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1. Introduction.

Boggino [B] proved that simply connected solvable Lie groups associated to 1 dimen-
sional extensions of Lie algebras of Heisenberg type admit Einstein metrics with non-positive
sectional curvature. These spaces contain the class of non-compact symmetric space of rank
1 and are called Damek-Ricci spaces after Damek and Ricci proved that these are harmonic
spaces.

We consider a class of solvable Lie groups which includes Damek-Ricci spaces. Let
{n, (, )n} be a 2-step nilpotent metric Lie algebra, a a 1 dimensional real vector space and A a
non-zero vector in a. We denote the center of n and the orthogonal complement of the center
in n by 3 and v respectively. For k € »R+ we define a representation f of a on n by

k
fV =2V f(A)Z=kZ forall Vevand Zej.

Since a acts on n as a derivation by f, the semi-direct sum sx(A;n) = n x faofnanda
becomes a solvable Lie algebra. We define an inner product (, )4 on a by (A, A)q = 1 and
an inner product (, ) on s (A; n) by the direct sum of (, )4 and {, )n. We consider the simply
connected Lie group with the induced left invariant metric asociated to {si(A; n), (,)}. We
denote it by {Sx(A; n), g} and call it a Boggino-Damek-Ricci- type space (abbrev1ated to a
BDR-type space).

Mori [M] and Yamada [Y] studied existence of Einstein metrics with non-positive sec-
tional curvature in BDR-type spaces. By the result of Heintze [H], BDR-type spaces have
non-positive sectional curvature for sufficient large k, and we can ask the following question:

Can we determine the smallest value of k such that sectional curvature of BDR-type
space is non-positive?

In this paper we answer this question in the case that the nilpotent part of BDR-type
space is a Lie algebra of echelon type.
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We define a Lie algebra of echelon type. For K = R or C, we consider a natural gradation
of si(n + m + [; K). Let

(K)—ﬂ g gg trP +trQ +trR =0, P isann x n matrix, Q is

g0 - 0O 0 R an m X m matrix and R is an / x [ matrix. ’
(/0 A O

g01(K)={]0 0 B || Aisann x m matrix and B is an m x [ matrix. } ,
(\0 0 0
([0 0 C

gz(K)=1 0 0 O0]}| Cisann x [l matrix. } ,
(\0 0 O
(/0 0 O

g-1(K)={|D O O0]| Disanm x n matrix and E is an/ x m matrix. ¢ ,
[\o E o
(0 00

g2K)=110 0 O]| Fisanl x n matrix.
(\F 0 0

Then sl(n +-m +1L;K) = Z?:—z g; (K) is a graded Lie algebra and n(n, m, I; K) = g1(K) &
92(K) is a 2-step nilpotent Lie algebra. We call n(n, m, [; K) a Lie algebra of echelon type.
Our main results are the followings.

THEOREM 3.2. BDR-type space {Sk(A; n(n, m, l; R)), g} has non-positive (negative)
sectional curvature if and only ifk > 1/ V2 (k > 1/~/2) respectively.

THEOREM 4.3. BDR-type space {Sk(A; nw(u, m, l; C)), g} has non-positive (negative)
sectional curvature if and only if k > 1 (k > 1) respectively.

Let Zi:—z gx be a second kind simple graded Lie algebra constructed by simple Lie
algebras. Then the Lie algebran = g; @ g2 is 2-step nilpotent. Mori [M] has studied Einstein
metrics with non-positive sectional curvature in BDR-type spaces whose nilpotent part is n =
g1 D g2, in the case that the graded Lie algebras are defined by certain parabolic subalgebras.
BDR-type spaces {Sx(A; n(n, m, [; R)), g} are also obtained by BDR-type spaces induced by
type A, algebras, but normalization of metric in [M] is different from ours.

Note that n(1, m, 1; R) is a 2m + 1 dimensional Heisenberg algebra. Wolter [W] proved
the following..

THEOREM 3.1 (Wolter). Let n]' be a 2m + 1 dimensional Heisenberg algebra. Then
{Sk(A; nT), g} has non-positive (negative) sectional curvature if and only ifk > 1/ V2 (k>
1/+/2) respectively.

In section 3 we give a proof of Theorem 3.2. Notice that Wolter’s theorem is a special
case of Theorem 3.2.
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In section 4, as a generalization of the Boggino’s theorem (i.e. a Damek-Ricci space has
non-positive sectional curvature), we prove the following theorem.

THEOREM 4.2. If n satisfies that |JzV| < |Z||V|forall V € v and Z € 3, then for
k > 1 BDR-type spaces {Sx(A; n), g} have non-positive sectional curvature.

Notice that BDR-type space {Si(A; n(n, m,l; C)), g} is an example of satisfying the
assumption of Theorem 4.2.

I wish to express my gratitude to Professor Yusuke Sakane for his valuable discussion
and encouragement. I also wish to thank the referee for his helpful advice.

2. Boggino-Damek-Ricci type spaces.

In this section we discuss properties of sectional curvature of BDR-type spaces.
Let J : 3 — End(v) be a linear mapping defined by

(JzV1, Vo) = (Z, [V}, V1) forall V;,V, €p and Z € 3.

Note that Jz is skew-symmetric and the linear mapping J characterizes the 2-step nilpotent
Lie algebra n. '

DEFINITION 2.1. A 2-step nilpotent metric Lie algebra is called Heisenberg type, if
Jz? = —|Z|?id for all Z in ;.

DEFINITION 2.2. If nis a Lie algebra of Heisenberg type and k = 1, a BDR-type
space {Si(A; n), g} is called a Dannek-Ricci space.

We summarize basic properties of Lie algebras of Heisenberg type.

LEMMA 2.3. LetV,V' €evand Z,Z' € 3. Then
(i) ker(adv)t = J,V,
(i) if|V| =1, the mapping ady is a linear isometry from ker(ady)* onto 3,
(i) |JzVI=I|VIIZ|,
(V) (JzV,JzV') = |Z[X(V, V),
W) (JzV, Iz V) =VIXZ, Z),
i) [V,JzV1=|V|’Z,
i) JzJz 4+ JzJz = -=2(Z, Z')id.

PROOF. See [CDKR, 3-4]. a

We compute the Levi-Civita connection V and the sectional curvature «; of a BDR-type
space {Sk(A; n), g}.

LEMMA 2.4, (i) LetVy,V,€v,Z1,Z; € 3andry,r2 € R. Then

1 1 1
Vvi+zi4+naV2 + Z3 + rnA) = — 5121 V2 — 5 3

1
+ Ek(Vl, WA+ k(Zy, Z2)A.

1
Jz, Vi — Zkr2V1 + E[Vl, Vol —kr 2y
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(ii) For a plane 7 spanned by the orthonormal vectors X1 = Vi + Z) + rA and
Xy = Vo + Z3, where Vi, Vo € v, Z1, Z3 € 3 andr € R, the sectional curvature ki (1) of the
BDR-type space is given by

3 1 1
a(m) == 711, V2l +krz,)? — Zkzrlezlz - Zk2’2'22'2
1 1 1
+ 21z, Va|? + Zuzzvllz = Uz V1, Iz, V2) + 2(Jz, V2, Iz, V)
1 1 1 .
—k? (5|21I2|V2|2 + 5|Zz|2|V1|2 + ZIV1|2IV2I2+ 1Z11%1Z,)?

1
—(V1, Va(Z, Z3) — Z(Vl, V2)? — (24, 22)2) .

PROOF. (i) By considering X, Y, W € s;(A; n) as left invariant vector fields on the
BDR-type space {Sx(A; n), g}, we have

2(VxY, W) = (X, Y], W) = ([Y, W], X) — ([X, W], Y)

and hence

1 1 1 1
— ZJz, Vo — =Jz, Vi — =k Vi + =[V}, Vo] —
372 V2 — 5IV1 — Skn 1+2[V1 Vol —krZ,

1
+ Ek(vh WV)A +k(Zy, Z3)A .

Vvi+zi+na(V2a + Z2 + nA) =

(ii) Let R be the Riemannian curvature tensor of the BDR-type space {Sy(A; n), g}.
Then we have '
k() = (R(X1, X2)(X2), X1)
= (Vx, Vx, X2 — Vx,Vx, X2 — Vix,,x,1X2, X1) |
= |Vx, X2|* = (Vx, X1, Vx, X2) — (adx, X1, X1) — |[X1, X2]1%.

By Lemma 2.4(i) we see that

2

1 1 1 1
kp(w) = ’—5121 Va — 5122V1 + E[Vl, a1+ (‘2‘k(V1a Vo) + k(Z,, Zz)) A

1
- (—le Vi — EkrVI, —Jz, V2>

1. 1
- <(§k|V1|2 + kllez) A, (§k|V2|2 + kIZZIZ) A)
1 2
— kikrvz + [Vi, Vol +krZ,
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1 , 1 5 1
= Z|JZI Val© + Z|J22V1| —(Jz;V1, Iz, Vo) + -2-(121 Va, Jz, V1)
1 1 1
—k? (5|zl|2|v2|2 + 5|22|2|V1|2 + Z|v1|2|v2|2 + 121112, |?
1
—(Vi, Va)(Z1, Z2) = 2 (V1, V2)* = (20, 22>2)

3 1 1
= Z1V1, V2l + krZy)? — Z"2’2'V2'2 - Z"Z’Z'Zz'z' O

3. Wolter’s theorem and its generalization.
We consider the Lie algebra n(n, m, [; R). We define an inner product (, ) onn(n, m, [; R)
by
(X,Y) =tu'XY forall X,Y € n(n,m,[;R). ¢))

Then g, (R) is the center of n(n, m, [; R) and g;(R) is the orthogonal complement of the
center in n(n, m, [; R).
Wolter [W] prove the following theorem.

THEOREM 3.1 (Wolter). Let n' be the 2m + 1 dimensional Heisenberg algebra. Then
{Sk(A; nT"), g} has non-positive (negative) sectional curvature if and only if k > 1 /2 k>
1/ V2) respectively. -

Note that our class of Lie algebras n(n, m, [; R) contains the 2m + 1 dimensional Heisen-
berg algebra. In fact, n(1, m, 1; R) is a 2m + 1 dimensional Heisenberg algebra.
The following lemma plays an important role in the proof of Theorem 3.3.

LEMMA 3.2.
JzV = —[Z,'V] forall V € gi(R) and Z € g2(R). 2)
PROOF. ForU € gi(R)
(JzV,U) =(Z,[V,U])
=(Z,VU —-UV)
=(Z,VU)—-(Z,UV)
=(VZ,U)—-(Z'V,U)
=(vVzZz-2'V,U)
= (-[Z,'V],U). O

THEOREM 3.3. BDR-type space {Sx(A; n(n, m,[; R)), g} has non-positive (negative)
sectional curvature if and only ifk > 1//2 (k > 1/+/2) respectively.
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PROOF. By Lemma 2.4(ii), for a plane = spanned by the orthonormal vectors U + X +
rAandV +Y,where U,V € g1(R), X,Y € g2(R) and r € R, the sectional curvature ki ()
is given by

3 1 1
Kk () = —ZI[U, V]+krY|? — Zk2r2|V|2 - Zk2r2|1/|2

1 s 155 1 2 1 oo 9
- - = Y+ - —_—) {51 3
+3 1 UP = ZIUPRIY 2+ 210x V2 = 21XV (3)
1 1
—5UxU, Jy V) + (U, VIX, Y) @
1
+-2-((JXV, JyU) — (JxU, JyV)) 3)
1/1 ; 1
-3 (Z‘U'Z'V'Z -2\, VY2 XY - (X, Y>2) (6)

1 1 1
— (k2 - 5) (5|U|2|Y|2 + 5|V|2|X|2 — (U, V)X, Y)

1 1
+Z'U'2‘V‘2 + X117 - 7\, V)2 — (X, Y>2) :

First, we show that (3) + (4) < 0. We write

0 0 X, 0 0 1
X=]|0 0 0}, Y=|0 0 0],

0 0 O 0 0 O

0O Uy O o vi O
v=|0 0 U;j}], Vv=|0 O Vl'

0O 0 O 0O 0 O

We note that X, and Y, are n x [ real matrices, that U; and V; are n x m real matrices and
that U; and V| are m x [ real matrices. By (1) and (2), we have

@+ @ = %(H'Y2U1'U1Y2 —t'U U tr'Y2Y2) M
+£(tr'X2V1'V1X2 — 'V 1V r'X;X5) ®)
+—;-(tr'U1V1 tr’X2Ys — tr'X,U,'V ( 12) ®
+%(u U'Y2Y,'U| — t'U U 'Y 1Y) (10)
+%(tr V{'X2X5'V] — &'V V] r'X2X3) 1n

1
+§(tr'U'1 Vitr’XaY, — tr U'X,Y5'VY) . (12)



BOGGINO-DAMEK-RICCI TYPE SPACES 423

We denote (i, j) elements of matrices Uy, U], V1, V{, X, and Y2 by u; ;, u;,j, Vij, vlf,j, Xij
and y; ; respectively. Then if n > 2, we have

h=1 k=1 \i=1
) m

1
=5 Z Z (xXi,hVj .k — Xj,nVi k) VinUjk = Vi htik) -

h=1 k=1 1<i<j<n

As a special case of (9), we have

7 =- ikt jk — YjhUik)? s

>
i

M-
NE

~
Il

1 1 1<i<j<n

2
®) =- (Xi,hVjk — Xj,nVik)" .

>
Il

M-
NgE

k-
Il

1 1 1<i<j<n

Therefore if n > 2, we see that
i

h=1

NE

D+ @ +©) =- > AGunujk — yjntig) — Cipvjk — Xjnvie)Y

i<j<n

SN
-
I

11

1A

<0.

Ifn = 1, we have (7) = 0, (8) = 0 and (9) = 0. Thus we see that (7) + (8) + (9) < 0.
Similarly we get (10) + (11) 4+ (12) < 0. Thus we see that (3) + (4) < 0.
Next we prove that (5) + (6) < 0. By (1) and (2), we have

(JxV,JyU) — (IxU, JyV)
=tr'’XoVi'U 1Y, — tr'XUy'V 1 Y, (13)
+r V/'X,Y,'U) — t U'X2 Yo'V . (14)
Noting that [(A —‘A)B| < |A||B| for A € M, ,(R) and B € M, ;(R), we have
(13) = ('V1X3,'U1Y2) — (U1X2,'V1Y2)
= (X2, Vi'U1Y2) — (X2, U1’V 1Y2)
< 1X:2ll(Vi'U1 — U\'V )Yl
< |X2|IV1'U1 || Y]
< |X2lIX2|IV1l|lUil .
Similarly we get
(14) < |X2||Y2||V'11|U"1] .
Thus we obtain
(JxV, JyU) — (JxU, JyV) < | Xa||1Y2|((V1]1U1] + [V11IU"1])
< | X2lIV20lUIV].
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Wewrite V=aU +WandY = BX + Z, where o, 8 € R, W € g;(R) with (U, W) =0
and Z € gy (R) with (X, Z) = 0. Then we see that

1 1/1
6»H®=Em&WJﬂn—Uﬂnhwn—i(ﬂUMWF+mﬁmﬁ

1 Lo 2wz Liviziae
—|X\\Z W| — =|U|“|W|* — =|X|*|1Z
52| HZ||U|IW] 8| [“|W| 2| 1 Z|
1/1 2
=— | =|U||W|—-|X||Z
2(2| W] —|XI| I)
<0.

Summing up these inequalities, we see that kx () < Ofork > 1/ V2.
If

1 1 1
= SWPYPE+ SIVIEXE + ZWUPIVE +1XPIY P
1
— (U, V)X, ¥) = 2(U, V)* = (X, ¥)?

1 1 1 1
5waF+§wﬂXF+ZwﬂVP+OXHm?—ﬂxYﬁ),

then we see that U = 0, X =0andr = 1,since U + X +rA and V + Y are orthogonal.
Then r2|Y|? # 0 or r2|V|? # 0. Therefore k() < 0 for k > 1/+/2.

If we choose a plane o spanned by the orthonormal vectors E1 ,4+1 and Ej ,4m+1, where
E; jisan (n + m +1) x (n + m + l) matrix unit, we have

1 1 1/1
k2= (= —k%).
472 2(2 )

This proves our Theorem 3.2. O

ki(o) =

4. Boggino’s theorem and its generalization.

We can now give a different proof of the Boggino’s theorem [B].

THEOREM 4.1 (Boggino). A Damek-Ricci space has non-positive sectional curvature.
This theorem is obtained as a special case of the following theorem.

THEOREM 4.2. If n satisfies that |JzV| < |Z||V| forall V € v and Z € 3, then for
k > 1 BDR-type spaces {Sx(A; n), g} have non-positive sectional curvature.

PROOF. By Lemma 2.4(ii), for a plane 7 spanned by the orthonormal vectors U + X +
rAandV +Y,where U,V € v, X,Y € 3 and r € R, the sectional curvature x;(7r) is given
by

3 1 1
ki () = —ZI[U, V1+krY|? — 21-k"-r2|V|2 - Zk2r2|Y|2
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1 1
=7 WUPIY P = Iy UR) = 2V PIX? = 1Ix V) (15)
Loy Lvziye ]
—— Y| - = - = | %
FIUPIYP = 2IVRIXP? — Sk U, Iy V) (16)
1 1
—7IUPIVE 4 (U, V)2 — IXPIYP +(X, ¥)? an
1 1
—EUXU’ JyV)+5(JxV, JyU) (18)
+HU, V)X, Y) (19)

1 1
— (k%2 -1) (51U|2|Y|2 + 5|V|2|X|2 — (U, V)(X, Y)

1 1
+IUPIVE = 20, V)2 + IXPIY P — (X, Y>2> :
By our assumption that |JzV| < |Z||V|forall V € v and Z € 3, we have (15) < 0 and
1 1 1
(16) < ‘Z'U'Z'Y'z ~ ZIVI2|X|2 + ZIXIUNY V]

1
=—z(UlY| - IVI1X)?
<0.
We write V = aU + W and Y = BX + Z, where a, 8 € R, W € b with (U, W) = 0 and
Z € 3 with (X, Z) = 0. Then we have
1 1 1
(A7) + (18) = —Z|U|2|W|2 —1X1%1Z2)? - 5(IxU, JzW) + = (Jx W, JzU)

1
= —ZIUPIWP —1XPIZ + X1 21U W]

1 2
=~ (5|U||W| - |X||Z|)
<0. '
Since U + X +rA and V + Y are orthonormal vectors, (19) = —(X, Y)2 < 0. By the above
argument we see k¢ () < O fork > 1. , O

We consider the Lie algebra n(n, m, [; C). We define an inner product (, ) onn(n, m, [; C) -

by :
(X,Y) =Re(tr'’XY) forall X,Y € n(n,m,l;C), 20)

where Rez = 1/2(z + z) for z € C. Then g,(C) is the center of n(n, m, [; C) and g;(C) is

the orthogonal complement of the center in n(n, m, [; C).
The following lemma plays an important role in the proof of Theorem 4.4.

LEMMA 4.3.

JzV = —[Z,'V] forall V € g1(C) and Z € g>(C). 21
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PROOF. For U € g;(C)

(JzV,U)=(Z,[V,U])
=(Z,VU -UYV)
=(Z,VU) = (Z,UV)
=(VZ,U) - (ZV,U)
=(VZ - Z'V,U)

= (—[Z,V],U). 0

THEOREM 4.4. BDR-type space {Sk(A; n(n, m, l; C)), g} has non-positive (negative)
sectional curvature if and only if k > 1 (k > 1) respectively.

PROOF. LetV € g1(C) and Z € g,(C). We write

0O vi O 0 0 2,
V=|0 O Vll and Z=|0 0 O],
0O 0 O 0 0 O

where Z; is an n x | complex matrix, V} is an n x m complex matrix and V{ is an m x [
complex matrix.

_ {0 =z 0
JzV =—[Z,'V]= 10 0 V12, |
0 o 0

Therefore we have
|JzV| = |Z2V'1| + V1 2,

< 1Z2|(V| + V1))
=Z||V].

Thus by Theorem 4.2, we see that BDR-type spaces {Sx(A; n(n, m,[; C)), g} have non-
positive sectional curvature for k > 1.

We can show that, for £ > 1, BDR-type spaces {Sx(A; n(n, m, l; C)), g} have negative
sectional curvature in the same way as Theorem 3.3’s.

For a plane o spanned by the orthonormal vectors +/2/+/3E} n+1 + 1/v3E} nim+1 and
V2//3F1 n41+ 1/v/3F1 nim+1, where E; j is an (n +m +1) X (n + m + I) matrix unit and
F; j = ~/=1E; j, we see that the sectional curvature i (o) is given by

kp(o) = g(l —k?. | O
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