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0. Introduction

In the arithmetic of elliptic curves, the modular symbols, the modular elements by Mazur
and Tate [8] and the Euler system of the zeta elements constructed by Kato [4] play important
roles. These elements are defined for a modular elliptic curve and for cyclotomic fields, and
they are all related to the values of the L-functions of the elliptic curve.

As the main result of this paper, we will construct a homomorphism which relates general
Euler systems to general elements in the group rings, having the same property as the modular
elements. This is a generalization of the result of the homomorphism which appeared in
Kurihara [6] and was used to study the Selmer groups in the cyclotomic Z,-extension of
Q. For an odd prime number p, he studied the relation between the zeta elements and the
modular elements in the finite extension fields in the cyclotomic Z,-extension of the field
Q, and showed that the two elements correspond through a map which has a nice integral
property.

In this paper, we will study the relation between the modular elements and the zeta
elements in general. For an elliptic curve defined over Q, we will construct a homomorphism
from the cohomology group to the group ring of the Galois group for arbitrary cyclotomic
fields and a good prime p. We define an admissible system as a system in group rings which
satisfies the same formulas of the modular elements. We will prove that an Euler system
corresponds to an admissible system through the homomorphism, and as a special case, the
zeta element corresponds to the modular element. We will also prove that the homomorphism
has a nice integral property in many cases. We can regard Kurihara’s map as a special case of
our map. Since our homomorphism is defined for a finite degree extension, we expect that this
homomorphism would be useful to study the Selmer group of a number field of finite degree.

Let E be an elliptic curve defined over Q. In [6], he studied the structures of Selmer
groups in the cyclotomic Z,-extension of Q for a good supersingular prime p, and defined
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the homomorphism

Po, : H'(Qp.n, TyE) — Z,[Gal(Q,/Q)]

for each positive integer n, where Q, ,, is the n-th layer of the cyclotomic Z ,-extension of Q,,
and Q,, is the n-th layer of the cyclotomic Z ,-extension of Q. Here, we adopted the notation
Pq, which is not used in [6]. In Kurihara-Pollack [7], the map is denoted by P,.

One of the most important properties of the homomorphism is that the image of Kato’s
zeta element under the homomorphism is the modular element of Mazur and Tate for each
positive integer n. In other words, in the cyclotomic Z,-extension of Q, the Euler system of
Kato’s zeta elements corresponds to the system of the modular elements through the homo-
morphisms. See Kurihara-Pollack [7] section 1.3 (1.3). The zeta elements and the modular
elements are introduced in §3.

This map plays an important role in Iwasawa theory for elliptic curves, and is related
to an important homomorphism Col®, which is defined by Kobayashi in [5]. He formulated
the Iwasawa main conjecture for supersingular primes using the homomorphism Col*, and
proved a partial result of the main conjecture using Kato’s zeta elements. In section 1 of
Kurihara-Pollack [7], Col® is constructed from PqQ,-

We first introduce two systems which are related to the main result of this paper.

For a positive integer N, let zy € Hl(Z[MN, %], VpE) be the zeta element, and let
gy = Gal(Q(un)/Q). The system of the zeta elements (zy)n>1 is an Euler system. In
other words, they satisfy the formulas below

N (gIN)

o ©
Fylo;Dzn (g IN).

Nrgn/n(zgn) = {
Here, g is a prime number, o, € Gy is the g-th Frobenius map and F,(T) := 1 — aq—"T +
%qu € Q[T], where ¢, = 1 (resp. 0) if g is a good (resp. bad) prime and a, is the g-th
coefficient of the normalized cusp form Y, , a,q" which corresponds to the elliptic curve
E. In this paper, we also call the system of finite elements (wys)pm |y an Euler system if they
satisfy the same formulas above.

For a positive integer N, let Oy € Q[Gy] be the modular element of Mazur and Tate.
They satisfy the compatible formulas below

aqon _8qVN/%(9%) (gIN)

wgN/N(OgN) = 3
1 1 (ag —0q — g0, )0y (q IN).

Here, myn/n : QLGyn] — Q[Gn] is the natural restriction map and VN QIGn]1— QIGnN]
q q

is defined by o — > 7 for 0 € Gn. In this paper, we call a system of
q

regN,nN/% (1)=0

(finite or infinite) elements of group rings an admissible system, when they satisfy the same
compatible formulas. The system of the modular elements (6x)y>1 is an admissible system.
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In this paper, we will generalize Kurihara’s result on the homomorphism Pg,. We will
construct the homomorphism

Py H(Qp ®0 Q(un), V,E) — QplGn]

for a good prime p and for the cyclotomic field Q(u ) with arbitrary positive integer N, not
only in the case when E is supersingular at p and N = p”, and prove that Euler systems
correspond to the admissible systems by the homomorphisms Py. In particular, the zeta
element corresponds to the modular element. From the definition of Euler systems, in the
case in which Kurihara and Kobayashi studied, the system of the zeta elements (zn),>1 was
only a norm compatible system (see the upper half of the equation (*)), but we will study
general relations between Euler systems. If E is supersingular at p, “Kurihara’s Pg,” above
is induced from P .1 in this paper.

We also note that our map is defined over local fields of finite degree over Q,, hence
would be useful to study the Selmer group of a number field of finite degree. On the other
hand, some important maps by Coleman [2] and Perrin-Riou [10] were defined over the cy-
clotomic Z ,-extensions, namely extensions of infinite degree.

In the following sections, we will prove the following theorems. We fix a good prime p.

THEOREM 0.1 (Theorem 3.4). If (wy)m € HM|N Hl(Qp ®qQ Q(um), VpE) is an
Euler system, then (Py(wy))m € ]—[M‘N QplGum] is an admissible system.

THEOREM 0.2 (Theorem 3.6). Let zy € Hl(Qp ®Q Q(un), Vo E) be the zeta ele-
ment, and let Oy € Qp[GN] be the modular element, then we have

Pn(zn) =6nN .

THEOREM 0.3 (Theorem 4.1). If p divides N, E(Fp(,u,N))[p] = 0 and (wy)y is an
integral Euler system, namely (wy)y € HM\N H! (Qp®QQum), TE), then (Py(wm)) m
is an integral admissible system, namely (Py(wym))m € HMlN Z,|Gu). Here E is the
reduction of the elliptic curve E mod p.

The author expresses his sincere gratitude to professor Kurihara for his advice and en-
couragements, and is deeply indebted to professor Matsuno for reading the manuscript care-
fully and making helpful suggestions. He would also like to thank the referee for pointing out
the simplification of some of the notations and proofs.

1. Notations

Let E/Q be an elliptic curve defined over the rational field. For a prime number /, we
call / a good prime if E has good reduction at /, and call / a bad prime if E has bad reduction
at /.

Here we introduce group rings of cyclic groups because they are important to define the
homomorphism. For each integer N > 1, let Cy be the abstract cyclic group of order N with
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generator £y. If M divides N, we regard Cyy C Cy and &y = EJ]VV/M. Choose a N-th root of

unity ¢y € Q for each N satisfying ¢y = glilv/M if M divides N.
Define the ring homomorphism

uy 1 Q[Cy] — Q(un)

by én = &N
If L and M are two natural numbers satisfying (L, M) = 1, we identify Q[Cpr ] with

QICLICu]by M, = & and EF, = Epr, and define
v m :QICLm] = Q(up)[Cuml

by &1 — ¢r and &y +— &pr. The homomorphism vy s is often denoted by vy .
For an integer a which is coprime to L, we define

a1 Q(rL)Cu] — Q(ur)[Chy]

by ¢r > ¢f and &y > &
If a is coprime to LM, then it is easy to show the diagram

Q)] 25 Quu)Cu]
vm | O um

Qlurm) = Qurm)

is commutative. Here, o, € Gal(Q(ury)/Q) is the unique element satisfying o, ({Ly) =
Eim

If L', L, M > 1 are integers which satisfy L|L’ and (L', M) = 1, then it is easy to show
that the diagram

tr,,;
Qu)Cul —5 Qur)Cul
(Y O (Y

W pyim
Qurm) — Qurm)

is commutative. Here, tr;//;, in the upper row only acts on the coefficients. It is easy to see
that the trace maps tr; /7, and trz/y 7 commute with 6, for each integer a coprime to L'. In
this paper, the trace map trQ.,y)/Q(us) for the extension of cyclotomic fields Q(uy)/Q ()
is simply denoted by try .

LEMMA 1.1. Letl be a prime number, then each eigenvalue of o7 : Q[Cn] — Q[Cn]
is either a root of unity or Q.

PROOF. Write N = ["M with [ | M and let r be the order of l mod M in the multi-
plicative group (Z/MZ)*. Then we have ;' = 5;""". Let p be an eigenvalue of 5/, then we

have p”* = p"*", which implies that if p # 0, then p is an r-th root of unity. O
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DEFINITION 1.2. For a prime number /, we define the number ¢&; by

|1 (:good)
710 (- bad),

and we define the polynomial F;(T) € Q[T] by

F(T):=1— %TJF %TZ.

Here, a; is the [-th coefficient of the normalized cusp form ) o, a,q" which corre-
sponds to the elliptic curve E.

PROPOSITION 1.3. The inverse F;(G;)~) exists in Endo(QICN]D). Ifl /N, then
Fi(o7)~ ! exists in Endg(Q(un)).

PROOF. Since Fj(0;) is a Q-linear map, it is enough to show that the map is injective.

If [ is a bad prime, then we have F;(o;) = 1 — %6\1. If there exists non-zero x € Q[Cy]
which satisfy (1 — 96;)x = 0, then 1 is an eigenvalue of 97, but because of |¢;| < 1 and
the previous lemma, the absolute value of an eigenvalue of ‘;—16\1 is < % Hence 1 — ‘;—16\1 is
injective.

If [ is a good prime, then we have Fj(o;) = 1 — ”;—’67 + %6}2. Let a, B € C be the two
roots of 72 — ;T +1 = 0. Then we have 1 — o1 + %6}2 =(1-%o - %&7). So by the
similar argument as above, if the map is not injective, then %E; or %&7 has eigenvalue 1. But

since we have |«| = |B| = /I, this does not hold.
The latter is proved similarly. a

For a global or a local field K, we denote the absolute Galois group Gal(K /K) by G g
and for a G g-module B, we denote the cohomology group H!' (G, B) by H' (K, B). Let F
be an extension of Q. For a G p-module B, we denote ]_[v‘p H!(F,, B) by H! Q) ®q F, B).
Here v runs through all the primes of F' above p and F), is the v-adic completion of F.

For an extension of p-adic fields K’/K and G g-module B, we denote the corestriction
map H' (Gg/, B) - H!(Gg, B) by

Nrgx : H'(K', B) - H'(K, B).

For an extension of global fields F'/F and G g-module B, we denote the product of norm

maps Hv\p Zwlv NrFﬁ;/Fu : Hw|p Hl(Fl:)’ B) = Hv\p Hw|v Hl(Fl:)’ B) — Hvlle(FU’ B)
by

Nrpr : H(Q, ®q F', B) — H'(Q, ®q F, B) .

Here, v runs through all the primes of F above p and w runs through all the primes of F’ above
v. For the extension of cyclotomic fields Q(un)/Q(uar) with M|N, the map NrQy)/Q(um)
is simply denoted by Nry, .
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2. Definition of the map

For the rest of the paper, we assume that p is a good prime. Let £ be an elliptic curve over
Z, whose generic fiber is E. We denote its special fiber by &. Let D := leis(&) /Z,) be the
crystalline cohomology, then D is a free Z ,-module of rank 2, and Frobenius automorphism

@ acts on D. Define D := D ®z, Q. We regard Néron differential ® = wg as an element
of D. Write ¢ := %, then ¢~2 — a,,go_l + p = 0. The cup product defines a non-degenerate
alternating pairing [, ] : D x D — Q,, such that [¢p(w), w] # 0. We write DY = Q,w C D.

Let w* € D/D° be the unique element satisfying [w*, w] = 1. For an extension K /Q p> W€
can naturally extend the pairing [, Jto[, ]: D ®q, K x D ®q, K — K and for a number
field F we can define the pairing [, | : D ®q F x D ®q F — Q, ®q F.

We introduce the dual exponential map, which was first defined by Bloch and Kato in
[1]. The definition below is different from that in [1] but they coincide.

Let K be a finite extension of Q,, Ok its ring of integers and m g its maximal ideal. Let
T, E be the Tate module of E, i.e.

T,E = lim E[p"]

and VpE := THE @z, Qp. Let E be the formal group of the elliptic curve E. Let expy be

the exponential map of the formal group E. Thenif r € N is large enough, we can define
Z-linear map expy , : mjy — E (m'). We consider the composite of the map
myy — E(my) — E(mg) — E(K)®Z, - H (K, T,E)

and it is denoted by expg ,, : my — H!(K, T,E). Here, the first arrow is expy, the
second arrow is the natural inclusion, the third arrow is the composite of the natural inclusion
E(mK) — E(K) and the induced map from E(K) — E(K) ®z Z/p"Z, where

E(K)®Zy :=limE(K) ®2Z/p"Z,

and the last arrow is the Kummer map.
By tensoring Q, we can define the map

expp g - K — H'(K, VyE)
and define the map
expg : D/D° ®q, K — H' (K, V,E)
by 0* ® x exXpy g (X).
The diagram below is commutative

E(mg) —— HYK,T,E)
| log \

X
D/D° ©q, K 25 HI(K, V,E).
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Here, log : E(mK) — D/D° ®q, K is defined by x > o* ® logz(x), where logy :
E(mg) — K is the formal logarithm map of the formal group E.
The dual exponential map exp} : H' (K, V,E) — D°®q, K is a map which makes the
following diagram commutative
HY(K,V,E) x H'(K,V,E) > Q,
1 expg | expy I
D/D°®q, K x D°®q, K — Q,.
Here, the upper right arrow is the composite of the cup product and the corestriction map

u Cor ~
H' (K, V,E) x H{(K, V, E) = H*(K, Vi p) —> HX(Qp, Vpu,pe) = Q,

and the lower right arrow is the composite

tr Q
D/D’®q, K x D" ®q, K +> kK —25 Q,,.

For a number field F with [F : Q] < oo, we define expy : D/D° ®q F — Hl(Qp ®qQ
F, V, E) to be the composite of the isomorphism

D/D° ®q F=D/D’®q, Q) ®q F)

= D/D° ®q, (]_[ Fv>

v|p
=[[(b/D° ®q, Fv)
vlp
and

[ [expr, : [ [(D/D° ®q, Fu) — [ [H'(Fy. V,E) =H'(Q, ®q F. V,E).
vlp vlp vlp

We define exp% : H/(Q), ®q F, V,E) — D° ®q F similarly.
The diagram below is commutative

[
H'(Q, ®q F, V,E) x H(Q, ®q F, V,E) —5 Q,

expp 1 expy | I

treQl. ]
D/D°®qF x D'®F —25 Q,.

Here, [, 1F := Zvlp[ , 1F,, and trp Q[ , ] is the composite of

D/D° ®q F x D° ®q F ! F e =~

For F' = Q(un) with a positive integer N, we denote expg,,,) by €Xpy. exp*é(MN) by
expy and [, JQquy) by [, 1v. We define Gy := Gal(Q(un)/Q) = (Z/NZ)*.
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DEFINITION 2.1. Foreachx € D/D° ®Q Q(uy)andz € Hl(Qp ®Q Qun), Vo E),
we define

Py(x,2):= ) tryjilo(x), expy (Do

oeGn

> o). texpy@)lot ™! € Q,lGN].

0,7€Gn

REMARK 2.2. Py(x, z) is an analogue of the pairing P, (x, z) in Kurihara [6] §3.
Define the ring endomorphism * : Q,[Gy] — QplGn] by (ZUEQN as0)* =
Y oegy @00

LEMMA 2.3. Foran element A € Qp[Gn], we have

Pn(Ax,z) = A*Pn(x,2)

Py(x,Az)=APNn(x,2).
In particular, if A~ exists in Q,[GN], then we have

Py(A7'x, A*z) = Py(x,2).

PROOF. To prove the first half of the lemma, it suffices to show it in the case when

A = p € Gy. From the definition, we obtain

Pu(p(),2)= Y lop(x), t(expy(2)lot™"

aregN

=p”! Z [(0;0)(x),r(expji,(z))](gp)ffl

mtegN

=p~" Y lo(), t(expy(@)lor!

o,1eGyn
=p ' Py(x,2)
=p"Py(x,2).

Thus we have proved Py (p(x),z) = p*Pn(x, z). We can prove Py (x, p(z)) = pPn(x, 2)
similarly. The latter is obtained from the former immediately. a

DEFINITION 2.4. We define x}, and xy by
Xy = w(( [1 Fz(a)l)sN> € Q(un)
IIN
XN =xyot € D/D° ®q Q(un),
and define the homomorphism

Py : H(Q, ®q Q(un), VpE) — Q,[GN]
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by Pn(z2) := Pn(xn, 2). Here, F;(T) is the polynomial in Definition 1.2.
PROPOSITION 2.5. Assume q is a prime number and N > 1 is an integer. Then, we

have

AgXN — €4XN/q (@*IN)
tryn/N (XgN) = | agXN _8qu(C7q)_1xN/q (qlIN)
(ag — 404 _Gq_l)Fq(Gq)_lxN (gfN).
Before proving the proposition, we prove a lemma.

LEMMA 2.6. For a prime number |, define the sequence (c,(f))nzo in Z[%] by c(()l) =

0, CY) = 1,and forn > 1,

o 4w _ 8w
Cn—i—l = Tcn - TCn—l ’

and define the polynomial E(n)(T) € Q[T] by

=) oy (D &L g
F"(T) =c,), — 7c},)T.

Then, we have

1

n—1
o~ — ) ~i ~ o~ o~ =1~
FG =5 + " @yR@) ')
—

as an endomorphism of Q(ur)[Cy] for L, M > 1 with (L, M) = 1 andl [L. In particular,
we have

—1 aj &l PN
Fio)~ =1+ (7 - TUI)FZ(UZ) oy .

REMARK 2.7. The sequence (c,(f))nzo is a generalization of the sequence (c,) in sec-
tion 2.2.1 in Kurihara [6].

PROOF. It is enough to show that
n—1
[ o~ o~ ~ o~
ZC,(J:lFl(GZ)U[ +E"@)e =1. (1)
i=0

We will prove the equation (1) by induction.
Since we have 171(0) (07) = 1, the equation holds in the case when n = 0. To prove the

rest part of the induction, it is enough to show that

= Y / Y jad 1) ~ o~
F"@sl = ) F@ne! + "V Gne ! @)

foralln > 0.
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From the definitions of the sequence (cf,l))nzo and the polynomials E(")(T) and F;(T),

we have

o aj_. & H ~ & () ~
n+1Fl(‘7) + F( V@5 _Cn+l <1 -7 + 7‘712) + (C:(w)rzal - 76211‘712)
(l) 0] a1 \~
Cnt1 + < Cpy2 — 76n+1>61

D &l D5,
n+l l Vl

=F"@.

Multiplying 6", we have proved the equation (2). Thus, we have proved the lemma. O

PROOF OF PROPOSITION 2.5. We will prove the same formula for x),. Put N = ¢"M

with (¢, M) = 1.
Since we have F;(6;) ! = 1+(%—“}—%})F;(@)’1a from Lemma 2.6 and 6, (§,n) = én,
we have

tryn /N (Xgn) = tign/n | Ugn <l_[ E(a)l>§qN))

=tryn/N (UqN <Fq (b}q)il <l_[ Fl(a)l)gqN>>
1M
=1tryNn/N (UqN((l + <(l_q - _Gq)F (Uq)7 Oq)(l_[ Fl(a)l>éqN))
q q M
=tryn/N (qu<<HFl(31)l)€qN>>

+ 2ty (UN (Fq@)—l(]_[ F@)*)&))
4 I|M
—i]—qtqu/N (UN (Fq(gq)_l(l_[ ﬂ(a)_l)aq(EN))) (3)

1M

First, we treat the first term of the right hand side of the equation (3). As we have seen

in §1, we have

ryN/N © UgN = trqn+1M/an O UM O Ugn = UM O trqn+1/qn oygn ,
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and the trace map commutes with &, for each positive integer a. We also have Egriy =

CIvh (&1 )a‘q—nl+1 (€m). Thus we have

tryn/N (UqN (( l_[ Fl(@)l)éqN>>
1M

=tryn/N <UqN <<1_[ Fz(a)_l>(3M1 (éq’H’l )Eq;l-l (5M))>>

I\M

=Ugn (trqan" (( [1EG) ™Gy €p)T, )k @M))))

1M

= UgN << l_[ ﬂ(a)_l) (Eﬁ;l(trqn-%—l/qn ({qn*—‘ ))Eq_n-l%—] (gM))> .

I|M

Since we have tryn1 jgn (§qn+1) =0ifn > 1, we have

UgN << l_[ Fl(a)_l) (b};ll(trqn-#l/qn (é'qn-#] ))Eq_"lﬂ (‘S‘-M))) =0

1M
if n > 1. Since we have vy 0, = 04 0o uy, M = N and try/1(f,) = —1if n = 0, we have
VaN (( [ Fl@‘l) G’ (trq/1<cq))3q‘l(§M)))
1M
= —qu((l_[ Fz(a)‘l)a;l(sm>
IIN
= —G(;l (UqN((l_[ ﬂ(a)l)§N>>
IIN
= —aq_lev

-1 4q &4 ) —1.7
=—\o, — — 4+ —0y4 |Fy(0q) xy.
(q g 4 q |F'q\9q

tryN/N <qu (( l_[ Fz(a)l>§q1\/))
1M

0 (n=1)

= a &
—<crq1 — ;q + ;qcrq)Fq(crq)lx;V n=0).

Thus we have

“)
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Next, we treat the second term of the equation (3). Since we have vy (Fy, (6},)_l
(]_[”M Fi(G)"YHEN) € Q(uun), the trace map tryn/n is multiplication by ¢ if ¢|N and multi-
plication by ¢ — 1 if ¢ fN. We also have

Fq@)—l(l"[ Fz(?fz)_l> =[[rG»™"
1M IIN
if g|N. Thus we obtain
a ~ ~—
~Ltryn/n (UN (Fq(Gq) 1(1_[ Fi(o1) l)«?N))
q 1M
agxy n=>1

- (q_q&Fq(oq)l)c;V n=0).

(&)

We then treat the third term of the equation (3). Since we have o, (§y) = &x if ¢|N and
q
Fy @)~ ([ Fi@ ™D =T1yx Fi@)~"if g*[N, we have

ity <uN (Fq Gy (]‘[ Fz@‘)@ (&)))

M
£qx'y (n>2)
q
_ JegFy(o) 7 x)y (n=1) 6)
q
&q -1,
;(q — Doy Fy(og) 'xyy (n=0).
Combining the equations (4), (5) and (6), if q2|N , we have
tryn N (Xpn) =0+ agxy —egx'y
q

/ !
Zaqu _8qu .
q

If g||N, we have
tqu/N(x;N) =0+ agxy —&qFy (aq)*lx/ﬂ
q
/ -1
=agxy —e4Fy(04) Xy .
q

Ifg SN, we have

_ a £ _
tqu/N(x;N) = —<crq I ?q + ;qoq)Fq(oq) xy
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(q — Da _ £ _
+Tqu(oq) Ly — ;q(q — Doy Fy(og) " xn

-1, %9 &g (g —Dag &4 —1.
(-t 4% B, T a1, ) (o)
< 4 p p q p q q | 1'q\0q N

-1 -1
= (ag — &404 — 0, ) Fy(0y) Xy -

Thus, we have proved the proposition. a

3. The zeta elements and the modular elements

Kato defined an Euler system in cohomology groups Hl(Z[u N %], VpE) in [4]. Here
H'(Z[un. 1. VpE) = HL,(SpecZ[uy, £1, V,E) and S is the set of bad primes, the infinite
prime and p. It is called the zeta element. We regard zy € H!(Q » ®Q Q(un), V, E) through
the natural map H' (Z[1y, %], VoE) — Hl(Qp ®qQ Q(un), VpE). We normalize the zeta
element as follows.

PROPOSITION 3.1. Let x be a character of conductor N, then the zeta element 7y €
Hl(Qp ®q Qun), V, E) satisfies

L(E, x. 1)

Z x(0)expy (0 (zn)) = oF (x (=D ==£D.
E

oeGn

Here, exp, is the dual exponential map and Qf are Néron periods. See Kato [4], Theo-
rem 12.5.

We call a system of elements (wps)y € ]_[M‘N Hl(Qp ®Q Q(um), VpE) an Euler sys-
tem, when they satisfy

wy (g|M)

Nrgm/m(wgm) = {Fq(aql)wM (g /M) .

PROPOSITION 3.2. The zeta elements (zp1) m form an Euler system.

See Kato [4], Theorem 8.12.
On the other hand, Mazur-Tate [8] defined the modular element Oy € Q[Gx] by

e 2 (LG

ae(Z/NZ)>

Here, forr € Q, [r]f € R are defined by

Zn/ fr+iydy =[r1E2f +1r1; 25
0
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where f(z) = > o2, anq" is the modular form corresponding to E. From Manin-Drinfeld

theorem, we know [r]? € Q. They satisfy

L(E, x4 1

x(On) =1(x) oF (x (=) ==£D
E

for each character x of conductor N, where t(x) := ) x(0)o (¢n) is the Gauss sum.

oeGn
For each prime number ¢, they satisfy compatible formulas below.

aq,0m — 8qu/%(9%) (qIM)

0 =
Tgm/m Ogm) : (ag — 04 — gqoq’l)OM (g M) .

Here, for integers L and M with L dividing M, the map wp/1 : QplGm] — QplGL] is
defined by the restriction map of the Galois group Gy — G, and the map vy, : Q6] —
Qp[Gum] is defined by

e Y
teGy.mm/L(T)=0

foro € Gr.
In this paper, we call a system of elements (ny)y € HMlN Q,[Gum] an admissible
system, when they satisfy the same compatible formulas.

REMARK 3.3. In [8], the modular elements are defined by Oy := %ZaeQN/{:I:l}
[§150a € QN/(E1}.
THEOREM 3.4. If(wpy)m € HMlN Hl(Qp ®QQ(um), VpE) is an Euler system, then

Pu(wm))m € HMlN QplGum] is an admissible system.
Before proving the theorem, we will prove a lemma.

LEMMA 3.5. Let L be a positive integer and let q be a prime number. For x € D ®q
Q(uqr) and z € HY(Q, ®q Q(iqL), VyE), we have

qL/L(Pyr(x,2)) = Pr(trygp/p(x), Nrgp/(2)) .
Forx € D®q Q(ur) and z € Hl(Qp ®qQ Q(ugr), VpE), we have
Pyr(x,2) = vgr/L(PL(x,Nryp/L(2))) .

PROOF. Forx € D®@Q(ugr)and z € H! (Qp ®@ Q(iyL), VpE), an easy calculation
shows that

aL/L(PgL(X,2)) =T4L/L < Z [s(x), expy (¢ (Z))]St_l>

SvtquL
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Y s, expl (1 @)lmgrynlst™)

S,tequ

> ( > [5(x), r(e:ma;L(z))])or1

0,1€Gr "~ s,t€GqL, gL L (8)=0,141 /L (1)=T

Z [ Z s(x), Z t(epoL(z))i|(7t_l

0,1€GL ~s€GqL.mqL/L(5)=0 teGyL.mqL/L()=T

= Y lo(trgr/r(x)), Ttrgr/o(expl, (@)lot ™!

o,7€GL
> [0 (trgr/L(x)), expy (t(Nrgr/2(2)]ot ™!
o,t€GL

= Pp(trgr/L(x), Nrgr/(2)) .

Thus, we have proved the first half of the lemma.
Similarly, for x € D ®¢q Q(11) and z € H'(Q), ®q Q(1441), V,E), we have

vgL/L(PL(x,Nryr/0(2)))

=qu/L( > [a(x),expz(r(quL/L(z»)]or1)

U,tegL

= > ( > [0 (x), expz(r(quL/L(z»)])p

peGL " o,1€GL, gL/ (p)=0T"

= > ( > (o (x), r(tqu/L(exp;L(z»)])p

peGyL “o,teGr gL L(p)=0T!

= Z( > [o(x), > t(exp;L(z»Dp

peGqL “o,teGr gL L(p)=0T! 1€GqL,mqL/L (=T

= > [0 (x). 1(expy (2)]p-

0:1€G41,0,T€GL, gL/ (P)=0T 41/ (1)=T

The condition 747, (p) = ot ! and myL/L(t) = T is equivalent that 7w,y /1 (pt) = o
and g7/ (t) = 7. Putting s = pt € G, 1, we obtain

> [o(x), (expy . (2)]p

p:1€Gy1,0,1€G L, gLy (P)=0T g1 /L (1)=T

— Z [o(x), t(epoL(z))]st_

5,0€Gy1,0,T1€G, gL/ (8)=0,741 /1 (1) =T

1
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= D [s(0),expy(t(2)lst™!

s,teGyr
= qL (-x7 Z) .
Thus, we have proved the lemma. O

PROOF OF THEOREM 3.4. From Definition 2.4 and Lemma 3.5, we have

Tam/M Pym(Wyn)) = mtgm/m (Pyma (Xgm s Wym))

= Py (trgm/m (xgp1), Nrgprym (wgm)) .
If q2|M , from Proposition 2.5, we have
P (ttgpr/m (Xgm), Negayym (Wym)) = Pu(agxm — EqX i, wy)
=ayPy(xp, wy) — SqPM(x%, wy) .
Applying Lemma 3.5 by L = %, we have
PM(X%, wy) = VM/%(P%(X%, NI'M/%(U)M)))
=V (Py(Xu, wu)).
q q q q
Thus, we have proved that
Tam/M Pym(Wym)) = aqg Py (xp, wy) — SqVM/%(P% (x%, w%))
= agPyu(wy) — &qvyy m (Pu(wi)).
q q q
If g|| M, then we have
Py (trgprypr (Xgpr), Nrgaym (wgm))
= Py(agxy — Squ(O’q)ilx%, wa)
= ay Py (xm, wa) — &g P (Fy(og) " xm, wr)
q
= ag Py (xm, war) = €qVyg (P (Fy(0g) ™ xaa, Nryy o (win)))
q q q q
= ag Pyt (X, wir) = &qVyy 0 (Pt (Fy(0) ™ X, Fy (0 Dwan)
= ag Py (xp, wyr) — &g vy m (P (X, W)
q q q q
=a,Pu(wy) — squ/%(P% (w%)) .

Here, we used Lemma 2.3.
If g /M, then we have

Py (trgaaymr (cqm), Negamr (waan)) = Pu((ag — 8404 — 05" ) Fy(og) ™ xm, Fy(o, Hwar)
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=(ag — o4 — sq(rq_l)PM(wM) .

Thus, we have proved the theorem. |
THEOREM 3.6. From the notations as above, we have Py (zy) = On.
To prove this theorem, we need some lemmas.

LEMMA 3.7. Let (Mp)m, (Kp)m € HMlN QplGum] be two admissible systems. Fix a
positive integer M dividing N. If np = kr for each positive integer L with L dividing M and
L # M, and x(ny) = x (k) for each character x of conductor M, then ny = k.

PROOF. To prove 1y = Ky, it suffices to show that x (nyr) = x (k) for each character

x of Gy. From the assumption, x (np7) = x (k) for each character x of conductor M. If the

conductor of x is not equal to M, then we can regard x as a character of the group Gu for
q

some prime number ¢ dividing M, and we obtain x (ny) = x (TL’M/M (nm)). So it suffices to
q
show that Ty m (nm) = Ty («p) for each prime number g dividing M.
q q

First, we assume that q2 divides M. Then, we get Ty M (M) = agnu — EqVM M (nm)
q q q’q2 42

and JTM/M(KM) = agku — 8qu/M(KM). Since we have ny = ku and nu = ku from
q q 9742 42 q q e q?

the assumption, we obtain JTM/M(HM) =Ty M (kpm). If g|| M, then we have JTM/M(HM) =
q q q

(ag —oq — 840(1_1)77% = (ag — 0y — 840‘1—1);(% = TL’M/%(KM). Thus we have proved the

lemma. O

LEMMA 3.8. Let Mm)m, (km)m € HM|N Q,[Gm] be two admissible systems. Sup-
pose that for each positive integer M dividing N, we have x (ny) = x (km) for each character
x of conductor M. Then we have ny = k.

PROOF. We will prove that ny; = ks for each positive integer M dividing N by induc-
tion. First, we show that n; = «1. From the assumption, Xo(m) = XO(Kl) for the character
% of conductor 1. Since x° : Q,[G1] >~ Qp, we have 1y = k.

Next, suppose that M divides N and n; = k for each positive integer L such that L
divides N and L < M. From the assumption, we have x () = x (kp) for each character x
of conductor M. We also have n; = «, for each positive integer L with L dividing M and
L # M. Applying Lemma 3.7, we have 1y = k7. Thus we have proved the lemma. a

PROOF OF THEOREM 3.6. From Lemma 3.8, it is enough to show that for a character
x of conductor N, the x part of the both hands are equal.
A direct calculation shows that

X(Pxw) =Y [o@n), T(expy@n)Ix@)x (™"

0,7€Gn
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=[ > oenx(e), Y r(exp}‘v(zm)x‘(r)] @

oeGn ey
We first treat the right half of the pairing of the equation (7). From the properties of the

zeta elements, we get

> tlexpyen)x @ =Y expr@n))x ! (@)
€GN €GN
_LEE.xL D

Next, we treat the left half. Put E(T) = I?l(l)(T), and let /1, [, ..., [ be all the prime
numbers dividing N such that/y < I < --- < I, then we have

[[rE ' =mGH™" [] FGEH™

IIN UIN,I'>1
=+ F,G)FG) ') [ Fr@n™

VIN,I>Ty

= 1 Fp(ao‘+< I1 n@o‘)ﬁl(&ll)ﬂl@)‘al

UIN,I'>1; UIN,I'>1;

=F,@)" ] ﬂ’@’)l+( [1 ﬂ/@ol)ﬂ.@.m.@.wa]
l/‘N,l/>lz l/‘N,l/>ll

=14y ( I1 ﬂ@)*)ﬁ@)ﬂ@)—la.
I[IN “UIN,I'>I1
So, if we denote H; = ([ ]y~ Fy(6)"Y)F(G)Fi(6))!, then we have
[[ArG " =1+ Hia.
IIN [N

From the definition of xy, we get

XN = UN((H Fl(a)_l)&v)w*
IIN
= UN((I + Z H@)«‘?N)w*

I|N

=uN ("EN + Z Hléiy)‘*)*

IIN
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= vy (H, 0)* .
<§N + % N ( 157)>

Since UN(Hlég) € Q(,uy), we obtain ) J(UN(H1§¥))X(G) = 0. So we have

oegn

Y omx(e) = Y c@nx(@)e" =T(Nw*.

oegyn o€Gn

Therefore, it follows from (7) that

X(Py(en)) = [f(x)w*, %i‘”w}
2
= 1( L(E,x~ ', 1)
=7(x) o=
= x(On).
Thus, we have proved the equality. .

4. Integrality of the map

In this section, we will prove the following theorem.

THEOREM 4.1. If E(Fp(un)pl = 0, (wan)wr € [Tayw H'(Qp ®q Qum), THE) is
an integral Euler system and p divides N, then (Py(wy))m € HMlN Z,|Gum] is an integral
admissible system. Here E is the reduction of the elliptic curve E mod p.

Before proving the theorem, we make some preparations.

For a positive integer N = [[; /¢, where each [ is a prime number and ¢; is a non-
negative integer, define S(N) to be S(N) := {l : prime number|e; > 0}, and for a set of
prime numbers S, define Ng to be Ng := [[,451% = N/[];c517.

For the rest of the section, we write N = Mp" with p /M andn > 1. From Lemma 2.6,
we have

XN = UN((H 1’1(57)_1>§N>w*

IIN
=UN<F,,@>—1<1"[ ﬂ(arl)sN)w*
M
e—1
=uy <Fp(8p)l <l_[ (Z cfl)ai + ]';‘vl(EI)(a)F'l(a)la_\f]))éN)w*
M *i=0
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e 1 1

=vy (F,,(E,,)—1 3 ( > c,-(”a;})(]_[ F;"”(am(an—laﬁ)sN)w*

SCS(M) “I'gS i=0 leS

61/71

= > uy (Fp@)‘ ( c,.“”&;}) ( I1 E“’”@)ﬂ@)‘)%)w* :

ScS(M) I'¢S i=0 leS

. =1 ()~ ~ o~ .
So, if we put yg := (Hz/gs(Z?:o cf )ol’,) [Tes Fl(e’)(crl))éNs € Z»[Cny], then we obtain

= 2 (T Joxr@n o
SCS(M) “leS

Here, the coefficients of ys are in Z,) = {% € Qla,b eZ, p )b} because cfl/) € Zp) and

E(el)(T) € Z(»[T] from their definitions.

In the next lemma, log ;. is the formal logarithm of the formal group E and logz(Q, ®q
Q(ung)) = [1,,1085(Q(ns)v), where logz(Q(ung)v) = 10gE(E(mQ(MNS)U)), and we
putlog(Q, ®q Q(uny)) = log;(Q, ®g Qun))w* C D/D° ®q Q(un).

LEMMA 4.2. If as € logQ, ®q Quns) for all S C S(M), y =
ZSCS(M)(HIES Fi(o) Dag and (wr); € nLlN Hl(Qp ®q Q(ur), TpE) is an integral

Euler system, then

Pn(y, wn) € Zp[GN].

From the lemma above, what we need to show to prove the theorem is that
UN (Fp @)~ ys) € logz(Qp ®q Quny)) forall S C S(M).

PROOF OF LEMMA 4.2. From the definition, we get

> eyl (). expy(wy)lo

oeGn

ZtrN/1[0< > (Hﬂ(dz)_l>0ts),exp*N(wN)]G

oegyn SCS(M) “leS

Yo trN/1[<]"[ﬂ(m)—1)a(as>,expn(wm}a.

oeGy SCS(M) leS

Pn(y, wy)

So, it is enough to show that trN/l[(HleS Fl(al)_l)a(ag), exp*N (wn)] € Zp forall o €
gy and S C S(M).
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From basic properties of Res and Nr, for a positive integer L dividing N, the diagram

H'(Q), ®q Q(1un), VoE) x H(Q, ®¢ Q(in), V) E) % Q,
1 ResyyL 4 Ny l

H'(Q, ®0 Q(i1). V,E) x H'(Q, ®¢ Q). V,E) -5 Q,

is commutative. Here, Resy L is the restriction map and Nry/, is the norm map, namely the
corestriction map.
Thus, we have

try /1 [( I Fz(crz)l)cr(as), exp;/(wN)i|

leS

= expN((H Fi(o)™ )G(ds)>,w1v}
- N

leS

= | Resy,ng (expNS ((l_[ Fl(al)l)o(as)>>, wNi|
- leS N

= GXPNS<<HFZ(UJ) )U(Oés)),NrN/NS(wN)]
L Ns

leS
= expNS<<]"[Fz(cn) )o(w)),(]"[ﬂ(o,‘l))wm}
- lesS leS Ng
= (]‘[ﬂ(oz)‘l)expNs(o(as», (]‘[ﬂ(o,‘))sz]
- leS leS Ns

= [eXpNS (C’(OIS)): wNS]NS

= trng 1o (as), expy, (wig)] .

Here, we used the fact that [A™x, A*ylng =[x, ylng for A € Q,[Gn,] such that A~ exists
in Qp [Gngl.

So what we have to prove is that tryg /1[0 (as), exp}‘vs wnglng € Zp forall o € Gy and
S C S(M). But this follows from the fact that o («) is in the image of log because the formal
logarithm map is Galois compatible, and the commutativity of the following diagram

EQ,®qQ(uny)  xH'(Qp®q Quny), ToE) = Z,
| log 1 expyy, I
D/Dy ®q, (Qp ®q Qing)) X Dy ®q, (Qp ®0 Quny) = Qp.

where the pairing in the upper row is the composite of the Kummer map E Q) ®q

Quny) — H'(Q, ®q Qun). T,E) and [, vy = H'(Q, ®q Quny). THE) x
Hl(Qp ®Q Q(ung), TpE) — Z,p, and the pairing in the lower row is tryg/1[, 1. O
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For the rest of this section, we will prove that v,n (Fp (3,,)_1 um, (¥s)) is in the image of
log; in Q) ®q Q(1n,) because we have

UNg (Fp (@)~ ys) = vpn (U (Fp(G,) " ys))
= upn (FpGp)  tomg (9)) -

Let v be a prime of Q(u ) dividing p, it is easy to show that the diagram below is
commutative,

Quuy)[Cpr] 2 Quuars)[Cpr]
! O !

Q(uuts)u[Cprl =5 QUuanrg)o[Cpr].
Here, &, denotes a ring endomorphism of Q(u pg)v[C pn] defined by

o oy(a)
Epn > gll:n

for o € Q(umy)v, where o, denotes the Frobenius automorphism of the unramified extension

Q(ILMS)v/QIr

Later on, we regard vpy,(ys) € Q(umg)[Cpn] and we will show that
vpn (Fp (Ev)_lvMS (ys)) € logp (mQ(MNS)U) by the following arguments.

Let K be a finite unramified extension of Q,, O its ring of integers, mg = pOg
its maximal ideal, k := Ok /mg and o € Gal(K/Q,) the Frobenius automorphism (i.e.
o(x) = x (mod p) forall x € Ok). Let Mg := (p, T) be the maximal ideal of the ring of
power series Ok [[T]].

We define the ring Cx by Cx = {f(T) € KI[T]]] f(x) converges for any x €
Q_p such that [x|, < 1}, i.e. the ring of power series whose radius of convergence is > 1.
Here, | - | is the normalized p-adic absolute value.

For each integer n > 1, let Zg , be the ideal of Cx defined by

Ik ={f(T) ECKIf(gp; —1)=0fori =0,1,...,n}.
For f(T) € K[[T]], we define
¢f(T) =cf(1+T)Y —1).

Here, of(T) := Y i0qo(b))T! for f(T) = Y.i2ybiT" € K[[T]]. Note that we have
¢Zg.n C Ik.n, S0 x — ¢(x) induces a map Cx/Zx n — Cx/Zk . Itis also denoted by
.

We define & : K[Cpn] — K[Cpn]by

o o(a)
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Epn > gll:n

fora € K.

Fori =0,1,...,n, wedefine ¢; : Cpn — upn to be a character of Cp» of conductor pi
by &p» > ¢, and define ¢; : Ck — K(upr) by f(T) — f(£,i —1). From the definition of
Tk n, we have an injection

[Ticosi: Ck/Tkn — [lico K(upi)
F(T) mod Ik = (f(&pi — 1))i-

LEMMA 4.3. There is an isomorphism
CK/IK,n = K[Cp”] ’

and the diagrams

Cx/Tkn > Ck /T n
Loy
K[Cp] 5 K[Cpn]

and

Sn :CK/IK,n - K(I’LP")
Voo
‘Upn : K[Cpn] —> K([/Lp")

are commutative. Here, the vertical arrows are isomorphisms.

PROOF. Note that the natural inclusion K[T] C Ck induces an injection K[7T']/((1 +
T)”n — 1) — Ck/Zk  and comparing the dimensions of K-vector spaces K[T]/((1 +
T)P" — 1) =~ [[i_ K (1) and C /I ». it is an isomorphism K[T1/((1 + T)" — 1) =~
Ck/Ik . The ring homomorphism K[T] — K[Cp»] defined by 1 + T + &,n also in-
duces the isomorphism K[T]/((1 + Ty —1) ~ K[Cpn]. So we have an isomorphism
Ck/Zk.n = K[Cpn]. Itis easy to see that both ¢ and & correspond to the ring homomorphism
K[T1/((A1+T)"" —1) = K[T1/((1 +T)?" — 1) defined by f(T) mod ((1+T)?" —1) >
f((+T)? —1)mod ((1 + T)pn — 1), and both ¢, and v,» correspond to the ring homo-
morphism K[T1/((1 + T)?" — 1) — K (i) defined by f(T) mod (1 + T)"" — 1) >
f@Gpm —1). O

Put K = Q(umy)y here. Let ys(T) € K[T] be a polynomial which corresponds to
vs € Ok[Cpn] through the isomorphism above. We can take ys(T) € Ok[T]. To prove
vpn (F) (a,)_lvMS (vs)) € logg(mg), it is enough to show that there exists g(7') € Ck such
that Fj,(¢)g(T) = ys(T) and g(§pr — 1) € logp(mk).

We will prove this by the following arguments, which is an analogue of Coleman’s paper

[2].



276 REI OTSUKI

PROPOSITION 4.4. We have

(1 - L4 lqsz)log,@(MK) C OkIIT11.
p p
PROOF. Lete(T) € Mg. Itis easy to see that
pe(T) = e(T)?  (mod pOk[[T]])
and for X, Y € Mg with X =Y (mod pOk|[[T]]), we have
log;(X) =logp(Y) (mod pOkIITI)) .
Thus, we have
¢logp(e(T)) =logp(e(T)?) (mod pOkIITI)).
From Honda’s theory [3] section 6, we have
log s (X?") — aplogs(XP) + plog(X) =0 (mod pOk[[T1]).

Combining all the above, we obtain

(p = apt +6")log (1)) = plogz(e(T)) — ap log; (e(T)") +log (e(T)"")
=0 (mod pOkI[[TI]).

Dividing the equation by p, we obtain (1 — %”q& + %qbz)log s(e(T)) € OkIITII.

PROPOSITION 4.5. Assume that E(k)[p] = 0. Then we have

1
<1 _ a_p¢ + —¢2)logE(MK) = OklIT]l.
P P

PROOF. Since we have Mg = mg +; TOI[[T]] where + is the formal group law
of the formal group E, it is enough to show that (1 — %”q) + %q)z)logé(mK) = Ok and

(1= 2 + L¢?)log (T Ok [T1]) = TOkIIT]] separately.

First, we will show that (1 — %qu + %qbz)log H(TOKIIT) = TOk[[T]]. It is enough
to show that for each i > 1, the induced map T'Ox[[T]] — T Ok[[T1l/T T Ok[[T1] by

1- %”q) + %q)z)logﬁ is surjective. Since we have

(1 Rt —¢2>10g5(aT’) = (¢ —app' o + P T 4+ 1(T)
pp

with r(T) € T H Ok[[T]] for each « € Ok, it is enough to show the surjectivity of the map

O[(-)O[(

s P 2
Oll—)()l—appl 1a0+p21 10{0.
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Since the above map is Z,-linear, it is enough to show that the map mod p is surjective by
Nakayama’s lemma.
If i > 2, then the map mod p is the identity map o +— «. If i = 1, the map mod p is

k—k
oo —apal.
Here a, is the image of a, € Z under the natural map Z — Z/pZ =~ F,. Note that
a’ = aP (mod p).
Since k is a finite field, the surjectivity is equivalent to the injectivity of the map mod p.
We will prove the injectivity.
Suppose that the map mod p is not injective. Then, there exists a non-zero element o € k
such that @ = a,a”. Since we have a,” = a,, we have

_ 5 2 T
a:apapzapzap =...=apdap =apd01,

where d = [k : F]. Since a # 0, we have @, = 1in F,.

We will show that the assumption E (k)[p] = 0 implies that a;f # 1(mod p). From basic
facts about elliptic curves over finite field, we get #E k) = pd — ai — ,B;f + 1, where ap, B,
are two roots of the equation T2 — apT + p =0. Since o, + Bp = ap andap B, = p, we
obtain

a4+ B4 = (ap + Bp)? (mod p)

=ap.

Thus, we get ai —1=—p?+ ai + ,Bg -1 = —#E(k) # 0 (mod p) and we have proved
that (1 = 2¢ + 5¢H)log (TOk[[T1]) = TOk[T1].

Next, we will show that (1 — %”q& + %¢2)logé (mg) = Og. First, we will show that
the assumption E(k)[p] = 0 implies that logz(x) = x (mod pith) for x € p!Ok and for
i > 1. From basic properties of logE, we see that for x € Q_p such that ord, (x) > #, we

have logz(x) = x (mod {y € Qplord,(y) > ord,(x)}), where / is the height of the formal

group E and ord, is the normalized p-adic valuation. So, it is enough to show that ﬁ < 1.
If p > 3, then it is obvious. If p = 2, then the assumption E(k)[Z] = 0 implies that E is
supersingular at 2. Since the height of the formal group Eis2, ﬁ = 221—71 = % < 1. Thus,

we have proved the statement.
LetjeZ,j>1andu € Og. We compute

1 . . . .
(1 ~Lg+ —¢2>1°g,;~<pfu> = —app’~'u® + pI'u” (mod p).
P P
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To prove the surjectivity of the map (1 — %”q& + %q)z)logﬁ :mg — Ok, itis enough to

show the surjectivity of the induced map p/Ox — p/~'Og/p/ Ok for each j > 1. But by
the similar arguments as above, the induced map is essentially

k—k
. 2
ur—> —auf +u?

and we can show that it is injective, hence surjective.
Thus, we have proved the lemma. |

Let es(T) € OQ(uy),[[T]1] be an power series satisfying

ap 1 2 ~
1 ——¢+ —¢~ Jlogz(es(T)) = ys(T).
P P
Then, from the arguments above,

upn (Fp (@)~ v (vs)) = logg(es(Epn — 1) € log 2 (QUung)v) -

Itis in the image of log ;. This is what we wanted to show.
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