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1. Introduction.

In this note all spaces and homotopies are based. We denote by tx the homotopy class of
the identity map of a space X. We denote by X' X a suspension of X. The self-homotopy set
[¥X, X X]is a group, called a track group ([1]). The order of txx is called the suspension
order of X ([8]). Let P" be the real n-dimensional projective space. The author proved that
the suspension order of >2P% is 8 ([6]). The purpose of this note is to show the following.

THEOREM 1.1. The suspension order of XP% is 8.
As a direct consequence of this theorem, we have ([3])

COROLLARY 1.2. The suspension order of ZP?" is 2°@™ where ¢(m) stands for the
number of integers k satisfying 1 <k <mandk=0,1,20r4 mod 8.

The author wishes to thank the referee for the useful advices helping improve the manu-
script.

2. A review of the result of [6].

First we fix the notation. We denote by iy ,, : P* < P" for k < n the inclusion map and
by y» : S — P" the covering map. We note that

imn©ikm =ikn for k<m<n and irp,oyy=0 fork<n. €))

We often use the same letter for a mapping and its homotopy class. We set ¢, = tgn.
Let 72 € m3(S?) and v4 € m7(S*) be the Hopf maps. We set 5, = X2, (n > 2),
n,z, = NpoNns1 and v, = T 4vy (n > 4). We recall the following result about the 2-primary
components of homotopy groups of spheres ([7]):

Tn(S™) =Z{tn}) = 1), 73(S?) =Z{nz}, 7as1(S") =Zo{ns} (n = 3),
Tnt2(S™) = Zo{n?} (n = 2), 7me(S?) = Za{v'}, m7(S*) = Z{vs} ® Zs{ZV'},
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(t4, 4] =2v4 — V' and 7,43(S") = Zg{vy} (n = 5),

where [i4, 4] is the Whitehead square of ¢4.

We set M" = £"2P2 and i, = Z‘"‘zil,z - "1 —» M" for n > 2. Here we note
that the notation of i, is different from that of [6]. We denote by p, : M" — S" the col-
lapsing map. Let 7j3 € [M>, $3] and 7j3 € w5(M*) be an extension and a coextension of 73
respectively. We set 77,, = xn—3 n3 for n > 3. By Lemma 1.5.i) of [6], [M3, M*] is stable and

(M3, M*] = Zy{isii3} ® Zo{ii3 ps}) .

We set P§ = P6/P2. Let g : P — P§ be the collapsing map and let ¢ : P§ — M3 be
the third map in the cofibration

2.6 q ¥
PSP Lp M @

Then, by §3 of [6], p§ is regarded as a mapping cone of i47j3 : M> — M* and there exists an
extension ps € [ZPS, S3] of ps : M3 — S°. This result is improved as follows.

LEMMA 2.1. There exists an extension ps € [PS, S*] of ps : M* — S$* satisfying
2 ps = ps.

PROOF. We consider a cofibration

MUyt Lps Py 3)

where i’ is the inclusion map and p’ is a map pinching M* to one point. Since p4 o i47j3 = O,
there exists an extension p4 € [P6, S4] of p4. This completes the proof. O

We recall ([4], [5]) that (MY = Z,4{8} ® Z,{n3ns}, where § is the attaching map in
the Stiefel manifold V5, = M*Ue’ of 2-frames. By Lemma 2.1, the relation in the third line
from the last p. 247 on [6] is written as

8t y2ps = 0mod 2(X2ip 6)8(Z2% ps)(2%q) .
To prove Theorem 1.1, it suffices to show

2(Z2%i26)8(Z2pa)(Z%q) = 0.

3. Proof of the theorem.

We set pg = pgo p' : Pg — S The set [P, $3] inherits a group structure from S3.
Then we show

LEMMA 3.1. () [M"*',8"] = Za{nnpps1} (n = 2), [M"F2, "] = Za{iln} (n 2 3),

[MS, $3] = Zy{n371a} ® Z2{V' ps} and (M, $*] = Zs{nafis} ® Zo{(Z V') p1}  Za{vap7).
(ii) The group [PS, S3] consists of elements 13 ps and V' Pe-

(iii) p3¥ = n3pamodV'pj and psZ*y = nsX?py.
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PROOF. (i) is immediately obtained. By the exact sequence of groups induced from
3):
5, 5% L4, 5% E0ps, 571 Ml 5718 s, 8%,
we have (i")*(n3p4) = n3ps and (is74)* (773) = n374. So (i) implies (ii).
We consider a commutative diagram between cofibrations:
pr 2, p P oy EZ0, g R4 pp

A

. .
p2 26, ps 9, ps ¥, 3 _Z2C, 5ps,

where Xy, is an extension of X'y, and p is a map pinching P? to one point. By (2.1) of [2],
T®(XZy) = E®(i3ps) € {M>, M*}. So we have X (Zy2) = #i3ps (cf. Lemma 1.1 of [6])
and X (p3 o 2y2) = p4 o fi3ps = naps. By Lemma 3.1.(1), ¥ : [M*, $3] — [M?, §*]is an
isomorphism. So we have p3 o X'y = n3p4 and
p3oyoi'=p3o Xy =n3pas. @
Making use of the exact squence (x), by (ii) and (4), we obtain
p3¥ = n3pamod v’ pg.

This leads to the first half of (iii).
By the fact £2v' = 2vs, Z2(V'p}) = vs 0 252 p; = 0. This leads to the second half of
(iii), completing the proof. 0O

Now we show the following.
LEMMA 3.2. 2(X2%i5)8X%psX%g =0 e [Z2PO, 2?P7).

PROOF. We consider the exact sequence induced from (2):
2, \% 2 *
(22p8, 52p ‘T2 1 x2p8, 22p4 X M5, 2P,
By Lemmas 1.2 and 1.3 of [6], we recall the following:
ns(Z?P) = Zg{B}, me(Z2PY) = Za{(Z?%i2,4)8} @ Zo{Bns)
and
Bns = Z2y4 + 2(Z%i24)8.
Therefore, by Lemma 3.1. (iii), we see that
BpsZ2Y = BusE2pa = (Z2ya)(Z%pa) + 2(Z%i2,4)8 2% s .
By the relation (1), (22i45) o (¥2y4) = 0 and (X2i45) o (£?i2,4) = X2%is 5. So we have the
equality
(Z2%i4,5)Bps Z2¢ = 2(X%iz,5)8 X2 pa
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in [Z2P8, X2P3). Thus, by the fact ¢ o ¢ = 0, we obtain

2(X22i5,5)8(E%pa)(E2q) = (%ia 5)Bps(E*¥)(Z%q) = 0.
This completes the proof. O
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