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Abstract. We review a Laplace operator on the cochain complex of the Lie algebra of the formal Poisson
vector fields to obtain an analogy of the Hodge theorem for its cohomology. We present intermediate results of the
computation on the plane.

1. Introduction

Let h be the Lie algebra of formal Poisson vector fields on R2n at the origin. The quotient
h′ = h/i is naturally identified with the Lie algebra of formal Hamiltonian vector fields on

R2n where the ideal i of h is the set of constant functions (for the precise definition, see section
2).

We know Laplace operators on the cochain complex of Lie algebras. In [3], using
Laplace operators, Gel’fand, Feigin and Fuks showed certain problems about the cohomology
of the Lie algebras of formal vector fields.

In this paper we review a Laplace operator on the cochain complex A∗(h) to obtain an
analogy of the Hodge theorem for H ∗(h). We present an intermediate result of the computa-

tion on R2. For the first half part of this paper, see also the previous paper [10].
Our motivation is an important problem to decide the structure ofH ∗(h′). Even if n = 1,

this is regarded as difficult problem. In this case Perchik[9] showed that its dimension is
at least 112. But we explicitly know only eight generators (six by Gel’fand, Kalinin and
Fuks[2] and other two by Metoki[6]). They used the Hochschild–Serre spectral sequence.
They calculated the relative cohomology Hq(h′, k) for some q , where a subalgebra k of h′ is
the linear part of h′ which is isomorphic to sp(2n; R).

Since h′ is the quotient h/i,H ∗(h′) andH ∗(h) are very close to each other (see section 5).
Then we consider the Poisson case. By the Hodge theorem, in order to obtain the non-trivial
cohomology classes of H ∗(h) we express Laplace operators as matrix and calculate those
kernels. But we have to operate large matrices. Of course in the same way as Hamiltonian
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case, it is possible to calculateH ∗(h) by using the spectral sequence. We have to operate large
matrices again (see also [7]). Therefore if we operate large matrices with computers, we can
find cohomology classes in H ∗(h) by two ways and it is possible to check each other.

The author would like to express his gratitude to Professor Yoshihiko Mitsumatsu for his
encouragement and the members of Izu seminar for many useful comments.

2. The Lie algebras of formal Poisson vector fields

First we recall Hamiltonian vector fields. We consider the standard symplectic 2-form
ω = dx1 ∧ dy1 + · · · + dxn ∧ dyn on R2n. For any smooth function f ∈ C∞(R2n), a vector

field Xf on R2n is a Hamiltonian vector field associated to f if it satisfy with i(Xf )ω = df .

We define the Poisson bracket of two functions f, g ∈ C∞(R2n) by

[f, g] = −
n∑
s=1

(
∂f

∂xs

∂g
∂ys

− ∂f

∂ys

∂g
∂xs

)
.

Then we have X[f,g] = [Xf ,Xg ]. Therefore there exists the Lie algebra homomorhism from

C∞(R2n) to the Lie algebra of Hamiltonian vector fields. Its kernel is the set of constant
functions (for detail, see [1]).

Here we formalize the functions. We define the Lie algebra h of formal Poisson vector

fields on R2n as the vector space of formal power series R[[x1, . . . , xn, y1, . . . , yn]] with the

bracket presented above and the Lie algebra h′ of formal Hamiltonian vector fields on R2n by
the quotient algebra h/i where the ideal i of h is the set of constant functions.

For convenience, we prepare the following notation on multi-indices. Let N denote
the set of non-negative integers. We set α1 + α2 = (α1,1 + α2,1, . . . , α1,2n + α2,2n) for

multi-indices αs = (αs,1, . . . , αs,2n) ∈ N 2n (s = 1, 2). We set the multi-indices εs =
(0, . . . , 0︸ ︷︷ ︸

s−1

, 1, 0, . . . , 0) for s = 1, . . . , 2n. We define the length |α1| to be α1,1 + · · · + α1,2n

and xα1 to be x
α1,1
1 · · · xα1,n

n y
α1,n+1
1 · · · yα1,2n

n for a multi-index α1 ∈ N 2n. Therefore f ∈ h is
expressed as an infinite sum

f =
∑

α1∈N 2n

aα1x
α1 (aα1 ∈ R) .

We define the topology of h by the family of semi-norms

f =
∑

α1∈N 2n

aα1x
α1 �→ sup

|α1|≤k
|aα1 | (k = 0, 1, . . . ) .

Therefore the topological dual of h is isomorphic to the vector space of the polynomials on

R2n.
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3. Cohomology

Following [8] and [5], we define the cohomology of topological Lie algebra g as follows.

We set A0(g) = R. For each positive integer q , we set

Aq(g) = {ϕ : g × · · · × g︸ ︷︷ ︸
q

→ R; alternating R-multilinear continuous map} .

The exterior derivation d : Aq(g) → Aq+1(g) is defined by

dϕ(f1, . . . , fq+1) =
∑
s<t

(−1)s+tϕ([fs, ft ], f1, . . . , f̂s , . . . , f̂t , . . . , fq+1)

for ϕ ∈ Aq(g), f1, . . . , fq+1 ∈ g. If ϕ ∈ A0(g), we define dϕ = 0. We call the cohomology
of cochain complex {A∗(g), d} the (continuous) cohomology of g and it is denoted byH ∗(g).

For f ∈ g, we define the interior product i(f ) : Aq(g) → Aq−1(g) by

(i(f )ϕ)(f1, . . . , fq−1) = ϕ(f, f1, . . . , fq−1)

for ϕ ∈ Aq(g), f1, . . . , fq−1 ∈ g, and the Lie derivative Lf : Aq(g) → Aq(g) by Cartan’s
formula:

Lf = di(f )+ i(f )d .

For α1 ∈ N 2n, we define the 1-cochain δα1 ∈ A1(h) by

δα1(f ) = aα1 for f =
∑

β1∈N 2n

aβ1x
β1 ∈ h .

Then we have

2dδα1 =
n∑
s=1

∑
β1+β2=α1+εs+εn+s

(β1,sβ2,n+s − β1,n+sβ2,s)δβ1 ∧ δβ2(3.1)

for α1 ∈ N 2n. By the continuity, a cochain ϕ ∈ Aq(h) is expressed as a finite sum of
monomials δα1 ∧ · · · ∧ δαq :

ϕ =
∑

α1,...,αq∈N 2n

aα1···αq δα1 ∧ · · · ∧ δαq (aα1···αq ∈ R) .

We define the multi-order κ1 ∈ N 2n of a monomial δα1 ∧ · · · ∧ δαq ∈ Aq(h) as

κ1 = α1 + · · · + αq .

The next lemma is proved in the same way as Lemma 4.1 in [10].

LEMMA 3.1. We have

Lxsys (δα1 ∧ · · · ∧ δαq ) = (κ1,n+s − κ1,s)δα1 ∧ · · · ∧ δαq (s = 1, . . . , n) .
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We put Aq0(h) = {ϕ ∈ Aq(h);Lxsys ϕ = 0 (s = 1, . . . , n)}. Since dAq0(h) ⊂ A
q+1
0 (h),

{A∗
0(h), d} is a subcomplex of {A∗(h), d}. The cohomology of {A∗

0(h), d} is denoted by
H ∗

0 (h). Then we obtain H ∗(h) = H ∗
0 (h) (see Lemma 4.2 in [10] ).

A monomial δα1 ∧ · · · ∧ δαq is total-order k if k = |α1| + · · · + |αq |. A cochain ϕ ∈
A
q
0(h) is total-order k if it is a sum of total-order k monomials. Let Aq,k0 (h) denote the finite

dimensional vector space of total-order k cochains in Aq0(h). From (3.1), we have dAq,k0 (h) ⊂
A
q+1,k+2
0 (h). We set

H
q,k

0 (h) = Ker{d : Aq,k0 (h) → A
q+1,k+2
0 (h)}

Im{d : Aq−1,k−2
0 (h) → A

q,k

0 (h)}
.

Then we obtain

H
q
0 (h) =

⊕
k

H
q,k
0 (h) .

REMARK 3.2. By Lemma 3.1, we have Aq,k0 (h) = 0 for odd integers k.

4. Laplace operator

Following [4], we define the Laplace operator on Aq,k0 (h). We define a bracket [δα1, δα2 ]
as

[δα1, δα2] = −
n∑
s=1

(α1,sα2,n+s − α1,n+sα2,s )δα1+α2−εs−εn+s .

for δα1, δα2 ∈ A1(h). There is the case that α1 + α2 − εs − εn+s is not a multi-index, for
example α1,s + α2,s = 0. But in this case the coefficient α1,sα2,n+s − α1,n+sα2,s = 0. Then

above bracket is well-defined. We define the boundary operator ∂ : Aq(h) → Aq−1(h) by

∂(δα1 ∧ · · · ∧ δαq ) =
∑
s<t

(−1)s+t [δαs , δαt ] ∧ δα1 ∧ · · · ∧ δ̂αs ∧ · · · ∧ δ̂αt ∧ · · · ∧ δαq

for q ≥ 2 and ∂ = 0 for q = 0, 1. Therefore we obtain ∂Aq,k0 (h) ⊂ A
q−1,k−2
0 (h).

We define an inner product 〈 , 〉 on Aq,k0 (h) as

〈δα1 ∧ · · · ∧ δαq , δβ1 ∧ · · · ∧ δβq 〉 = δα1 ∧ · · · ∧ δαq (xβ1, . . . , xβq )

for δα1 ∧· · ·∧δαq , δβ1 ∧· · ·∧δβq ∈ Aq,k0 (h). Relative to the inner product 〈 , 〉, ∂ is an adjoint

operator of the exterior derivative d , that is, we have 〈dϕ,ψ〉 = 〈ϕ, ∂ψ〉 for ϕ ∈ Aq,k0 (h) and

ψ ∈ Aq+1,k+2
0 (h).



COHOMOLOGY OF POISSON AND LAPLACE OPERATORS 109

The Laplace operator ∆q,k0 : Aq,k0 (h) → A
q,k

0 (h) is defined by ∆q,k0 = d∂ + ∂d . This
is a self-adjoint operator relative to the inner product 〈 , 〉 and commutes with d and ∂ . A

cochain ϕ ∈ A
q,k

0 (h) is harmonic if ∆q,k0 ϕ = 0. Then we have dϕ = 0 and ∂ϕ = 0 for a

harmonic cochain ϕ ∈ Aq,k0 (h). Let Hq,k
0 (h) denote the set of harmonic cocycles in Aq,k0 (h).

Then we obtain an analogy of the Hodge theorem:

THEOREM 4.1 (see Theorem 1.5.3 in [4]). H
q,k

0 (h) is isomorphic to Hq,k

0 (h).

Then in order to find cohomology classes in H ∗(h), it is only necessary to express the

Laplace operators ∆q,k0 as the matrix relative to a basis of Aq,k0 (h) and to compute those
kernels.

5. Relations with formal Hamiltonian vector fields

We mention relations with the cohomology of the Lie algebra h′(= h/i) of formal Hamil-
tonian vector fields. Since i is the center of h, we have Lf ϕ = 0 for ϕ ∈ Aq(h), f ∈ i.
Then the cochain complex {A∗(h′), d} is naturally identified with the relative cochain com-
plex {A∗(h, i), d} where we put

Aq(h, i) = {ϕ ∈ Aq(h); i(f )ϕ = Lf ϕ = 0 for all f ∈ i} .
By applying the Hochschild–Serre[5] spectral sequence to the pair (h, i), we have

E
p,q

2
∼= Hq(i)⊗Hp(h, i) .

On the other hand we have Hq(i) = R (q = 0, 1) and Hq(i) = 0 (q �= 0, 1) where a
generator of H 1(i) is represented by δ0. Therefore, if we find cohomology classes in H ∗(h),
we find cohomology classes in H ∗(h′).

6. Computation on the plane

We present an intermediate result of the computation on R2. We use Mathematica to get

the rank of ∆q,k0 . Then we have TABLE 1 and TABLE 2.

Take λ8,14
0 , λ

8,14
1 as a basis of A8,14

0 (h) where

λ
8,14
0 = δ(3,0) ∧ δ(2,0) ∧ δ(1,1) ∧ δ(1,0) ∧ δ(0,3) ∧ δ(0,2) ∧ δ(0,1) ∧ δ(0,0) ,
λ

8,14
1 = δ(2,1) ∧ δ(2,0) ∧ δ(1,2) ∧ δ(1,1) ∧ δ(1,0) ∧ δ(0,2) ∧ δ(0,1) ∧ δ(0,0) .

Then we have the Laplace operator

∆
8,14
0 =

(
153 51
51 17

)
.
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TABLE 1. dimH
q,k
0 (h)/ dimA

q,k
0 (h)

k\q 3 4 5 6 7 8 9 10 11
2 1/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0 0/0
4 0/4 0/1 0/0 0/0 0/0 0/0 0/0 0/0 0/0
6 0/15 0/9 0/1 0/0 0/0 0/0 0/0 0/0 0/0
8 0/33 0/33 1/12 1/1 0/0 0/0 0/0 0/0 0/0

10 0/69 0/96 0/53 0/9 0/0 0/0 0/0 0/0 0/0
12 0/123 0/235 0/194 0/64 0/5 0/0 0/0 0/0 0/0
14 0/208 0/503 ?/548 0/272 1/52 1/2 0/0 0/0 0/0
16 0/325 ?/984 ?/1369 ?/917 0/271 0/25 0/0 0/0 0/0
18 0/492 ?/1797 ?/3064 ?/2626 ?/1096 0/187 0/7 0/0 0/0
20 ?/708 ?/3094 ?/6355 ?/6716 ?/3648 ?/921 0/80 0/1 0/0

TABLE 2. dimH
q,k
0 (h)/ dimA

q,k
0 (h)

k\q 7 8 9 10 11 12 13
22 ?/10628 ?/3658 0/527 0/17 0/0 0/0 0/0
24 ?/27799 ?/12252 ?/2579 0/189 0/1 0/0 0/0
26 ?/66955 ?/36365 ?/10219 ?/1223 0/35 0/0 0/0
28 ?/150422 ?/97814 ?/34848 ?/5989 1/360 0/2 0/0
30 ?/319157 ?/243465 ?/105960 ?/24064 ?/2326 0/54 0/0/
32 ?/644321 ?/567221 ?/294048 ?/84372 ?/11611 ?/540 0/2
34 ?/1246540 ?/1250140 ?/756334 ?/264349 ?/48191 ?/3650 0/60
36 ?/2322635 ?/2625466 ?/1825612 ?/758058 ?/174319 ?/18893 ?/652
38 ?/4186939 ?/5287546 ?/4172325 ?/2018035 ?/565750 ?/81727 ?/4699

Therefore the non-trivial cohomology class in H 8,14
0 (h) is represented by λ8,14

0 − 3λ8,14
1 .

Moreover we have dimA11,28
0 (h) = 360 and rank∆11,28

0 = 359. Therefore we obtain

dimH 11,28
0 (h) = 1. We do not present the matrix of ∆11,28

0 and the harmonic cocycle here,
because those are very large. This cohomology class is connected with the Gel’fand–Kalinin–

Fuks cohomology classes. We putAq,k0 (h′) = Aq(h, i)∩Aq,k0 (h). Gel’fand, Kalinin and Fuks

found representative cocycles in A7,22
0 (h′) and A10,28

0 (h′) for non-trivial cohomology classes.

By the spectral sequence, the existance of the non-trivial cohomology class in H 10,28
0 (h′) im-

plies that there exists the cohomology class in H 11,28
0 (h). We cannot calculate ranks of ∆7,22

0

and ∆10,28
0 with computers because the dimensions of A7,22

0 (h) and A10,28
0 (h) are very large.

Therefore if we operate large matrices with computers, we find representative cocycles
for non-trivial cohomology classes in H ∗(h).
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