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1. Introduction.

The purpose of this paper is to study numerical properties of algebraic curves on rational
surfaces. Here by curves and surfaces we mean projective irreducible varieties of dimension
1 and 2, respectively, which are defined over the field of complex numbers. We shall study
pairs $(S, D)$ of projective non-singular rational surfaces $S$ and curves $D$ on $S$ .

First, we recall some basic notions and results conceming birational geometry of pairs.
Let $\Sigma_{b}$ denote a $P^{1}$ -bundle over $P^{1}$ that has a minimal section $\Delta_{\infty}$ with $\Delta_{\infty}^{2}=-b\leq 0$ .
Furthermore, let $C$ be a curve on $\Sigma_{b}$ . The Picard group of $\Sigma_{b}$ is generated by the section
$\Delta_{\infty}$ and a fiber $F_{u}=\rho^{-1}(u)$ of the $P^{1}$ -bundle $\Sigma_{b}$ where $\rho$ is the projection (cf. [Hl, p. 370,
Proposition 2.3]). Then $C\sim\sigma\Delta_{\infty}+eF_{u}$ for some integers $\sigma$ and $e$ . Here the symbol\sim
indicates linear equivalence between divisors. If $b\geq 1,$ $(\sigma, e)$ is uniquely determined. But
when $b=0$ , the $\Sigma_{0}$ has two $P^{1}$ -bundle structures. In this case, we may assume that $ e\geq\sigma$ .
Then $(\sigma, e)$ is uniquely determined and we say that $(\Sigma_{b}, C)$ has the degree $(\sigma, e)$ . Moreover,
let $m_{1}$ denote the highest multiplicity of singular points of $C$ . The pair $(\Sigma_{b}, C)$ is said to be
#-minimal if $\sigma\geq 2m_{1}$ and $e-\sigma\geq bm_{1}$ (cf. [I1]). The last condition is always satisfied
whenever $b\geq 2$ .

Let $D$ be a non-singular curve on $S$ . Then the pair $(S, D)$ is said to be relatively minimal,
whenever the intersection number D. $E\geq 2$ for any exceptional curve $E$ of the first kind on
$S$ such that $E\neq D$ (cf. [I1], Theorem 1, [S]). Suppose that $(S, D)$ is a relatively minimal
pair such that $S\neq P^{2}$ and $\kappa[D]\geq 0$ where $\kappa[D]$ denotes $\kappa(K+D, S)$ . Then there exists
a #-minimal pair $(\Sigma_{b}, C)$ such that $(S, D)$ is derived from $(\Sigma_{b}, C)$ by resolving singularities
on $C$ in a shortest way (cf. [I1]). In this case, we say that $(\Sigma_{b}, C)$ is a #-minimal model of
$(S, D)$ . The structure of $(S, D)$ with $\kappa[D]\leq 1$ has been precisely determined by Iitaka in
[I1] and [I2]. If $\kappa[D]=2$ , then relatively minimal pairs are always minimal (see [I1]), and
hence, $D^{2}$ is invariant for birational transformation of pairs. Note that if $\kappa[D]\geq 0$, then $\sigma$
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is also invariant for birational transformations of pairs (see [I2]). Define an invariant $n$ to $t$

$4g-D^{2}$ where $g$ is the genus of $D$ . If $\kappa[D]=2$ then $n\geq-4$ . Moreover, if $\kappa[D]=2$ an
$n\leq 4$ then $\sigma\leq 4$ ([I2, Proposition 7]).

The main result is stated as follows:

THEOREM 1. Let $(S, D)$ be a pair ofa rational $su$iface $S$ and a non-singular curve $\lrcorner$

ofgenus $g$ on S. Suppose that $(S, D)$ is a relatively minimal pair and $S\neq P^{2},$ $\kappa[D]=2$ . $f$

$(\sigma, e)$ , we denote the degree ofa #-minimal model $(\Sigma_{b}, C)$ of $(S, D)$ . Then $\sigma\leq(n-1)(n-\acute{A}$

for $n\geq 5$ .
Furthermore, all possible types of relatively minimal pairs for $5\leq n\leq 6$ will be $en\iota$

merated in Theorem 2.
The author expresses gratitude to Professors Shigeru Iitaka and Kazuo Akao for the

valuable advices during the preparation of this paper. Moreover, the author would like 1

thank the referee for his very valuable suggestions which are essential to complete the fin
draft.

2. Proof of Theorem 1.

Let $(S, D)$ be a relatively minimal pair such that $S\neq P^{2}$ and $\kappa[D]=2$ . Then the
exists a #-minimal model of $(S, D)$ , which is denoted by $(\Sigma_{b}, C)$ . After a finite successio
of blowing ups at singular points of $C$ , we have a birational morphism $\mu$ : $S\rightarrow\Sigma_{b}$ . $L$

$P_{1},$ $P_{2},$
$\ldots,$

$P_{r}$ indicate all the singular points (including infinitely near singular points) of
whose multiplicities are denoted by $m_{1},$ $m_{2},$ $\ldots$ , $m_{r}$ , respectively. Here it is supposed th
$m_{1}\geq\cdots\geq m_{r}$ . Then we have the following relations:

$K\sim\mu^{*}(K_{0})+\sum_{j=1}^{r}E_{j}$ , $($

$D\sim\mu^{*}(C)-\sum_{j=1}^{r}m_{j}E_{j}$ . $($

Here, the $E_{j}$ are exceptional curves of the first kind derived from blowing up singular poin
$P_{j}$ and for simplicity, the total inverse images of $E_{j}$ are denoted by the same symbols $E_{j}$ . $f$

and $K$ mean canonical divisors on $\Sigma_{b}$ and $S$ , respectively. Furthermore, letting $(\sigma, e)$ be tl
degree of $(\Sigma_{b}, C)$ , we obtain

$C^{2}=2e\sigma-\sigma^{2}b$ , $($

$\pi=(e-1)(\sigma-1)-\frac{b\sigma(\sigma-1)}{2}$ $($

where $\pi$ denotes the virtual genus of $C$ . From these, we have the following equations:

$D^{2}=C^{2}-\sum_{j=1}^{r}m_{j}^{2}=2e\sigma-\sigma^{2}b-\sum_{j=1}^{r}m_{j}^{2}$ , $($
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$g=\pi-\sum_{j=1}^{r}\frac{m_{j}(m_{j}-1)}{2}=(e-1)(\sigma-1)-\frac{b\sigma(\sigma-1)}{2}-\sum_{j=1}^{r}\frac{m_{j}(m_{j}-1)}{2}$ . (6)

(I) Case $r=0$ : Then $C$ is non-singular; hence $C=D$ . We have $n=4g-D^{2}=$
$4\pi-C^{2}$ . From the Equations (3) and (4), we obtain

$(\sigma-2)(2e-\sigma b-4)=n+4$ . (7)

Hence, it follows that $\sigma-2\leq n+4$ . Thus, $\sigma\leq n+6$ , which implies $\sigma<(n-1)(n-2)$

since $n\geq 5$ .
(II) Case $r\geq 1$ and $b\geq 3$ : Define $H$ to be $2(\pi-h)\sigma-(\sigma-2)C^{2}$ where $h=[(n+1)/2]$

(cf. [H2, p. 117]). Since $\sigma\geq 2m_{1}$ ,

$2(g-h)\sigma-(\sigma-2)D^{2}=H+\sum_{j=1}^{r}m_{j}(\sigma-2m_{j})\geq H$ .

Suppose that $H\geq 0$ . Then

$-n\leq g-n=D^{2}-3g\leq D^{2}-\frac{2\sigma}{\sigma-2}g\leq-\frac{2h\sigma}{\sigma-2}<-2h$ .

Hence, $h<n/2$ , which contradicts the inequality $h=[(n+1)/2]\geq n/2$ . Hence, $H<0$ ;
thus,

$2\{e-(b\sigma+h-1)\}+\sigma(b-2)=H/\sigma<0$ . (8)

From this, it follows that

$\sigma(b-2)<-2\{e-(b\sigma+h-1)\}\leq 2(h-1)$ . (9)

Since $b\geq 3$ , we have $\sigma<2(h-1)\leq(n-1)$ . Hence, $\sigma<(n-1)(n-2)$ .
(III) Case $r\geq 1$ and $b\leq 2$ : By (5) and (6),

$\sum_{j=1}^{r}m_{j}=\sigma(2e-\sigma b)-(\sigma-1)(2e-\sigma b-2)+n-2g$ , (10)

$\sum_{j=1}^{r}m_{j}^{2}=\sigma(2e-\sigma b)+n-4g$ . (11)

If $b=0$ , then put $\sigma=2m_{1}+v$ and $e=\sigma+u$ . If $b=1$ , then put $\sigma=2m_{1}+v$ and
$e=\sigma+m_{1}+u$ . If $b=2$ , then put $\sigma=2m_{1}+v$ and $e=2\sigma+u$ . Note that in these cases
$u\geq 0$ and $v\geq 0$ . The Equations (10) and (11) tum out to be

$\sum_{j=1}^{r}m_{j}=8m_{1}+2u+wv+n-2g-2$ , (12)

$\sum_{j=1}^{r}m_{j}^{2}=8m_{1}^{2}+2(2u+wv)m_{1}+(w-2)v^{2}+2uv+n-4g$ . (13)



362 OSAMU MATSUDA

Here, we put $w=4-\delta_{1,b}$ where $\delta_{i,j}$ denotes the Kronecker delta. By (12), (13) and th
following inequality

$m_{1}\sum_{j=1}^{r}m_{j}-\sum_{j=1}^{r}m_{j}^{2}\geq 0$ ,

we have
$(n-2g-2-2u-wv)m_{1}\geq(w-2)v^{2}+2uv+n-4g$ . (14

Note that ifg $=0,$ $thenn-2g-2-2u-wv>0by(14)$ .
(III-I) Suppose that $n-2g-2-2u-wv<0$ . Then by (14) and $g\geq 1$ ,

$m_{1}\leq\frac{4g-n-(w-2)v^{2}-2uv}{2g+2-n+2u+wv}\leq\frac{4g-n}{2g+2-n}\leq 2+\frac{n-4}{2g+2-n}\leq 1$ .

This contradicts the hypothesis $m_{1}\geq 2$ .
(III-2) $Supposethatn-2g-2-2u-wv\geq 0$ . Then we obtain

$n-2\geq 2u+wv+2g$ . $(1_{\sim}$

LEMMA 1. Given non-negative integers $x_{1},$ $\ldots$ , $x_{l},$ $m,$ $\alpha$ and $\beta$ such that $\sum_{j=1}^{l}X_{j}-$

$\alpha m+\beta$ and $x_{j}\leq m$ for $1\leq j\leq l$ , itfollows that $\sum_{j=1}^{l}x_{j}^{2}\leq\alpha m^{2}+\beta^{2}$ .

PROOF. First we consider the case where $\alpha$ is the quotient $q$ of $\sum_{j=1}^{r}x_{j}$ by $m$ an
$\beta$ is the remainder $\gamma$ . We prove this by induction on $l$ . When $l=1$ , the result follow
immediately. In the case where $l\geq 2$ , if there exist $i\neq j$ such that $x_{i}+x_{j}<m$ , then $b$

induction hypothesis,

$\sum_{j=1}^{l}x_{j}^{2}\leq(x\iota+x_{j})^{2}+\sum_{k\neq i,j}x_{k}^{2}\leq qm^{2}+\gamma^{2}$

Suppose that there exist $i\neq j$ such that $x_{i}+x_{j}\geq m$ . Since $x_{i}\leq m$ and $x_{j}\leq m$ , it follow
that $x_{i}+x_{j}-m\leq m$ and $m^{2}+(x_{i}+xJ-m)^{2}=x_{i}^{2}+x_{j}^{2}+2(m-x_{i})(m-x_{j})\geq x_{i}^{2}+z$

Thus,

$\sum_{j=1}^{l}x_{j}^{2}=x_{i}^{2}+x_{j}^{2}+\sum_{k\neq i,j}x_{k}^{2}\leq m^{2}+(x_{i}+x_{j}-m)^{2}+\sum_{k\neq i,j}x_{k}^{2}$ .

By induction hypothesis,

$(x_{i}+x_{j}-m)^{2}+\sum_{k\neq i,j}x_{k}^{2}\leq q^{\prime}m^{2}+\gamma^{2}$

where $q^{\prime}$ is the quotient of $(x_{i}+xJ-m)+\sum_{k\neq i,j}x_{k}$ by $m$ and $\gamma$ is the remainder. Puttin
$q=q^{\prime}+1$ , we have the result.

Next consider the general case. Letting $q$ denote the quotient of $\alpha m+\beta$ by $m$ and $\gamma$ tl
remainder, we have $\alpha m+\beta=qm+\gamma$ and $q=\alpha+\alpha^{\prime}$ for some $\alpha^{\prime}\geq 0$ . Hence, $\beta=\gamma+\alpha^{\prime}r$
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By the former part of the proof, we obtain

$\sum_{j=1}^{l}\leq qm^{2}+\gamma^{2}$

From
$qm^{2}+\gamma^{2}=(\alpha+\alpha^{\prime})m^{2}+\gamma^{2}\leq\alpha m^{2}+(\alpha^{\prime}m+\gamma)^{2}=\alpha m^{2}+\beta^{2}$

the result follows immediately. $\square $

Note: The author thanks Dr. H. Tanaka for his advice in the proof.

Applying Lemma 1 to (12) and (13) where $\alpha=8,$ $m=m_{1}$ and $\beta=2u+wv+n-2g-2$ ,

we have

$8m_{1}^{2}+2(2u+wv)m_{1}+(w-2)v^{2}+2uv+n-4g=\sum_{j=1}^{r}m_{j}^{2}\leq 8m_{1}^{2}+(2u+wv+n-2g-2)^{2}$

From this, it follows that

$2(2u+wv)m_{1}+(w-2)v^{2}+2uv+n-4g\leq(2u+wv+n-2g-2)^{2}$

Recalling that $\sigma=2m_{1}+v$ , we obtain

$(2u+wv)(\sigma-v)+(w-2)v^{2}+2uv+n-4g\leq(2u+wv+n-2g-2)^{2}$

and then

$(2u+wv)\sigma\leq(2u+wv+n-2)^{2}-n+2v^{2}-4g(2u+wv+n-g-3)$ .
By (15), we have $2g\leq n-2$ and so-4$g(2u+wv+n-g-3)\leq 0$ . Thus, we obtain

$(2u+wv)\sigma\leq(2u+wv+n-2)^{2}-n+2v^{2}$

Case $2u+wv>0$ : By (15), we have $2\leq 2u+wv\leq 2u+wv+2g\leq n-2$ and so
$v\leq(n-2)/w\leq(n-2)/3$ . Hence,

$\sigma\leq\frac{(2u+wv+n-2)^{2}-n+2v^{2}}{2u+wv}$

$=2u+wv+2(n-2)+\frac{(n-2)^{2}-n+2v^{2}}{2u+wv}$

$\leq 3(n-2)+\frac{1}{2}\{(n-2)^{2}-n+2v^{2}\}$

$\leq\frac{1}{2}\{(n-1)(n-2)+4n-10+2(n-2)^{2}/9\}$

$=(n-1)(n-2)+\frac{1}{2}\{(n-2)(-7n+41)/9-2\}$ .

Here, $(-7n+41)(n-2)/9-2\leq 0$ for $n\geq 5$ . Here, $\sigma\leq(n-1)(n-2)$ .
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Case $2u+wv=0$ : Then $u=v=0$ . Hence, $\sigma=2m_{1}$ . Define $t$ to be $\max\{j|m_{1}=$

$m_{j}\}$ . Then (12) and (13) tum out to be

$tm_{1}+\sum_{j=t+1}^{r}m_{j}=8m_{1}+n-2g-2$ , (16

$tm_{1}^{2}+\sum_{j=t+1}^{r}m_{j}^{2}=8m_{1}^{2}+n-4g$ . (17

Here, $m_{j}\leq m_{1}-1$ for $j\geq t+1$ .
Suppose that $t\geq 8$ . Eliminating $n$ from (16) and (17), we have

$0\leq(t-8)(m_{1}^{2}-m_{1})+\sum_{j=9}^{r}(m_{j}^{2}-m_{j})=2-2g\leq 2$ .

Hence, $g=0$ or $g=1$ . If $g=0$, then $t=8,$ $r=9$ and $m_{9}=2$ . If $g=1$ , then $t=r=8$ . $Il$

both cases, making use of (16) again, we can verify $n=4$ , which contradict the hypothesi
$n\geq 5$ .

Suppose that $1\leq t\leq 7$ . Then the Equations (16) and (17) imply that

$\sum_{j=t+1}^{r}m_{j}+2g=(8-t)m_{1}+n-2=(8-t)(m_{1}-1)+n+6-t$ ,

$\sum_{j=t+1}^{r}m_{j}^{2}+4g^{2}=(8-t)m_{1}^{2}+n-4g+4g^{2}$ .

Here, $n+6-t>0$ by $1\leq t\leq 7$ . By applying Lemma 1 where $m=m_{1}-1,$ $\alpha=8-tan($

$\beta=n+6-t$ , we obtain

$(8-t)m_{1}^{2}+n-4g+4g^{2}\leq(8-t)(m_{1}-1)^{2}+(n+6-t)^{2}$

From this, it follows that

$2(8-t)m_{1}\leq(8-t)+(n+6-t)^{2}-n-4g(g-1)$ .
Since 4$g(g-1)\geq 0$, we have

$2(8-t)m_{1}\leq(8-t)+(n-2+8-t)^{2}-n$

$=(8-t)+(n-2+8-t)^{2}-n$

$=(8-t)(2n+5-t)+n^{2}-5n+4$

$=(8-t)(n-1)(n-2)+(8-t)(-n^{2}+5n+3-t)+n^{2}-5n+4$

$=(8-t)(n-1)(n-2)-(7-t)(n^{2}-5n+t-4)$ .
Thus,

$m1\leq\frac{1}{2}\{(n-1)(n-2)-(n^{2}-5n+t-4)(7-t)/(8-t)\}$ . (18
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However, since $t\leq 7$ , we $have-(n^{2}-5n+t-4)(7-t)/(8-t)<2$ unless $t=1$ and
$n=5$ . Hence, we have $m_{1}\leq(n-1)(n-2)/2$ , and so $\sigma=2m_{1}\leq(n-1)(n-2)$ . Finally,
we consider the case where $n=5$ and $t=1$ . Then $g\leq n-4=1$ by Proposition 2. By (18),

we have $m_{1}\leq 7$ . If $m_{1}\leq 6$ then $\sigma=2m_{1}\leq 12$ and $\sigma\leq(n-1)(n-2)=12$ . Therefore,

in order to complete the proof, it suffices to derive a contradiction under the hypothesis that
$t=1$ and $m_{1}=7$ . Then in these case, $m_{2}\leq 6$ . (16) and (17) tum out to be

$\sum_{j=2}^{r}m_{j}=52-2g$ , $\sum_{j=2}^{r}m_{j}^{2}=348-4g$ .

Then

$(52-2g)m_{2}-348+4g=m_{2}\sum_{j=2}^{r}m_{j}-\sum_{j=2}^{r}m_{j}^{2}\geq 0$ .

Since $g=0$ or $g=1$ , it follows that $m_{2}\geq(348-4g)/(52-2g)>6$ , which contradicts the
inequality $m_{2}\leq 6$ . This completes the proof of Theorem 1.

3. Types of #-minimal model $s$ of $(S, D)$ .
All possible types of#-minimal models of relatively minimal pairs $(S, D)$ with $\kappa[D]=2$

and $n=4g-D^{2}\geq 5$ can be enumerated in the following way.
Let $(\Sigma_{b}, C)$ be a #-minimal pair with degree $(\sigma, e)$ . Furthermore, let $m_{1},$ $m_{2},$ $\ldots$ , $m_{r}$ be

the multiplicities of all singular points $P_{1},$ $P_{2},$
$\ldots$ , $P_{r}$ of $C$ where $m_{1}\geq m_{2}\geq\cdots\geq m_{r}$ .

Case (A). Case $C=D$ : By the Equation (7), it is easy to see that $\sigma\leq n+4,$ $ b\leq$

$(n+8)/2$ and $2e\leq n+8+\sigma b$ . The set of solutions $(\sigma, e, b)$ satisfying the above equality
and inequalities is finite. So, we are done.

Case (B). Case in which $C$ is singular:

PROPOSITION 2. Suppose that $g\geq 1$ and $C$ is singular. Then $g\leq n+5-r$ .
PROOF. Since $D+K$ is nef and $|D+m_{1}K|$ is not empty ([12, Proposition 3]), $(D+$

$K)(D+m_{1}K)\geq 0$ . From the adjunction formula,

$K^{2}\geq-\frac{2g-2}{m_{1}}-2g+2+D^{2}\geq-3g+3+D^{2}\geq g+3-n$ . (19)

Since $K^{2}=8-r$ , we obtain $g\leq n+5-r$ . $\square $

PROPOSITION 3. Suppose that $g=0$ and $n=-D^{2}\geq 5$ . $ Then-(n-2)^{2}/n\leq K^{2}\leq$

$-1$ .
PROOF. We have $(D+n/(n-2)K)\cdot(D+m_{1}K)\geq 0$ , since $D+n/(n-2)K$ is nef

and $|D+m_{1}K|$ is not empty ([I2, Proposition 3]). Hence, $(D+n/(n-2)K)\cdot K\geq 0$ , which
induces $K^{2}\geq-(n-2)^{2}/n$ . Supposing that $K^{2}\geq 0$ , we shall derive a contradiction. Then
we have $|-K|\neq\phi$ by Riemann-Roch theorem. Thus, $(D+n/(n-2)K)\cdot(-K)\geq 0$ ; hence,

$(D+n/(n-2)K)\cdot K=0$ . Therefore, $K^{2}=-(n-2)^{2}n=-n+4-4/n$ , which is not an
integer, since $n\geq 5$ . Thus $K^{2}\leq-1$ is established. $\square $
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In the case $g=0$, Proposition 3 and $K^{2}=8-r$ imply $9\leq r\leq n+4$ . If $g\geq 1$ , then by
Proposition 2 and $r\geq 1$ , we have $g\leq n+4$ and $r\leq n+4$ .

(B-1) Case $b\geq 3$ : Then by (9), $\sigma<2(h-1)$ and $b<2(h-1)/\sigma+2$ where
$h=[(n+1)/2]$ . Moreover, by the Equation (8), we have $e<(b\sigma+h-1)-\sigma(b-2)/2$ .

(B-2) Case $b\leq 2$ : Then $e=2\sigma+u$ where $u<(n-2)/2-2g$ by (15). Hencel
$e<2\sigma+(n-2)/2-2g$.

Theorem 1 gives an upper bound for $\sigma$ . Accordingly, since $\sigma\geq 2m_{1}$ and $ m_{1}\geq m_{2}\geq$

. . . $\geq m_{r}$ , all possible types of #-minimal models $(\Sigma_{b}, C)$ could be computed.
We say that the symbol $[\sigma*e, b;m_{1}, \ldots , m_{r}]$ is the type of $(\Sigma_{b}, C)$ . For simplicity

$[\sigma*e, 0;m_{1}, \ldots, m_{r}]$ is rewritten as $[\sigma*e;m_{1}, \ldots , m_{r}]$ . Furthermore, when $\sigma=2m_{1}$ , we
say that both $[\sigma*(e+m_{1}), 1;m_{1}, \ldots, m_{r}]$ and $[\sigma*(e+2m_{1}), 2;m_{1}, \ldots , m_{r}]$ are types
associated to the type $[\sigma*e;m_{1}, \ldots , m_{r}]$ .

THEOREM 2. Let $(S, D)$ be a relatively minimal pair. Suppose that $5\leq n\leq 6$ where
$n=4g-D^{2}$ . Then all possible types of#-minimal models of $(S, D)$ are listed in thefollowing
table.

The author doe $s$ not know concrete curves which have the above types. However, he
has obtained the table of similar results even in the case where $n=7,8,9,10$ with help of
computer (cf. [M]).

References

[H1] R. HARTSHORNE, Algebraic Geometry, Springer (1977).

[H2] R. HARTSHORNE, Curves with high self-intersection on algebraic surfaces, Publ. I.H.E.S. 36 (1970), 111-
126.

[I1] S. IITAKA, On irreducible plane curves, Saitama Math. J. 1 (1983), 47-63.
[I2] S. IITAKA, Birational geometry of plane curves, Tokyo J. Math. 22 (1999), 289-321.
[Sl F. SAKAI, Semi-stable curve of algebraic surfaces and logarithmic pluricanonical maps, Math. Ann. 254

(1980), 89-120.



NUMERICAL TYPES OF ALGEBRAIC CURVES 367

[M] O. MATSUDA, Birational geometry of curves on rational and ruled surfaces, Doctoral Thesis, Gakushuin
Univ. (1998).

Present Address:
TSUYAMA NATIONAL COLLEGE OF TECHNOLOGY,
NUMA, TSUYAMA, OKAYAMA, 708-8509 JAPAN.
e-mail: matsuda@tsuyama-ct.ac.jp


