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1. Introduction.

Let (M, g) and (N, k) be Riemannian m- and n- manifolds, G a smooth function on N.
For a bounded domain 2 C M and amap u : M — N we define the energy functional with
the potential G on S2 :

(1.1) Eg(u; 2) = /‘Q[e(u) - Gwldu,
where e(u) and d are the standard energy density and the volume element on M. Using local
coordinate systems (x!,---,x™) and (u!,---,u™) on M and N respectively, we can write
1 . ,
(1.2) Eg(u; £2) = /Q [-Z-g“ﬁ(x)hij (u) Dou' Dpu! — G(u(x))] Jgdx,

where (¢ (x)) = (gup(x))™', g = det(gap(x)) and Dy = 3/3x*. The Euler-Lagrange
equation of E¢ is given as

(1.3) t(u)+ VG =0,

where 7 (1) denotes the tension field of . In local
1
NE
A solution u : 2 — N of (1.3) is called to be a harmonic map with potential G.
The equations of type (1.3) appear also in some physical contexts. Let £2 C R", N =
§2 = {(x,y,2) e R x2+y?+z2 =1} and Gw) = (u, H) = u'H' +.- -+ u"H" for some
constant vector H € R3, then the equation (1.3) becomes

(tW)) = —=Du{/99"° Dgu'} + g“ﬂF}kDauj Dgu* .

(1.4) Au + u|Du|?* — (H,u)u+ H =0
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which is called as the static Landau-Lifshitz equation (see [1], [2], [3], [12] and [13]). Here
and in the sequel (,) and | | denote the standard Euclidean inner products and norms respec-
tively. In [2], [12] and [13], Dirichlet problems for the equation (1.4)

lAu +ulDul* - (H,w)u+H =0

{15) u=f on 3R

are considered.
When 2 = B3, Hong [12] showed the existence of a smooth solution to the Dirichlet
problem (1.5), assuming that an extension ug of the boundary value f to B3 satisfies

1 H |?
f3§(|Duo|2+|H|- )dx<s
B

7]
for a sufficiently small £ > 0.

More recently, Chen [2] showed the existence of a smooth solution to (1.5) for H = Ag
and f € C*(3%2, Sg), where A is a positive constant, g a point in $2 and Sg the open
hemisphere with the north pole q. He also showed the uniqueness of the small solutions i.e.
if u; and u; are solutions of the Dirichlet problem with u; (£2), u2(£2) C Sg then u; = us.

On the other hand, when 2 = B2, Hong-Lemaire [13] showed that if f is neither
constant H /| H| nor constant —H /| H | then there are at least two different smooth solution to
the Dirichlet problem (1.5). Moreover, they showed also that under a certain condition there
are at least three different solutions to (1.5).

In this paper, more general cases are treated. We will prove existence of a minimizer of
E¢ in a suitable class of Sobolev maps with the Dirichlet boundary condition

(1.6) u=f on 0952,

by the direct method of calculus of variations, assuming some conditions on G, f and N.
We will prove also boundedness and regularity of the minimizer and get existence results for
harmonic maps with potential.

Now, let us prepare some notations and terminology. For a Riemannian manifold N,
kn(p; ) denotes the sectional curvature at p € N with respect to a plane section 1 C
T,N. Let go € N be a fixed point and I(qo) the injectivity radius of N centered at qo.
For p € Bj4,)(q0), let o(qo, p)(¢) be the geodesic curve such that o(go, p)(0) = go and
o(qo, p)(1) = p. When 7 contains o'(qo, p)(1), let us call xx(p; 7) a radial curvature at
p with respect to qo. We denote as Kraq(p; qo) the maximum of radial curvatures of N at p
with respect to go, namely

Krad(p; go) = max{xn(p; 7)|w 3 o’(qo0, p)(1)}.

Throughout this paper we consider the following condition C(qg, Ro) on the radial cur-
vatures of N.

C(qo, Ro) : Let qo be a fixed point of N and Rg a positive number which is smaller
than the injectivity radius 1(qo) of N centered at qo. There exists a nonnegative function
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p : [0, Ro) — [0, 00) which satisfies the following conditions:

1.7) lim 0] =1,
t—0 t
(1.8) p(t) >0, p’(t) >0 forall e (0, Ryg),
pll
(1.9) Krad(p; qo0) < —7(dist(qo, p)) forall p e Bgry(qo).

Under this condition, €XPg, gives a normal coordinate system centered at go on Bg,.
Moreover, with respect to this normal coordinate system we get an estimate on the nonlinear
term of t(u) which corresponds to the one-sided condition of Giaquinta-Giusti [6]. (See
Lemma 2.1.)

EXAMPLES 1. Anupper hemisphere S satisfies C(qo, Ro) with go =“the north pole”,
Ro = m/2 and p(t) = sint.
2. A simply connected complete manifold N with nonpositive sectional curvatures satisfies
C(qo, Ro) with arbitrarily fixed go € N, Ryg = oo and p(¢) = ¢.

In section 2, we will show the existence of minimizers of Eg and their L°°-bounds
(Theorem 2.2). These lead us to the existence of weak solutions of (1.3).

In section 3, the regularity of the weak solutions whose existence is guaranteed in section
2 will be shown (Theorems 3.2 and 3.3). Thus we will achieve at the existence theorem of
harmonic maps with potential (Theorem 3.4).

2. Existence and global boundedness of a minimizer.

First of all we prepare an auxiliary geometric lemma.

LEMMA 2.1 (Revised versionof [15, Lemma 1.1]). Let N be a Riemannian n-manifold
which satisfies C(qo, Ro), w!, .-, u™) a normal coordinate system centered at qo and h;; (u)
the metric tensor with respect to the normal coordinate system. Then we have the following
estimates:

@.1) iy @)X+ T XX 2 (o412 ((:)) hi (NEE
2
2.2) hij X' X7 > |¢)* + %QW,

forallu, X € R, wheret = |u|,{ =t 2(X,u)uand & =X —¢.

PROOF. We can proceed as in the proof of [15, Lemma 1.1] or [16, Lemma 2.1], notic-
ing that the assumptions only on the radial curvatures like C(qo, Ro) are sufficient to apply
Rauch’s comparison theorem. O
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REMARK. The estimate (2.1) corresponds to the one-sided condition of Giaquinta-
Giusti [6] (see the proof of Theorem 3.3).

In the following we assume that the target manifold N satisfies the condition C(qo, Ro)
and always use a normal coordinate (ul, .-, u"™) centered at gg on BR,(qo). For some posi-
tive constant R < R and a boundary data f € H12 N L™®(2, R") with || fllLe2) < R we
seek a minimizer of E¢ in the class

(2.3) Xfg:={ve H"2(2,R";v— f € HW*(2,R"), |vlLo@2) < R}.

and show that the minimizer u satisfies the equation (1.3) weakly. (In order to see that mini-
mizer u in the class X 7, g, we must show the strict inequality f|lu|lL~ < R.)
To find a minimizer, we consider the following condition on G:

2.4 |G(u)| < bo + b1|ul? forsome vy € [0,2%).

Moreover, in order to show the boundedness of |u| we put the following conditions on
aG/3s(s = |ul):

m-—2

G
(2.5) \ n (u)

4
<by+b3julr"! forsome y e [0, ) .

Here, bo, b1, b2 and b3 are positive constants. ,
Now, we can state our results on the existence of minimizers of E¢ in the class X g
(Theorem 2.2) and L°°-estimate of them (Theorem 2.3).

THEOREM 2.2. Let (M, g) be a smooth Riemannian m-manifold, and $2 a bounded
domain of M with the smooth boundary 352. Let (N, h) be a smooth Riemannian n-manifold
which satisfies the condition C(qo, Ro) for some qo € N and Ry € (0, +o0]. Assume that G
satisfies (2.4). Then forany R < Roand f € H2 N L2, R") with I fllLeo(2) < R there
exists a minimizer of Eg in the class X f,R.

PROOF. Let {vx} be a minimizing sequence of E¢ in the class X, g. Since the condi-
tion (2.4) implies that
(2.6) Eg(v; $2) = co(y, h)/ |Dv|2dx — ci(bo, b1, v, R, 2)
2
for every v € X r,r, we see that the sequence {vk} is equibounded in H 1.2 Therefore, taking
subsequence if necessary, we see that

.7 vy — u  weakly in H?,

(2.8) vk = u stronglyin LY for y €[l,2%

for some u € {v € H"2NLY(2,R"); v — f € H'2}). Here, we used the Kondrachov
compactness theorem also. From (2.7) and (2.8), we see easily that

liminf Eg(vg; 2) > Eg(u; 2) .
k—00
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On the other hand, LY -strong convergence implies the almost everywhere convergence,
therefore the limit map u belongs to the class X ¢, g. Thus, « minimizes E¢ in the class X g, g.
O

THEOREM 2.3 Let (M, g), (N, h), §2 and f be as in Theorem 2.2. Suppose that 2 <
m < 4 and that G satisfies (2.4) and (2.5). If we have

2.9 bo, b1, b2, b3, EG(f), I fllLe(2) < 1o

for a sufficiently small constant ro > 0, then a minimizer u in the class X ¢, satisfies
lullLe(2) < R for some R < Ro and solves (1.3) weakly. Here, ro depends only on g, h, m,
$2 and Ry.

When we can take Ry = +00, the smallness condition (2.9) is not necessary.

PROOF. Let u be a minimizer of Eg in the class X f, g, then u satisfies

d
0= —

E tp; §2
p G(u+ty; 2)

t=0

(2.10)
) ) . .G
= / [gf"ﬁh,-j Dqu'{Dge’ + FleDﬁu’gok} —¢' W] /9dx
Q
for all ¢ € H,'(£2, R") with
2.11) u+tpeXpr forallt with|t| <e forsomee >0.

Because of the restriction (2.11), we can not say that (2.10) holds for every test function
@ € C§°(82, R"). Therefore, we can not call u a weak solution yet.
Now, let us show the estimate

(2.12) lullLe2) < R,

which enables us to call u as a weak solution.
For any nonnegative function n € C& (£2), if we take ¢ > O sufficiently small, u+(—¢&)nu
belongs to the class X f,z. Therefore we can take ¢ = —&nu in (2.10) and get

0 =f [Qaﬂ(x)hij(u){DauiDﬁuj + uk I} Dyu’ Dpu' )y
(2.13) @

. - 8G
+ g2 (x)hij(w) Dou' ! Dgn — u' a—;n]du-

Since we are using a normal coordinate on N, (2.13) implies that

/;2 g"‘ﬁ(x)hij(u){DauiDﬂuj +uk1';£DauiDpul}ndu
(2.14) :

1 ) ¥ Ye;
=——/Q {Eg"‘ﬂ(x)Dalul Dpn—ulﬁn}du.
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On the other hand, from (2.1) of Lemma 2.1, we have
(2.15) ¢*P (x)hij(u)( Do’ Dgu’ + u¥ I7} Dyu’ Dgu'} > 8| Dul?
for
8 = min{l, inf 10'(t)/p(t)} > 0.
O<t<R

Thus, under the condition C(qo, Ro), we get for all € C(l) (£2) with n > O that

2.16) oz [ {lg"ﬂ(x)DalulzDﬁn—lulﬁn]du,
212 s

where s = |u| = dist(qo, u(x)). Since u belongs to the class X 7 g, u is essentially bounded
and therefore D|u|? is in the class L2, namely |u|?> € H!-2.
Let w = |u|? — | f|?, then from (2.16), w satisfies

G
2.17) fg [g“ﬂ(x)DawDﬂn — &P (x) De| fI* Dpn + |u|¥n} du <0

for any n € C(l) (2) with n > 0. Assume that [4|dG/ds € LY(S2) for some g > m/2, then
using [9, Theorem 8.15] we get
)
L)’

s

Now, let us estimate the right hand side of (2.18). Since we are assuming (2.4), the
minimality of u implies that

(2.18) S}x)p|w| < ca(m, g, Q) (Ilullu + Ul +

f e(u)dp < f Gu)du + Ec(f)
2 22
< EG(f) + bovol.(2) + by fg lul? dpe
< Eg(f) + bovol.(£2) + b f {slulz* + 8_2—‘% }du,
2

< c3(Eg(f), 52,9, ¢, v, bo, b1)+£C4(~Q,y,h,b1)/ge(u)du-

Here, we used Young’s inequality and the Sobolev inequality. By choosing ¢ > 0 sufficiently
small, we get the following a-priori estimate:

(2.19) [Q |Du?dx < cs(g, h, v, bo, by, 2, Eg(f)) .

Using the Sobolev inequality and the assumption that 2 < m < 4, from (2.19) we get
(2.20) lullps < ce(82, m)llull 2+ < c6Ko(g, h, ¥, bo, b1, 2, EGg(f)) .

for some positive constants cg and K. Here, it is nothing to see that K satisfies

2.21 lim Ko(g, h,y,bo, b1, 2, E =0.
(2.21) bobr A s 0(g, h, ¥, bo, by c(f)
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On the other hand, using the condition (2.5), we see that

<ci(ba, b3, q, 2)|ull;» for g = min{2%, 2*/y} > m/2.

G
lue| —
s

L4
Thus, if 2 < m < 4 and (2.5) holds, we obtain from (2.18)

(2.22) sup lu? < cafes(1 + 1)Ko + I fll L24} + sup If12.

Now, from (2.21) and (2.22), we can see that if by, b1, b2, b3, Eg(f) and || fllL=(q) are
sufficiently small we have (2.12).

When we can take Rg = -+oo, for any given bo, b1, b2, b3 and f we can choose R
sufficiently large so that R is greater than the right hand side of (2.22). O

3. Regularity of minimizers.

In this section we show the C%2-regularity of a minimizer u under the condition (2.5).
When the boundedness of a minimizer u of E¢ is given, we can easily see that the results
of [6] and [14] are valid for our case. More precisely we have the following theorems:

THEOREM 3.1. Let M, N, 2 and f be as in Theorem 2.2 and G a smooth function
defined on N. Assume that u minimize Eg in the class X f,g and that ||ul|L»(2) < R. Then
there exists an open set 20 C §2 such thatu € CO%(£29, R") for every a € (0, 1). Moreover,

- (3.1) 2\ = [xo € £2; liminf rz_”f |Du|?dx > so}
Br(x0)

r—0

where g is a positive constant independent of u. Finally
H'9(2\20) =0
for some q > 2, H"~1 denoting (n — q)-dimensional Hausdorff measure.

PROOF. It is enough to proceed as the proof of [6, Theorem 5.1], adding f G(u)dx to
their quadratic functional. We will get

f (1 + | Du|®dx
Bp

p\m 1-2/g
<cg (—) +w (r2 + cor?™ f |Du|2dx) / |Dul®dx + cior™ ,
r B, By,

instead of [6, (5.11)]. Now, the assertion follows from the above estimate using “a useful
lemma” on [5, p. 44]. a

THEOREM 3.2. LetM, N, 2, G, fand u be as in Theorem 3.1. Assume that the bound-
ary data f is in the class H Ls(§2, N) for some s > m. Then u is Holder continuous in a
neighborhood of 352.
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PROOF. Let xo be an arbitrary point on 352 and choose a local coordinate system so
that xo = 0. As in [14], let us consider the blown-up functions

uwy(x) = ulx/v), g(v)(x) FPx/vy, w=1,273...).

Then u(,) minimizes the functional

1 4 in i1
f [Eg(f)(x)hij(v)Dav Dgv’/ — ;—2-G(v(x))] VIwydx

and converges to a minimizer v of the functional

1 S
f [5 2 (0)h;j (v) DoV’ D,gvf] Jgdx .

Namely, the potential term disappears in the blowing-up process. Thus, we can proceed as in
[14] and get the assertion. O

Now, we prove the following regularity theorem for minimizers of E¢.

THEOREM 3.3. Suppose that all assumptions in Theorem 3.2 are satisfied. Let u be a
minimizer of Eg in the class X r,r which satisfies ||u||L~(2) < R. Then u is Hélder continu-
ous on £2.

PROOF. By virtue of Theorems 3.1 and 3.2, it is enough to show that for every g9 > 0
and x € £2 there exists a positive constant p > 0 such that

(3.2) p* " f |Dul?dx < g .
By (x)

To show (3.2) we can proceed similarly as in [6] by remarking that the estimate (2.15) plays
the role of the one-sided condition of [6].

Let x € £2 be an arbitrarily fixed point and r a positive constant such that B,, (x) CC £2.
Choosing n > 0 in (2.14) so that spt n C By, (x) and using (2.15) we get

1 G
¢»  of iDupnaps- [ {—g“ﬂ<x>Da|u|ZDﬂn - |u|—} dp.
By, (x) Bar(x) ds

Since we are assuming that |ju||L~ < R, we have

G

34) Iul— <K

for some positive constant K which depends only g, h, G and f. Let M(r) = supp_(,) |u| and
z = M?*Qr) — |u|2. Then from (3.3) and (3.4) we get

3.5) 0< f (* (x)DozDpn + K)dp.
B, (x)

Thus, z is a nonnegative supersolution of a uniformly elliptic equation and therefore, using
the weak Harnack inequality (see [9, Theorem 8.18]), we obtain

(3.6) rm f Izldx < c11(g, m, K) ( inf z + r2) )
By (x) B (x)
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Let w € C%(B,,(x)) U C(B27(x)) be a solution of the Dirichlet problem

Dp{ /39" (x) Daw} = — % in Bar(x),
w=0 on 9By (x).

Then, w is bounded from above by a positive constant 1 in By, (x) (see for example [9,
Theorem 3.7]). On the other hand, since the right hand side of the above equation is negative,
w is a positive supersolution of the equation Dg{ ﬂg"‘ﬂ (x)Dyw} = 0, and therefore by the
weak Harnack inequality we have that w > « in B,(x) for some positive constant cz. Here,
a; and o, does not depend on r. Indeed, if w is a solution of the above Dirichlet problem for
r = 1, then w(x) = w;(¢x) solves the Dirichlet problem for r = t.

Now, w is in the class Hol’z(Bzr (x)) clearly and satisfies the following weak from of the
equation

3.7 g“ﬂ(x)Dwaawfgdx = r_2/ pdx forall ¢ e HOI’Z(Bzr(x)) .
By, (x) Bar(x)

Let ¢ = wz in (3.7), then we have
1 ,
- / g"ﬂDﬁszazdu +/ g“ﬂDﬂwDawzdu = r'zf wzdx ,
2 /By (x) By (x) By, (x)
and therefore
1

(3.8) hut f 2 Dpw?Dyzdx < ar=? / zdx .
2 /By (x) By, (%)

Since w? is in the class Hé’z also, we can take n = w? in (3.3). Taking n = w? in (3.3) and
using (3.6) and (3.8), we get

¢*? DazDpndu + f Kwdp

1
Sas f |DulPdp < -
Br(x) 2 Bar(x)

By (x)

(3.9) | <ayr? / zdx + Ko @2r)™
By, (x)
< alclzrm_2 inf z 4+ c13r™.
B, (x)
Thus we obtain
(3.10) rz-'"/ |Dul?dx < c1a { inf z+ r2} < c1a{M?@2r) — M*(r) +r?}.
By (x) By (x) ,
On the other hand u is bounded and therefore

+00
> M@ Fr) — MP(24r)] < MP(2r) < sup lul®.
=0 2

Thus (3.10) implies (3.2) with p = 2~ k7 for some k. O

Now, combining Theorems 2.2, 3.3 and the standard Schauder estimates, we get the
following existence theorem.
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THEOREM 3.4. Let M, N and 2 be as in Theorem 2.2 and rg as in Theorem 2.3.
Suppose that a smooth function G(u) satisfies (2.4) and (2.5) withb; <ro i = 0,1, 2,3)
and that the boundary data f is in the class H''S N\ L® (82, R") for some s > m and satisfies
Ec(f), | fllLee(2y < ro. Then there exists a minimizer u of Eg in the class X ¢,r for some
R < Ro. Moreover, the minimizer u is in the class C**($2, Br) N C%*(2, BR) and a
harmonic map with potential G. '

If we can take Ry = 00, the smallness conditions on b; (i = 0, 1, 2, 3), Eg(f) and on
I} £l L (s2) are not necessary.
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