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0. Introduction

In the arithmetic of elliptic curves, the modular symbols, the modular elements by Mazur
and Tate [8] and the Euler system of the zeta elements constructed by Kato [4] play important
roles. These elements are defined for a modular elliptic curve and for cyclotomic fields, and
they are all related to the values of the L-functions of the elliptic curve.

As the main result of this paper, we will construct a homomorphism which relates general
Euler systems to general elements in the group rings, having the same property as the modular
elements. This is a generalization of the result of the homomorphism which appeared in
Kurihara [6] and was used to study the Selmer groups in the cyclotomic Zp-extension of
Q. For an odd prime number p, he studied the relation between the zeta elements and the
modular elements in the finite extension fields in the cyclotomic Zp-extension of the field
Q, and showed that the two elements correspond through a map which has a nice integral
property.

In this paper, we will study the relation between the modular elements and the zeta
elements in general. For an elliptic curve defined over Q, we will construct a homomorphism
from the cohomology group to the group ring of the Galois group for arbitrary cyclotomic
fields and a good prime p. We define an admissible system as a system in group rings which
satisfies the same formulas of the modular elements. We will prove that an Euler system
corresponds to an admissible system through the homomorphism, and as a special case, the
zeta element corresponds to the modular element. We will also prove that the homomorphism
has a nice integral property in many cases. We can regard Kurihara’s map as a special case of
our map. Since our homomorphism is defined for a finite degree extension, we expect that this
homomorphism would be useful to study the Selmer group of a number field of finite degree.

Let E be an elliptic curve defined over Q. In [6], he studied the structures of Selmer
groups in the cyclotomic Zp-extension of Q for a good supersingular prime p, and defined
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the homomorphism

PQn : H1(Qp,n, TpE)→ Zp[Gal(Qn/Q)]
for each positive integer n, where Qp,n is the n-th layer of the cyclotomic Zp-extension of Qp

and Qn is the n-th layer of the cyclotomic Zp-extension of Q. Here, we adopted the notation
PQn which is not used in [6]. In Kurihara-Pollack [7], the map is denoted by Pn.

One of the most important properties of the homomorphism is that the image of Kato’s
zeta element under the homomorphism is the modular element of Mazur and Tate for each
positive integer n. In other words, in the cyclotomic Zp-extension of Q, the Euler system of
Kato’s zeta elements corresponds to the system of the modular elements through the homo-
morphisms. See Kurihara-Pollack [7] section 1.3 (1.3). The zeta elements and the modular
elements are introduced in §3.

This map plays an important role in Iwasawa theory for elliptic curves, and is related
to an important homomorphism Col±, which is defined by Kobayashi in [5]. He formulated
the Iwasawa main conjecture for supersingular primes using the homomorphism Col±, and
proved a partial result of the main conjecture using Kato’s zeta elements. In section 1 of
Kurihara-Pollack [7], Col± is constructed from PQn .

We first introduce two systems which are related to the main result of this paper.

For a positive integer N , let zN ∈ H1(Z[µN, 1
S
], VpE) be the zeta element, and let

GN := Gal(Q(µN)/Q). The system of the zeta elements (zN)N≥1 is an Euler system. In
other words, they satisfy the formulas below

NrqN/N(zqN) =
{
zN (q|N)
Fq(σ

−1
q )zN (q � |N) . (*)

Here, q is a prime number, σq ∈ GN is the q-th Frobenius map and Fq(T ) := 1 − aq
q
T +

εq
q
T 2 ∈ Q[T ], where εq = 1 (resp. 0) if q is a good (resp. bad) prime and aq is the q-th

coefficient of the normalized cusp form
∑∞
n=1 anq

n which corresponds to the elliptic curve
E. In this paper, we also call the system of finite elements (wM)M|N an Euler system if they
satisfy the same formulas above.

For a positive integer N , let θN ∈ Q[GN ] be the modular element of Mazur and Tate.
They satisfy the compatible formulas below

πqN/N(θqN) =
{
aqθN − εqνN/Nq (θNq ) (q|N)
(aq − σq − εqσ−1

q )θN (q � |N) .

Here, πqN/N : Q[GqN ] → Q[GN ] is the natural restriction map and νN/N
q
: Q[GN

q
] → Q[GN ]

is defined by σ �→ ∑
τ∈GN,πN/ Nq (τ )=σ

τ for σ ∈ GN
q

. In this paper, we call a system of

(finite or infinite) elements of group rings an admissible system, when they satisfy the same
compatible formulas. The system of the modular elements (θN)N≥1 is an admissible system.
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In this paper, we will generalize Kurihara’s result on the homomorphism PQn . We will
construct the homomorphism

PN : H1(Qp ⊗Q Q(µN), VpE)→ Qp[GN ]
for a good prime p and for the cyclotomic field Q(µN) with arbitrary positive integer N , not
only in the case when E is supersingular at p and N = pn, and prove that Euler systems
correspond to the admissible systems by the homomorphisms PN . In particular, the zeta
element corresponds to the modular element. From the definition of Euler systems, in the
case in which Kurihara and Kobayashi studied, the system of the zeta elements (zpn)n≥1 was
only a norm compatible system (see the upper half of the equation (*)), but we will study
general relations between Euler systems. If E is supersingular at p, “Kurihara’s PQn” above
is induced from Ppn+1 in this paper.

We also note that our map is defined over local fields of finite degree over Qp, hence
would be useful to study the Selmer group of a number field of finite degree. On the other
hand, some important maps by Coleman [2] and Perrin-Riou [10] were defined over the cy-
clotomic Zp-extensions, namely extensions of infinite degree.

In the following sections, we will prove the following theorems. We fix a good prime p.

THEOREM 0.1 (Theorem 3.4). If (wM)M ∈ ∏
M|N H1(Qp ⊗Q Q(µM), VpE) is an

Euler system, then (PM(wM))M ∈∏
M|N Qp[GM ] is an admissible system.

THEOREM 0.2 (Theorem 3.6). Let zN ∈ H1(Qp ⊗Q Q(µN), VpE) be the zeta ele-
ment, and let θN ∈ Qp[GN ] be the modular element, then we have

PN(zN) = θN .
THEOREM 0.3 (Theorem 4.1). If p divides N , Ẽ(Fp(µN))[p] = 0 and (wM)M is an

integral Euler system, namely (wM)M ∈∏
M|N H1(Qp⊗Q Q(µM), TpE), then (PM(wM))M

is an integral admissible system, namely (PM(wM))M ∈ ∏
M|N Zp[GM ]. Here Ẽ is the

reduction of the elliptic curve E mod p.

The author expresses his sincere gratitude to professor Kurihara for his advice and en-
couragements, and is deeply indebted to professor Matsuno for reading the manuscript care-
fully and making helpful suggestions. He would also like to thank the referee for pointing out
the simplification of some of the notations and proofs.

1. Notations

Let E/Q be an elliptic curve defined over the rational field. For a prime number l, we
call l a good prime if E has good reduction at l, and call l a bad prime if E has bad reduction
at l.

Here we introduce group rings of cyclic groups because they are important to define the
homomorphism. For each integer N ≥ 1, let CN be the abstract cyclic group of order N with



256 REI OTSUKI

generator ξN . If M divides N , we regard CM ⊂ CN and ξM = ξN/MN . Choose a N-th root of

unity ζN ∈ Q for each N satisfying ζM = ζN/MN if M divides N .
Define the ring homomorphism

υN : Q[CN ] → Q(µN)

by ξN �→ ζN .
If L and M are two natural numbers satisfying (L,M) = 1, we identify Q[CLM] with

Q[CL][CM ] by ξMLM = ξL and ξLLM = ξM , and define

υL,M : Q[CLM] → Q(µL)[CM ]
by ξL �→ ζL and ξM �→ ξM . The homomorphism υL,M is often denoted by υL.

For an integer a which is coprime to L, we define

σ̂a : Q(µL)[CM ] → Q(µL)[CM ]
by ζL �→ ζ aL and ξM �→ ξaM .

If a is coprime to LM , then it is easy to show the diagram

Q(µL)[CM ] σ̂a−→ Q(µL)[CM ]
υM ↓ � υM ↓

Q(µLM)
σa−→ Q(µLM)

is commutative. Here, σa ∈ Gal(Q(µLM)/Q) is the unique element satisfying σa(ζLM) =
ζ aLM .

If L′, L,M ≥ 1 are integers which satisfy L|L′ and (L′,M) = 1, then it is easy to show
that the diagram

Q(µL′)[CM ]
trL′/L−−−→ Q(µL)[CM ]

υM ↓ � υM ↓
Q(µL′M)

trL′M/LM−−−−−→ Q(µLM)

is commutative. Here, trL′/L in the upper row only acts on the coefficients. It is easy to see

that the trace maps trL′/L and trL′M/LM commute with σ̂a for each integer a coprime to L′. In
this paper, the trace map trQ(µN )/Q(µM) for the extension of cyclotomic fields Q(µN)/Q(µM)
is simply denoted by trN/M .

LEMMA 1.1. Let l be a prime number, then each eigenvalue of σ̂l : Q[CN ] → Q[CN ]
is either a root of unity or 0.

PROOF. Write N = lnM with l � | M and let r be the order of l mod M in the multi-
plicative group (Z/MZ)×. Then we have σ̂ nl = σ̂ n+rl . Let ρ be an eigenvalue of σ̂l , then we

have ρn = ρn+r , which implies that if ρ �= 0, then ρ is an r-th root of unity. �
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DEFINITION 1.2. For a prime number l, we define the number εl by

εl :=
{

1 (l : good)
0 (l : bad) ,

and we define the polynomial Fl(T ) ∈ Q[T ] by

Fl(T ) := 1− al
l
T + εl

l
T 2 .

Here, al is the l-th coefficient of the normalized cusp form
∑∞
n=1 anq

n which corre-
sponds to the elliptic curve E.

PROPOSITION 1.3. The inverse Fl(̂σl)−1 exists in EndQ(Q[CN ]). If l � |N , then

Fl(σl)
−1 exists in EndQ(Q(µN)).

PROOF. Since Fl (̂σl) is a Q-linear map, it is enough to show that the map is injective.
If l is a bad prime, then we have Fl(̂σl) = 1− al

l
σ̂l . If there exists non-zero x ∈ Q[CN ]

which satisfy (1 − al
l
σ̂l)x = 0, then 1 is an eigenvalue of al

l
σ̂l , but because of |al| ≤ 1 and

the previous lemma, the absolute value of an eigenvalue of al
l
σ̂l is ≤ 1

l
. Hence 1 − al

l
σ̂l is

injective.

If l is a good prime, then we have Fl(̂σl) = 1 − al
l
σ̂l + 1

l
σ̂ 2
l . Let α, β ∈ C be the two

roots of T 2 − alT + l = 0. Then we have 1 − al
l
σ̂l + 1

l
σ̂ 2
l = (1− α

l
σ̂l)(1− β

l
σ̂l ). So by the

similar argument as above, if the map is not injective, then α
l
σ̂l or β

l
σ̂l has eigenvalue 1. But

since we have |α| = |β| = √l, this does not hold.
The latter is proved similarly. �

For a global or a local field K , we denote the absolute Galois group Gal(K/K) by GK
and for a GK -module B, we denote the cohomology group H1(GK,B) by H1(K,B). Let F

be an extension of Q. For a GF -module B, we denote
∏
v|p H1(Fv, B) by H1(Qp ⊗Q F,B).

Here v runs through all the primes of F above p and Fv is the v-adic completion of F .
For an extension of p-adic fields K ′/K and GK -module B, we denote the corestriction

map H1(GK ′, B)→ H1(GK,B) by

NrK ′/K : H1(K ′, B)→ H1(K,B) .

For an extension of global fields F ′/F and GF -module B, we denote the product of norm

maps
∏
v|p

∑
w|v NrF ′w/Fv :

∏
w|p H1(F ′w,B) =

∏
v|p

∏
w|v H1(F ′w,B) →

∏
v|p H1(Fv, B)

by

NrF ′/F : H1(Qp ⊗Q F
′, B)→ H1(Qp ⊗Q F,B) .

Here, v runs through all the primes ofF abovep andw runs through all the primes ofF ′ above
v. For the extension of cyclotomic fields Q(µN)/Q(µM) with M|N , the map NrQ(µN)/Q(µM)

is simply denoted by NrN/M .
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2. Definition of the map

For the rest of the paper, we assume that p is a good prime. Let E be an elliptic curve over

Zp whose generic fiber is E. We denote its special fiber by E0. Let D := H1
cris(E0/Zp) be the

crystalline cohomology, then D is a free Zp-module of rank 2, and Frobenius automorphism
Φ acts on D. Define D := D ⊗Zp Qp. We regard Néron differential ω = ωE as an element

of D. Write ϕ := Φ
p

, then ϕ−2 − apϕ−1 + p = 0. The cup product defines a non-degenerate

alternating pairing [ , ] : D×D→ Qp such that [ϕ(ω), ω] �= 0. We writeD0 := Qpω ⊂ D.

Let ω∗ ∈ D/D0 be the unique element satisfying [ω∗, ω] = 1. For an extension K/Qp, we
can naturally extend the pairing [ , ] to [ , ] : D ⊗Qp K ×D ⊗Qp K → K and for a number
field F we can define the pairing [ , ] : D ⊗Q F ×D ⊗Q F → Qp ⊗Q F .

We introduce the dual exponential map, which was first defined by Bloch and Kato in
[1]. The definition below is different from that in [1] but they coincide.

Let K be a finite extension of Qp, OK its ring of integers andmK its maximal ideal. Let
TpE be the Tate module of E, i.e.

TpE := lim←−E[pn]
and VpE := TpE ⊗Zp Qp. Let Ê be the formal group of the elliptic curve E. Let exp

Ê
be

the exponential map of the formal group Ê. Then if r ∈ N is large enough, we can define
Zp-linear map exp

Ê,K
: mrK → Ê(mrK). We consider the composite of the map

mrK → Ê(mrK)→ Ê(mK)→ E(K) ⊗̂ Zp → H1(K, TpE)

and it is denoted by expE,mK : mrK → H1(K, TpE). Here, the first arrow is exp
Ê

, the
second arrow is the natural inclusion, the third arrow is the composite of the natural inclusion
Ê(mK)→ E(K) and the induced map from E(K)→ E(K)⊗Z Z/pnZ, where

E(K) ⊗̂ Zp := lim←−E(K)⊗Z Z/pnZ ,

and the last arrow is the Kummer map.
By tensoring Qp, we can define the map

expE,K : K → H1(K, VpE)

and define the map

expK : D/D0 ⊗Qp K → H1(K, VpE)

by ω∗ ⊗ x �→ exp
Ê,K

(x).

The diagram below is commutative

Ê(mK) −−−→ H1(K, TpE)

↓ log ↓
D/D0 ⊗Qp K

expK−−−→ H1(K, VpE) .
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Here, log : Ê(mK) → D/D0 ⊗Qp K is defined by x �→ ω∗ ⊗ log
Ê
(x), where log

Ê
:

Ê(mK)→ K is the formal logarithm map of the formal group Ê.

The dual exponential map exp∗K : H1(K, VpE)→ D0⊗Qp K is a map which makes the
following diagram commutative

H1(K, VpE) × H1(K, VpE)→ Qp

↑ expK ↓ exp∗K ‖
D/D0 ⊗Qp K × D0 ⊗Qp K → Qp .

Here, the upper right arrow is the composite of the cup product and the corestriction map

H1(K, VpE)× H1(K, VpE)
∪−→H2(K, Vpµp∞)

Cor−−→ H2(Qp, Vpµp∞) ∼= Qp

and the lower right arrow is the composite

D/D0 ⊗Qp K ×D0 ⊗Qp K
[ , ]−−→ K

trK/Qp−−−−→ Qp .

For a number field F with [F : Q] <∞, we define expF : D/D0 ⊗Q F → H1(Qp ⊗Q

F,VpE) to be the composite of the isomorphism

D/D0 ⊗Q F ∼=D/D0 ⊗Qp (Qp ⊗Q F)

∼=D/D0 ⊗Qp

( ∏
v|p
Fv

)
∼=

∏
v|p
(D/D0 ⊗Qp Fv)

and ∏
v|p

expFv :
∏
v|p
(D/D0 ⊗Qp Fv)→

∏
v|p

H1(Fv, VpE) = H1(Qp ⊗Q F,VpE) .

We define exp∗F : H1(Qp ⊗Q F,VpE)→ D0 ⊗Q F similarly.
The diagram below is commutative

H1(Qp ⊗Q F,VpE) × H1(Qp ⊗Q F,VpE)
[ , ]F−−→ Qp

expF ↑ exp∗F ↓ ‖
D/D0 ⊗Q F × D0 ⊗Q F

trF/Q[ , ]−−−−−→ Qp .

Here, [ , ]F :=∑
v|p[ , ]Fv , and trF/Q[ , ] is the composite of

D/D0 ⊗Q F ×D0 ⊗Q F
[ , ]−→ Qp ⊗Q F

trF/Q−−−→ Qp ⊗Q Q ∼= Qp .

For F = Q(µN) with a positive integer N , we denote expQ(µN) by expN , exp∗Q(µN) by

exp∗N and [ , ]Q(µN) by [ , ]N . We define GN := Gal(Q(µN)/Q) ∼= (Z/NZ)×.
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DEFINITION 2.1. For each x ∈ D/D0 ⊗Q Q(µN) and z ∈ H1(Qp ⊗Q Q(µN), VpE),
we define

PN(x, z) :=
∑
σ∈GN

trN/1[σ(x), exp∗N(z)]σ

=
∑

σ,τ∈GN
[σ(x), τ (exp∗N(z))]στ−1 ∈ Qp[GN ] .

REMARK 2.2. PN(x, z) is an analogue of the pairing Pn(x, z) in Kurihara [6] §3.

Define the ring endomorphism ∗ : Qp[GN ] → Qp[GN ] by (
∑
σ∈GN aσσ)

∗ :=∑
σ∈GN aσσ

−1.

LEMMA 2.3. For an element A ∈ Qp[GN ], we have

PN(Ax, z)=A∗PN(x, z)
PN (x,Az)=APN(x, z) .

In particular, if A−1 exists in Qp[GN ], then we have

PN(A
−1x,A∗z) = PN(x, z) .

PROOF. To prove the first half of the lemma, it suffices to show it in the case when
A = ρ ∈ GN . From the definition, we obtain

PN(ρ(x), z)=
∑

σ,τ∈GN
[σρ(x), τ (exp∗N(z))]στ−1

= ρ−1
∑

σ,τ∈GN
[(σρ)(x), τ (exp∗N(z))](σρ)τ−1

= ρ−1
∑

σ,τ∈GN
[σ(x), τ (exp∗N(z))]στ−1

= ρ−1PN(x, z)

= ρ∗PN(x, z) .
Thus we have proved PN(ρ(x), z) = ρ∗PN(x, z). We can prove PN(x, ρ(z)) = ρPN(x, z)
similarly. The latter is obtained from the former immediately. �

DEFINITION 2.4. We define x ′N and xN by

x ′N := υN
(( ∏

l|N
Fl (̂σl)

−1
)
ξN

)
∈ Q(µN)

xN := x ′Nω∗ ∈ D/D0 ⊗Q Q(µN) ,

and define the homomorphism

PN : H1(Qp ⊗Q Q(µN), VpE)→ Qp[GN ]
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by PN(z) := PN(xN, z). Here, Fl(T ) is the polynomial in Definition 1.2.

PROPOSITION 2.5. Assume q is a prime number and N ≥ 1 is an integer. Then, we
have

trqN/N(xqN) =

aqxN − εqxN/q (q2|N)
aqxN − εqFq(σq)−1xN/q (q‖N)
(aq − εqσq − σ−1

q )Fq(σq)
−1xN (q � |N) .

Before proving the proposition, we prove a lemma.

LEMMA 2.6. For a prime number l, define the sequence (c(l)n )n≥0 in Z[ 1
l
] by c(l)0 =

0, c(l)1 = 1, and for n ≥ 1,

c
(l)
n+1 :=

al

l
c(l)n −

εl

l
c
(l)
n−1 ,

and define the polynomial F̃ (n)l (T ) ∈ Q[T ] by

F̃
(n)
l (T ) := c(l)n+1 −

εl

l
c(l)n T .

Then, we have

Fl(̂σl)
−1 =

n−1∑
i=0

c
(l)
i+1σ̂

i
l + F̃ (n)l (̂σl)Fl (̂σl)

−1σ̂ nl

as an endomorphism of Q(µL)[CM ] for L,M ≥ 1 with (L,M) = 1 and l � |L. In particular,
we have

Fl(σl)
−1 = 1+

(
al

l
− εl
l
σ̂l

)
Fl(σl)

−1σ̂l .

REMARK 2.7. The sequence (c(l)n )n≥0 is a generalization of the sequence (cn) in sec-
tion 2.2.1 in Kurihara [6].

PROOF. It is enough to show that

n−1∑
i=0

c
(l)
i+1Fl(̂σl )̂σ

i
l + F̃ (n)l (̂σl )̂σ

n
l = 1 . (1)

We will prove the equation (1) by induction.

Since we have F̃ (0)l (̂σl) = 1, the equation holds in the case when n = 0. To prove the
rest part of the induction, it is enough to show that

F̃
(n)
l (̂σl )̂σ

n
l = c(l)n+1Fl(̂σl )̂σ

n
l + F̃ (n+1)

l (̂σl )̂σ
n+1
l (2)

for all n ≥ 0.
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From the definitions of the sequence (c(l)n )n≥0 and the polynomials F̃ (n)l (T ) and Fl(T ),
we have

c
(l)
n+1Fl(̂σl)+ F̃ (n+1)

l (̂σl )̂σl = c(l)n+1

(
1− al

l
σ̂l + εl

l
σ̂ 2
l

)
+

(
c
(l)
n+2σ̂l −

εl

l
c
(l)
n+1σ̂

2
l

)
= c(l)n+1 +

(
c
(l)
n+2 −

al

l
c
(l)
n+1

)
σ̂l

= c(l)n+1 −
εl

l
c(l)n σ̂l

= F̃ (n)l (̂σl ) .

Multiplying σ̂ nl , we have proved the equation (2). Thus, we have proved the lemma. �

PROOF OF PROPOSITION 2.5. We will prove the same formula for x ′N . Put N = qnM
with (q,M) = 1.

Since we haveFl(̂σl)−1 = 1+( al
l
− εl

l
σ̂l)Fl (̂σl)

−1σ̂l from Lemma 2.6 and σ̂q(ξqN ) = ξN ,
we have

trqN/N(x ′qN )= trqN/N

(
υqN

(( ∏
l|qN

Fl (̂σl)
−1

)
ξqN

))

= trqN/N

(
υqN

(
Fq (̂σq)

−1
( ∏
l|M

Fl (̂σl)
−1

)
ξqN

))

= trqN/N

(
υqN

((
1+

(
aq

q
− εq
q
σ̂q

)
Fq (̂σq)

−1σ̂q

)( ∏
l|M

Fl (̂σl)
−1

)
ξqN

))

= trqN/N

(
υqN

(( ∏
l|M

Fl(̂σl)
−1

)
ξqN

))

+aq
q

trqN/N

(
υN

(
Fq(̂σq)

−1
( ∏
l|M

Fl(̂σl)
−1

)
ξN

))

−εq
q

trqN/N

(
υN

(
Fq(̂σq)

−1
( ∏
l|M

Fl(̂σl)
−1

)
σ̂q (ξN )

))
. (3)

First, we treat the first term of the right hand side of the equation (3). As we have seen
in §1, we have

trqN/N ◦ υqN = trqn+1M/qnM ◦ υM ◦ υqn = υM ◦ trqn+1/qn ◦ υqn ,
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and the trace map commutes with σ̂a for each positive integer a. We also have ξqn+1M =
σ̂−1
M (ξqn+1 )̂σ

−1
qn+1(ξM). Thus we have

trqN/N

(
υqN

(( ∏
l|M

Fl(̂σl)
−1

)
ξqN

))

= trqN/N

(
υqN

((∏
l|M

Fl(̂σl)
−1

)
(̂σ−1
M (ξqn+1 )̂σ

−1
qn+1(ξM))

))

= υqN
(

trqn+1/qn

(( ∏
l|M

Fl (̂σl)
−1)(̂σ−1

M (ζqn+1 )̂σ
−1
qn+1(ξM))

))

= υqN
(( ∏

l|M
Fl(̂σl)

−1
)
(̂σ−1
M (trqn+1/qn(ζqn+1))̂σ

−1
qn+1(ξM))

)
.

Since we have trqn+1/qn(ζqn+1) = 0 if n ≥ 1, we have

υqN

(( ∏
l|M

Fl (̂σl)
−1

)
(̂σ−1
M (trqn+1/qn(ζqn+1))̂σ

−1
qn+1(ξM))

)
= 0

if n ≥ 1. Since we have υM ◦ σ̂q = σq ◦ υM , M = N and trq/1(ζq) = −1 if n = 0, we have

υqN

(( ∏
l|M

Fl(̂σl)
−1

)
(̂σ−1
M (trq/1(ζq))̂σ−1

q (ξM))

)

= −υqN
(( ∏

l|N
Fl (̂σl)

−1
)
σ̂−1
q (ξN)

)

= −σ−1
q

(
υqN

(( ∏
l|N
Fl (̂σl)

−1
)
ξN

))
= −σ−1

q x ′N

= −
(
σ−1
q −

aq

q
+ εq
q
σq

)
Fq(σq)

−1x ′N .

Thus we have

trqN/N

(
υqN

(( ∏
l|M

Fl(̂σl)
−1

)
ξqN

))

=


0 (n ≥ 1)

−
(
σ−1
q −

aq

q
+ εq
q
σq

)
Fq(σq)

−1x ′N (n = 0) .
(4)
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Next, we treat the second term of the equation (3). Since we have υN(Fq (̂σq)−1

(
∏
l|M Fl(̂σl)−1)ξN) ∈ Q(µN), the trace map trqN/N is multiplication by q if q|N and multi-

plication by q − 1 if q � |N . We also have

Fq (̂σq)
−1

( ∏
l|M

Fl (̂σl)
−1

)
=

∏
l|N
Fl (̂σl)

−1

if q|N . Thus we obtain

aq

q
trqN/N

(
υN

(
Fq (̂σq)

−1
( ∏
l|M

Fl(̂σl)
−1

)
ξN

))

=

aqx
′
N (n ≥ 1)

(q − 1)aq
q

Fq(σq)
−1x ′N (n = 0) .

(5)

We then treat the third term of the equation (3). Since we have σ̂q(ξN ) = ξN
q

if q|N and

Fq (̂σq)
−1(

∏
l|M Fl(̂σl)−1) =∏

l|Nq Fl (̂σl)
−1 if q2|N , we have

εq

q
trqN/N

(
υN

(
Fq (̂σq)

−1
( ∏
l|M

Fl(̂σl)
−1

)
σ̂q (ξN )

))

=


εqx
′
N
q

(n ≥ 2)

εqFq(σq)
−1x ′N

q

(n = 1)

εq

q
(q − 1)σqFq(σq)−1x ′N (n = 0) .

(6)

Combining the equations (4), (5) and (6), if q2|N , we have

trqN/N(x
′
qN )= 0+ aqx ′N − εqx ′N

q

= aqx ′N − εqx ′N
q

.

If q||N , we have

trqN/N(x
′
qN )= 0+ aqx ′N − εqFq(σq)−1x ′N

q

= aqx ′N − εqFq(σq)−1x ′N
q

.

If q � |N , we have

trqN/N(x ′qN )=−
(
σ−1
q −

aq

q
+ εq
q
σq

)
Fq(σq)

−1x ′N
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+ (q − 1)aq
q

Fq(σq)
−1x ′N −

εq

q
(q − 1)σqFq(σq)−1xN

=
(
− σ−1

q +
aq

q
− εq
q
σq + (q − 1)aq

q
− εq
q
(q − 1)σq

)
Fq(σq)

−1x ′N

= (aq − εqσq − σ−1
q )Fq(σq)

−1x ′N .

Thus, we have proved the proposition. �

3. The zeta elements and the modular elements

Kato defined an Euler system in cohomology groups H1(Z[µN, 1
S
], VpE) in [4]. Here

H1(Z[µN, 1
S
], VpE) = H1

et (SpecZ[µN, 1
S
], VpE) and S is the set of bad primes, the infinite

prime and p. It is called the zeta element. We regard zN ∈ H1(Qp ⊗Q Q(µN), VpE) through

the natural map H1(Z[µN, 1
S
], VpE) → H1(Qp ⊗Q Q(µN), VpE). We normalize the zeta

element as follows.

PROPOSITION 3.1. Let χ be a character of conductor N , then the zeta element zN ∈
H1(Qp ⊗Q Q(µN), VpE) satisfies

∑
σ∈GN

χ(σ)exp∗N(σ(zN)) =
L(E, χ, 1)

Ω±E
ω (χ(−1) = ±1) .

Here, exp∗N is the dual exponential map and Ω±E are Néron periods. See Kato [4], Theo-
rem 12.5.

We call a system of elements (wM)M ∈ ∏
M|N H1(Qp ⊗Q Q(µM), VpE) an Euler sys-

tem, when they satisfy

NrqM/M(wqM) =
{
wM (q|M)
Fq(σ

−1
q )wM (q � |M) .

PROPOSITION 3.2. The zeta elements (zM)M form an Euler system.

See Kato [4], Theorem 8.12.
On the other hand, Mazur-Tate [8] defined the modular element θN ∈ Q[GN ] by

θN :=
∑

a∈(Z/NZ)×

([
a

N

]+
E

+
[
a

N

]−
E

)
σa .

Here, for r ∈ Q, [r]±E ∈ R are defined by

2π
∫ ∞

0
f (r + iy)dy = [r]+EΩ+E + [r]−EΩ−E
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where f (z) = ∑∞
n=1 anq

n is the modular form corresponding to E. From Manin-Drinfeld

theorem, we know [r]±E ∈ Q. They satisfy

χ(θN) = τ (χ)L(E, χ
−1, 1)

Ω±E
(χ(−1) = ±1)

for each character χ of conductor N , where τ (χ) := ∑
σ∈GN χ(σ)σ (ζN) is the Gauss sum.

For each prime number q , they satisfy compatible formulas below.

πqM/M(θqM) =
{
aqθM − εqνM/Mq (θMq ) (q|M)
(aq − σq − εqσ−1

q )θM (q � |M) .
Here, for integers L and M with L dividing M , the map πM/L : Qp[GM ] → Qp[GL] is

defined by the restriction map of the Galois group GM → GL, and the map νM/L : Qp[GL] →
Qp[GM ] is defined by

σ �→
∑

τ∈GM,πM/L(τ)=σ
τ

for σ ∈ GL.
In this paper, we call a system of elements (ηM)M ∈ ∏

M|N Qp[GM ] an admissible

system, when they satisfy the same compatible formulas.

REMARK 3.3. In [8], the modular elements are defined by θN := 1
2

∑
a∈GN /{±1}

[ a
N
]+Eσa ∈ Q[GN/{±1}].

THEOREM 3.4. If (wM)M ∈ ∏
M|N H1(Qp⊗Q Q(µM), VpE) is an Euler system, then

(PM(wM))M ∈∏
M|N Qp[GM ] is an admissible system.

Before proving the theorem, we will prove a lemma.

LEMMA 3.5. Let L be a positive integer and let q be a prime number. For x ∈ D ⊗Q

Q(µqL) and z ∈ H1(Qp ⊗Q Q(µqL), VpE), we have

πqL/L(PqL(x, z)) = PL(trqL/L(x),NrqL/L(z)) .

For x ∈ D ⊗Q Q(µL) and z ∈ H1(Qp ⊗Q Q(µqL), VpE), we have

PqL(x, z) = νqL/L(PL(x,NrqL/L(z))) .

PROOF. For x ∈ D⊗Q Q(µqL) and z ∈ H1(Qp⊗Q Q(µqL), VpE), an easy calculation
shows that

πqL/L(PqL(x, z))= πqL/L
( ∑
s,t∈GqL

[s(x), exp∗qL(t (z))]st−1
)
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=
∑

s,t∈GqL
[s(x), exp∗qL(t (z))]πqL/L(st−1)

=
∑

σ,τ∈GL

( ∑
s,t∈GqL,πqL/L(s)=σ,πqL/L(t)=τ

[s(x), t (exp∗qL(z))]
)
στ−1

=
∑

σ,τ∈GL

[ ∑
s∈GqL,πqL/L(s)=σ

s(x),
∑

t∈GqL,πqL/L(t)=τ
t (exp∗qL(z))

]
στ−1

=
∑

σ,τ∈GL
[σ(trqL/L(x)), τ (trqL/L(exp∗qL(z)))]στ−1

=
∑

σ,τ∈GL
[σ(trqL/L(x)), exp∗L(τ(NrqL/L(z)))]στ−1

= PL(trqL/L(x),NrqL/L(z)) .

Thus, we have proved the first half of the lemma.
Similarly, for x ∈ D ⊗Q Q(µL) and z ∈ H1(Qp ⊗Q Q(µqL), VpE), we have

νqL/L(PL(x,NrqL/L(z)))

= νqL/L
( ∑
σ,τ∈GL

[σ(x), exp∗L(τ(NrqL/L(z)))]στ−1
)

=
∑
ρ∈GqL

( ∑
σ,τ∈GL,πqL/L(ρ)=στ−1

[σ(x), exp∗L(τ(NrqL/L(z)))]
)
ρ

=
∑
ρ∈GqL

( ∑
σ,τ∈GL,πqL/L(ρ)=στ−1

[σ(x), τ (trqL/L(exp∗qL(z)))]
)
ρ

=
∑
ρ∈GqL

( ∑
σ,τ∈GL,πqL/L(ρ)=στ−1

[
σ(x),

∑
t∈GqL,πqL/L(t)=τ

t (exp∗qL(z))
])
ρ

=
∑

ρ,t∈GqL,σ,τ∈GL,πqL/L(ρ)=στ−1,πqL/L(t)=τ
[σ(x), t (exp∗qL(z))]ρ .

The condition πqL/L(ρ) = στ−1 and πqL/L(t) = τ is equivalent that πqL/L(ρt) = σ

and πqL/L(t) = τ . Putting s = ρt ∈ GqL, we obtain∑
ρ,t∈GqL,σ,τ∈GL,πqL/L(ρ)=στ−1,πqL/L(t)=τ

[σ(x), t (exp∗qL(z))]ρ

=
∑

s,t∈GqL,σ,τ∈GL,πqL/L(s)=σ,πqL/L(t)=τ
[σ(x), t (exp∗qL(z))]st−1
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=
∑

s,t∈GqL
[s(x), exp∗qL(t (z))]st−1

= PqL(x, z) .
Thus, we have proved the lemma. �

PROOF OF THEOREM 3.4. From Definition 2.4 and Lemma 3.5, we have

πqM/M(PqM(wqM))= πqM/M(PqM(xqM,wqM))
= PM(trqM/M(xqM),NrqM/M(wqM)) .

If q2|M , from Proposition 2.5, we have

PM(trqM/M(xqM),NrqM/M(wqM))= PM(aqxM − εqxM
q
,wM)

= aqPM(xM,wM)− εqPM(xM
q
,wM) .

Applying Lemma 3.5 by L = M
q

, we have

PM(xM
q
,wM)= νM/Mq (PM

q
(xM

q
,Nr

M/Mq
(wM)))

= νM/M
q
(PM

q
(xM

q
,wM

q
)) .

Thus, we have proved that

πqM/M(PqM(wqM))= aqPM(xM,wM)− εqνM/Mq (PM
q
(xM

q
,wM

q
))

= aqPM(wM)− εqνM/M
q
(PM

q
(wM

q
)) .

If q||M , then we have

PM(trqM/M(xqM),NrqM/M(wqM))

= PM(aqxM − εqFq(σq)−1xM
q
,wM)

= aqPM(xM,wM)− εqPM(Fq(σq)−1xM
q
,wM)

= aqPM(xM,wM)− εqνM/M
q
(PM

q
(Fq(σq)

−1xM
q
,NrM/M

q
(wM)))

= aqPM(xM,wM)− εqνM/Mq (PM
q
(Fq(σq)

−1xM
q
, Fq(σ

−1
q )wM

q
))

= aqPM(xM,wM)− εqνM/Mq (PM
q
(xM

q
,wM

q
))

= aqPM(wM)− εqνM/M
q
(PM

q
(wM

q
)) .

Here, we used Lemma 2.3.
If q � |M , then we have

PM(trqM/M(xqM),NrqM/M(wqM))= PM((aq − εqσq − σ−1
q )Fq(σq)

−1xM,Fq(σ
−1
q )wM)
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= (aq − σq − εqσ−1
q )PM(wM) .

Thus, we have proved the theorem. �

THEOREM 3.6. From the notations as above, we have PN(zN) = θN .

To prove this theorem, we need some lemmas.

LEMMA 3.7. Let (ηM)M, (κM)M ∈ ∏
M|N Qp[GM ] be two admissible systems. Fix a

positive integer M dividing N. If ηL = κL for each positive integer L with L dividing M and
L �= M , and χ(ηM) = χ(κM) for each character χ of conductorM , then ηM = κM .

PROOF. To prove ηM = κM , it suffices to show that χ(ηM) = χ(κM) for each character
χ of GM . From the assumption, χ(ηM) = χ(κM) for each character χ of conductorM . If the
conductor of χ is not equal to M , then we can regard χ as a character of the group GM

q
for

some prime number q dividing M , and we obtain χ(ηM) = χ(πM/Mq (ηM)). So it suffices to

show that πM/M
q
(ηM) = πM/M

q
(κM) for each prime number q dividing M .

First, we assume that q2 dividesM . Then, we get πM/Mq
(ηM) = aqηM

q
− εqνM

q /
M

q2
(η M

q2
)

and πM/M
q
(κM) = aqκM

q
− εqνM

q
/ M
q2
(κ M

q2
). Since we have ηM

q
= κM

q
and η M

q2
= κ M

q2
from

the assumption, we obtain πM/M
q
(ηM) = πM/M

q
(κM). If q||M , then we have πM/M

q
(ηM) =

(aq − σq − εqσ−1
q )ηM

q
= (aq − σq − εqσ−1

q )κM
q
= π

M/Mq
(κM). Thus we have proved the

lemma. �

LEMMA 3.8. Let (ηM)M, (κM)M ∈ ∏
M|N Qp[GM ] be two admissible systems. Sup-

pose that for each positive integerM dividingN , we have χ(ηM) = χ(κM) for each character
χ of conductorM . Then we have ηN = κN .

PROOF. We will prove that ηM = κM for each positive integerM dividingN by induc-

tion. First, we show that η1 = κ1. From the assumption, χ0(η1) = χ0(κ1) for the character

χ0 of conductor 1. Since χ0 : Qp[G1] � Qp, we have η1 = κ1.
Next, suppose that M divides N and ηL = κL for each positive integer L such that L

divides N and L < M . From the assumption, we have χ(ηM) = χ(κM) for each character χ
of conductor M . We also have ηL = κL for each positive integer L with L dividing M and
L �= M . Applying Lemma 3.7, we have ηM = κM . Thus we have proved the lemma. �

PROOF OF THEOREM 3.6. From Lemma 3.8, it is enough to show that for a character
χ of conductor N , the χ part of the both hands are equal.

A direct calculation shows that

χ(PN(zN))=
∑

σ,τ∈GN
[σ(xN), τ (exp∗N(zN))]χ(σ)χ(τ−1)
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=
[ ∑
σ∈GN

σ(xN)χ(σ),
∑
τ∈GN

τ(exp∗N(zN))χ−1(τ )

]
. (7)

We first treat the right half of the pairing of the equation (7). From the properties of the
zeta elements, we get∑

τ∈GN
τ(exp∗N(zN))χ−1(τ )=

∑
τ∈GN

exp∗N(τ(zN))χ−1(τ )

= L(E, χ
−1, 1)

Ω±E
ω .

Next, we treat the left half. Put F̃l(T ) := F̃ (1)l (T ), and let l1, l2, . . . , ls be all the prime
numbers dividing N such that l1 < l2 < · · · < ls , then we have∏
l|N
Fl (̂σl)

−1 = Fl1 (̂σl1)−1
∏

l′|N,l′>l1
Fl′ (̂σl′)

−1

= (1+ F̃l1 (̂σl1)Fl1 (̂σl1)−1σ̂l1)
∏

l′|N,l′>l1
Fl′ (̂σl′)

−1

=
∏

l′|N,l′>l1
Fl′ (̂σl′)

−1 +
( ∏
l′|N,l′>l1

Fl′ (̂σl′)
−1

)
F̃l1 (̂σl1)Fl1 (̂σl1)

−1σ̂l1

= Fl2 (̂σl2)−1
∏

l′|N,l′>l2
Fl′ (̂σl′)

−1 +
( ∏
l′|N,l′>l1

Fl′ (̂σl′)
−1

)
F̃l1 (̂σl1)Fl1 (̂σl1)

−1σ̂l1

= · · ·
= 1+

∑
l|N

( ∏
l′|N,l′>l

Fl′ (̂σl′)
−1

)
F̃l (̂σl)Fl (̂σl)

−1σ̂l .

So, if we denoteHl = (∏l′|N,l′>l Fl′ (̂σl′)−1)F̃l (̂σl)Fl (̂σl)
−1, then we have∏

l|N
Fl (̂σl)

−1 = 1+
∑
l|N

Hlσ̂l .

From the definition of xN , we get

xN = υN
(( ∏

l|N
Fl (̂σl)

−1
)
ξN

)
ω∗

= υN
((

1+
∑
l|N

Hlσ̂l

)
ξN

)
ω∗

= υN
(
ξN +

∑
l|N

HlξN
l

)
ω∗
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=
(
ζN +

∑
l|N

υN(HlξN
l
)

)
ω∗ .

Since υN(HlξN
l
) ∈ Q(µN

l
), we obtain

∑
σ∈GN σ(υN(HlξNl ))χ(σ ) = 0. So we have

∑
σ∈GN

σ(xN)χ(σ) =
∑
σ∈GN

σ(ζN)χ(σ)ω
∗ = τ (χ)ω∗ .

Therefore, it follows from (7) that

χ(PN(zN))=
[
τ (χ)ω∗, L(E, χ

−1, 1)

Ω±E
ω

]

= τ (χ)L(E, χ
−1, 1)

Ω±E
= χ(θN) .

Thus, we have proved the equality. �

4. Integrality of the map

In this section, we will prove the following theorem.

THEOREM 4.1. If Ẽ(Fp(µN))[p] = 0, (wM)M ∈ ∏
M|N H1(Qp ⊗Q Q(µM), TpE) is

an integral Euler system and p divides N , then (PM(wM))M ∈ ∏
M|N Zp[GM ] is an integral

admissible system. Here Ẽ is the reduction of the elliptic curve E mod p.

Before proving the theorem, we make some preparations.
For a positive integer N = ∏

l l
el , where each l is a prime number and el is a non-

negative integer, define S(N) to be S(N) := {l : prime number | el > 0}, and for a set of
prime numbers S, define NS to be NS :=∏

l �∈S lel = N/
∏
l∈S lel .

For the rest of the section, we write N = Mpn with p � |M and n ≥ 1. From Lemma 2.6,
we have

xN = υN
(( ∏

l|N
Fl (̂σl)

−1
)
ξN

)
ω∗

= υN
(
Fp(̂σp)

−1
(∏
l|M

Fl(̂σl)
−1

)
ξN

)
ω∗

= υN
(
Fp(̂σp)

−1
(∏
l|M

( el−1∑
i=0

c
(l)
i σ̂

i
l + F̃ (el)l (̂σl)Fl (̂σl )

−1σ̂
el
l

))
ξN

)
ω∗
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= υN
(
Fp(̂σp)

−1
∑

S⊂S(M)

( ∏
l′ �∈S

el′−1∑
i=0

c
(l′)
i σ̂ il′

)( ∏
l∈S
F̃
(el)
l (̂σl)Fl (̂σl)

−1σ̂
el
l

)
ξN

)
ω∗

=
∑

S⊂S(M)
υN

(
Fp(̂σp)

−1
( ∏
l′ �∈S

el′−1∑
i=0

c
(l′)
i σ̂ il′

)( ∏
l∈S
F̃
(el)
l (̂σl)Fl (̂σl)

−1
)
ξNS

)
ω∗ .

So, if we put γS := (∏l′ �∈S(
∑el′−1
i=0 c

(l′)
i σ̂ i

l′)
∏
l∈S F̃

(el)
l (̂σl))ξNS ∈ Z(p)[CNS ], then we obtain

xN =
∑

S⊂S(M)

(∏
l∈S
Fl(σl)

−1
)
υN(Fp(̂σp)

−1γS)ω
∗ .

Here, the coefficients of γS are in Z(p) = { ab ∈ Q | a, b ∈ Z, p � | b} because c(l
′)

i ∈ Z(p) and

F̃
(el)
l (T ) ∈ Z(p)[T ] from their definitions.

In the next lemma, log
Ê

is the formal logarithm of the formal group Ê and log
Ê
(Qp ⊗Q

Q(µNS )) :=
∏
v|p log

Ê
(Q(µNS )v), where log

Ê
(Q(µNS )v) := log

Ê
(Ê(mQ(µNS )v

)), and we

put log(Qp ⊗Q Q(µNS )) := log
Ê
(Qp ⊗Q Q(µNS ))ω

∗ ⊂ D/D0 ⊗Q Q(µN).

LEMMA 4.2. If αS ∈ log(Qp ⊗Q Q(µNS )) for all S ⊂ S(M), y =∑
S⊂S(M)(

∏
l∈S Fl(σl)−1)αS and (wL)L ∈ ∏

L|N H1(Qp ⊗Q Q(µL), TpE) is an integral

Euler system, then

PN(y,wN) ∈ Zp[GN ].
From the lemma above, what we need to show to prove the theorem is that

υN(Fp(̂σp)
−1γS) ∈ log

Ê
(Qp ⊗Q Q(µNS )) for all S ⊂ S(M).

PROOF OF LEMMA 4.2. From the definition, we get

PN(y,wN)=
∑
σ∈GN

trN/1[σ(y), exp∗N(wN)]σ

=
∑
σ∈GN

trN/1

[
σ

( ∑
S⊂S(M)

( ∏
l∈S
Fl(σl)

−1
)
αS

)
, exp∗N(wN)

]
σ

=
∑
σ∈GN

∑
S⊂S(M)

trN/1

[( ∏
l∈S
Fl(σl)

−1
)
σ(αS), exp∗N(wN)

]
σ .

So, it is enough to show that trN/1[(∏l∈S Fl(σl)−1)σ (αS), exp∗N(wN)] ∈ Zp for all σ ∈
GN and S ⊂ S(M).
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From basic properties of Res and Nr, for a positive integer L dividing N , the diagram

H1(Qp ⊗Q Q(µN), VpE)×H1(Qp ⊗Q Q(µN), VpE)
[ , ]N−−→Qp

↑ ResN/L ↓ NrN/L ‖
H1(Qp ⊗Q Q(µL), VpE)× H1(Qp ⊗Q Q(µL), VpE)

[ , ]L−−→Qp

is commutative. Here, ResN/L is the restriction map and NrN/L is the norm map, namely the
corestriction map.

Thus, we have

trN/1

[( ∏
l∈S
Fl(σl)

−1
)
σ(αS), exp∗N(wN)

]

=
[

expN

(( ∏
l∈S
Fl(σl)

−1
)
σ(αS)

)
, wN

]
N

=
[

ResN/NS

(
expNS

(( ∏
l∈S
Fl(σl)

−1
)
σ(αS)

))
, wN

]
N

=
[

expNS

(( ∏
l∈S
Fl(σl)

−1
)
σ(αS)

)
,NrN/NS (wN)

]
NS

=
[

expNS

(( ∏
l∈S
Fl(σl)

−1
)
σ(αS)

)
,

( ∏
l∈S
Fl(σ

−1
l )

)
wNS

]
NS

=
[( ∏

l∈S
Fl(σl)

−1
)

expNS (σ (αS)),

( ∏
l∈S
Fl(σ

−1
l )

)
wNS

]
NS

= [expNS (σ (αS)),wNS ]NS
= trNS/1[σ(αS), exp∗NS (wNS )] .

Here, we used the fact that [A−1x,A∗y]NS = [x, y]NS for A ∈ Qp[GNS ] such that A−1 exists
in Qp[GNS ].

So what we have to prove is that trNS/1[σ(αS), exp∗NSwNS ]NS ∈ Zp for all σ ∈ GN and

S ⊂ S(M). But this follows from the fact that σ(αS) is in the image of log because the formal
logarithm map is Galois compatible, and the commutativity of the following diagram

Ê(Qp ⊗Q Q(µNS )) ×H1(Qp ⊗Q Q(µNS ), TpE)→ Zp
↓ log ↓ exp∗NS ↓

D/D0 ⊗Qp (Qp ⊗Q Q(µNS ))×D0 ⊗Qp (Qp ⊗Q Q(µNS ))→ Qp .

where the pairing in the upper row is the composite of the Kummer map Ê(Qp ⊗Q

Q(µNS )) → H1(Qp ⊗Q Q(µNS ), TpE) and [ , ]NS : H1(Qp ⊗Q Q(µNS ), TpE) ×
H1(Qp ⊗Q Q(µNS ), TpE)→ Zp, and the pairing in the lower row is trNS/1[ , ]. �
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For the rest of this section, we will prove that υpn(Fp(̂σp)−1υMS (γS)) is in the image of
log

Ê
in Qp ⊗Q Q(µNS ) because we have

υNS (Fp(̂σp)
−1γS)= υpn(υMS (Fp(̂σp)

−1γS))

= υpn(Fp(̂σp)−1υMS (γS)) .

Let v be a prime of Q(µMS) dividing p, it is easy to show that the diagram below is
commutative,

Q(µMS)[Cpn]
σ̂p−→ Q(µMS )[Cpn]

↓ � ↓
Q(µMS )v[Cpn] σ̂v−→ Q(µMS)v[Cpn] .

Here, σ̂v denotes a ring endomorphism of Q(µMS)v[Cpn] defined by

α �→ σv(α)

ξpn �→ ξ
p
pn

for α ∈ Q(µMS)v , where σv denotes the Frobenius automorphism of the unramified extension
Q(µMS )v/Qp.

Later on, we regard υMS (γS) ∈ Q(µMS )v[Cpn] and we will show that

υpn(Fp(̂σv)
−1υMS (γS)) ∈ log

Ê
(mQ(µNS )v

) by the following arguments.

Let K be a finite unramified extension of Qp, OK its ring of integers, mK := pOK

its maximal ideal, k := OK/mK and σ ∈ Gal(K/Qp) the Frobenius automorphism (i.e.
σ(x) ≡ x (mod p) for all x ∈ OK). Let MK := (p, T ) be the maximal ideal of the ring of
power series OK [[T ]].

We define the ring CK by CK := {f (T ) ∈ K[[T ]] | f (x) converges for any x ∈
Qp such that |x|p < 1}, i.e. the ring of power series whose radius of convergence is ≥ 1.
Here, | · |p is the normalized p-adic absolute value.

For each integer n ≥ 1, let IK,n be the ideal of CK defined by

IK,n := {f (T ) ∈ CK | f (ζpi − 1) = 0 for i = 0, 1, . . . , n} .
For f (T ) ∈ K[[T ]], we define

φf (T ) := σf ((1+ T )p − 1) .

Here, σf (T ) := ∑∞
i=0 σ(bi)T

i for f (T ) = ∑∞
i=0 biT

i ∈ K[[T ]]. Note that we have
φIK,n ⊂ IK,n, so x �→ φ(x) induces a map CK/IK,n → CK/IK,n. It is also denoted by
φ.

We define σ̂ : K[Cpn] → K[Cpn] by

α �→ σ(α)
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ξpn �→ ξ
p
pn

for α ∈ K .
For i = 0, 1, . . . , n, we define ψi : Cpn → µpn to be a character of Cpn of conductor pi

by ξpn �→ ζpi and define ςi : CK → K(µpn) by f (T ) �→ f (ζpi − 1). From the definition of
IK,n, we have an injection∏n

i=0 ςi : CK/IK,n → ∏n
i=0K(µpi )

f (T ) mod IK,n �→ (f (ζpi − 1))i .

LEMMA 4.3. There is an isomorphism

CK/IK,n � K[Cpn] ,
and the diagrams

CK/IK,n φ−→ CK/IK,n
↓ � ↓

K[Cpn] σ̂−→ K[Cpn]
and

ςn : CK/IK,n→ K(µpn)

↓ � ‖
υpn : K[Cpn] → K(µpn)

are commutative. Here, the vertical arrows are isomorphisms.

PROOF. Note that the natural inclusion K[T ] ⊂ CK induces an injection K[T ]/((1 +
T )p

n − 1) → CK/IK,n and comparing the dimensions of K-vector spaces K[T ]/((1 +
T )p

n − 1) � ∏n
i=0K(µpi ) and CK/IK,n, it is an isomorphism K[T ]/((1 + T )pn − 1) �

CK/IK,n. The ring homomorphism K[T ] → K[Cpn] defined by 1 + T �→ ξpn also in-

duces the isomorphism K[T ]/((1 + T )pn − 1) � K[Cpn]. So we have an isomorphism
CK/IK,n � K[Cpn]. It is easy to see that both φ and σ̂ correspond to the ring homomorphism

K[T ]/((1+ T )pn − 1)→ K[T ]/((1+ T )pn − 1) defined by f (T ) mod ((1+ T )pn − 1) �→
f ((1 + T )p − 1) mod ((1 + T )pn − 1), and both ςn and υpn correspond to the ring homo-

morphism K[T ]/((1 + T )pn − 1) → K(µpn) defined by f (T ) mod ((1 + T )pn − 1) �→
f (ζpn − 1). �

Put K = Q(µMS)v here. Let γ̃S(T ) ∈ K[T ] be a polynomial which corresponds to
γS ∈ OK [Cpn] through the isomorphism above. We can take γ̃S(T ) ∈ OK [T ]. To prove

υpn(Fp(̂σv)
−1υMS (γS)) ∈ log

Ê
(mK), it is enough to show that there exists g(T ) ∈ CK such

that Fp(φ)g(T ) = γ̃S(T ) and g(ζpn − 1) ∈ log
Ê
(mK).

We will prove this by the following arguments, which is an analogue of Coleman’s paper
[2].
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PROPOSITION 4.4. We have(
1− ap

p
φ + 1

p
φ2

)
log

Ê
(MK) ⊂ OK [[T ]] .

PROOF. Let e(T ) ∈MK . It is easy to see that

φe(T ) ≡ e(T )p (modpOK [[T ]])
and for X,Y ∈MK with X ≡ Y (mod pOK [[T ]]), we have

log
Ê
(X) ≡ log

Ê
(Y ) (mod pOK [[T ]]) .

Thus, we have

φ log
Ê
(e(T )) ≡ log

Ê
(e(T )p) (mod pOK [[T ]]) .

From Honda’s theory [3] section 6, we have

log
Ê
(Xp

2
)− aplog

Ê
(Xp)+ p log

Ê
(X) ≡ 0 (mod pOK [[T ]]) .

Combining all the above, we obtain

(p − apφ + φ2)log
Ê
(e(T )) ≡ p log

Ê
(e(T ))− ap log

Ê
(e(T )p)+ log

Ê
(e(T )p

2
)

≡ 0 (mod pOK [[T ]]) .
Dividing the equation by p, we obtain (1− ap

p
φ + 1

p
φ2)log

Ê
(e(T )) ∈ OK [[T ]]. �

PROPOSITION 4.5. Assume that Ẽ(k)[p] = 0. Then we have(
1− ap

p
φ + 1

p
φ2

)
log

Ê
(MK) = OK [[T ]] .

PROOF. Since we have MK = mK +Ê TO[[T ]] where +
Ê

is the formal group law

of the formal group Ê, it is enough to show that (1 − ap
p
φ + 1

p
φ2)log

Ê
(mK) = OK and

(1− ap
p
φ + 1

p
φ2)log

Ê
(TOK [[T ]]) = TOK [[T ]] separately.

First, we will show that (1 − ap
p
φ + 1

p
φ2)log

Ê
(TOK [[T ]]) = TOK [[T ]]. It is enough

to show that for each i ≥ 1, the induced map T iOK [[T ]] → T iOK [[T ]]/T i+1OK [[T ]] by

(1− ap
p
φ + 1

p
φ2)log

Ê
is surjective. Since we have(

1− ap
p
φ + 1

p
φ2

)
log

Ê
(αT i) = (α − appi−1ασ + p2i−1ασ

2
)T i + r(T )

with r(T ) ∈ T i+1OK [[T ]] for each α ∈ OK , it is enough to show the surjectivity of the map

OK →OK

α �→ α − appi−1ασ + p2i−1ασ
2
.
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Since the above map is Zp-linear, it is enough to show that the map mod p is surjective by
Nakayama’s lemma.

If i ≥ 2, then the map mod p is the identity map α �→ α. If i = 1, the map mod p is

k→ k

α �→ α − apαp .
Here ap is the image of ap ∈ Z under the natural map Z → Z/pZ � Fp. Note that
ασ ≡ αp (mod p).

Since k is a finite field, the surjectivity is equivalent to the injectivity of the map mod p.
We will prove the injectivity.

Suppose that the map mod p is not injective. Then, there exists a non-zero element α ∈ k
such that α = apαp . Since we have app = ap, we have

α = apαp = ap2αp
2 = · · · = apdαpd = apdα ,

where d = [k : Fp]. Since α �= 0, we have apd = 1 in Fp.

We will show that the assumption Ẽ(k)[p] = 0 implies that adp �≡ 1(mod p). From basic

facts about elliptic curves over finite field, we get #Ẽ(k) = pd − αdp − βdp + 1, where αp, βp

are two roots of the equation T 2 − apT + p = 0. Since αp + βp = ap and αpβp = p, we
obtain

αdp + βdp ≡ (αp + βp)d (mod p)

= adp.

Thus, we get adp − 1 ≡ −pd + αdp + βdp − 1 = −#Ẽ(k) �≡ 0 (mod p) and we have proved

that (1− ap
p
φ + 1

p
φ2)log

Ê
(TOK [[T ]]) = TOK [[T ]].

Next, we will show that (1 − ap
p
φ + 1

p
φ2)log

Ê
(mK) = OK . First, we will show that

the assumption Ẽ(k)[p] = 0 implies that log
Ê
(x) ≡ x (mod pi+1) for x ∈ piOK and for

i ≥ 1. From basic properties of log
Ê

, we see that for x ∈ Qp such that ordp(x) > 1
ph−1

, we

have log
Ê
(x) ≡ x (mod {y ∈ Qp|ordp(y) > ordp(x)}), where h is the height of the formal

group Ê and ordp is the normalized p-adic valuation. So, it is enough to show that 1
ph−1

< 1.

If p ≥ 3, then it is obvious. If p = 2, then the assumption Ẽ(k)[2] = 0 implies that E is

supersingular at 2. Since the height of the formal group Ê is 2, 1
ph−1

= 1
22−1
= 1

3 < 1. Thus,

we have proved the statement.
Let j ∈ Z, j ≥ 1 and u ∈ OK . We compute(

1− ap
p
φ + 1

p
φ2

)
log

Ê
(pj u) ≡ −appj−1uσ + pj−1uσ

2
(mod pj ) .
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To prove the surjectivity of the map (1− ap
p
φ + 1

p
φ2)log

Ê
: mK → OK , it is enough to

show the surjectivity of the induced map pjOK → pj−1OK/p
jOK for each j ≥ 1. But by

the similar arguments as above, the induced map is essentially

k→ k

u �→ −apup + up2
,

and we can show that it is injective, hence surjective.
Thus, we have proved the lemma. �

Let eS(T ) ∈ OQ(µM)v [[T ]] be an power series satisfying(
1− ap

p
φ + 1

p
φ2

)
log

Ê
(eS(T )) = γ̃S(T ) .

Then, from the arguments above,

υpn(Fp(̂σp)
−1υMS (γS)) = log

Ê
(eS(ζpn − 1)) ∈ log

Ê
(Q(µNS )v) .

It is in the image of log
Ê

. This is what we wanted to show.

References

[ 1 ] BLOCH, S. and KATO, K.: L-functions and Tamagawa number of motives, in Grothendieck Festschrift (Vol. I),
Prog. in Math. 86 (1990), 333–400.

[ 2 ] COLEMAN, R.: Division values in local fields, Invent. Math. 53 (1979), 91–116.
[ 3 ] HONDA, T.: On the theory of commutative formal groups, J. Math. Soc. Japan 22 (1970), 213–246.
[ 4 ] KATO, K.: p-adic Hodge theory and values of zeta functions of modular forms, Astérisque vol. 295 (2004),

117–290.
[ 5 ] KOBAYASHI, S.: Iwasawa theory for elliptic curves at supersingular primes, Invent. Math. 152 (2003), 1–36.
[ 6 ] KURIHARA, M.: On the Tate Shafarevich groups over cyclotomic fields of an elliptic curve with supersingular

reduction, I, Invent. Math. 149 (2002), 195–224.
[ 7 ] KURIHARA, M. and POLLACK, R.: Two p-adic L-functions and rational points on elliptic curves with super-

singular reduction, London Math. Soc. Lecture Note Series 320 (2007), 300–332.
[ 8 ] MAZUR, B. and TATE, J.: Refined conjectures of the “Birch and Swinnerton-Dyer type”, Duke Math. J.

vol. 54, No. 2 (1987), 711–750.
[ 9 ] MAZUR, B., TATE, J. and TEITELBAUM, J.: On p-adic analogues of the conjectures of Birch and Swinnerton-

Dyer, Invent. Math. 84 (1986), 1–48.
[10] PERRIN-RIOU, B.: Fonctions L p-adiques d’une courbe elliptique et points rationnels, Ann. Inst. Fourier 43,

4 (1993), 945–995.

Present Address:
CENTER FOR MATHEMATICS, SCHOOL OF FUNDAMENTAL SCIENCE AND TECHNOLOGY,
GRADUATE SCHOOL OF SCIENCE AND TECHNOLOGY,
KEIO UNIVERSITY,
HIYOSHI, KOHOKU-KU, YOKOHAMA-SHI, KANAGAWA, 223–8522 JAPAN.
e-mail: ray_otsuki@math.keio.ac.jp


