \frac{1}{4} k^2 r^2 |V_2|^2 - \frac{1}{4} k^2 r^2 |Z_2|^2 .$$

3. Wolter's theorem and its generalization.

We consider the Lie algebra $\mathfrak{n}(n, m, l; \mathbf{R})$. We define an inner product \langle , \rangle on $\mathfrak{n}(n, m, l; \mathbf{R})$ by

$$\langle X, Y \rangle = \operatorname{tr}^t X Y \quad \text{for all } X, Y \in \mathfrak{n}(n, m, l; \mathbf{R}).$$
 (1)

Then $\mathfrak{g}_2(\mathbf{R})$ is the center of $\mathfrak{n}(n, m, l; \mathbf{R})$ and $\mathfrak{g}_1(\mathbf{R})$ is the orthogonal complement of the center in $\mathfrak{n}(n, m, l; \mathbf{R})$.

Wolter [W] prove the following theorem.

THEOREM 3.1 (Wolter). Let \mathfrak{n}_1^m be the 2m+1 dimensional Heisenberg algebra. Then $\{S_k(A;\mathfrak{n}_1^m),g\}$ has non-positive (negative) sectional curvature if and only if $k \geq 1/\sqrt{2}$ ($k > 1/\sqrt{2}$) respectively.

Note that our class of Lie algebras $\mathfrak{n}(n, m, l; \mathbf{R})$ contains the 2m+1 dimensional Heisenberg algebra. In fact, $\mathfrak{n}(1, m, 1; \mathbf{R})$ is a 2m+1 dimensional Heisenberg algebra.

The following lemma plays an important role in the proof of Theorem 3.3.

LEMMA 3.2.

$$J_Z V = -[Z, {}^tV] \quad \text{for all } V \in \mathfrak{q}_1(\mathbf{R}) \text{ and } Z \in \mathfrak{q}_2(\mathbf{R}).$$
 (2)

PROOF. For $U \in \mathfrak{g}_1(\mathbf{R})$

$$\langle J_Z V, U \rangle = \langle Z, [V, U] \rangle$$

$$= \langle Z, VU - UV \rangle$$

$$= \langle Z, VU \rangle - \langle Z, UV \rangle$$

$$= \langle {}^tVZ, U \rangle - \langle Z^tV, U \rangle$$

$$= \langle {}^tVZ - Z^tV, U \rangle$$

$$= \langle -[Z, {}^tV], U \rangle.$$

THEOREM 3.3. BDR-type space $\{S_k(A; \mathfrak{n}(n, m, l; \mathbf{R})), g\}$ has non-positive (negative) sectional curvature if and only if $k \ge 1/\sqrt{2}$ ($k > 1/\sqrt{2}$) respectively.

PROOF. By Lemma 2.4(ii), for a plane π spanned by the orthonormal vectors U + X + rA and V + Y, where $U, V \in \mathfrak{g}_1(\mathbf{R}), X, Y \in \mathfrak{g}_2(\mathbf{R})$ and $r \in \mathbf{R}$, the sectional curvature $\kappa_k(\pi)$ is given by

$$\kappa_{k}(\pi) = -\frac{3}{4}|[U, V] + krY|^{2} - \frac{1}{4}k^{2}r^{2}|V|^{2} - \frac{1}{4}k^{2}r^{2}|Y|^{2}
+ \frac{1}{4}|J_{Y}U|^{2} - \frac{1}{4}|U|^{2}|Y|^{2} + \frac{1}{4}|J_{X}V|^{2} - \frac{1}{4}|X|^{2}|V|^{2}$$

$$-\frac{1}{2}\langle J_{X}U, J_{Y}V\rangle + \frac{1}{2}\langle U, V\rangle\langle X, Y\rangle$$

$$+\frac{1}{2}(\langle J_{X}V, J_{Y}U\rangle - \langle J_{X}U, J_{Y}V\rangle)$$

$$-\frac{1}{2}\left(\frac{1}{4}|U|^{2}|V|^{2} - \frac{1}{4}\langle U, V\rangle^{2} + |X|^{2}|Y|^{2} - \langle X, Y\rangle^{2}\right)$$

$$-\left(k^{2} - \frac{1}{2}\right)\left(\frac{1}{2}|U|^{2}|Y|^{2} + \frac{1}{2}|V|^{2}|X|^{2} - \langle U, V\rangle\langle X, Y\rangle$$

$$+\frac{1}{4}|U|^{2}|V|^{2} + |X|^{2}|Y|^{2} - \frac{1}{4}\langle U, V\rangle^{2} - \langle X, Y\rangle^{2}\right).$$
(6)

First, we show that $(3) + (4) \le 0$. We write

$$X = \begin{pmatrix} 0 & 0 & X_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 & Y_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$U = \begin{pmatrix} 0 & U_1 & 0 \\ 0 & 0 & U_1' \\ 0 & 0 & 0 \end{pmatrix}, \quad V = \begin{pmatrix} 0 & V_1 & 0 \\ 0 & 0 & V_1' \\ 0 & 0 & 0 \end{pmatrix}.$$

We note that X_2 and Y_2 are $n \times l$ real matrices, that U_1 and V_1 are $n \times m$ real matrices and that U_1' and V_1' are $m \times l$ real matrices. By (1) and (2), we have

$$(3) + (4) = \frac{1}{4} (\operatorname{tr}^{t} Y_{2} U_{1}^{t} U_{1} Y_{2} - \operatorname{tr}^{t} U_{1} U_{1} \operatorname{tr}^{t} Y_{2} Y_{2})$$
 (7)

$$+\frac{1}{4}(\operatorname{tr}^{t}X_{2}V_{1}^{t}V_{1}X_{2}-\operatorname{tr}^{t}V_{1}V_{1}\operatorname{tr}^{t}X_{2}X_{2}) \tag{8}$$

$$+\frac{1}{2}(\operatorname{tr}^{t}U_{1}V_{1}\operatorname{tr}^{t}X_{2}Y_{2}-\operatorname{tr}^{t}X_{2}U_{1}^{t}V_{1}Y_{2}) \tag{9}$$

$$+\frac{1}{4}(\operatorname{tr} U_1'^t Y_2 Y_2'^t U_1' - \operatorname{tr}^t U_1' U_1' \operatorname{tr}^t Y_2 Y_2)$$
 (10)

$$+\frac{1}{4}(\operatorname{tr} V_1'^t X_2 X_2^t V_1' - \operatorname{tr}^t V_1' V_1' \operatorname{tr}^t X_2 X_2) \tag{11}$$

$$+\frac{1}{2}(\operatorname{tr}^{t}U_{1}'V_{1}'\operatorname{tr}^{t}X_{2}Y_{2}-\operatorname{tr}U_{1}'^{t}X_{2}Y_{2}^{t}V_{1}'). \tag{12}$$

We denote (i, j) elements of matrices U_1 , U'_1 , V_1 , V'_1 , X_2 and Y_2 by $u_{i,j}$, $u'_{i,j}$, $v_{i,j}$, $v'_{i,j}$, $x_{i,j}$ and $y_{i,j}$ respectively. Then if $n \ge 2$, we have

$$(9) = \frac{1}{2} \left\{ \left(\sum_{k=1}^{m} \sum_{i=1}^{n} u_{i,k} v_{i,k} \right) \left(\sum_{h=1}^{l} \sum_{j=1}^{n} x_{j,h} y_{j,h} \right) - \sum_{h=1}^{l} \sum_{k=1}^{m} \left(\sum_{i=1}^{n} x_{i,h} u_{i,k} \right) \left(\sum_{j=1}^{n} v_{j,k} y_{j,h} \right) \right\}$$

$$= \frac{1}{2} \sum_{h=1}^{l} \sum_{k=1}^{m} \sum_{1 \le i \le j \le n} (x_{i,h} v_{j,k} - x_{j,h} v_{i,k}) (y_{i,h} u_{j,k} - y_{j,h} u_{i,k}).$$

As a special case of (9), we have

$$(7) = -\frac{1}{4} \sum_{h=1}^{l} \sum_{k=1}^{m} \sum_{1 \le i < j \le n} (y_{i,h} u_{j,k} - y_{j,h} u_{i,k})^{2},$$

$$(8) = -\frac{1}{4} \sum_{h=1}^{l} \sum_{h=1}^{m} \sum_{1 \le i < j \le n} (x_{i,h} v_{j,k} - x_{j,h} v_{i,k})^{2}.$$

Therefore if $n \ge 2$, we see that

$$(7) + (8) + (9) = -\frac{1}{4} \sum_{h=1}^{l} \sum_{k=1}^{m} \sum_{1 \le i < j \le n} \{ (y_{i,h} u_{j,k} - y_{j,h} u_{i,k}) - (x_{i,h} v_{j,k} - x_{j,h} v_{i,k}) \}^{2}$$

$$\leq 0.$$

If n = 1, we have (7) = 0, (8) = 0 and (9) = 0. Thus we see that $(7) + (8) + (9) \le 0$. Similarly we get $(10) + (11) + (12) \le 0$. Thus we see that $(3) + (4) \le 0$.

Next we prove that $(5) + (6) \le 0$. By (1) and (2), we have

$$\langle J_X V, J_Y U \rangle - \langle J_X U, J_Y V \rangle = \operatorname{tr}^t X_2 V_1^t U_1 Y_2 - \operatorname{tr}^t X_2 U_1^t V_1 Y_2 + \operatorname{tr} V_1^{t} X_2 Y_2^t U_1^{t} - \operatorname{tr} U_1^{t} X_2 Y_2^t V_1^{t}.$$
 (13)

Noting that $|(A - {}^t A)B| \le |A||B|$ for $A \in M_{n,n}(\mathbb{R})$ and $B \in M_{n,l}(\mathbb{R})$, we have

$$(13) = \langle {}^{t}V_{1}X_{2}, {}^{t}U_{1}Y_{2} \rangle - \langle {}^{t}U_{1}X_{2}, {}^{t}V_{1}Y_{2} \rangle$$

$$= \langle X_{2}, V_{1}{}^{t}U_{1}Y_{2} \rangle - \langle X_{2}, U_{1}{}^{t}V_{1}Y_{2} \rangle$$

$$\leq |X_{2}||(V_{1}{}^{t}U_{1} - U_{1}{}^{t}V_{1})Y_{2}|$$

$$\leq |X_{2}||V_{1}{}^{t}U_{1}||Y_{2}|$$

$$\leq |X_{2}||Y_{2}||V_{1}||U_{1}|.$$

Similarly we get

$$(14) \leq |X_2||Y_2||V'_1||U'_1|.$$

Thus we obtain

$$\langle J_X V, J_Y U \rangle - \langle J_X U, J_Y V \rangle \le |X_2||Y_2|(|V_1||U_1| + |V_1||U_1'|)$$

 $\le |X_2||Y_2||U||V|.$

We write $V = \alpha U + W$ and $Y = \beta X + Z$, where $\alpha, \beta \in \mathbb{R}$, $W \in \mathfrak{g}_1(\mathbb{R})$ with $\langle U, W \rangle = 0$ and $Z \in \mathfrak{g}_2(\mathbb{R})$ with $\langle X, Z \rangle = 0$. Then we see that

$$(5) + (6) = \frac{1}{2} (\langle J_X W, J_Z U \rangle - \langle J_X U, J_Z W \rangle) - \frac{1}{2} \left(\frac{1}{4} |U|^2 |W|^2 + |X|^2 |Z|^2 \right)$$

$$\leq \frac{1}{2} |X||Z||U||W| - \frac{1}{8} |U|^2 |W|^2 - \frac{1}{2} |X|^2 |Z|^2$$

$$= -\frac{1}{2} \left(\frac{1}{2} |U||W| - |X||Z| \right)^2$$

$$\leq 0.$$

Summing up these inequalities, we see that $\kappa_k(\pi) \leq 0$ for $k \geq 1/\sqrt{2}$. If

$$0 = \frac{1}{2}|U|^{2}|Y|^{2} + \frac{1}{2}|V|^{2}|X|^{2} + \frac{1}{4}|U|^{2}|V|^{2} + |X|^{2}|Y|^{2}$$

$$- \langle U, V \rangle \langle X, Y \rangle - \frac{1}{4}\langle U, V \rangle^{2} - \langle X, Y \rangle^{2}$$

$$= \frac{1}{2}|U|^{2}|Y|^{2} + \frac{1}{2}|V|^{2}|X|^{2} + \frac{1}{4}|U|^{2}|V|^{2} + \left(|X|^{2}|Y|^{2} - \frac{1}{4}\langle X, Y \rangle^{2}\right),$$

then we see that U=0, X=0 and r=1, since U+X+rA and V+Y are orthogonal. Then $r^2|Y|^2 \neq 0$ or $r^2|V|^2 \neq 0$. Therefore $\kappa_k(\pi) < 0$ for $k > 1/\sqrt{2}$.

If we choose a plane σ spanned by the orthonormal vectors $E_{1,n+1}$ and $E_{1,n+m+1}$, where $E_{i,j}$ is an $(n+m+l)\times (n+m+l)$ matrix unit, we have

$$\kappa_k(\sigma) = \frac{1}{4} - \frac{1}{2}k^2 = \frac{1}{2}\left(\frac{1}{2} - k^2\right).$$

This proves our Theorem 3.2.

4. Boggino's theorem and its generalization.

We can now give a different proof of the Boggino's theorem [B].

THEOREM 4.1 (Boggino). A Damek-Ricci space has non-positive sectional curvature.

This theorem is obtained as a special case of the following theorem.

THEOREM 4.2. If \mathfrak{n} satisfies that $|J_ZV| \leq |Z||V|$ for all $V \in \mathfrak{v}$ and $Z \in \mathfrak{z}$, then for $k \geq 1$ BDR-type spaces $\{S_k(A;\mathfrak{n}), g\}$ have non-positive sectional curvature.

PROOF. By Lemma 2.4(ii), for a plane π spanned by the orthonormal vectors U + X + rA and V + Y, where $U, V \in v$, $X, Y \in \mathfrak{z}$ and $r \in \mathbb{R}$, the sectional curvature $\kappa_k(\pi)$ is given by

$$\kappa_k(\pi) = -\frac{3}{4}|[U, V] + krY|^2 - \frac{1}{4}k^2r^2|V|^2 - \frac{1}{4}k^2r^2|Y|^2$$

$$-\frac{1}{4}(|U|^2|Y|^2 - |J_YU|^2) - \frac{1}{4}(|V|^2|X|^2 - |J_XV|^2)$$
 (15)

$$-\frac{1}{4}|U|^2|Y|^2 - \frac{1}{4}|V|^2|X|^2 - \frac{1}{2}\langle J_X U, J_Y V \rangle$$
 (16)

$$-\frac{1}{4}|U|^2|V|^2 + \frac{1}{4}\langle U, V \rangle^2 - |X|^2|Y|^2 + \langle X, Y \rangle^2$$
 (17)

$$-\frac{1}{2}\langle J_X U, J_Y V \rangle + \frac{1}{2}\langle J_X V, J_Y U \rangle \tag{18}$$

$$+\langle U, V \rangle \langle X, Y \rangle$$
 (19)

$$-(k^{2}-1)\left(\frac{1}{2}|U|^{2}|Y|^{2}+\frac{1}{2}|V|^{2}|X|^{2}-\langle U,V\rangle\langle X,Y\rangle\right) + \frac{1}{4}|U|^{2}|V|^{2}-\frac{1}{4}\langle U,V\rangle^{2}+|X|^{2}|Y|^{2}-\langle X,Y\rangle^{2}.$$

By our assumption that $|J_Z V| \le |Z||V|$ for all $V \in \mathfrak{v}$ and $Z \in \mathfrak{z}$, we have (15) ≤ 0 and

$$(16) \le -\frac{1}{4}|U|^2|Y|^2 - \frac{1}{4}|V|^2|X|^2 + \frac{1}{2}|X||U||Y||V|$$

$$= -\frac{1}{4}(|U||Y| - |V||X|)^2$$

$$< 0.$$

We write $V = \alpha U + W$ and $Y = \beta X + Z$, where $\alpha, \beta \in \mathbb{R}$, $W \in \mathfrak{v}$ with $\langle U, W \rangle = 0$ and $Z \in \mathfrak{z}$ with $\langle X, Z \rangle = 0$. Then we have

$$(17) + (18) = -\frac{1}{4}|U|^{2}|W|^{2} - |X|^{2}|Z|^{2} - \frac{1}{2}\langle J_{X}U, J_{Z}W\rangle + \frac{1}{2}\langle J_{X}W, J_{Z}U\rangle$$

$$\leq -\frac{1}{4}|U|^{2}|W|^{2} - |X|^{2}|Z|^{2} + |X||Z||U||W|$$

$$= -\left(\frac{1}{2}|U||W| - |X||Z|\right)^{2}$$

$$< 0.$$

Since U + X + rA and V + Y are orthonormal vectors, $(19) = -\langle X, Y \rangle^2 \le 0$. By the above argument we see $\kappa_k(\pi) \le 0$ for $k \ge 1$.

We consider the Lie algebra $\mathfrak{n}(n, m, l; \mathbb{C})$. We define an inner product \langle , \rangle on $\mathfrak{n}(n, m, l; \mathbb{C})$ by

$$\langle X, Y \rangle = \text{Re}(\text{tr}^t X \overline{Y}) \quad \text{for all } X, Y \in \mathfrak{n}(n, m, l; \mathbb{C}),$$
 (20)

where Re $z = 1/2(z + \bar{z})$ for $z \in \mathbb{C}$. Then $\mathfrak{g}_2(\mathbb{C})$ is the center of $\mathfrak{n}(n, m, l; \mathbb{C})$ and $\mathfrak{g}_1(\mathbb{C})$ is the orthogonal complement of the center in $\mathfrak{n}(n, m, l; \mathbb{C})$.

The following lemma plays an important role in the proof of Theorem 4.4.

LEMMA 4.3.

$$J_Z V = -[Z, \overline{V}] \quad \text{for all } V \in \mathfrak{g}_1(\mathbb{C}) \text{ and } Z \in \mathfrak{g}_2(\mathbb{C}).$$
 (21)

PROOF. For $U \in \mathfrak{g}_1(\mathbb{C})$

$$\langle J_{Z}V, U \rangle = \langle Z, [V, U] \rangle$$

$$= \langle Z, VU - UV \rangle$$

$$= \langle Z, VU \rangle - \langle Z, UV \rangle$$

$$= \langle \overline{iV}Z, U \rangle - \langle Z\overline{iV}, U \rangle$$

$$= \langle \overline{iV}Z - Z\overline{iV}, U \rangle$$

$$= \langle -[Z, \overline{iV}], U \rangle .$$

THEOREM 4.4. BDR-type space $\{S_k(A; \mathfrak{n}(n, m, l; \mathbb{C})), g\}$ has non-positive (negative) sectional curvature if and only if $k \geq 1$ (k > 1) respectively.

PROOF. Let $V \in \mathfrak{g}_1(\mathbb{C})$ and $Z \in \mathfrak{g}_2(\mathbb{C})$. We write

$$V = \begin{pmatrix} 0 & V_1 & 0 \\ 0 & 0 & V_1' \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad Z = \begin{pmatrix} 0 & 0 & Z_2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

where Z_2 is an $n \times l$ complex matrix, V_1 is an $n \times m$ complex matrix and V_1' is an $m \times l$ complex matrix.

$$J_Z V = -[Z, \overline{V}] = \begin{pmatrix} 0 & -Z_2 \overline{V}'_1 & 0 \\ 0 & 0 & \overline{V}_1 Z_2 \\ 0 & 0 & 0 \end{pmatrix}.$$

Therefore we have

$$|J_Z V| = |Z_2 \overline{V'_1}| + |\overline{V_1} Z_2|$$

$$\leq |Z_2|(|\overline{V'_1}| + |\overline{V_1}|)$$

$$= |Z||V|.$$

Thus by Theorem 4.2, we see that BDR-type spaces $\{S_k(A; n(n, m, l; \mathbb{C})), g\}$ have non-positive sectional curvature for $k \geq 1$.

We can show that, for k > 1, BDR-type spaces $\{S_k(A; \mathfrak{n}(n, m, l; \mathbb{C})), g\}$ have negative sectional curvature in the same way as Theorem 3.3's.

For a plane σ spanned by the orthonormal vectors $\sqrt{2}/\sqrt{3}E_{1,n+1}+1/\sqrt{3}E_{1,n+m+1}$ and $\sqrt{2}/\sqrt{3}F_{1,n+1}+1/\sqrt{3}F_{1,n+m+1}$, where $E_{i,j}$ is an $(n+m+l)\times(n+m+l)$ matrix unit and $F_{i,j}=\sqrt{-1}E_{i,j}$, we see that the sectional curvature $\kappa_k(\sigma)$ is given by

$$\kappa_k(\sigma) = \frac{4}{9}(1-k^2).$$

References

[BTV] J. BERNDT, F. TRICERRI and L. VANHECKE, Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces, Lecture Notes in Math. 1598 (1995), Springer.

- [B] J. BOGGINO, Generalized Heisenberg groups and solvmanifolds naturally associated, Rend. Sem. Mat. Univ. Politec. Torino 43 (1985), 529–547.
- [CDKR] M. COWLING, A. H. DOOLEY, A. KORANYI and F. RICCI, H-type groups and Iwasawa decompositions, Adv. in Math. 87 (1991), 1-41.
- [H] E. HEINTZE, On homogeneous manifolds of negative curvature, Math. Ann. 211 (1974), 23-34.
- [L] M. LANZENDORF, Einstein metrics with nonpositive sectional curvature on extensions of Lie algebras of Heisenberg type, Geom. Dedicata 66 (1997), 187-202.
- [M] K. MORI, Einstein metrics on B.D.R. type solvable Lie groups, Preprint.
- [U] M. UNO, On Boggino-Damek-Ricci type spaces with non-positive sectional curvature, Master Thesis, Osaka Univ. (1998) (in Japanese).
- [W] T. WOLTER, Einstein metrics on solvable groups, Math. Z. 206 (1991), 457–471.
- [Y] K. YAMADA, Einstein metrics on certain solvable groups, Master Thesis, Osaka Univ. (1996) (in Japanese).

Present Address:

DEPARTMENT OF MATHEMATICS, GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY, TOYONAKA, OSAKA 560–0043, JAPAN. *e-mail*: masataka@math.sci.osaka-u.ac.jp