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Abstract. We study maps between uniformly closed algebras of complex-valued continuous functions which
vanish at infinity on locally compact Hausdorff spaces. Without assuming linearity nor multiplicativity on the maps
we show that they are isometrical isomorphisms as Banach space operators if they satisfy that the peripheral range of
the product of the images of any two elements coincides with the peripheral range of the product of those elements.
Furthermore, if the underlying algebras contain approximate identities, then they are isometrically isomorphic as
Banach algebras, which is a generalization of a recent result of Luttman and Tonev for the case of uniform algebras.
On the other hand it is not the case without assuming the existence of approximate identities; An example is given.

1. Introduction

Molnár [8] initiated the study of multiplicatively spectrum-preserving maps on Banach
algebras and proved among other theorems that a map T from a Banach algebra C(X ) of all
complex-valued continuous functions on a first countable compact Hausdorff space X onto
itself is an almost isomorphism in the sense that T is an algebra isomorphism times a weight
with the values in {−1, 1} if T is multiplicatively spectrum preserving in the sense that the
spectrum of the product of any f and g ∈ C(X ) equals to the spectrum of the product of
Tf and T g . Rao and Roy [9] generalized the result for an arbitrary uniform algebra onto
itself. Hatori, Miura and Takagi [4] studied maps from a uniform algebra A onto another one
B, and show that a similar conclusion holds if the map is multiplicatively range preserving
and that A is isometrically isomorphic to B as a Banach algebra. Luttman and Tonev [7]
considered multiplicatively preserving property for much more smaller set; peripheral ranges.
They proved the similar conclusion as the previous ones if the map between uniform algebras
satisfies that the peripheral range of the product of any two functions equals to the peripheral
range of the product of the images of those two functions and show that these uniform algebras
are isometrically isomorphic to each other as Banach algebras. Hatori, Miura and Takagi
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[5] consider the case where underlying algebras are unital semisimple commutative Banach
algebras. Rao and Roy [10] consider maps from uniformly closed algebras of continuous
functions which vanish at infinity onto itself. In any case of the previous results the domain
algebra and the image algebra of the given map are algebraically isomorphic. In this paper
we show that it is not the case in general. We also show a positive result; if a map T between
certain algebras of continuous functions which vanish at infinity is multiplicatively peripheral-
range-preserving, then those two algebras are isometrically isomorphic as Banach spaces.
As in the similar way as the proofs of previous results, the main object is to give a map
between the Choquet boundaries, but the proof here is much involved because of lack of the
unit elements in the underlying algebras, which need not be algebraically isomorphic to each
other. A related result was proven by Honma [6].

2. Preliminaries

Let X be a locally compact Hausdorff space. We denote the algebra of all complex-
valued continuous functions on X vanish at infinity by C0(X). A closed subalgebra A (which
contains the constant functions whenever X is compact) of C0(X) is called a function algebra
on X if A strongly separates the points of X in the sense that if x, y ∈ X, x �= y, then there
exists an f ∈ A with 0 �= f (x) �= f (y). A function algebra is called a uniform algebra if the
underlying space X is compact. (These terms are due to [11].) The maximal ideal space of a

function algebra A is denoted by MA. For f ∈ A, f̂ is the Gelfand transform of f . Note that

a function algebra A is a semi-simple commutative Banach algebra, that is, f̂ = 0 implies
f = 0 for f ∈ A.

Let A be a function algebra on a locally compact Hausdorff space X. For a subset S of X

the supremum norm on S is denoted by ‖f ‖∞(S) = sup{|f (x)| : x ∈ S}. A peripheral range
{z ∈ f (X) : |z| = ‖f ‖∞(X)} of f ∈ A is denoted by Ranπ(f ). Note that the peripheral range
of each f ∈ A coincides with the peripheral spectrum {z ∈ σ(f ) : |z| = r(f )}, where σ(·)
denotes the spectrum and r(·) is the spectral radius since the Gelfand transform is an isometry
for function algebras. A function f ∈ A is said to be a peak function for A if Ranπ(f ) = {1}.
For a closed subset K of X we say that K is a peak set for A if there is an f in A with

K = f −1(1). Such a function f is called a peak function for K . If a peak set is a singleton,
then the unique element of the set is called a peak point for A. A weak peak set for A is a
finite or an infinite intersection of peak sets for A. If a weak peak set is a singleton, then the
unique element of the set is called a weak peak point for A. The set of all weak peak points for

A is denoted by Ch(A). Then the closure of Ch(A) is a Šilov boundary for A and so Ch(A) is
a uniqueness set for A, in the sense that f = g on Ch(A) implies f = g on X for f, g ∈ A.

In a proof of the main result a version of a theorem of Bishop for function algebras on a
locally compact Hausdorff space plays an important role. A theorem of Bishop for uniform
algebras are well-known; See a theorem and its proof of Bishop for uniform algebra on a
compact Hausdorff space in [1, Theorem 2.4.1]. For a convenience we show a version of the
theorem and its proof due to the case of uniform algebras.
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THEOREM 2.1. Let X be a locally compact Hausdorff space and A a function algebra
on X. Suppose that a closed subset K of X is a peak set for A. Then for every f ∈ A

which does not vanish on K , there exists a peak function u ∈ A with u−1(1) = K such that
|fu(x)| < ‖f ‖∞(K) for every x ∈ X \ K .

PROOF. A proof may be known, but we give it for a convenience. We consider the case
where X is not compact. Let X∞ = X ∪ {∞} be the one point compactification of X and
A∞ = A + C the unitization of A. Then we may consider that A∞ is a uniform algebra on
X∞. Since K is a peak set for A, K is also a peak set for A∞. Then by a theorem of Bishop
for uniform algebra, there exists a peak function u∞ ∈ A∞ for K with |fu∞(x)| < ‖f ‖∞(K)

for every x ∈ X \ K . Since u∞ is a peak function for K and ∞ �∈ K , we have |u∞(∞)| < 1.
Let w be a Möbius transform from the closed unit disk D̄ onto itself with w(1) = 1 and
w(u∞(∞)) = 0. We see that w ◦ u∞ is in A since w is uniformly approximated by analytic
polynomials and w(u∞(∞)) = 0, and so we see that u∞ × w ◦ u∞ is a function in A. Put
u = u∞ × w ◦ u∞ and it is easy to see that this u is a desired function. �

3. Main Results

Let A be a function algebra on a locally compact Hausdorff space. We denote the maxi-

mal ideal space for A by MA. The Gelfand transform of f ∈ A is denoted by f̂ .

THEOREM 3.1. Let A and B be function algebras on locally compact Hausdorff
spaces X and Y respectively. Suppose that T is a map from A onto B such that the equality

Ranπ(Tf T g) = Ranπ(f g)

holds for every pair f and g in A. Then there is a continuous map N from MB into {−1, 1}
and a homeomorphism Φ from MB onto MA such that

T̂f (y) = N(y)f̂ ◦ Φ(y) , y ∈ MB

holds for every f ∈ A. In particular, A is isometrically isomorphic to B as Banach spaces.

Note that function algebras A and B satisfying the hypotheses in Theorem 3.1 need not
be isometrically isomorphic to each other as Banach algebras. In fact, it is not the case even
if the equality of peripheral range is replaced by that of spectrum.

EXAMPLE 3.2. Let D = {z ∈ C : |z| < 1}, D0 = {z ∈ C : 0 < |z| < 1},
D̄0 = {z ∈ C : 0 < |z| ≤ 1} and L = {z ∈ R : 1 ≤ z ≤ 2}. Put X0 = D̄0 ∪ L, X0 = X0 ∪ {0}
and X = X0 ×{1, 2}. For i = 1 and 2 define maps πi from X0 into X such that πi(z) = (z, i)

respectively. Then the map πi is a homeomorphism from X0 onto X0 × {i} for i = 1, 2. Put

complex-valued functions fA and fB on X by fA(z, i) = z and fB(z, i) = (−1)i+1z. The

algebra of all complex-valued continuous functions on X0 which is analytic on D is denoted

by P(X0). We denote P(X0) by the restriction of P(X0) to X0 and P00(X0) = {z2f (z) : f ∈
P(X0)}. The algebra of all complex-valued continuous functions which vanish at infinity is



94 OSAMU HATORI, TAKESHI MIURA, HIROKAZU OKA AND HIROYUKI TAKAGI

denoted by C0(X). We denote A0 = {f ∈ C0(X) : f ◦ π1, f ◦ π2 ∈ P00(X0)}. Put
A = A0 + CfA and B = A0 + CfB . It is easy to see that A and B are closed subalgebras of
C0(X) which strongly separate the points of X. One can see that the maximal ideal spaces of
A and B are X itself respectively. Let N : X → {−1, 1} be N(x, i) = (−1)i . Then the map
T : A → B defined by T (f ) = Nf is bijective and satisfies the equality

σ(Tf T g) = σ(f g) , f, g ∈ A ,

thus

Ranπ (Tf T g) = Ranπ(f g) , f, g ∈ A .

On the other hand A is not algebraically isomorphic to B. A precise proof of the above
statements is given in [3].

In the case where a function algebra A (or B) contains an approximate identity {eα} in
the sense that ‖f − f eα‖∞ → 0 as a net for every f ∈ A, A is isometrically isomorphic to
B as Banach algebras whenever A and B satisfy the hypotheses of Theorem 3.1.

COROLLARY 3.3. Suppose that A and B satisfy the hypotheses in Theorem 3.1. If
A or B contain approximate identities, then A is isometrically isomorphic to B as Banach
algebras.

For the case of uniform algebras on compact Hausdorff spaces, the corresponding result
of Corollary 3.3 is proven by Luttman and Tonev [7].

4. A Proof of Theorem 3.1

Let A be a function algebra on a locally compact Hausdorff space X. Let D be the open
unit disk {z ∈ C : |z| < 1} in the complex plane. For an x ∈ X, put

Px(A) = {f ∈ A : f (X) ⊂ D ∪ {1} , f (x) = 1} ,

PPx(A) = {f ∈ A : f (X) ⊂ D ∪ {−1, 1} , f (x) = 1} .

Note that Px(A) �= ∅ and Px(A) ⊂ PPx(A) for every x ∈ Ch(A). Put

P(A) =
⋃

x∈Ch(A)

Px(A)

and

PP(A) =
⋃

x∈Ch(A)

PPx(A) .

Note that P(A) is the set of all peak functions in A since K ∩ Ch(A) �= ∅ for every peak set
K for A. For an f ∈ P(A) put

Lf = f −1(1) .
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Then Lf is a peak set for A and every peak set for A is denoted by Lf for some f ∈ P(A).

LEMMA 4.1. T is an injection and so a bijection from A onto B. Thus we have that

Ranπ(T −1FT −1G) = Ranπ(FG)

holds for every pair F and G in B.

PROOF. Let f, g ∈ A and Tf = T g . Then for every h ∈ A we have

Ranπ (f h) = Ranπ(Tf T h) = Ranπ(T gT h) = Ranπ(gh) .

We will show that f (x) = g(x) for every x ∈ Ch(A). It will follow that f = g since Ch(A)

is a uniqueness set for A. Let x ∈ Ch(A).

We first consider the case where f (x) �= 0 �= f (y). Since x ∈ Ch(A) and f −1(f (x)) is
a Gδ-set, there exists a peak set for A with x ∈ K ⊂ f −1(f (x)). Then by Theorem 2.1 there
exists a peak function u for K in A with

|fu(y)| < ‖f ‖∞(K) = |f (x)| y ∈ X \ K .

Thus we have that Ranπ(f u) = {f (x)}. In a way similar we have that Ranπ (gv) = {g(x)}
holds for a peak function v in A with v(x) = 1. It follows that

{f (x)} = Ranπ (f uv) = Ranπ(guv) = {g(x)} ,

so we have that f (x) = g(x).
Next we show that f (x) = 0 implies that g(x) = 0. Suppose that f (x) = 0 and

g(x) �= 0. We show a contradiction. As before there exists a peak function v ∈ A with
v(x) = 1 such that Ranπ (gv) = {g(x)}. Then for every peak function u with u(x) = 1, we
have that Ranπ(gvu) = {g(x)}. On the other hand, since f (x) = 0 and f is continuous, we
see by some calculation that there exists a peak function u0 with u0(x) = 1 such that

Ranπ(f u0) ⊂ {z ∈ C : |z| < |g(x)/2|} .

Thus we have that

{g(x)} = Ranπ (gvu0) = Ranπ(T gT (vu0))

= Ranπ(Tf T (vu0)) = Ranπ(f vu0) ⊂ {z ∈ C : |z| < |g(x)/2|}
since |v| ≤ 1 on X, which is a contradiction. In the same way we see that g(x) = 0 implies
that f (x) = 0.

It follows that f (x) = g(x) for every x ∈ Ch(A) and we see that T is an injection since
Ch(A) is a uniqueness set for A. �

LEMMA 4.2. Let f, g ∈ A and α, β ∈ C \ {0}. Suppose that Tf ∈ αPP(B). Then we

have that (f/α)2 ∈ P(A) and
( Tf

α

)2 ∈ P(B). We also have that L(
Tf
α

)2 ⊂ L(
T g
β

)2 implies

that L(
f
α

)2 ⊂ L(
g
β

)2 if Tf ∈ αPP(B) and T g ∈ βPP(B).
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PROOF. It is easy to see that f ∈ P(A) if and only if Ranπ(f ) = {1}. We also see by
a simple calculation that for every non-zero complex number α, f ∈ αPP(A) if and only if
the inclusions {α} ⊂ Ranπ (f ) ⊂ {α,−α} hold.

Suppose that Tf ∈ αPP(B), T g ∈ βPP(B) and L(
Tf
α

)2 ⊂ L(
T g
β

)2 . Then we have

that Ranπ(f 2) = Ranπ(Tf Tf ) = {α2}, so Ranπ

(( f
α

)2) = {1}. Thus
( f

α

)2 ∈ P(A) and(Tf
α

)2 ∈ P(B).
Suppose that L(

Tf
α

)2 ⊂ L(
T g
β

)2 . Suppose that x ∈ L(
f
α

)2 \ L(
g
β

)2 . We may assume that

x ∈ Ch(A). (Let X∞ be the one-point compactification of X and A∞ = A + C. Then A∞
can be seen a uniform algebra on a compact Hausdorff space X∞ and we see by the definition
that L(

f
α

)2 and L(
g
β

)2 are peak sets for A∞. Then A∞|L(
f
α

)2 of the restriction of A∞ to the

set L(
f
α

)2 is a uniform algebra on L(
f
α

)2 and L(
g
β

)2 ∩ L(
f
α

)2 is a peak set for A∞|L(
f
α

)2 . Let

F ∈ A∞|L(
f
α

)2 be a peak function for the set L(
g
β

)2 ∩ L(
f
α

)2 . Then so is F+1
2 and invertible

since the range of F+1
2 is in the right half-plane. Since |F+1

2 | < 1 on L(
f
α

)2 \ L(
g
β

)2 and

F+1
2 = 1 on L(

g
β

)2 ∩ L(
f
α

)2 , we see that
(

F+1
2

)−1 takes the maximum absolute value at a

point in L(
f
α

)2 \ L(
g
β

)2 . Thus we see that

Ch(A∞|L(
f
α

)2) ∩
(

L(
f
α

)2 \ L(
g
β

)2

)
�= ∅ .

Since Ch(A∞|L(
f
α

)2) ⊂ Ch(A∞) and ∞ �∈ L(
f
α

)2 we have that

Ch(A) ∩
(

L(
f
α

)2 \ L(
g
β

)2

)
�= ∅.)

So there exists a u ∈ Px(A) with |u| < 1 on L(
g
β

)2 . Then we have

∅ �= Ranπ(f u) ⊂ {α,−α}
and so

Ranπ((Tf T u)2) = {α2}
since Ranπ(f u) = Ranπ (Tf T u). On the other hand since |u| < 1 on L(

g
β

)2 we have that

∣∣ g2

β2
u2

∣∣ ≤ ∣∣ g2

β2
u
∣∣ < 1
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hold on X, so we see that |gu| < |β| holds on X. It follows that

1 �∈ Ranπ

((
T g
β

)2

(T u)2
)

since β,−β �∈ Ranπ (gu) = Ranπ(T gT u). On the other hand we have (T u)2 ∈ P(B) since
Ranπ(T uT u) = Ranπ (u2) = {1} hold. Then there exists a y0 ∈ Y such that

(T u)2(y0) = 1 =
(

Tf

α

)2

(y0)

since Ranπ (
(Tf

α

)2
(T u)2) = {1} and

( Tf
α

)2 ∈ P(B). Then
(T g

β

)2
(y0) = 1 since L(

Tf
α

)2 ⊂
L(

T g
β

)2 , so we have that

Ranπ

((
T g
β

)2

(T u)2
)

= {1} ,

which is a contradiction proving that L(
f
α

)2 ⊂ L(
g
β

)2 . �

LEMMA 4.3. Let y ∈ Ch(B). Then we have⋂
f∈T −1(βPPy(B)),0 �=β∈C

L(
f
β

)2 �= ∅ .

PROOF. Applying the finite intersection property, we only need to show that

n⋂
k=1

L(
fk
βk

)2 �= ∅

for a finite number of f1, . . . , fn ∈ T −1(βkPPy(B)) and non-zero complex numbers
β1, . . . βn. By the definition T (fk)(y) = βk holds for each k = 1, 2, . . . , n. Since T is a sur-
jection there exists a g ∈ A with T g = ∏n

k=1 Tfk , so T g ∈ βPPy(B), where β = ∏n
k=1 βk.

Then by Lemma 4.2 we have that
(T g

β

)2
,
( Tfk

βk

)2 ∈ P(B) for each k = 1, 2, . . . , n. Then

we see that L(
T g
β

)2 ⊂ L(
Tfk
βk

)2 , so we have that L(
g
β

)2 ⊂ L(
fk
βk

)2 holds for k = 1, . . . , n by

Lemma 4.2. It follows that

∅ �= L(
g
β

)2 ⊂
n⋂

k=1

L(
fk
βk

)2 .

�

LEMMA 4.4. For every y ∈ Ch(B), there exist an x ∈ Ch(A) and an αy ∈ {−1, 1}
such that

T −1(βPPy(B)) ⊂ βαyPPx(A)



98 OSAMU HATORI, TAKESHI MIURA, HIROKAZU OKA AND HIROYUKI TAKAGI

holds for every β ∈ C.

PROOF. We simply write ⋂
f ∈T −1(βPPy(B)),0 �=β∈C

L(
f
β

)2

as ∩L(
f
β

)2 . By Lemma 4.3 ∩L(
f
β

)2 is not empty and so a weak peak set for A. Then there

exists an x ∈ ( ∩L(
f
β

)2

) ∩ Ch(A). So f 2(x) = β2 holds for every f ∈ T −1(βPPy(B)) and

for every non-zero complex number β. Put αf,y = f (x)
β

. Then αf,y is 1 or −1.

We will show that αf,y does not depend on the choice of f and β indeed. Let α and β be

non-zero complex numbers and f ∈ T −1(αPPy(B)), g ∈ T −1(βPPy(B)). Then there exists
a neighborhood G of y such that

|Tf − α| < 1/2 , |T g − β| < 1/2

hold on G since Tf and T g is continuous. Since y is in Ch(B) there exists a peak function

H ∈ Py(B) such that y ∈ H−1(1) ⊂ G. Put h = T −1H . Then by the above we have

(αh,y)2 = 1, where αh,y = h(x). Then by Lemmata 4.2 and 4.3 and by the definition of x we

have that
(f

α

)2
,
( g

β

)2
, h2 ∈ Px(A), and so

ααf,yαh,y ∈ Ranπ (f h) = Ranπ(Tf T h) = {α} ,

βαg,yαh,y ∈ Ranπ (gh) = Ranπ(T gT h) = {β} .

Thus we have that αf,y = αg,y . We have shown that the value αf,y = f (x)
β

does not depend

on the choice of f ∈ T −1(βPPy(B), so we simply write αy for αf,y .

Let β be a non-zero complex number and f ∈ T −1(βPPy(B)). Then by the above we
have that f (x) = αyβ and

Ranπ (f 2) = Ranπ(Tf Tf ) = {β2} .

Thus f ∈ αyβPPx(A). We conclude that T −1(βPPy(B)) ⊂ αyβPPx(A). �

LEMMA 4.5. For every y ∈ Ch(B), there exist a unique x ∈ Ch(A) and a unique
αy ∈ {−1, 1} such that

T (βPPx(A)) = βαyPPy(B)

holds for every β ∈ C.

PROOF. Let y ∈ Ch(B). Then by Lemma 4.4 there exists x ∈ Ch(A) and αy such
that βPPy(B) ⊂ T (αyβPPx(A)) holds for every non-zero complex number β. Since T is

a bijection from A onto B, we can apply a similar argument for T −1 and we see that there
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exists a y ′ ∈ Ch(B) and αx with (αx)
2 = 1 such that

T (βPPx(A)) ⊂ βαxPPy ′(B)

holds for every non-zero complex number β. Thus we see that

βPPy(B) ⊂ T (βαyPPx(A)) ⊂ (βαy)αxPPy ′ (B)

hold and so

PPy(B) ⊂ αxαyPPy ′(B)

holds. By a simple calculation we have that y = y ′ and αxαy = 1. It follows that the equality

T (βPPx(A)) = βαxPPy(B)

holds for every non-zero complex number β. The equation clearly holds for β = 0. The
uniqueness of x and αy are easily derived. �

Put a function ϕ from Ch(B) into Ch(A) by ϕ(y) which equals the corresponding x in
Lemma 4.5 and put a function n from Ch(B) into {−1, 1} by n(y) = αy which appears in
Lemma 4.5.

LEMMA 4.6. For every f ∈ A the equation

Tf (y) = n(y)f ◦ ϕ(y)

holds for every y ∈ Ch(B).

PROOF. Let f ∈ A and y ∈ Ch(B). First we consider the case where f (ϕ(y)) �= 0
and Tf (y) �= 0. By Theorem 2.1 there exists a u ∈ Pϕ(y)(A) with Ranπ (f u) = {f (ϕ(y))}.
Since T u(y) = n(y) by Lemma 4.5 and since Ranπ (Tf T u) = Ranπ(f u), we see that
|Tf (y)| = |Tf (y)T u(y)| so |Tf (y)| ≤ |f (ϕ(y))| holds. On the other hand there exists
a U ∈ Py(B) with Ranπ(f T −1U) = Ranπ(TfU) = {Tf (y)} by Theorem 2.1. Putting

β = αy in Lemma 4.5 we see that T −1(U) ∈ αyPPϕ(y)(A) so that T −1U(ϕ(y)) = αy . Thus
we have that

|f (ϕ(y))| = |f (ϕ(y))T −1U(ϕ(y))| ≤ |Tf (y)| .
It follows that |Tf (y)T u(y)| = |Tf (y)| = |f (ϕ(y))|, so we have that Tf (y)T u(y) =
f (ϕ(y)) since Ranπ(Tf T u) = {f (ϕ(y))}. Thus Tf (y) = n(y)f (ϕ(y)) holds since T u(y) =
n(y) and n(y)2 = 1.

Suppose that Tf (y) = 0 and f (ϕ(y)) �= 0. Then there exists a sequence {Un} in Py(B)

with ‖TfUn‖∞(Y ) → 0 as n → ∞. On the other hand we have |un(ϕ(y))| = |Un(y)| by

Lemma 4.5, where un = T −1Un. So we see that |f un(ϕ(y))| = |f (ϕ(y))| �= 0. Thus if
z ∈ Ranπ(f un), then |z| ≥ |f (ϕ(y))|. On the other hand Ranπ(f un) = Ranπ(TfUn) ⊂
{z ∈ C : |z| ≤ ‖TfUn‖∞(Y )}, which is a contradiction.

In a way similar to the above we see that Tf (y) �= 0 and f (ϕ(y)) = 0 are
incompatible. �
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Applying a similar argument to T −1 we have that there exist a map ϕ′ from Ch(A) into
Ch(B) and a map n′ from Ch(A) into {−1, 1} such that

T −1F(x) = n′(x)F ◦ ϕ′(x)

holds for every F ∈ B and x ∈ Ch(A). It follows that ϕ ◦ ϕ′ and ϕ′ ◦ ϕ are identity maps, so
we see that ϕ is a bijection.

LEMMA 4.7. The function n is extended to a function N from MB into {−1, 1} and ϕ

is extended to a homeomorphism Φ from MB onto MA such that the equation

T̂f (y) = N(y)f̂ ◦ Φ(y) , y ∈ MB

holds for every f ∈ A.

PROOF. Suppose that M is a maximal regular ideal of B. We show that T −1M is a
maximal regular ideal of A. Since T is linear and isometric we see by Lemma 4.6 that T −1M

is a closed subspace of A since Ch(A) is a uniqueness set for A in the sense that f, g ∈ A

with f = g on Ch(A) implies that f = g . We see that the codimension of T −1M in A is 1

since that of M in B is 1 and since T is a linear bijection. Let f ∈ A and g ∈ T −1M . Then
we have that Tf T g ∈ M since M is an ideal of B. On the other hand by Lemma 4.6 we have
the equations

(T (f g))2 = (n(f g) ◦ ϕ)2 = ((f g) ◦ ϕ)2

= (nf ◦ ϕ)2(ng ◦ ϕ)2 = (Tf T g)2

hold. Since Ch(B) is a uniqueness set for B we see that

(T (f g))2 = (Tf T g)2 ∈ M .

There exists a unique multiplicative linear functional φ on B such that φ−1(0) = M . So

0 = φ((T (f g))2) = (φ(T (f g)))2 and thus we have that T (f g) ∈ M so that f g ∈ T −1M .
It follows that T −1M is an ideal of A, so T −1M is a maximal ideal since the codimension of
T −1M in A is 1.

Next we show that T −1M is regular ideal in the sense that A/T −1M has the unit element.
Let e be an element in B such that e + M is the unit in B/M . We show that

(T −1(e))2T −1(f ) − T −1(f ) ∈ T −1M

holds for every f ∈ B. It will follow that (T −1(e))2 + T −1M is the unit in A/T −1M . Let

f ∈ B. Since ef − f ∈ M , we have that e2f − f = e(ef − f ) + ef − f ∈ M . It follows
that

(n ◦ ϕ−1e ◦ ϕ−1)2n ◦ ϕ−1f ◦ ϕ−1 − n ◦ ϕ−1f ◦ ϕ−1 ∈ n ◦ ϕ−1M ◦ ϕ−1
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on Ch(A) since n2 = 1. By Lemma 4.6 T −1g = n◦ϕ−1g ◦ϕ−1 holds on Ch(A) since n2 = 1
on Ch(B). Thus we see that the equation

(T −1e)2T −1f − T −1f ∈ T −1M

holds for every f ∈ B, so (T −1e)2 +T −1M is the unit in A/T −1M . We conclude that T −1M

is a regular ideal of A.
We define the map Φ from MB into MA by the above correspondence and show that it is

an extension of ϕ. Let y ∈ MB (resp. x ∈ MA). The point y (resp. x) is pompously denoted by
the maximal regular ideal MB(y) (resp. MA(x)) which corresponds to y (resp. x). We define
the map Φ from MB into MA; for y ∈ MB , Φ(y) ∈ MA corresponds to the maximal regular

ideal T −1MB(y), which is well-defined by the above. Thus T −1(MB(y)) = MA(Φ(y))

for every y ∈ MB , so MB(y) = T MA(Φ(y)) holds for every y ∈ MB . We also have
by Lemma 4.6 that T MA(ϕ(y)) = nMA(ϕ(y)) ◦ ϕ holds on Ch(B). Thus we have that
T MA(ϕ(y)) ⊂ MB(y) for every y ∈ Ch(B). It follows that MA(ϕ(y)) ⊂ MA(Φ(y)) holds
for every y ∈ Ch(B). Since MA(ϕ(y)) is a maximal regular ideal, we see that MA(ϕ(y)) =
MA(Φ(y)) and thus we have that ϕ(y) = Φ(y) holds for every y ∈ Ch(B).

Next we extend n to the function N on MB . For x ∈ MA (resp. y ∈ MB ), put the

evaluational functional φx : A → C by φx(f ) = f̂ (x) (resp. φy : B → C by φy(f ) = f̂ (y)).
We see that kerφy ◦ T = kerφΦ(y), where ker· denotes the kernel of the functional. (Let
f ∈ kerφΦ(y). Then Tf ∈ MB(y) since kerφΦ(y) = MA(Φ(y)), so φy(Tf ) = 0 and we have
that f ∈ kerφy ◦ T . On the other hand, let f ∈ kerφy ◦ T . Then we have Tf ∈ MB(y) and so

f ∈ T −1MB(y) = MA(Φ(y)) = kerφΦ(y).) It follows that there exists a non-zero complex
number N(y) such that the equality φy ◦ T = N(y)φΦ(y) holds and so

T̂f (y) = (φy ◦ T )(f ) = N(y)φΦ(y)(f ) = N(y)f̂ ◦ Φ(y)

hold for every f ∈ A and y ∈ MB . On the other hand we have

(Tf 2)2 = (nf 2 ◦ ϕ)2 = f 4 ◦ ϕ = (nf ◦ ϕ)4 = (Tf )4

hold on Ch(B) by Lemma 4.6, so we have that (Tf 2)2 = (Tf )4 since Ch(B) is a uniqueness
set for B. On the other hand we see that

(T̂f 2)2(y) = (N(y)f̂ 2 ◦ Φ(y))2 = (N(y))2f̂ 4 ◦ Φ(y)

and

(T̂f )4(y) = (N(y))4f̂ 4 ◦ Φ(y)

hold for every f ∈ A and y ∈ MB . Since N(y) is non-zero, we have that (N(y))2 = 1 for
every y ∈ MB . In particular the equation

n(y)f ◦ ϕ(y) = Tf (y) = N(y)f̂ ◦ Φ(y) = N(y)f ◦ ϕ(y)

hold for every f ∈ A and y ∈ Ch(B), it follows that n(y) = N(y) holds for every y ∈ Ch(B).
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We will show that Φ is a homeomorphism from MB onto MA. By Lemma 4.1 T −1 is
well-defined from B onto A and satisfies the condition

Ranπ (T −1FT −1G) = Ranπ (FG) F,G ∈ B .

As in the same way as the case of T we see that there exist maps Φ ′ from MA into MB and
N ′ from MA with the values in {−1, 1} such that

T̂ −1F = N ′F̂ ◦ Φ ′

holds for every F ∈ B. It follows that

f̂ = T̂ −1Tf = N ′(N ◦ Φ ′)f̂ ◦ (Φ ◦ Φ ′)

holds for every f ∈ A. Since |N | = 1 and |N ′| = 1 on MB and MA respectively, we have

that Φ ◦ Φ ′(x) = x holds for every x ∈ MA. Applying the similar argument to T ◦ T −1 we
have that Φ ′ ◦ Φ(y) = y holds for every y ∈ MB . It follows that Φ and Φ ′ are bijections and
Φ ′ = Φ−1. Let yα → y be a converging net in MB . Then

|f̂ (Φ(yα))| = |T̂f (yα)| → |T̂f (y)| = |f̂ (Φ(y))|
holds for every f ∈ A since T̂f is continuous and |N | = 1. Since the weak topology on MA

induced by the set of functions {|f̂ | : f ∈ A} coincides with the original topology, we see that

Φ(yα) → Φ(y) holds. Thus Φ is a continuous map. In the same way we see that Φ ′ = Φ−1

is continuous, and so we see that Φ is a homeomorphism from MB onto MA.
Finally we show that N is continuous. Let yα → y be a converging net in MB . Let

f ∈ A be such that f̂ ◦ Φ(y) �= 0. Such an f exists since T is a surjection and |N | = 1 on

MB . We may assume that f̂ ◦ Φ(yα) �= 0 since f̂ ◦ Φ is continuous. Then we have that

N(yα) = T̂f (yα)

f̂ ◦ Φ(yα)
→ T̂f (y)

f̂ ◦ Φ(y)
= N(y) .

Thus we see that N is continuous on MB . �

We show a proof of Corollary here.

A PROOF OF COROLLARY. We consider the case where A contains an approximate
identity. (In a way similar we can prove the conclusion for the case where B contains an
approximate identity by considering T −1 instead of T .) Let {eα} be an approximate identity,

that is {eα} is a net in A and ‖eαf − f ‖∞(X) → 0. We show that Â ◦ Φ = B̂ . It will follow

that S : Â → B̂ defined by S(f̂ ) = f̂ ◦ Φ for f ∈ A gives an isometrical and algebraical iso-

morphism from Â onto B̂. Since the Gelfand transforms are isometries for uniformly closed
algebras, we see that A is isometrically isomorphic to B as Banach algebras. Let f ∈ A.
Then we have
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‖T̂ eαT̂f − f̂ ◦ Φ‖∞(MB) = ‖Nêα ◦ ΦNf̂ ◦ Φ − f̂ ◦ Φ‖∞(MB)

= ‖êα ◦ Φf̂ ◦ Φ − f̂ ◦ Φ‖∞(MB) = ‖êαf̂ − f̂ ‖∞(MA) = ‖eαf − f ‖∞(X) → 0

since the Gelfand transform is an isometry here. Thus we have that f̂ ◦Φ ∈ B̂ since T eα, Tf ∈
B. Thus by Lemma 4.7 we have that

B̂ = NÂ ◦ Φ ⊂ NB̂ ,

so B̂ ⊂ NB̂ . Since N2 = 1 we also have that NB̂ ⊂ N2B̂ = B̂ , so B̂ = NB̂ . It follows that

Â ◦ Φ = N2Â ◦ Φ = NB̂ = B̂. �
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