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Abstract. An algorithm to decide if an orientable atoroidal 3-manifold contains closed incompressible acylin-

drical surfaces, and construct closed incompressible acylindrical surfaces is given. Mainly, the normal surface theory

is used. To assure that the algorithm stops after finite steps, we show that each acylindrical surface is isotopic to some
“edge surface” which is constructible.

Introduction.

We give an algorithm to construct certain embedded surfaces in a compact orientable
3-manifold $M$ which are important to study the structure of $M$ . A 3-manifold $M$ is said to
be irreducible if every embedded 2-sphere bounds a 3-ball in $M$ . A surface $F$ embedded in a
3-manifold $M$ is said to be injective in $M$ if the inclusion $i$ : $F\rightarrow M$ induces the injection
$i_{*}$ : $\pi_{1}(F)\rightarrow\pi_{1}(M)$ . A 3-manifold $M$ is atoroidal if each injective torus is isotopic to
$\partial M$ . An annulus $A$ properly embedded in a 3-manifold $M$ is essential if it is injective and
not isotopic to $\partial M$ (rel. $\partial A$ ). A closed surface $F$ embedded in $M$ is said to be acylindrical
if $F$ is injective, not homeomorphic to $S^{2}$ and each component of $M-\dot{N}(F)$ contains no
essential annuli. Acylindrical surfaces are important for the 3-dimensional hyperbolic geom-
etry. For example, a totally geodesic surface in a hyperbolic 3-manifold is acylindrical, and
an acylindrical surface is quasi-Fuchsian, that is, the limit set of the subgroup of $Isom^{+}(H^{3})$

corresponding to $i_{*}(\pi_{1}(F))$ is a topological embedded circle in $s_{\infty}^{2}$ . In [5], Hass showed that
if a hyperbolic 3-manifold $M$ contains an acylindrical surface with high genus, then $M$ has a
large volume. In [2], Agol gave an explicit lower bound to the hyperbolic volume of $M$ with
the genera of acylindrical surfaces embedded in $M$ .

In general, a 3-manifold $M$ may contain infinitely many injective surfaces, up to isotopy.
Neumam showed that if $M$ is a closed surface bundle over the circle and the first Betti number
$\beta_{1}(M;Z)\geq 2$ , then $M$ contains infinitely many surfaces which are fibers of some fibration
over $S^{1}$ ([13]). But in [5], [14] and in [15], it was shown that $M$ contains only finitely many
acylindrical surfaces, up to isotopy. In this paper, we will show that if a triangulation of an
orientable, irreducible, atoroidal 3-manifold $M$ is given, then one can decide if $M$ contains
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an orientable acylindrical surface, and one can construct all acylindrical surfaces contained in
$M$ .

In Section 1, we recall Haken’s normal surface theory from the viewpoint of triangu
lations, and finiteness property of acylindrical surfaces. According to the theory as Hake]

developed it, given the presentation of the manifold $M$ , there exists a finite number of funda
mental surfaces” such that all incompressible surfaces in $M$ are generated by “cut-and-paste
operations from the finite number of fundamental surfaces. In [4], Haken developed the theo
ries of normal surfaces, and gave an algorithm to decide if a bounded 3-manifold $M$ contain
a properly embedded disk $D$ such that $\partial D$ is not contractible in $\partial M$ . This algorithm is know]

as the algorithm of Haken, and this algorithm is applied to decide if a knot is knotted $0$

not. Our claim is that all acylindrical surfaces are isotopic to surfaces in some subset of th $($

fundamental surfaces which are called “edge surfaces”. This claim assures the finiteness $0$

acylindrical surfaces. The number of edge surfaces is strictly fewer than that of fundamen
tal surfaces. In [9], Jaco and Oertel gave an algorithm to decide if $M$ contains an injectiv $($

surface by applying the algorithm of Haken to finite number of the edge surfaces. In Sectio]

2, we give an algorithm to construct acylindrical surfaces in orientable, irreducible, atoroida
3-manifolds.

We have some motivation to study acylindrical surfaces in 3-manifolds. A knot $K$ in th$($

3-sphere $S^{3}$ is an embedded circle in $S^{3}$ . A knot $K$ is said to be hyperbolic if the complemen
$S^{3}-K$ admits a complete Riemannian metric with the constant sectional curvature-l. It $i|$

conjectured that, for any hyperbolic knot $K$ in $S^{3}$ , the complement $S^{3}-K$ contains no close $($

embedded totally geodesic surface ([12]). An example of a knot which contains a quasi
Fuchsian surface in its complement is given in [1]. In fact, the knot indicated in [1, Figure 10
contains a genus two acylindrical surface in its complement. However it was shown in [1] tha
the acylindrical surface is not totally geodesic. It was stated that the knot is one of the firs
explicit examples which contain closed embedded acylindrical surfaces in their complements
A characterization of knots which contain closed acylindrical surfaces in their $complement\{$

still seems to be open. But one can decide whether $S^{3}-K$ contains a closed acylindrica
surface or not, using our algorithm.

1. Normal surfaces and acylindrical surfaces.

The aim in this section is to show that each acylindrical surface embedded in an irre
ducible 3-manifold is isotopic to an “edge surface”, which will be defined later. To $explai\iota$

our methods, we give a sketch of Haken’s normal surface theory developed in [4], from tht
viewpoint of the triangulation. See [10, Sections 1, 2] for details. A review of the norma
surface theory based on handle-decompositions is given in [9, Section 1]. If $X$ is a topolog
ical space, then we denote the number of component by $|X|$ . If $Y$ is a subset of $X$ , then I
denotes the topological interior of $Y$ in the topology of $X$ . Definitions not stated in this pape]

are found in [7] and [8].
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Let $\mathcal{T}$ be a triangulation of a compact 3-manifold $M$ . Let $\mathcal{T}^{(i)}$ be the set of i-simplexes
of $\mathcal{T}$ and let $\mathcal{T}^{i}$ be the i-skeleton. An embedded surface $S$ is normal with respect to $\mathcal{T}$ if
$S$ is in general position with respect to $\mathcal{T}$ and for any 3-simplex $\tau$ in $\mathcal{T}^{(3)},$ $ S\cap\tau$ is a union
of squares and triangles whose vertices are contained in separate edges of $\tau$ . These squares
and triangles are called nomal disks in $\tau$ . Two normal disk $\Delta_{1}$ and $\Delta_{2}$ in a 3-simplex $\tau$ are
equivalent if these are parallel in $\tau$ . The equivalent classes are called disk types in $\tau$ .

If a surface $S$ is in general position with respect to $\mathcal{T}^{1}$ and $ S\cap \mathcal{T}^{0}=\emptyset$ , then we call
the number of points of the intersection $S\cap \mathcal{T}^{1}$ complexity of $S$ , and we denote it by $\gamma(S)$ .
A surface $S$ is called a minimal complexity surface (or a minimal surface, minimal) if $\gamma(S)$ is
minimal among all surfaces in the isotopy class of $S$ .

A surface $S$ properly embedded in $M$ is incompressible in $M$ if either: (a) $S$ is home-
omorphic to a 2-sphere which does not bound a 3-ball in $M$ ;

(b) $S$ is homeomorphic to a 2-disk such that $\partial S$ does not bound a disk in $\partial M$ , or if $\partial S$

bounds a disk $E$ in $\partial M$ , then the sphere $S\cup E$ does not bound a 3-ball in $M$ ;
(c) $S$ is homeomorphic neither to a 2-sphere nor to a 2-disk and for any disk $D$ with

$S\cap D=\partial D,$ $\partial D$ bounds a disk in $S$ .
It is known that every incompressible surface in $M$ is isotopic to a minimal normal sur-

face ([4]). A surface $S$ properly embedded in $M$ is said to be two-sided in $M$ if a regular
neighborhood $N(S)$ is homeomorphic to a product $S\times I$ where $I=[0,1]$ , otherwise $S$ is
said to be one-sided. For a two-sided surface $S$ , we regard it as $S\times\{1/2\}\subset N(S)=S\times I$ .

There are seven disk types in a 3-simplex (four triangles and three squares). Once a
triangulation $\mathcal{T}$ of $M$ and a normal surface $S$ are given, a $7t$ -tuple $x=$ $(x_{1}, \cdots , x_{7t})$ corre-
sponds to $S$ , where $t$ is the cardinality of $\mathcal{T}^{(3)}$ and $x_{i}$ is the number of normal disks in the
corresponding disk types.

Let $\sigma$ be a simplex in $\mathcal{T}^{(2)}$ . Let $\tau_{1}$ and $\tau_{2}$ be simplexes in $\mathcal{T}^{(3)}$ such that $\tau_{1}\cap\tau_{2}=\sigma$ .
A matching equation is the equation on the number of disks between adjacent normal disk
types (Figure 1). It was observed by Haken that there is a finite set of integral solutions to
the matching equations and inequalities $x;\geq 0$ , so that any non-negative integral solution
is a non-negative integral linear combination of this finite set of solutions. These solutions
are called the fundamental solutions. See [6, Sections 8, 9] for fundamental solutions. A
fundamental integer solution $x=$ $(x_{1}, \cdots , x_{7t})$ can be characterized by the property of not
having a decomposition $x=y+z$ where $y$ and $z$ are non-negative integer solutions to the
matching equations.

$x_{i}+x_{j}=x_{k}+x_{l}$

FIGURE 1. Matching equation.



398 YUKIHIRO TSUTSUMI

Now we consider how to construct embedded surfaces from a $7t$ -tuple. There exist $thre\epsilon$

disk types which are squares in a tetrahedron, but only one type, of the three, normal disks
can exist at once. If a non-negative integral solution $x$ satisfies the following property:

$(\star)$ If $x_{i},$ $x_{j}$ and $x_{k}$ corresponding to the distinct disk types which are squares in the
same tetrahedron, then two of the three is equal to zero.
Then one can construct a normal surface $F$ corresponds to the solution $x$ . A normal surface
corresponds to a fundamental solution is called afirndamental surfacefor $\mathcal{T}$ .

Hereafter, unless stated otherwise, all 3-manifolds are assumed to be orientable. If $F$

is a normal surface corresponds to the $7t$ -tuple $(x_{1}, \cdots , x_{7t})$ , we denote the normal surface
corresponds to $(nx_{1}, \cdots , nx_{7t})$ by $nF$ . Two normal surfaces $F_{1}$ and $F_{2}$ are said to be compat.
ible if there is no 3-simplex $\tau$ in $\mathcal{T}^{(3)}$ such that $F_{1}$ and $F_{2}$ intersect $\tau$ with squares of distincl
types. An isotopy of $M$ is said to be nomal if it preserves the triangulation $\mathcal{T}$ . If $F_{1}$ and
$F_{2}$ are compatible normal surfaces, then there exist surfaces $F_{1}^{\prime}$ and $F_{2}^{\prime}$ such that each $F_{i}$ is
normally isotopic to $F_{i}^{\prime}$ and for each component $\Delta_{i}$ of $ F_{i}^{\prime}\cap\tau$ , the intersection $\Delta_{1}\cap\Delta_{2}$ is
empty or a single embedded arc with ends in the distinct faces of $\tau$ for each $\tau\in \mathcal{T}^{(3)}$ . Hence
if $F_{1}$ and $F_{2}$ are compatible, we may assume each $F_{i}$ is normally isotoped so that they satisfy
the above condition. So, there is a “geometric addition” of $F_{1}$ and $F_{2}$ achieved by removing
a small regular neighborhood of a component $a$ of $F_{1}\cap F_{2}$ and pasting annuli as shown in
Figure 2. We call the cores of the pasted annuli trace curves. Clearly along any curve $a$ of
$F_{1}\cap F_{2}$ , there are two ways to switch, but we perform a regular switch which yields a sur-
face $F=F_{1}+F_{2}$ actually in normal position without further isotopy (Figure $2(B)$), the other
switch is called an irregular switch (Figure $2(C)$). This geometric addition of $F_{1}$ and $F_{2}$ agrees
with the natural linear algebra coming from the solution space of the matching equations, if
$F_{i}$ corresponds to the $7t$-tuple $(x_{1}^{i}, \cdots , x_{7t}^{i})$ for $i=1,2$ , then $F_{1}+F_{2}$ corresponds to the
$7t$-tuple $(x_{1}^{1}+x_{1}^{2}, \cdots , x_{7t}^{1}+x_{7t}^{2})$ . It follows that each normal surface in $\mathcal{T}$ is an integral linear
combination of the finite set of fundamental surfaces for $\mathcal{T}$ .

Theprojective solution space for $\mathcal{T}$ is the set of solutions to matching equations $x_{i}+x_{j}=$

$x_{k}+x_{l}$ , inequalities $x_{j}\geq 0$ and normal equations $x_{1}+\cdots+x_{7t}=1$ . The projective solution
space, which is denoted by $\mathcal{P}$ , is a compact, convex, linear cell. If $v$ is a vertex of $\mathcal{P}$ , then it
has rational coordinates. If $k$ is the smallest non-negative integer such that $kv$ is integral, then
$kv$ is called an edge solution. The surface corresponding to the edge solution $kv$ is called edge

FIGURE 2. Regular and irregular switch.
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surface. Notice that lattice points in $\mathcal{P}$ are fundamental solutions. It is remarked that for any
normal surface $F$ , there exists an integer $n$ such that $nF=n_{1}E_{1}+\cdots+n_{k}E_{k}$ where $E_{i}$ is
an edge surface and $n_{i}$ is a non-negative integer. Edge surfaces are connected and necessarily
fundamental surfaces.

The sum $F=F_{1}+F_{2}$ is in reducedform if $F$ cannot be written as $F=F_{1}^{\prime}+F_{2}^{\prime}$ , where
$F_{\dot{l}}^{\prime}$ is a normal surface isotopic to $F_{i}$ and $F_{1}^{\prime}\cap F_{2}^{\prime}$ has fewer components than $F_{1}\cap F_{2}$ . For a
surface $F=F_{1}+F_{2}$ , the components of $F_{1}\cup F_{2}-\dot{N}(F_{1}\cap F_{2})$ are called patches of $F_{1}+F_{2}$ .

Now we prove some lemmas needed later.

LEMMA 1.1. Let $M$ be an orientable irreducible 3-manifold and let $F$ be an incom-
pressible minimal normal surface in M. Suppose $nF$ is represented as a sum $nF=n1F_{1}+G$

and there does not exist a norrnal surface $G^{\prime}$ such that:
(1) $G^{\prime}$ is isotopic to $G$ ,
(2) $\gamma(G^{\prime})=\gamma(G)$ ,

(3) $|F_{1}\cap G^{\prime}|<|F_{1}\cap G|$ .
(4) $n_{1}F_{1}+G^{\prime}$ is isotopic to $nF$ .

Then no patch of $n_{1}F_{1}+G$ is a disk.

PROOF. We assume the contrary. Since $F$ is minimal, the surface $nF$ is also minimal
by the argument same as in [9, Lemma 3.1]. If $e$ is a disk patch of the sum $nF=n_{1}F_{1}+G$

and $a$ is the component of $n_{1}F_{1}\cap G$ which determines the patch $e$ , the curve $a$ must be
two-sided in both component since $a$ bounds a disk. So the curve $a$ contributes two trace

curves in $nF$ , say $\alpha$ (bounding e) and $\alpha^{\prime}$ . Clearly, the trace curve $\alpha^{\prime}$ bounds a disk $e_{0}$ in $M$

such that $e_{0}\cap F=\alpha^{\prime}$ ( $e_{0}$ is a parallel copy of $e$). Hence $\alpha^{\prime}$ bounds a disk $e^{\prime}$ in $nF$ by the
incompressibility of $nF$ (Figure 3). First notice that the disk $e^{\prime}$ is such that if an irregular
switch is made at the curve $a$ , then $e$ and $e^{\prime}$ are joined to form a 2-sphere. For otherwise, if
$e^{\prime}$ does not contain $e$ in its interior, then the 2-sphere $\Sigma=e^{\prime}\cup e_{0}$ separates $nF$ . Since $M$ is
irreducible, a component of $nF$ would be in a 3-cell bounded by $\Sigma$ , which is impossible since
$nF$ is incompressible. If $e^{\prime}$ contains $e$ in its interior, then the surface $nF$ would be isotopic to
the surface $F^{\prime}=(nF-e^{\prime})\cup e_{0}$ . Since $F^{\prime}$ has a “fold” coming from $\partial e_{0}$ or $\gamma(e^{\prime}-e)>0$

(see [17] for details), the surface $F^{\prime}$ is isotopic to a normal surface $F^{\prime\prime}$ with $\gamma(F^{\prime\prime})<\gamma(nF)$ .
This is a contradiction to the minimality of $\gamma(nF)$ .

Since $nF$ is a minimal surface, there exists no compressible torus or Klein bottle $T$ such
that $nF=S+T$ where $S$ is a surface isotopic to $nF$ and $\gamma(T)\neq 0$ . Hence if some patch of
$n_{1}F_{1}+G$ is a disk, then by the above argument and by the same argument as the proof of [9,

Lemma 2.1], we obtain two disks $D_{1}\subset n_{1}F_{1}$ and $D_{2}\subset G$ which are patches of $n_{1}F_{1}+G$

determined by the same component $\beta$ of $n_{1}F_{1}\cap G$ . If $\gamma(D_{1})\neq\gamma(D_{2})$ , then $nF$ would be
isotopic to a surface $F^{*}$ such that $\gamma(F^{*})<\gamma(nF)$ since the sphere $D_{1}\cup D_{2}$ bounds a 3-ball
on the side not containing the incompressible surface $nF$ . Now we have $\gamma(D_{1})=\gamma(D2)$

since $nF$ is minimal.



400 YUKIHIRO TSUTSUMI

FIGURE 3.

FIGURE 4.

If we set the surface $ G^{\prime}=(G-N(D_{2}))\cup$ (a parallel copy of $D_{1}$ ) as shown in Figure 4
then $n_{1}F_{1}+G^{\prime}$ is isotopic to $nF,$ $\gamma(G^{\prime})=\gamma(G)$ and $F_{1}\cap G^{\prime}$ has fewer components. $Thi\{$

contradicts the assumption. $\subset$

As a corollary, for a two-sided incompressible minimal normal surface $F=F_{1}+F_{2}il$

a compact irreducible orientable 3-manifold, if the sum $F_{1}+F_{2}$ is in reduced form, then $i$

has no disk patch (cf. [9, Lemma 2.1] and [10, Lemma 6.6]).

LEMMA 1.2. Let $M$ be an orientable irreducible 3-manifold, and let $S$ be a two-side $p$

acylindrical surface in M. Then each component of $M-\dot{N}(S)$ contains no properly embedde‘
Mobius band.

PROOF. We assume that $A$ is a properly embedded M\"obius band in $M-\dot{N}(S)$ . Sinct
$M$ is orientable, the frontier $A^{\prime}=\partial N(A;M-\dot{N}(S))$ is an annulus properly embedded $i1$

$M-\dot{N}(S)$ . If $A^{\prime}$ is compressible in $M-\dot{N}(S)$ , then it follows that for a compressing disl
$D^{\prime},$ $\partial D^{\prime}$ bounds a M\"obius band $A^{\prime\prime}$ in $N(A;M-\dot{N}(S))$ and $D^{\prime}\cup A^{\prime\prime}$ forms a projectiv$($

plane. By the irreducibility of $M$ , it follows that $M$ is homeomorphic to $P^{3}$ . However $thi|$

contradicts the assumption that $S$ is two-sided acylindrical since $P^{3}$ does not contain two
sided incompressible surfaces. So, the annulus $A^{\prime}$ is incompressible in $M-\dot{N}(S)$ . Since $Si^{r}|$

acylindrical, the annulus $A^{\prime}$ is $\partial$ -parallel to $\partial N(S)$ . As the parallelism solid torus cannot $b($

contained in $N(A;M-\dot{N}(S))$ , it follows that $S$ is isotopic to a torus which bounds a soli $($

torus. This contradicts the incompressibility of $S$ . $\subset$

LEMMA 1.3. Let $M$ be an orientable irreducible 3-manifold and let $S$ be an incom
pressible minimal nomal surface. If the sum $S=F_{1}+F_{2}$ has no disk patch, then for each
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component $a$ of $F_{1}\cap F_{2}$ andfor the annulus or Mobius band $A_{a}$ bounded by the trace curves
or curve contributed by $a$ , thefrontier $A=\partial N(A_{a} ; M_{0})$ is essential in $M_{0}$ where $M_{0}$ denotes
the closure of$M-S$ .

PROOF. By an innermost argument on a compressing disk for $A$ , the annulus $A$ is
incompressible in $M_{0}$ since the sum $S=F_{1}+F_{2}$ has no disk patch. If $A$ is $\partial$ -parallel to an
annulus $B\subset\partial M_{0}$ , then $S$ is isotopic to a surface $S^{\prime}=(S-B)\cup A$ . But $S^{\prime}$ has a “fold”
coming from the curve $a$ or $\gamma(B)>0$ (see [17] for details). So the surface $S^{\prime}$ is isotoped to a
normal surface $S^{\prime\prime}$ with $\gamma(S^{\prime\prime})<\gamma(S)$ . This contradicts the minimality of $\gamma(S)$ . $\square $

THEOREM 1.4 (Acylindrical’ implies “edge”). Let $M$ be an orientable, irreducible

3-manifold. Each acylindrical surface is isotopic to an edge surface for any triangulation of
$M$.

PROOF. Let $F$ be an acylindrical surface which is a minimal and normal surface. For
some positive integer $n$ , we have $nF=n_{1}E_{1}+\cdots+n_{k}E_{k}$ where $E_{i}$ is an edge surface and $n_{i}$

is some non-negative integer. By [10, Theorem 6.5], each edge surface $E_{i}$ is incompressible
in $M$ .

If $n=1$ , then we are done by Lemma 1.3. So, we assume $n\geq 2$ . We can take a regular
neighborhood $N$ of $F$ such that $N$ is homeomorphic to $F\times I$ and $nF$ is embedded in $N$ so
that the first parallel copy and the n-th parallel copy of $F$ form $\partial N$ .

CLAIM 1.5. For eachi, $E_{j}$ is isotopic into N.

Since $E$; is incompressible in $M$ , it is also incompressible in $N$ . It is well-known that
closed incompressible surface in the product $F\times I$ is unique up to isotopy ([18]). So, by this
claim we can conclude that $E_{i}$ is isotopic to $F$ in $N$ for each $i$ , since $N$ is a product $F\times I$ .
Thus $F$ is isotopic to an edge surface $E_{i}$ . $\square $

PROOF OF CLAIM 1.5. Without loss of generality, it is sufficient to show that $E_{1}$ is
contained in $N$ . We set $G=n_{2}E_{2}+\cdots+n_{k}E_{k}$ and apply Lemma 1.1 to the sum $nF=$

$n_{1}E_{1}+G$ . Furthermore, we may assume that the sum $nF=n_{1}E_{1}+G$ satisfies the condition
in Lemma 1.1. So, no patch of $n_{1}E_{1}+G$ is a disk.

By the definition of a regular switch, for each component $a$ of $E_{1}\cap G$ , we have $a\subset\dot{N}$

or $a\subset M-N$ . Hence if $E_{1}$ is not contained in $N$ , the closure of $E_{1}-N$ is a union of annuli
and M\"obius bands properly embedded in $M-\dot{N}$ .

By Lemma 1.2, each component $A$ of the closure of $E_{1}-N$ is homeomorphic to the
annulus. By an innermost argument on a compressing disk for $A$ , the annulus $A$ is incom-
pressible in $M-\dot{N}$ since no patch of $n_{1}E_{1}+G$ is a disk. Since $F$ is acylindrical, it follows
that $A$ is $\partial$ -parallel in $M-\dot{N}$ . Thus there exists an annulus $B$ in $\partial N$ with $A\cap B=\partial A=\partial B$

such that $A$ is isotopic to $B$ (rel. $\partial A$). It follows that $E_{1}$ is isotopic into $N$ . One can also
conclude this by the fact that $\gamma(B)>0$ . $\square $

Now we can give a proof of the following finiteness theorem.
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THEOREM 1.6 (Finiteness, cf. [5], [14], [15]). There are onlyfinitely many acylindn
cal $su\phi aces$ , up to isotopy, in a compact 3-manifold.

PROOF. Recall that a properly embedded annulus is said to be essential if it is incom
pressible and not $\partial$ -parallel in the 3-manifold. It is known that if $M$ is not irreducible, the
$M$ does not contain acylindrical surfaces ([15]). So, we may assume $M$ is irreducible. $B$

Lemma 1.4, a closed acylindrical surface in a compact irreducible 3-manifold is isotopic $t($

some edge surface. Since the number of edge surfaces is finite, the conclusion holds. $[$

If properly embedded annuli in a 3-manifold which are incompressible and $\partial$-incom
pressible are defined to be essential, then one can construct a reducible 3-manifold $M$ sucl
that $M$ contains infinitely many acylindnical surfaces, up to isotopy. An example of such
3-manifold is given in [15]. Notice that these two definitions of essentiality are equivalent fo
irreducible and $\partial$ -irreducible 3-manifolds.

In [5], it was remarked that D. Gabai had pointed out that Theorem 1.6 can be obtaine $($

by the arguments of branched surface theory. In [15], the finiteness properties of acylindrica
surface are also studied using branched surfaces.

Here we give another finiteness result obtained by the normal surface theory. A homo
topy $H$ between two closed curves in a surface $S$ embedded in $M$ can be decomposed $int|$

essential homotopies in $M-\dot{N}(S)$ . The number of these essential subhomotopies is calleI
the length of $H$ . An incompressible surface $S$ embedded in $M$ is said to be k-acylindrical $i$

no homotopy between closed curves in $S$ has length greater than $k$ . It is known that if $Mi$

closed hyperbolic and $S$ is not a fiber, that is, each component of $M-\dot{N}(S)$ is an I-bundle
then $S$ is acylindrical or k-acylindrical for some $k$ (see [16]).

THEOREM 1.7 (Finiteness, [16]). Let $k$ be anypositive integer. A compact, irreducibl $($

3-manifold $M$ contains onlyfinitely many isotopy classes ofclosed k-acylindrical surfaces.
PROOF. Let $S$ be a k-acylindrical minimal normal surface in $M$ which is written as $($

sum $S=a_{1}F_{1}+\cdots+a_{n}F_{n}$ where $F_{i}$ is a fundamental surface. Set $G=a_{2}F_{2}+\cdots+a_{n}F$,
and by Lemma 1.1, we may assume that no patch of $S=a_{1}F_{1}+G$ is a disk. By Lemm $($

1.3, there exists an embedding of an annulus $f$ : $A\rightarrow M$ “near” the intersection $a_{1}F_{1}\cap G$

so that $f(\partial A)\subset S,$ $f^{-1}(S)$ consists of $a_{1}$ components and the closure of each component $0$

$f(A)-S$ is essential in the closure of $M-S$ . The annulus $f(A)$ forms an essential homotopl.
of length $a_{1}$ between two curves $f(\partial A)\subset S$ . Since $S$ is k-acylindrical, we have $a_{i}\leq k$ fo
each $i$ . This means that the number of choice of the coefficients $\{a_{1}, \cdots , a_{n}\}$ is finite ant
completes the proof. $[$

REMARK 1.8. In [14], Sela studied a much larger class of groups than 3-manifolt
groups, and obtained the same k-acylindrical finiteness result for a simple 3-manifold ([14
Theorem 4.5]).

In [2], Agol showed that if a hyperbolic 3-manifold $M$ contains an acylindrical surfacI
$F$ , the volume $Vol(M)\geq-2V_{1}\chi(F)$ where $V_{1}$ is the volume of a regular ideal tetrahedron
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approximately equal to 1.01494. The canonical genus of a knot $K$ in $S^{3}$ is the minimum
among all genera of Seifert surfaces built by “Seifert’s algorithm” on a diagram of the knot,

denoted by $g_{c}(K)$ . Brittenham ([3]) showed that the volume of the complement of a hyper-
bolic knot $K$ with canonical genus $g_{c}(K)$ is less than 120$g_{c}(K)V_{1}$ . Brittenham’s results and
Agol’s results prove the following theorem.

THEOREM 1.9. Let $K$ be a hyperbolic knot in $S^{3}$ . If $F$ is a closed acylindrical sufface
embedded in $S^{3}-K$ , then $g(F)\leq 30g_{c}(K)$ .

The following result is obtained in [12] by arguments of amalgamated free products
along malnormal subgroups. In fact, an embedded surface $S$ is acylindrical in an irreducible
3-manifold $M$ if and only if $i_{*}(\pi_{1}(S))$ is malnormal in $\pi_{1}(M)$ .

THEOREM 1.10 (Two generator 3-manifolds, [12, Theorem 4]). Let $M$ be an ori-
entable 3-manifold with $\pi_{1}(M)$ two-generated. Then $M$ contains no separating acylindrical
$su\phi ace$ .

By Theorem 1.10, if $M$ admits a genus two Heegaard splitting, that is, $M$ is obtained by
gluing two genus two handlebodies with their boundaries, then $M$ does not contain separating
acylindrical surfaces. But there exists a 3-manifold which admits a genus two Heegaard split-
ting and contains a non-separating acylindrical torus. For example, let $M^{\prime}$ be the exterior of
the Whitehead link $L$ , and let $M$ be the closed manifold obtained by identifying two bound-
aries of $M^{\prime}$ so that a meridian of one component of $\partial N(L)$ is identified with that of the other
component. See [11] for 3-manifolds which contain incompressible tori and have genus two
Heegaard splittings.

According to Theorems 1.9 and 1.10, it seems that a 3-manifold $M$ which contains an
acylindrical surface is somewhat complicated. But using the algorithm which will be ob-
tained in Section 2, one can decompose $M$ into “simpler” parts each of which contains no
acylindrical surfaces.

2. Algorithms.

At first, we give an algorithm to judge if $M$ is atoroidal or not (cf. [10, Corollary 6.8
and Section 8]). Next, we give an algorithm to decide if an orientable, irreducible, atoroidal,

3-manifold contains an acylindrical surface or not, and constructing acylindrical surfaces.
Hereafter, we assume all 3-manifolds are triangulated.

The proof of the following lemma is given in [17].

LEMMA 2.1 ([17], cf. [10, Corollary 6.8]). Let $M$ be an orientable irreducible 3-
mamfold. If$M$ contains an essential torus, then some edge $su\prime faceE_{j}$ is an essential torus.

Now one can test the atoroidality of $M$ as follows:

LEMMA 2.2. Let $M$ be an orientable, irreducible, 3-mamfold. There exists an algo-
rithm to decide whether $M$ is atoroidal or not.
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PROOF. Let $\mathcal{T}$ be a triangulation of $M$ . By solving the matching and normal equations
one can find the finite number of edge surfaces $\{E_{1}, \cdots E_{k}\}$ . By the data of $\mathcal{T}$, one caI

calculate the Euler characteristic $\chi(E_{i})$ for each $i$ ([10, Algorithm 9.1]). If $E_{i}$ is one-sided
then we replace it by 2 $E_{t}$ . Using the Haken’s algorithm and [10, Algorithm 9.7], one caI

check the essentiality of the edge surface $E_{i}$ . By Lemma 2.1, if each edge surface is not $aI$

essential torus, then it follows that $M$ is atoroidal. $\subset$

LEMMA 2.3. Let $M$ be an orientable, irreducible, atoroidal 3-mamfold. An incom
pressible surface $S$ is acylindrical if and only if the double of each component of $M-\dot{N}(S^{\cdot}$

is atoroidal.

PROOF. If $S$ is acylindrical, each component of $\partial N(S)$ is also acylindrical in the double
of $M-\dot{N}(S)$ along the boundary component corresponding to $S$ . We denote it by $\mathcal{D}(M-$

$\dot{N}(S))$ . An essential torus $T$ in $\mathcal{D}(M-\dot{N}(S))$ is isotoped off of acylindrical surfaces. Thi:
means that $T$ is contained in $M$ , which contradicts the hypothesis that $M$ is atoroidal. If $\llcorner\langle$

is not acylindrical, there exists an essential annulus $A$ in $M-\dot{N}(S)$ . The double $\mathcal{D}A$ is $\partial J$

essential torus in $\mathcal{D}(M-\dot{N}(S))$ . $\subset$

By Lemma 2.2 and Lemma 2.3, one can decide if an incompressible surface $S$ is acylin
drical or not.

THEOREM 2.4 (The algorithm). There exists an algorithm to decide $\iota f$ a closed, $ori$

entable, irreducible 3-manifold is toroidal, or contains a closed acylindrical surface. Fur
thermore, all acylindrical surfaces are constructed by the algorithm.

PROOF. We shall prove this theorem by producing an explicit algorithm.
We are given a triangulation $\mathcal{T}$ of an orientable, irreducible 3-manifold $M$ . By solvin5

matching and normal equations, it is possible to find the finite number of edge surfaces $\mathcal{E}=$

$\{E_{1}, \cdots E_{k}\}$ .
If $E_{i}$ is one-sided, then we replace it by $2E_{i}$ which is two-sided. Apply the algorithn

of Haken to each closed edge surfaces. If none of closed edge surface which is not homeo
morphic to $S^{2}$ in $\mathcal{E}$ is injective, $M$ contains no closed incompressible surface by the argumen
same as in [9]. Using the algorithm obtained by Lemma 2.2, one can test the atoroidality $0$

$M$ . If $M$ is atoroidal, then we go to the next step.
At this stage, $M$ is assumed to be orientable, irreducible and atoroidal. In Lemma 1.4

we have seen that an acylindnical surface is isotopic to an edge surface. By Lemmas 2.2 an $($

2.3, one can decide if an edge surface $E_{i}$ is acylindnical or not.
The edge surface $E_{i}$ is constructed by pasting normal disks corresponding to the $edg($

solution, so acylindrical surfaces are constructible. $\subset$
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