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Abstract. Inthree dimensional Minkowski space, we show that a generalized helicoid is isometric to a rotation
surface so that helices on the helicoid correspond to parallel circles on the rotation surface. Moreover, if these surfaces
have the same Gauss map, we can determine them.

1. Introduction.

In classical surface geometry in Euclidean space, it is well known that the right helicoid
(resp. catenoid) is the only ruled (resp. rotation) surface which is minimal. Moreover, a pair
of these two surfaces has interesting properties. That is, they are both members of a one-
parameter family of isometric minimal surfaces and have the same Gauss map. This pair
is a typical example of a minimal surface and its conjugate one on the Weierstrass-Enneper
representation for minimal surfaces. On the other hand, the pair of the right helicoid and the
catenoid has following generalization.

BOUR’S THEOREM [1], [6]. A generalized helicoid is isometric to a rotation surface
so that helices on the helicoid correspond to parallel circles on the rotation surface.

In this generalization, original properties that they are minimal and preserve the Gauss
map are not generally kept. In [3], the author find pairs of a generalized helicoid and a rotation
surface that are isometric by Bour’s theorem and also have the same Gauss map.

In surface theory in Minkowski space, parallel to Euclidean geometry, surfaces of vanish-
ing mean curvature in rotation surfaces or ruled surfaces, Weierstrass-Enneper representation,
etc. are studied very much. However, Bour’s theorem in Minkowski space is not known.

The purpose of this paper is to give Bour’s theorem in Minkowski space and to determine
pairs of surfaces under an additional condition that the pair has the same Gauss map.

In Section 2, we recall some formulas to study surfaces in Minkowski geometry and give
the definition of the rotation surface and the generalized helicoid. Section 3 is devoted to
list rotation surfaces of vanishing mean curvature. These examples are used to find a pair of
surfaces that have the same Gauss map. In Section 4, we give Bour’s theorem on surfaces in
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Minkowski space whose axes are timelike or spacelike. In the last section, we give Bour’s
theorem on surfaces of lightlike axis.
The author would like to express his gratitude to referee for his useful advice.

2. Preliminaries.

First of all, we recall elementary properties in a 3-dimensional Lorentz vector space. Let
V be a 3-dimensional vector space with scalar product (, ) of index 1. Then V is called a
Lorentz vector space. In the rest of this paper, we shall identify a vector X with a transporse
!X of X. For any vectors X = (X1, X2, X3)and Y = (Y1, Y2, Y3) in a Lorentz vector space V
the scalar product of X and Y is defined by (X, Y) = X1Y1 + X2Y> — X3Y3, which is called a
Lorentz product. Let V be a 3-dimensional Lorentz vector space with Lorentz product (, }. A
vector X in V is called space-like (resp. time-like) if (X, X) > Oor X = O (resp. (X, X) < 0).
If X (3 0) satisfies (X, X) = 0, then X is called light-like.

Throughout this paper, we assume that all objects are smooth and all surfaces are con-
nected, unless otherwise mentioned. Let R% be a Minkowski space, namely, flat 3-dimensional
Lorentz manifold. We consider a surface S(u, v) with a coordinate system {u, v} in R?. The
coefficients E, F and G of the first fundamental form are defined by

2.1) E=(SSu), F=(S58), G=(S ),

for the natural basis {S,, Sy} along the coordinate curves.
The line element is thus

ds? = Edu® + 2Fdudv + Gdv*®.
The Gauss map e of S(u, v) is defined by

(2.2) L E.X

. V18u x Syl ’
The coefficients L, M and N of the second fundamental form are defined by
(2.3) L ={(Su.e), M= {(Su,e), N ={(Sw,e),

and the mean curvature H is given by

_ EN+GL—2FM

24 2(EG — F?)

Now we define a non-degenerate rotation surface and generalized helicoid in R%. For an
open interval I C R, lety : I — IT be a curve in a plane IT in R';’ and let / be a straight
line in IT which does not intersect the curve y. A rotation surface in R3 is defined as a
non-degenerate surface rotating a curve y around a line / (these are called the profile curve
and the axis, respectively). Suppose that when a profile curve y rotates around the axis /, it
simultaneously displaces parallel to / so that the speed of displacement is proportional to the
speed of rotation. Then the resulting surface is called the generalized helicoid. If the profile
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curve of a generalized helicoid is a straight line perpendicular to the axis, then the surface is
called a right helicoid.

Since we are concerned on R3, the axis I may be space-like, time-like or light-like. As
the surface is non-degenerate, it suffices to consider the case that the profile curve is space-
like or time-like. We classify a surface by types of axis and profile curve and write as (Axis’s
type, Profile curve’s type)-type; for example, by (S, T)-type we mean that the surface has a
space-like axis and a time-like profile curve.

3. Rotation surface.

In this section, we give specific presentation of rotation surfaces and recall some rotation
surfaces of zero mean curvature that are used to have main theorems in the latter half of this
paper. For details of this section, see [4].

When the axis / is space-like, there is a Lorentz transformation by which the axis [
is transformed to the x;-axis of R%. Since we consider non-degenerate surfaces, we may
suppose that IT is the x;x>-plane or the xjx3-plane without loss of generality. If the profile
curve is on the x1x;-plane, then it is space-like and parametrized as y = (¢(u), u, 0). If the
profile curve is on the xjx3-plane, it is parametrized as y = (¢(«), 0, u). In this case, it may
be space-like or time-like. Hence the rotation surface R(u, v) can be written as

o) ]
(3.1 R(u,v) = |ucoshv | ,

_usinhv_
or

[ o) ]
(3.2) R(u,v) = | usinhv

Lucoshv_

From (3.1) or (3.2), we can have the mean curvature H by virtue of (2.1), (2.2), (2.3) and
(2.4). Solving a differential equation H = 0, we can get the profile curve ¢(u) of the rotation
surface.

PROPOSITION 3.1. Ifan (S,S)-type rotation surface is of zero mean curvature, then
the surface is

b cosh™ 1 (u/b)
(3.3) R(u,v) = ucoshv
u sinh v

or
b sin~L(u/b)
(3.4) R(u,v) = u sinh v ,
u coshv

where b is a constant.
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PROPOSITION 3.2. Ifan (S, T)-type rotation surface is of zero mean curvature, then
the surface is
bsinh™(u/b)
3.9 R(u,v) = u sinh v ,
ucoshv

where b is a constant.

When the axis / is time-like, then we may suppose that [ is the x3-axis, IT is the x{x3-
plane and the profile curve y is parametrized as y = (u, 0, ¢(u)), without loss of generality.
Hence the rotation surface can be written as

U Cos v
(3.6) R(u,v) = | usinv
¢(u)

PROPOSITION 3.3. Ifa (T, S)-type rotation surface is of zero mean curvature, then the
surface is

ucosv
3.7 R(u,v) = usinv ,
bsinh~!(u/v)

where b is a constant.
PROPOSITION 3.4. Ifa (T, T)-type rotation surface is of zero mean curvature, then the
surface is

UCosv
(3.8) Ru,v) = usinv ,
b sin“l(u/v)

where b is a constant.

Last of all, if the axis [ is light-like, then we may suppose that [ is the line spanned by
the vector (0, 1, 1). Since the surface is non-degenerate, it suffices to consider the case that
the plane I7 is the x2x3-plane and the profile curve y is parametrized as

y () = (0, o) + u, p(u) — u)
without loss of generality. Hence the rotation surface can be written as

2uv
3.9 Ru,v) = | o) +u — uv?
o) —u — uv?
PROPOSITION 3.5. Ifa rotation surface with light-like axis is of zero mean curvature,
then the surface is

2uv
(3.10) R@u,v) = | b/3)u + u — uv?
(b/3)u3 — u — uv?
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4. Bour’s theorems of surfaces of space-like or time-like axis.

In this section, we study an isometric relation between a generalized helicoid and a rota-
tion surface of space-like or time-like axis.

Case 1. (S, S)-type, (I).

First of all, we consider the (S, S)-type surfaces, namely, the axis and the profile curve
are both space-like. Moreover, first, we assume that the profile curve is on the xjx2-plane.
Since a generalized helicoid is given by rotating the profile curve around the axis and simulta-
neously displacing parallel to the axis, so that the speed of displacement is proportional to the
speed of rotation, from (3.1), we have the following representation of a generalized helicoid
H(uH, vH)

¢ (uH) + avy
“4.1) Huy,vyg) = upy coshvy ,
Uy sinh v H
where a is a constant. For a moment, we assume that <p’H # 0.

The coefficients Eg, Fy, and Gy of the first fundamental form and the line element

ds? of the generalized helicoid (4.1) are given by

(4.2) Equ=¢l;+1, Fy=agy, Gg=a*—u},
(4.3) ds} = (¢} + Dds} + 2a¢ydupdvy + (@ — u3)dvy ,

by virtue of (2.1). Since
EnGy — F3 = —u*(1 + ¢y) +a?,
if 0 < u} < a?/(1 + ¢ly) (tesp. u%, > a?/(1 + ¢y)) then H(up, vy) is space-like (resp.
time-like). '
Helices in H(uy, vy) are curves defined by uy = const., so curves in H(u g, vy) that
are orthogonal to helices satisfy the orthogonal condition

apydug + @* — u%,)de =0.

Hence it follows that
a
dvg = — Tﬂa—du H
a‘ —uy
SO
Vg = —f T(p—H——duH + const. .
a® —uy
Therefore, if we put

4.4) VH —v1-1+f a(pH —~—duy,
az—uH

then curves that are orthogonal to helices are given by 5 = const.. Substituting the equation

dvry = dim + —ZH_duy
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into (4.3), we have
2 ”%1‘/"112 2 2 2N =2

Case (i). u? —a > o
First we assume u?2 " a’? > 0. By putting

(4.6) iy = f \[ “”“’” —L2H —duy, fulin) = u} —a?,

(4.5) reduces to

.7 dst = diu%y — fA(ap)dv*.
On the other hand, an (S, S)-type rotation surface
@r(uR)
R(ugr,vR) = | up coshvg
upg sinh vg
has the line element
(4.8) ds} = (9% + Ddu% — ukdv’,

by virtue of (2.1). Hence, if we put -

4.9) UR = /\/ <P}g2 + 1dugr, wur= frR(Ur), VR =1vR,

then (4.8) reduces to

(4.10) ds: = du’ — fi(ag)div%.
Comparing (4.7) with (4.10), if

(4.11) Ug =UR, UH=1VR, fu(in)= fr(Ur),

then we have an isometry between H(uy, vy) and R(uRr, vgr). Therefore it follows that

u u
f 1+ 2”‘”” duH—f,/(pgf lduR—/ 1 —————dup,
ut, —a? [u2 — a2
H
and
2 12 2
/2 _VYH®H — @
Yr = . .
Hence
2/ 2
uglyly,” —a
/¢RduR= \J 2 > —dun

Therefore we have
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THEOREM 4.1. A generalized helicoid

o) +av
u cosh v (a = const., u? > a2)
u sinh v

is isometric to the rotation surface

2,2 _42

[ e

uc—a ,

4.12) JuT =alcosh (v - [ A2zdu) | .
7 _ 42 i _ [ ¢
vV u? — a?sinh (v f ;ﬁf’-;;du)

so that helices on the generalized helicoid correspond to parallel circles on the rotation sur-
face.

Next we study Gauss maps of (4.1) and (4.12). From (4.1), we obtain

(p// 0 0
4.13) Hy=|01|, Hyy=|ucoshv|, H,, =]|sinhv
0 u sinh v coshv

Hence the Gauss map ey of the generalized helicoid is

u
ey = a sinhv — u¢’ coshv
\/u2 —a? + u?¢’? | —ug’sinhv + acoshv

(4.14) !

From (4.13) and (4.14), the coefficients L iy, My and Ny of the second fundamental form are
given as
" _ 2 ../
LH = and ’ M H — 2 ) N H = — adlid

\/uz — a2 + ug? \/uz — a2+ u2g? ‘/;2 — a2 + up?

Hence the mean curvature Hy of the generalized helicoid is

_u2¢/3 _ u2¢/ + azu(ou + 2a2¢/
2u2 — a? + u2¢'%)3/2 )

Next we calculate geometrical objects of the rotation surface (4.12). Since

(4.15) Hy =

S
R, = \/u%;i cosh( —f —z—ﬂ—fdu) % sinh (v —f —2—“3—5du) ,
s1nh( —f F%du) % cosh (v — [ azdu)

0
R, = ~u? = a?sinh (v —f%—du) ,
VuZ —aZcosh (v —f 1‘1‘&’7(1,4)

uc—a

u2—a
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the Gauss map eg of the rotation surface is

u

(4.16) er = ! —WCOSh (v d %du)
2 2 2 _
\/u ¢'* +u?—a? _msinh (v —f uTﬂaidu)

—a%ug* +ute " —aut o' +au

(u2—a2)3/2/u2¢p'2 a2
2,02 2 ’ " . /
Ry = E%%cosh (v - fﬁ?ﬁdu) - \/—z%smh (v —f;{i%zdu) ,
R ’ 2,02_.2 ’
J%cosh (v -f ;2‘11"—“—5du) + G2tazy7z sinh (v -f u{—‘%du) ‘

0

Moreover, we have

R,, = Vu? —aZcosh (v — —g%du) ,
Vu? —aZsinh (v — u—ﬁ”%;du)
0
Ry = ﬁsinh( —f —z—‘f——fdu) —Ji-_—cosh( — [ #xdu)
cosh( — [ u2_a2 u) - «/;2——7 —=£— sinh (v —f %du)

Then the coefficients L g, Mg and N of the second fundamental form are

u2—-a

_a2u2¢/2 + u5(p/§0// a2u3<p’(p” +a?u? — (a2(p’2 _ az)(u2¢,2 _ az)

(u? — a2)3/2\/u2(p/2 _ a2\/u2<p’2 L u? — a2

ag’ /u2¢/2 —a? —Juz = a2 /u2(p12 —a?
Mg = , Ngrp= .
\/uz(pﬂ _ az\/uz(pﬂ +u? g2 \/uz(p/Z L2 —q2

Hence the mean curvature Hp is

Lg =

s

u2(p/(2a2¢/ _ u2¢/3 _ u2(p 3¢// + a2u¢//)

27/u? — a2 /u2(p’2 _ a2(u2 _ (p’2 +u2 — a2)3/2

If the generalized helicoid and the rotation surface have the same Gauss map, comparing
(4.14) with (4.16), we obtain

/
(4.18) a = /u2¢’? — a%sinh ( / —a-—du) ,

w2 — a2

/
(4.19) up’ = \/u?¢'?> — a2 cosh (/ ——(-up—du) .

W2 — a2

(4.17) Hp =
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By differentiating (4.18), it follows that

2
_ ”2 2 ’ // auga’
by virtue of (4.18) and (4.19). Therefore we have
(4.20) Wl —2a2%¢" +udy” — atug” +ute” =0.

From (4.17), this means that the mean curvature of the rotation surface is zero. Hence, from
(3.3) and (4.12), it follows that

/ 2
bcosh—l __u_z;a._z o Ez_go_,.__—azdu
b - u? —a?

by virtue of (4.6), (4.9) and (4.11). Differentiating this equation, we have
2 (@ + b?)u? —a* —a%p?
u2 — a2 — b2
By substituting (4.21) into (4.20), it follows that
| 2 2 b*u? ’ 3 2\ 1
(u —a +m>(o + (W’ —a‘u)e’ =

4.21) ur't =

and -
2 2 b“u
1 _—
A e
(0' u3_a2u

Hence it follows that
, uvu?2 —a? — b?
—logy’ =logc ,
u?2 —a?

where c is a constant. Hence
W2 — a2

uvu? —aZ —b%’
By comparing this equation with (4.21), it follows that

¢ =+Va?+b? «/___—_211—?'
—a

¢ =c

To integrate this equation, we put

w2 — a2

t= 55—
W2 —a2— b2

Then

—b2¢?
/21 2
B / T b — a2 ./ ((@% + b2)? — a?)(t? — 1)

a a — vJa? + b?t t+1

= lo +log .,/ ——.
Jai2 Nat a2+ r—1

Therefore we have the following.
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THEOREM 4.2. In Theorem 4.1, if two surfaces have the same Gauss map, then they

are
3 1 :fuz_az
@(u) + au 1 = a”cosh (ﬁ——(ﬂ)
u coshv and | ./uZ = a2 cosh (v —f _;sd_zdu) :
u sinh v u—a
Vu? —a?sinh (v — [ 25du
uc—a
where

avu? —a? — b2 + a? + b2V/u? — a2

Vu? —a? 4+ Vu? —a? — b2

++va2+b%lo \/ .
g ViZ—a—JiZ—aZ_p?

Case (i). a%/(1 +¢}?) <u? <a?

Next, assume a2/(1 + ¢’ %) < u%, < a2. In this case, by puttin
H H y g

2 12
U
ZHOH_ _\duy,  fuGan) =.Ja? -3,

2
a Uy

avu? —a? — b2 — Va2 + b2/u?2 — a2
p(u) =alog

we have from (4.5)
ds¥ = —diu3, + f}@@)dv?.
Recall an (S, T)-type rotation surface is of the form

@R(UR)
R(ug,vR) = | ugsinhvg
upg coshvg

So we have the following.

THEOREM 4.3. A generalized helicoid
pu) +av a2
u coshv a = (const.), — < u%, < a?
u sinh v 1+ ¢y

is isometric to the rotation surface
22,2
— [ du
ac—u ,
2 _ 42 i ag
v/a? — u? sinh (v +f a2—u2du)
/
va? — u? cosh (v + [ ;{’—_‘%;du)

so that helices on the generalized helicoid correspond to parallel circles on the rotation sur-
face.
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THEOREM 4.4. In Theorem 4.3, if these two surfaces have the same Gauss map, then

they are
_ 2 . —1 uz—az
o) + av V1= aZsinh («fl——af)
u cgsllll v and Ja2 — u2sinh (v + f aT“i";—zdu) )
u sinh v ,
Va2 —u? cosh (v + [ =% du)
where

ava? + b2 — u? + Va2 + b*Va? — u?
p(u) = alog
ava?+ b2 —u?2 — a2 + b?Va? — u?

va? —u? — Va? + b2 — u?

+Va?+b2%lo \/ )
s Va? —u? +a?+ b2 —u?

Case (iii). 0 < u3, < a?/(1 + (gi)H).
Finally, we consider the case 0 < u2, < a?/(1 + (¢/;)?). In this case, (4.5) reduces to

ds} = duy; + f(a)dv* .

Recall an (S, T)-type rotation surface is of the form

YR(UR)
R(ug, vg) = | ug sinhvg
upg coshvg

So, by similar calculations as above, we have the following.

THEOREM 4.5. A generalized helicoid

ou) + av 22
2
u coshv a =const., 0 <u” < —
u sinh v 1+ oy

is isometric to the rotation surface

a2—ulp’?
a’—u?

VaT = uZsinh (v + [ #rdu)
v/a? — u? cosh (v +f a—zaﬁ_%fdu)
so that helices on the generalized helicoid correspond to parallel circles on the rotation sur-

face.
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THEOREM 4.6. In Theorem 4.5, if these two surfaces have the same Gauss map, then
they are

2 s a—1 U
o(u) + av v/ a“ <+ 1sin ( ,_a2+1)

u coshv and va? — u? sinh (v +f —?ﬂfdu)
u sinh v "
va? — u? cosh (v +f a-zq'_%fdu)

’

where

avu? + b2 —a2 — /b2 —a2Ja2 — u?
avu? + b? — a2 + /b2 — a2+/a? — u?

o) = avb? — a? log\/

a2 — u2
+ Vb2 —a2tan”! —_—
u? + b% — a?
COROLLARY 4.1. The right helicoid
av
ucoshv
u sinh v

is isometric to the rotation surface

acosh™! (v u2 —a2/a)
Ju? —a?coshv (When u? > a?)
Vu? = a?sinhv
or
a sin“l(«/ai — ui/a)
va? — u?sinhv (when 0 < u? < a?).
va? —u? coshv

Moreover the mean curvatures of two surfaces are zero and the Gauss maps of them are
identical.

We continue to study the other cases; the rest of (S, T)-type, (S, T)-type, (T, S)-type and
(T, T)-type. But the techniques of proofs are similar, so we only sketch proofs of them.

Case 2. (S, S)-type, (II).
We assume that the profile curve is on the x;x3-plane.

THEOREM 4.7. A generalized helicoid
o) +av

u sinh v
ucoshv
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is isometric to the rotation surface

u2§2/2_a2
u2+a? du ,
v u? + a? sinh (v +f ;Tafa—zdu)

~u? + a? cosh (v + f P‘l%zdu)

so that helices on the generalized helicoid correspond to parallel circles on the rotation sur-
face.

In this theorem, if a®/(¢’ — 1) > u? (resp. a®/(¢’ — 1) < u?) then the surfaces are
time-like (resp. space-like) with ds? = —du? + £2(u)dv? (resp. ds* = du® + f2(u)dv?) for
a suitable coordinate {, v} and a function f(u). In both cases we get the same representation.

THEOREM 4.8. In Theorem 4.7, if these two surfaces have the same Gauss map, then

they are
) fut <a?/(¢ - D),

— -1 /u2+a2
o) + av +/1 — a“sinh (m)
u sinh v and Vu? + a2 sinh (v +f uTaf;—zd“) ’

u coshv ’
Vu? + a? cosh (v +f ;%—idu)

where

avu? + a% — b? — Va2 — b*Vu? + a?
@(u) =alog
avu? + a2 + Va? — b2/ u? + a?

Vul+a?+ Vu? +a? —b?
VuZtaZ—VuZ+aZ—b%’

++va? — b?log

(i) ifa®/(¢* —1) <u?,
AT . —1 [ A/ u2+a?
(u) + av =+ lsin (\/22'+_1>
usinhv | and | /uZ ¥ aZsinh (v +/f u—é‘%du) ’

u coshv ?
v u? + a2 cosh (v + f uTahdu)

where

‘P(u)—alog\/aﬁ2+a2“b2—¢a2—b2\/u2+a2
avVuZ + a2 + Va2 — b2/u? + a2

2 2 5 )

+ a2—b2log\/“/“ +a2+u’+a |

\/u2+a2_~/u72+a2_b2

Case 3. (S, T)-type.
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THEOREM 4.9. A generalized helicoid

o) +av
u sinhv
ucoshv

2,/2_42
S S du
~/u? + a?sinh (v +f ;f—_&szdu)
vu? + a? cosh (v +f ;;%;du)

so that helices on the generalized helicoid correspond to parallel circles on the rotation sur-
face.

is isometric to the rotation surface

In this case, the surfaces are time-like with ds? = —du® + f 2(u)dv? for a suitable
coordinate {u, v} and a function f(u).

THEOREM 4.10. InTheorem 4.9, if these two surfaces have the same Gauss map, then
they are

T 37 cinh—1 [ v/ u?+a?
o) +av I —a%sinh ( x/:;)
u sinh v and ~u?2 + a2 sinh (v + f ;gf;zdu) ’

u coshv ,
vu? + a? cosh (v +f u—z"_‘“_’—a—zdu)
where
avu? +a? + b? — Va2 + b2/u? + a2
¢(u) = alog

avu? + a2 + b? + /a? + b2J/u? + a?

Vu? +a% +vu? +a%+b?
++va?+b%lo \/ )
g Vu? +a? — Ju? + a? + b2

Case 4. (T, S)-type.
THEOREM 4.11. A generalized helicoid

U Ccosv
usinv
e(u) +av

is isometric to the rotation surface
4
vu? — a2 cos (v - f ﬁ’—i‘%du)
/
u? —a?sin(v—f ;;i‘;—zdu) (when a® < u?)

J
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or

( 2 2)_ 2(1_ /2)
_f\/a uaz_uu2 ¢ /du
2 _ 42 a 2 2
va? — u? cosh (v +f;§—fﬁdu> (when u” < a®)
va? — u? sinh (v +f aq‘ifﬁdu)
so that helices on the generalized helicoid correspond to parallel circles on the rotation sur-
face.

In the case a? < u? (resp. u?> < a?) of this theorem, the surfaces are space-like (resp.

time-like) of ds? = du?+ f2(u)dv? (resp. ds* = —du?+ f%(u)dv?) for a suitable coordinate
{u, v} and a function f (u).

THEOREM 4.12. In the case a*? < u? of Theorem 4.11, if these two surfaces have the
same Gauss map, then they are

(i) Ifa?/(Q - ¢?) <u?,

ucosv

Vu? — a2 cos (v —f %du)
)

usinv and u? —a’sin (U —f —Lu;+a2d“
o) +av .1 Afa?—u?
, Va? + 1sinh (————m )
where
VPP = JiZ=a?
¢(u) = —atan
a ViZ + b2 — a2

+\/mlog\/““2““2‘ﬁ2+b2‘“2~

ViZ a2+ VuZ + b2 —a?’
(i) Ifa? <u? <a?/(1—¢?),
Ju? — a2 cos (v — f —g—(&’}-du)
UCosv — . W
usinv and uc—assm (v —f ;f&gdu)
p) +av V1 —aZsin™! (AC:“Z_“Z)

1—a?

where

avu? —a? — b? — Va2 + b2V/u? — a?
¢(u) =alog
a\/u2 _ a2 _ b2 + ,\/aZ + b2\/u2 _ aZ
Vu? —a? — Ju? —a? —b?
++va?—-b%lo .
g Vi — @2+ Va2 —aZ — b2
In the case u? < a? of Theorem 4.11, the generalized helicoid and the rotation surface

have different axes and these Gauss maps are definitely different.
Case 5. (T, T)-type.

2
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THEOREM 4.13. A generalized helicoid

U COS v
usinv
o) +av

is isometric to the rotation surface
— , -
Vu? —aZcos (v - u—}_’?—;fdu)
4
uz —aZsin(v— [ ;%zdu) (when a® < u?)

or

\/ @ - u2)+u2(¢'2—1) du |
~u? —a?cos (v - f —H’—;du) (when u? < a®)
Vu? — s1n( —f —r‘e—zdu)

so that helices on the generalized helicoid correspond to parallel circles on the rotation sur-
face.

In this theorem the surfaces are time-like with ds? = —du? + f2(u)dv? (when a? < u?)
or ds? = du? — f2(u)dv? (when u? < a?) for a suitable coordinate {u, v} and a function

f ).

THEOREM 4.14. In the case u* > a? of Theorem 4.13, if these two surfaces have the
same Gauss map, then they are

Vu? —a?cos (v —f q‘iﬂ;du)

ucosv
usinv and Vu? = aZsin (v - f d“)
(p(u) + av ) . 1 ,,/u2_a2
va + 1 sinh (_~/a2_j

when

a u2+b2_a2
: Vu? —a?2 4+ Vu? +b%2—-a?
+vVb%2—-a%lo \/ ;
g Vu? —a? — Ju? + b2 —qa?

In the case u? < a? of Theorem 4.13, the generalized helicoid and the rotation surface
have different axes and these Gauss maps are definitely different.

4 [V —a? Vu?-a?
@(u) = —atan
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5. Bour’s theorem on surfaces with light-like axies.

By the argument of the last part of Section 3, we have the following representation of a
generalized helicoid
v 2uyvy
(5.1 H@ug,vy) = | pu(ug) +upg — ugvy + avy
$H(UH) —uUH — UHVY + avy
Differentiating (5.1), we have

2UH 2uH
5.2) H,=|¢y+1- v%, , Hy,=|—-2upgvg +a
Py —1—vg —2upvy +a

So, it follows that

Ey =4u2,’,, Fg=2a, Gg =4u%1,
and
(5.3) ds? = 4¢}du?; + 4adugdvy + 4uldvy .

Helices in H(up, vy) are defined by uy = const.. From the orthogonality condition, it
follows that

2u%1de +advyg =0,

SO
a
vg = — + (const.) .
2u _
Hence, if we put
- a
VH =VH — 77—
2uy

then the curves that are orthogonal to helices are given by vy = const.. Substituting the
equation

_ a
d'UH =dUH - Z"idu}{

into (5.3), we obtain

2
(5.4) ds? = (4<p’,, - “—2> du?, + 4u2 di’ .
Uy
A rotation surface of (0, 1, 1)-axis is given as
2URVR
(5.5) R(uRr,vr) = | @R(UR) + ugr — uszg

@R(UR) —UR — URVY
Hence, from

2VR 2upR
(5.6) Rug=|¢r+1—v%|, Ryz=|—-2urvr|,
pr—1— v% —2uRVR
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the line element of R(u g, vg) is obtained as
dslze = 4(0;Qdu% + 2u%dv%¢ .
Comparing this equation with (5.3), we obtain
_ a?
UH =UR, VR=VR, QPR=@YH+  —.
dupy
Therefore we obtain

THEOREM 5.1. A generalized helicoid

2uv
o) +u — uv? + av
o) —u — uv? + av
is isometric to the rotation surface

2uv —a
o+u-— uv? + av
@ —u-— uv? + av
Differentiating (5.2) and (5.6), we can easily see that coefficients of the second funda-
mental forms of the generalized helicoid and the rotation surface are equal to each other.
Therefore, we have

COROLLARY 5.1. Two surfaces of Theorem 5.1 have the same Gauss map.
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