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1. Introduction.

Let $(M, g)$ and $(N, h)$ be Riemannian m-and n-manifolds, $G$ a smooth function on $N$ .
For a bounded domain $\Omega\subset M$ and a map $u$ : $M\rightarrow N$ we define the energy functional with

the potential $G$ on $\Omega$ :

(1.1) $ E_{G}(u;\Omega)=\int_{\Omega}[e(u)-G(u)]d\mu$ ,

where $e(u)$ and $ d\mu$ are the standard energy density and the volume element on $M$ . Using local

coordinate systems $(x^{1}, \cdots , x^{m})$ and $(u^{1}, \cdots , u^{n})$ on $M$ and $N$ respectively, we can write

(1.2) $E_{G}(u;\Omega)=\int_{\Omega}[\frac{1}{2}f^{\beta}(x)h_{ij}(u)D_{\alpha}u^{i}D\rho u^{j}-G(u(x))]\sqrt{}\phi x$ ,

where $(f^{\beta}(x))=(g_{\alpha\beta}(x))^{-1},$ $g=\det(g_{\alpha\beta}(x))$ and $D_{\alpha}=\partial/\partial x^{\alpha}$ . The Euler-Lagrange

equation of $E_{G}$ is given as

(1.3) $\tau(u)+\nabla G=0$ ,

where $r(u)$ denotes the tension field of $u$ . In local

$(\tau(u))^{i}=\frac{1}{\sqrt{g}}D_{\alpha}\{\sqrt{g}g^{\alpha\beta}D_{\beta}u^{i}\}+g^{\alpha\beta}\Gamma_{jk}^{i}D_{\alpha}u^{j}D_{\beta}u^{k}$

A solution $u:\Omega\rightarrow N$ of (1.3) is called to be a harmonic map with potential $G$.
The equations of type (1.3) appear also in some physical contexts. Let $\Omega\subset R^{m},$ $N=$

$S^{2}=\{(x, y, z)\in R^{3}; x^{2}+y^{2}+z^{2}=1\}$ and $G(u)=(u, H)=u^{1}H^{1}+\cdots+u^{n}H^{n}$ for some
constant vector $H\in R^{3}$ , then the equation (1.3) becomes

(1.4) $\Delta u+u|Du|^{2}-(H, u)u+H=0$
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which is called as the static Landau-Lifshitz equation (see [1], [2], [3], [12] and [13]). Here
and in the sequel $(,)$ and $||$ denote the standard Euclidean inner products and norms respec-
tively. In [2], [12] and [13], Dirichlet problems for the equation (1.4)

(1.5) $\left\{\begin{array}{ll}\Delta u+u| & Du|^{2}-(H, u)u+H=0\\u=f & on \partial\Omega\end{array}\right.$

are considered.
When $\Omega=B^{3}$ , Hong [12] showed the existence of a smooth solution to the Dirichlet

problem (1.5), assuming that an extension $u_{0}$ of the boundary value $f$ to $B^{3}$ satisfies

$\int_{B^{3}}\frac{1}{2}(|Duo|^{2}+|H|\cdot|u0-\frac{H}{|H|}|^{2})dx<\epsilon$

for a sufficiently small $\epsilon>0$ .
More recently, Chen [2] showed the existence of a smooth solution to (1.5) for $H=\lambda q$

and $f\in C^{\infty}(\partial\Omega, S_{q}^{2})$ , where $\lambda$ is a positive constant, $q$ a point in $S^{2}$ and $S_{q}^{2}$ the open
hemisphere with the north pole $q$ . He also showed the uniqueness of the small solutions i.e.
if $u_{1}$ and $u_{2}$ are solutions of the Dirichlet problem with $ul(\Omega),$ $u_{2}(\Omega)\subset S_{q}^{2}$ then $u_{1}=u_{2}$ .

On the other hand, when $\Omega=B^{2}$ , Hong-Lemaire [13] showed that if $f$ is neither
constant $H/|H|$ nor $constrt-H/|H|$ then there are at least two different smooth solution to
the Dirichlet problem (1.5). Moreover, they showed also that under a certain condition there
are at least three different solutions to (1.5).

In this paper, more general cases are treated. We will prove existence of a minimizer of
$E_{G}$ in a suitable class of Sobolev maps with the Dirichlet boundary condition

(1.6) $u=f$ on $\partial\Omega$ ,

by the direct method of calculus of variations, assuming some conditions on $G,$ $f$ and $N$ .
We will prove also boundedness and regularity of the minimizer and get existence results for
harmonic maps with potential.

Now, let us prepare some notations and terminology. For a Riemannian manifold $N$ ,
$\kappa_{N}(p;\pi)$ denotes the sectional curvature at $p\in N$ with respect to a plane section $\pi\subset$

$T_{p}N$ . Let $q0\in N$ be a fixed poim and $I(q_{0})$ the injectivity radius of $N$ centered at $q0$ .
For $p\in B_{I(q_{0})}(q_{0})$ , let $\sigma(q_{0}, p)(t)$ be the geodesic curve such that $\sigma(q_{0}, p)(O)=q0$ and
$\sigma(q_{0}, p)(1)=p$ . When $\pi$ contains $\sigma^{\prime}(q_{0}, p)(1)$ , let us call $\kappa_{N}(p;\pi)$ a radial curvature at
$p$ with respect to $q0$ . We denote as $K_{rad}(p;qo)$ the maximum of radial curvatures of $N$ at $p$

with respect to $q0$ , namely

$K_{rad}(p;q_{0})=\max\{\kappa_{N}(p;\pi)|\pi\ni\sigma^{\prime}(q_{0}, p)(1)\}$ .
Throughout this paper we consider the following condition $C(q0, R_{0})$ on the radial cur-

vatures of $N$ .
$C(q0, Ro)$ : Let $q0$ be a fixed point of $N$ and $R_{0}$ a positive number which is smaller

than the injectivity radius $I(q_{0})$ of $N$ centered at $q0$ . There exists a nonnegative function
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$\rho$ : $[0, R_{0}$ ) $\rightarrow[0, \infty$) which satisfies the following conditions:

(1.7) $\lim_{t\rightarrow 0}\frac{\rho(t)}{t}=1$ ,

(1.8) $\rho(t)>0$ , $\rho^{\prime}(t)>0$ for all $t\in(O, R_{0})$ ,

(1.9) $K_{rad}(p;q_{0})\leq-\frac{\rho^{\prime\prime}}{\rho}(dist(q_{0}, p))$ for all $p\in B_{R_{0}}(q_{0})$ .

Under this condition, $\exp_{q0}$ gives a normal coordinate system centered at $q_{0}$ on $B_{R_{0}}$ .
Moreover, with respect to this normal coordinate system we get an estimate on the nonlinear
term of $\tau(u)$ which corresponds to the one-sided condition of Giaquinta-Giusti [6]. (See

Lemma 2.1.)

EXAMPLES 1. An upper hemisphere $S_{+}^{n}$ satisfies $C(q_{0}, R_{0})$ with $q0=$ the north pole”,
$R_{0}=\pi/2$ and $\rho(t)=\sin t$ .
2. A simply connected complete manifold $N$ with nonpositive sectional curvatures satisfies
$C(q_{0}, R_{0})$ with arbitrarily fixed $q0\in N,$ $ R_{0}=\infty$ and $\rho(t)=t$ .

In section 2, we will show the existence of minimizers of $E_{G}$ and their $L^{\infty}$ -bounds
(Theorem 2.2). These lead us to the existence of weak solutions of (1.3).

In section 3, the regularity of the weak solutions whose existence is guaranteed in section
2 will be shown (Theorems 3.2 and 3.3). Thus we will achieve at the existence theorem of
harmonic maps with potential (Theorem 3.4).

2. Existence and global boundedness of a minimizer.

First of all we prepare an auxiliary geometric lemma.

LEMMA 2. 1 (Revised version of [15, Lemma 1.1]). $LetN$be a Riemannian n-mamfold
which satisfies $C(q_{0}, R_{0}),$ $(u^{1}, \cdots , u^{n})$ a nomal coordinate system centered at $q0$ and $h_{ij}(u)$

the metric tensor with respect to the nomal coordinate system. Then we have the following
estimates:

(2.1) $h_{ij}(u)(X^{i}X^{j}+u^{k}\Gamma_{kl}^{i}(u)X^{j}X^{l})\geq|\zeta|^{2}+t\frac{\rho^{\prime}(t)}{\rho(t)}h_{ij}(y)\xi^{j}\xi^{j}$ ,

(2.2) $h_{ij}(u)X^{i}X^{j}\geq|\zeta|^{2}+\frac{\rho^{2}(t)}{t^{2}}|\xi|^{2}$

for all $u,$ $X\in R^{n}$ , where $t=|u|,$ $\zeta=t^{-2}(X, u)u$ and $\xi=X-\zeta$ .
PROOF. We can proceed as in the proof of [15, Lemma 1.1] or [16, Lemma 2.1], notic-

ing that the assumptions only on the radial curvatures like $C(q_{0}, R_{0})$ are sufficient to apply
Rauch’s comparison theorem. $\square $
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REMARK. The estimate (2.1) corresponds to the one-sided condition of Giaquinta-
Giusti [6] (see the proof of Theorem 3.3).

In the following we assume that the target manifold $N$ satisfies the condition $C(qR)$
and always use a normal coordinate $(u^{1}, \cdots u^{n})$ centered at $q0$ on $B_{R_{0}}(q_{0})$ . For some posi-
tive constant $R<R_{0}$ and a boundary data $f\in H^{1,2}\cap L^{\infty}(\Omega, R^{n})$ with $||f||\infty<R$ we
seek a minimizer of $E_{G}$ in the class

(2.3) X $f^{R}$
$:=\{v\in H^{1,2}(\Omega, R^{n});v-f\in H_{0}^{1,2}(\Omega, R^{n}), ||v||\infty\leq R\}$ .

and show that the minimizer $u$ satisfies the equation (1.3) weakly. (In order to see that mini-
mizer $u$ in the class $x_{f^{R}},$ , we must show the strict inequality $||u||_{L}\infty<R.$)

To find a minimizer, we consider the following condition on $G$ :

(2.4) $|G(u)|\leq b_{0}+b_{1}|u|^{Y}$ for some $\gamma\in[0,2^{*}$).

Moreover, in order to show the boundedness of $|u|$ we put the following conditions on
$\partial G/\partial s(s=|u|)$ :

(2.5) $|\frac{\partial G}{\partial s}(u)|\leq b_{2}+b_{3}|u|^{\gamma-1}$ for some $\gamma\in[0,$ $\frac{4}{m-2})$

Here, $b_{0},$ $b_{1},$ $b_{2}$ and $b_{3}$ are positive constants.
Now, we can state our results on the existence of minimizers of $E_{G}$ in the class $x_{f^{R}}$,

(Theorem 2.2) and $L^{\infty}$ -estimate of them (Theorem 2.3).

THEOREM 2.2. Let $(M, g)$ be a smooth Riemannian m-manifold, and $\Omega$ a bounded
domain of $M$ with the smooth boundary $\partial\Omega$ . Let $(N, h)$ be a smooth Riemannian n-mamfold
which satisfies the condition $C(q_{0}, Ro)$ for some $q0\in N$ and $ R0\in(0, +\infty$]. Assume that $G$

satisfies (2.4). Thenfor any $R<R0$ and $f\in H^{1,2}\cap L^{\infty}(\Omega, R^{n})$ with $||f\Vert\infty<R$ there
exists a minimizer of $Ec$ in the class $Xf,R$ .

PROOF. Let $\{v_{k}\}$ be a minimizing sequence of $E_{G}$ in the class $ x_{f^{R}},\cdot$ Since the condi-
tion (2.4) implies that

(2.6) $E_{G}(v;\Omega)\geq c_{0}(g, h)\int_{\Omega}|Dv|^{2}dx-c1(b_{0}, b_{1}, \gamma, R, \Omega)$

for every $v\in x_{f^{R}},$ , we see that the sequence $\{v_{k}\}$ is equibounded in $H^{1,2}$ . Therefore, taking
subsequence if necessary, we see that

(2.7) $v_{k}\rightarrow u$ weakly in $H^{1,2}$ ,

(2.8) $v_{k}\rightarrow u$ strongly in $L^{\gamma}$ for $\gamma\in[1,2^{*}$ )

for some $u\in\{v\in H^{1,2}\cap L^{\gamma}(\Omega, R^{n});v-f\in H^{1,2}\}$ . Here, we used the Kondrachov
compactness theorem also. From (2.7) and (2.8), we see easily that

$\lim_{k\rightarrow}\inf_{\infty}E_{G}(v_{k}; \Omega)\geq E_{G}(u;\Omega)$ .
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On the other hand, $L^{\gamma}$ -strong convergence implies the almost everywhere convergence,
therefore the limit map $u$ belongs to the class $x_{f^{R}},\cdot$ Thus, $u$ minimizes $E_{G}$ in the class

$Xf^{R}\square $

THEOREM 2.3 Let $(M, g),$ $(N, h),$ $\Omega$ and $fbe$ as in Theorem 2.2. Suppose that $ 2\leq$

$m\leq 4$ and that $G$ satisfies (2.4) and (2.5). Ifwe have

(2.9) $b_{0},$ $b_{1},$ $b_{2},$ $b_{3},$ $E_{G}(f),$ $||f\Vert\infty<r0$

for a sufficiently small constant $r0>0$ , then a minimizer $u$ in the class $x_{f^{R}}$, satisfies
$\Vert u\Vert_{L(\Omega)}\infty<R$ for some $R<R_{0}$ and solves (1.3) weakly. Here, $r0$ depends only on $g,$ $h,$ $m$ ,
$\Omega$ and $R_{0}$ .

When we can take $ R_{0}=+\infty$ , the smallness condition (2.9) is not necessary.

PROOF. Let $u$ be a minimizer of $E_{G}$ in the class $x_{f^{R}},$ , then $u$ satisfies

$0=\frac{d}{dt}|_{t=0}E_{G}(u+t\varphi;\Omega)$

(2.10)

$=\int_{\Omega}[f^{\beta}h_{ij}D_{\alpha}u^{i}\{D_{\beta}\varphi^{j}+\Gamma_{kl}^{j}D_{\beta}u^{l}\varphi^{k}\}-\varphi^{i}\frac{\partial G}{\partial u^{i}}]\sqrt{g}dx$

for all $\varphi\in H_{0}^{1,2}(\Omega, R^{n})$ with

(2.11) $u+t\varphi\in x_{f^{R}}$, for all $t$ with $|t|<\epsilon$ for some $\epsilon>0$ .
Because of the restriction (2.11), we can not say that (2.10) holds for every test function
$\varphi\in C_{0}^{\infty}(\Omega, R^{n})$ . Therefore, we can not call $u$ a weak solution yet.

Now, let us show the estimate

(2.12) $||u||\infty<R$ ,

which enables us to call $u$ as a weak solution.
For any nonnegative function $\eta\in C_{0}^{1}(\Omega)$ , if we take $\epsilon>0$ sufficiently small, $u+(-\epsilon)\eta u$

belongs to the class $x_{f^{R}},\cdot$ Therefore we can take $\varphi=-\epsilon\eta u$ in (2.10) and get

$ 0=\int_{\Omega}[f^{\beta}(x)h_{ij}(u)\{D_{\alpha}u^{i}D_{\beta}u^{j}+u^{k}\Gamma_{lk}^{j}D_{\alpha\beta}u^{i}Du^{l}\}\eta$

(2.13)

$+g^{\alpha\beta}(x)h_{ij}(u)D_{\alpha}u^{i}u^{j}D_{\beta}\eta-u^{j}\frac{\partial G}{\partial u^{i}}\eta]d\mu$ .

Since we are using a normal coordinate on $N,$ $(2.13)$ implies that

$\int_{\Omega}ff^{\beta}(x)h_{ij}(u)\{D_{\alpha}u^{i}D_{\beta}u^{j}+u^{k}\Gamma_{lk}^{j}D_{\alpha\beta}u^{i}Du^{l}\}\eta d\mu$

(2.14)

$=-\int_{\Omega}\{\frac{1}{2}f^{\beta}(x)D_{\alpha}|u|^{2}D_{\beta}\eta-u^{i}\frac{\partial G}{\partial u^{i}}\eta\}d\mu$ .



200 ATSUSHI TACHIKAWA

On the other hand, from (2.1) of Lemma 2.1, we have

(2.15) $g^{\alpha\beta}(x)h_{ij}(u)\{D_{\alpha}u^{i}D_{\beta}u^{j}+u^{k}\Gamma_{lk}^{j}D_{\alpha}u^{i}D_{\beta}u^{l}\}\geq\delta|Du|^{2}$

for
$\delta=\min\{1,\inf_{0<r<R}t\rho^{\prime}(t)/\rho(t)\}>0$ .

Thus, under the condition $C(q_{0}, R_{0})$ , we get for all $\eta\in C_{0}^{1}(\Omega)$ with $\eta\geq 0$ that

(2.16) $ 0\geq\int_{\Omega}\{\frac{1}{2}f^{\beta}(x)D_{\alpha}|u|^{2}D_{\beta}\eta-|u|\frac{\partial G}{\partial s}\eta\}d\mu$ ,

where $s=|u|=dist(q_{0}, u(x))$ . Since $u$ belongs to the class $X_{fR},$ $u$ is essentially bounded
and therefore $D|u|^{2}$ is in the class $L^{2}$ , namely $|u|^{2}\in H^{1,2}$ .

Let $w=|u|^{2}-|f|^{2}$ , then from (2.16), $w$ satisfies

(2.17) $\int_{\Omega}\{g^{\alpha\beta}(x)D_{\alpha}wD_{\beta}\eta-\ell^{\beta}(x)D_{\alpha}|f|^{2}D_{\beta}\eta+|u|\frac{\partial G}{\partial s}\eta\}d\mu\leq 0$

for any $\eta\in C_{0}^{1}(\Omega)$ with $\eta\geq 0$ . Assume that $|u|\partial G/\partial s\in L^{q}(\Omega)$ for some $q>m/2$ , then
using [9, Theorem 8.15] we get

(2.18) $\sup_{\Omega}|w|\leq c_{2}(m, g, \Omega)(||u||_{L^{4}}+||f||_{L^{2_{q}}}+\Vert|u|\frac{\partial G}{\partial s}\Vert_{L^{q}})$ .

Now, let us estimate the right hand side of (2.18). Since we are assuming (2.4), the
minimality of $u$ implies that

$\int_{\Omega}e(u)d\mu\leq\int_{\Omega}G(u)d\mu+E_{G}(f)$

$\leq E_{G}(f)+b_{0}vol.(\Omega)+b_{1}\int_{\Omega}|u|^{\gamma}d\mu$

$\leq E_{G}(f)+b_{0}vol.(\Omega)+b_{1}\int_{\Omega}\{\epsilon|u|^{2^{*}}+\epsilon^{-\frac{\gamma}{2^{*}-\gamma}}\}d\mu$

$\leq c_{3}(E_{G}(f), \Omega, g, \epsilon, \gamma, b_{0}, b_{1})+\epsilon c_{4}(\Omega, g, h, b_{1})\int_{\Omega}e(u)d\mu$ .

Here, we used Young’s inequality and the Sobolev inequality. By choosing $\epsilon>0$ sufficiently
small, we get the following a-priori estimate:

(2.19) $\int_{\Omega}|Du|^{2}dx\leq c_{5}(g, h, \gamma, b_{0}, b_{1}, \Omega, E_{G}(f))$ .

Using the Sobolev inequality and the assumption that $2\leq m\leq 4$, from (2.19) we get

(2.20) $||u||_{L^{4}}\leq c_{6}(\Omega, m)||u||_{L^{2}}*\leq c_{6}K_{0}(g, h, \gamma, b_{0}, b_{1}, \Omega, E_{G}(f))$ .
for some positive constants $c_{6}$ and $K_{0}$ . Here, it is nothing to see that $K_{0}$ satisfies

(2.21)
$\lim_{b_{0},b_{1},E_{G}(f)\rightarrow 0}K_{0}(g, h, \gamma, b_{0}, b_{1}, \Omega, E_{G}(f))=0$ .
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On the other hand, using the condition (2.5), we see that

$\Vert|u|\frac{\partial G}{\partial s}\Vert_{L^{q}}\leq c_{7}(b_{2}, b_{3}, q, \Omega)\Vert u||_{L^{2}}*$ for $q=\min\{2^{*}, 2^{*}/\gamma\}>m/2$ .

Thus, if $2\leq m\leq 4$ and (2.5) holds, we obtain from (2.18)

(2.22) $\sup_{\Omega}|u|^{2}\leq c_{4}\{c_{6}(1+c_{7})K_{0}+||f||_{L^{2q}}\}+\sup_{\Omega}|f|^{2}$

Now, from (2.21) and (2.22), we can see that if $b_{0},$ $b_{1},$ $b_{2},$ $b_{3},$ $E_{G}(f)$ and $\Vert f\Vert\infty$ are
sufficiently small we have (2.12).

When we can take $ R_{0}=+\infty$ , for any given $b_{0},$ $b_{1},$ $b_{2},$ $b_{3}$ and $f$ we can choose $R$

sufficiently large so that $R$ is greater than the right hand side of (2.22). $\square $

3. Regularity of minimizers.

In this section we show the $C^{0,\alpha}$ -regularity of a minimizer $u$ under the condition (2.5).

When the boundedness of a minimizer $u$ of $E_{G}$ is given, we can easily see that the results
of [6] and [14] are valid for our case. More precisely we have the following theorems:

THEOREM 3.1. Let $M,$ $N,$ $\Omega$ and $f$ be as in Theorem 2.2 and $G$ a smooth fiunction
defined on N. Assume that $u$ minimize $E_{G}$ in the class $x_{f,R}$ and that $||u||_{L(\Omega)}\infty<R.$ Then
there exists an open set $\Omega_{0}\subset\Omega$ such that $u\in C^{0,\alpha}(\Omega_{0}, R^{n})$ for every $a\in(0,1)$ . Moreover,

. (3.1) $\Omega\backslash \Omega_{0}=\{x_{0}\in\Omega;\lim_{r\rightarrow}\inf_{0}r^{2-n}\int_{B_{r}(x_{0})}|Du|^{2}dx>\epsilon_{0}\}$

where $\epsilon 0$ is a positive constant independent of $u$. Finally

$\mathcal{H}^{n-q}(\Omega\backslash \Omega_{0})=0$

for some $q>2,$ $\mathcal{H}^{n-q}$ denoting $(n-q)$ -dimensional Hausdorffmeasure.

PROOF. It is enough to proceed as the proof of [6, Theorem 5.1], adding $\int G(u)dx$ to
their quadratic functional. We will get

$\int_{B\rho}(1+|Du|^{2})dx$

$\leq c_{8}[(\frac{\rho}{r})^{m}+\omega(r^{2}+c_{9}r^{2-m}\int_{B_{r}}|Du|^{2}dx)^{1-2/q}]\int_{B_{2r}}|Du|^{2}dx+c_{10}r^{m}$

instead of [6, (5.11)]. Now, the assertion follows from the above estimate using “a useful
lemma” on [5, p. 44]. $\square $

THEOREM 3.2. Let $M,$ $N,$ $\Omega,$ $G$ , fand $u$ be as in Theorem 3.1. Assume that the bound-
ary data $f$ is in the class $H^{1,s}(\Omega, N)$ for some $s>m$ . Then $u$ is Holder continuous in a
neighborhood of $\partial\Omega$ .
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PROOF. Let $x_{0}$ be an arbitrary point on $\partial\Omega$ and choose a local coordinate system so
that $x0=0$ . As in [14], let us consider the blown-up functions

$u_{(v)}(x)=u(x/v)$ , $g_{(\nu)}^{\alpha\beta}(x)=f^{\beta}(x/v)$ , $(v=1,2,3, \ldots)$ .
Then $u_{(v)}$ minimizes the functional

$\int[\frac{1}{2}g_{(v)}^{\alpha\beta}(x)h_{ij}(v)D_{\alpha}v^{i}D_{\beta}v^{j}-\frac{1}{v^{2}}G(v(x))]\sqrt{g_{(v)}}dx$ ,

and converges to a minimizer $v$ of the functional

$\int[\frac{1}{2}f^{\beta}(0)h_{ij}(v)D_{\alpha}v^{j}D_{\beta}v^{j}]\sqrt{}\phi x$ .

Namely, the potential term disappears in the blowing-up process. Thus, we can proceed as in
[14] and get the assertion. $\square $

Now, we prove the following regularity theorem for minimizers of $Ec$ .
THEOREM 3.3. Suppose that all assumptions in Theorem 3.2 are satisfied. Let $u$ be a

minimizer of $E_{G}$ in the class $Xf,R$ which satisfies $||u||\infty<R.$ Then $u$ is Holder continu-
ous on $\overline{\Omega}$ .

PROOF. By virtue of Theorems 3.1 and 3.2, it is enough to show that for every $\epsilon_{0}>0$

and $ x\in\Omega$ there exists a positive constant $\rho>0$ such that

(3.2) $\rho^{2-n}\int_{B_{\rho}(x)}|Du|^{2}dx\leq\epsilon_{0}$ .

To show (3.2) we can proceed similarly as in [6] by remarking that the estimate (2.15) plays
the role of the one-sided condition of [6].

Let $ x\in\Omega$ be an arbitrarily fixed point and $r$ a positive constant such that $ B_{2r}(x)\subset\subset\Omega$ .
Choosing $\eta\geq 0$ in (2.14) so that spt $\eta\subset B_{2r}(x)$ and using (2.15) we get

(3.3) $\delta\int_{B_{2r}(x)}|Du|^{2}\eta d\mu\leq-\int_{B_{2r\langle x)}}\{\frac{1}{2}f^{\beta}(x)D_{\alpha}|u|^{2}D_{\beta}\eta-|u|\frac{\partial G}{\partial s}\}d\mu$ .

Since we are assuming that $||u||_{L}\infty<R$ , we have

(3.4) $||u|\frac{\partial G}{\partial s}|\leq K$

for some positive constant $K$ which depends only $g,$ $h,$ $G$ and $f$ . Let $M(r)=\sup_{B_{r}(x)}|u|$ and
$z=M^{2}(2r)-|u|^{2}$ . Then from (3.3) and (3.4) we get

(3.5) $ 0\leq\int_{B_{r}(x)}(f^{\beta}(x)D_{\alpha}zD_{\beta}\eta+K)d\mu$ .

Thus, $z$ is a nonnegative supersolution of a uniformly elliptic equation and therefore, using
the weak Hamack inequality (see [9, Theorem 8.18]), we obtain

(3.6) $r^{-m}\int_{B_{2r}(x)}|z|dx\leq c_{11}(g, m, K)(\inf_{B_{r}\langle x)}z+r^{2})$ .
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Let $w\in C^{2}(B_{2r}(x))\cup C(B_{2\overline{r}}(x))$ be a solution of the Dirichlet problem

$\left\{\begin{array}{l}D_{\beta}\{\sqrt{g}f^{\beta}(x)D_{\alpha}w\}=-\frac{1}{r^{2}}B_{2r}(x)\\w=0\partial B_{2r}(x)\end{array}\right.$

Then, $w$ is bounded from above by a positive constant $\alpha_{1}$ in $B_{2r}(x)$ (see for example [9,

Theorem 3.7]). On the other hand, since the right hand side of the above equation is negative,
$w$ is a positive supersolution of the equation $D_{\beta}\{\sqrt{g}f^{\beta}(x)D_{\alpha}w\}=0$ , and therefore by the
weak Hamack inequality we have that $w\geq\alpha_{2}$ in $B_{r}(x)$ for some positive constant $\alpha_{2}$ . Here,
$\alpha_{1}$ and $\alpha 2$ does not depend on $r$ . Indeed, if $w_{1}$ is a solution of the above Dirichlet problem for
$r=1$ , then $w(x)=w_{1}(tx)$ solves the Dirichlet problem for $r=t$ .

Now, $w$ is in the class $H_{0}^{1,2}(B_{2r}(x))$ clearly and satisfies the following weak from of the
equation

(3.7) $\int_{B_{2r}(x)}g^{\alpha\beta}(x)D\rho wD_{\alpha}\varphi\sqrt{g}dx=r^{-2}\int_{B_{2r}(x)}\varphi dx$ for all $\varphi\in H_{0}^{1,2}(B_{2r}(x))$ .

Let $\varphi=wz$ in (3.7), then we have

$\frac{1}{2}\int_{B_{2r}(x)}f^{\beta}D_{\beta}w^{2}D_{\alpha}zd\mu+\int_{B_{2r}(x)}g^{\alpha\beta}D_{\beta}wD_{\alpha}wzd\mu=r^{-2}\int_{B_{2r}(x)}$ wzdx ,

and therefore

(3.8) $\frac{1}{2}\int_{B_{2r}(x)}\ell^{\beta}D_{\beta}w^{2}D_{\alpha}zdx\leq\alpha_{1}r^{-2}\int_{B_{2r}(x)}zdx$ .

Since $w^{2}$ is in the class $H_{0}^{1,2}$ also, we can take $\eta=w^{2}$ in (3.3). Taking $\eta=w^{2}$ in (3.3) and
using (3.6) and (3.8), we get

$\delta\alpha_{2}^{2}\int_{B_{r}(x)}|Du|^{2}d\mu\leq\frac{1}{2}\int_{B_{2r}(x)}f^{\beta}D_{\alpha}zD\rho\eta d\mu+\int_{B_{2r}(x)}Kw^{2}d\mu$

(3.9) $\leq\alpha_{1}r^{-2}\int_{B_{2r}(x)}zdx+K\alpha_{1}^{2}(2r)^{m}$

$\leq\alpha_{1}c_{12}r^{m-2}\inf_{B_{r}(x)}z+c_{13}r^{m}$

Thus we obtain

(3.10) $r^{2-m}\int_{B_{r}(x)}|Du|^{2}dx\leq c_{14}\{\inf_{B_{r}(x)}z+r^{2}\}\leq c_{14}\{M^{2}(2r)-M^{2}(r)+r^{2}\}$ .

On the other hand $u$ is bounded and therefore

$\sum_{k=0}^{+\infty}[M^{2}(2^{1-k}r)-M^{2}(2^{k}r)]\leq M^{2}(2r)\leq\sup_{\Omega}|u|^{2}$

Thus (3.10) implies (3.2) with $\rho=2^{-k}r$ for some $k$ . $\square $

Now, combining Theorems 2.2, 3.3 and the standard Schauder estimates, we get the
following existence theorem.
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THEOREM 3.4. Let $M,$ $N$ and $\Omega$ be as in Theorem 2.2 and $r_{0}$ as in Theorem 2.3.
Suppose that a smooth function $G(u)$ satisfies (2.4) and (2.5) with $b_{i}<r0(i=0,1,2,3)$

and that the boundary data $f$ is in the class $H^{1,s}\cap L^{\infty}(\Omega, R^{n})$ for some $s>m$ and satisfies
$E_{G}(f),$ $||f\Vert_{L}\infty_{1\Omega)}<r_{0}$ . Then there exists a minimizer $u$ of $E_{G}$ in the class $x_{fR}-$, for some
$R<R_{0}$ . Moreover, the minimizer $u$ is in the class $C^{2,\alpha}(\Omega, B_{R})\cap C^{0,\alpha}(\Omega, B_{R})$ and a
hamonic map with potential $G$ .

Ifwe can take $ R_{0}=\infty$ , the smallness conditions on $b_{i}(i=0,1,2,3),$ $E_{G}(f)$ and on
$||f||\infty$ are not necessary.
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