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Trace Formula for Partial Isometry Case
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Abstract. Let T = U |T | be the polar decomposition of T . For a semi-hyponormal operator T = U |T | with
partial isometry U , if |T | − |T ∗| ∈ C1, then we give the trace formula for the polar decomposition of T .

1. Introduction

Let T = U |T | be an operator with partial isometry U and put Q = |T | − |T ∗|. Then
U |T | = (|T | −Q)U. If Q is a trace class operator, Carey-Pincus’ Theorem [2] gives a trace
formula associated with the decomposition T = U |T |. In this paper, using a result [4], we
give a simple proof of the trace formula of semi-hyponormal operator.

An operator below means a bounded linear operator on a separable infinite dimensional
Hilbert space H. Let C1 be the set of all trace class operators. An operator T is said to be

semi-hyponormal if (T ∗T )1/2 ≥ (T T ∗)1/2, that is, |T | ≥ |T ∗|. For a polynomials p(r) =∑N
k=0 akr

k, put p(|T |) = a0 +∑N
k=1 ak|T |k. φ(r, z) is said to be Laurent polynomial if there

exist a non-negative integer N and polynomials pk(r) such that φ(r, z) = ∑N
k=−N pk(r)zk.

Put φ(|T |, U) = ∑−1
k=−N pk(|T |)U∗|k| + p0(|T |)+ ∑N

k=1 pk(|T |)Uk.
Let A be the linear space of all Laurent polynomials. For differentiable functions φ,ψ of

two variables (r, z), let J (φ,ψ)(r, z) = φr(r, z) ·ψz(r, z)−φz(r, z) ·ψr(r, z) be the Jacobian
of φ and ψ . Then we have the following.

THEOREM A ([5, Theorem 7]). Let T = U |T | be a semi-hyponormal operator with
unitary U and [|T |, U ] ∈ C1. Then there exists a summable function g and it holds

Tr([φ(|T |, U),ψ(|T |, U)]) = 1

2π

∫∫
J (φ,ψ)(r, eiθ )eiθg(r cos θ, r sin θ)drdθ

for any φ,ψ ∈ A.
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If A ∈ C1, then Tr([A,B]) = 0 for any operator B. This implies that if
[X,Y ], [X,Z], [Y,Z] ∈ C1, then [XY,Z] ∈ C1, [YX,Z] ∈ C1 and Tr([XY,Z]) =
Tr([YX,Z]).

If |T | − |T ∗| ∈ C1, then

[|T |, U ] = (|T | − |T ∗|)U ∈ C1 ,

|T |(I − F)= (|T | − U∗|T |U)+ (U∗|T |U − |T |UU∗)
= (|T |U∗ − U∗|T |)U + [U∗, |T |U ]
= [|T |, U∗]U + [U∗, (|T |U − U |T |)] + [U∗, U |T |]
= [U, |T |]∗U + [U∗,−[U, |T |]] + (|T | − |T ∗|) ∈ C1 .

Hence,

Tr([XU |T |U∗Y,Z]) = Tr([X|T |UU∗Y,Z]) = Tr([X|T |FY,Z]) = Tr([X|T |Y,Z]) .
We also have that Tr([XU∗|T |UY,Z]) = Tr([X|T |Y,Z]). In this case, we consider Laurent

polynomials such that
∑−1
k=−N pk(|T |)U∗|k| + p0(|T |)+ ∑N

k=1 pk(|T |)Uk with polynomial
pk(0) = 0 for k = −N,−N + 1, . . . , N. In addition, if [U,U∗] ∈ C1, we consider Laurent

polynomials such that
∑−1
k=−N pk(|T |)U∗|k| + p0(|T |)+ ∑N

k=1 pk(|T |)Uk with polynomial
pk.

THEOREM 1. Let T = U |T | be a semi-hyponormal operator with |T | − |T ∗| ∈ C1.

Then there exists a summable function g and it holds

Tr([φ(|T |, U),ψ(|T |, U)]) = 1

2π

∫∫
J (φ,ψ)(r, eiθ )eiθg(r cos θ, r sin θ)drdθ ,

where φ(r, z), ψ(r, z) are Laurent polynomials such that φ(0, z) = ψ(0, z) = 0

2. Proof

PROOF OF THEOREM 1. Let T act on a Hilbert space H. Let T = U |T | be the polar
decomposition of T and let E = U∗U, F = UU∗. Put V = U + (I − E). Then V =
U|E(H) ⊕ (I − E), V |T | = U |T | and |T |V = |T |U.

Put H = H ⊕ H. Define operators Ũ , |T̃ | and T̃ on H by

Ũ =
(
V I − V V ∗
0 −V ∗

)
, |T̃ | =

( |T | 0
0 0

)
and T̃ = Ũ |T̃ | .

Then Ũ is a unitary operator. We obtain

[V, |T |] = [U, |T |] = U |T |U∗U − |T |U = (|T ∗| − |T |)U ∈ C1

Hence

[Ũ , |T̃ |] =
( [V, |T |] −|T |(I − V V ∗)

0 0

)
=

( [V, |T |] −|T |(I − F)

0 0

)
∈ C1.
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We have for n ≥ 1,

Ũn|T̃ | =
(
Un|T | 0

0 0

)
, |T̃ |Ũn =

( |T |Un ∗
0 0

)
.

It also holds that(
X 0
0 0

) (
A B

C D

)
=

(
XA XB

0 0

)
,

(
A B

C D

) (
X 0
0 0

)
=

(
AX 0
CX 0

)

Hence, for a positive integer n, we have

TrH[Ũ∗n|T̃ |, Ũ∗|T̃ |] = TrH[|T̃ |Ũ∗n, Ũ∗|T̃ |]

= Tr[|T |U∗n, U∗|T |] = Tr[U∗n|T |, U∗|T |] .
Define

U [n] =


U∗|n| (n < 0)
I (n = 0)
Un (n > 0) .

It is easy to check that, for integers m,p, positive integers n, q,

TrH([Ũm|T̃ |n, Ũp|T̃ |q ]) = Tr([U [m]|T |n, U [p]|T |q ]) .(1)

Since n, q > 0 and φ(r, z), ψ(r, z) are Laurent polynomials with φ(0, z) = ψ(0, z) = 0, by
(1) we have

TrH([φ(|T̃ |, Ũ ), ψ(|T̃ |, Ũ )]) = Tr([φ(|T |, U),ψ(|T |, U)]) .(2)

Since T̃ = Ũ |T̃ | is semi-hyponormal with unitary Ũ and [|T̃ |, Ũ ] ∈ C1, by Theorem A there
exists a summable function g and it holds

TrH([φ(|T̃ |, Ũ ), ψ(|T̃ |, Ũ )]) = 1

2π

∫∫
J (φ,ψ)(r, eiθ )eiθg(r cos θ, r sin θ)drdθ .

Hence, by (2) we obtain

Tr([φ(|T |, U),ψ(|T |, U)]) = 1

2π

∫∫
J (φ,ψ)(r, eiθ )eiθg(r cos θ, r sin θ)drdθ .

�

COROLLARY 2. Let T = U |T | be a semi-hyponormal operator with |T | − |T ∗| ∈ C1

and [U∗, U ] ∈ C1. Then there exists a summable function g and it holds

Tr([φ(|T |, U),ψ(|T |, U)]) = 1

2π

∫∫
J (φ,ψ)(r, eiθ )eiθg(r cos θ, r sin θ)drdθ ,

where φ(r, z), ψ(r, z) are Laurent polynomials with φ(0, z) = 0.
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PROOF. (1) holds for n, q ≥ 0 and n + q ≥ 1. Hence, (2) holds for Laurent polyno-
mials with φ(0, z) = 0 and ψ(0, z) �= 0. �

REMARK. Let T be the unilateral shift on �2 and T = U |T | be the polar decomposition

of T . Hence T = U and |T | = I . Let φ(r, z) = z−1 and ψ(r, z) = z. Then φ(0, z) �= 0 and
ψ(0, z) �= 0. And we have J (φ,ψ) = 0. On the other hand,

Tr([φ(|T |, U),ψ(|T |, U)]) = Tr([U∗, U ]) = 1 .

Hence the trace formula does not hold for φ and ψ.

For the Cartesian decomposition T = X + iY , we show the following. Proof is similar
to the proof of Theorem 1 of [6]. For the completeness, we give a proof.

THEOREM 3. Let T = X + iY be the Cartesian decomposition of a semi-hyponormal
operator T . If |T | − |T ∗| ∈ C1, then there exists a summable function gT and it holds

Tr([P(X, Y ),Q(X, Y )]) = 1

2πi

∫∫
J (P,Q)(x, y)gT (x, y)dxdy ,

for polynomials P andQ.

PROOF. Let T = U |T | be the polar decomposition of T . Let P and Q be polynomials
of two variables (x, y). According to the commutator and the Jacobian, we may assume
P(0, 0) = Q(0, 0) = 0. We note that

Tr([P(X, Y ),Q(X, Y )]) = Tr

([
P

(
T + T ∗

2
,
T − T ∗

2i

)
,Q

(
T + T ∗

2
,
T − T ∗

2i

)])
.

Put

P̃ (r, z) = P

(
zr + r/z

2
,
rz− r/z

2i

)
and Q̃(r, z) = Q

(
zr + r/z

2
,
rz− r/z

2i

)
.

Then both P̃ and Q̃ are Laurent polynomials with P̃ (0, z) = Q̃(0, z) = 0 and also the
following equations hold:

P̃r (r, z)= Px(r, z)
z+ 1/z

2
+ Py(r, z)

z− 1/z

2i
,

P̃z(r, z)= r

2
Px(r, z)

(
1 − 1

z2

)
+ r

2i
Py(r, z)

(
1 + 1

z2

)
,

Q̃r (r, z)=Qx(r, z)
z+ 1/z

2
+Qy(r, z)

z− 1/z

2i
,

Q̃z(r, z)= r

2
Qx(r, z)

(
1 − 1

z2

)
+ r

2i
Qy(r, z)

(
1 + 1

z2

)
.

Hence we obtain

J (P̃ , Q̃)(r, z) = J (P,Q)(x, y)
r

zi
.
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Therefore, it holds

J (P̃ , Q̃)(r, eiθ ) = J (P,Q)(x, y)
r

ieiθ
.(3)

Since P(X, Y ) = P̃ (|T |, U) andQ(X, Y ) = Q̃(|T |, U), it holds

Tr([P(X, Y ),Q(X, Y )]) = Tr([P̃ (|T |, U), Q̃(|T |, U)]) ,(4)

Since P̃ (0, z) = Q̃(0, z) = 0, by (3), (4) and Theorem 1, we have

Tr([P(X, Y ),Q(X, Y )])= Tr([P̃ (|T |, U), Q̃(|T |, U)])
= 1

2π

∫∫
J (P̃ , Q̃)(r, eiθ )eiθg(r cos θ, r sin θ)drdθ

= 1

2πi

∫∫
J (P,Q)(x, y)g(r cos θ, r sin θ) r drdθ .

Put gT (x, y) = g(r cos θ, r sin θ) for x + iy = reiθ . Using the transformation x = r cos θ
and y = r sin θ , we have

1

2πi

∫∫
J (P,Q)(x, y)g(r cos θ, r sin θ)rdrdθ

= 1

2πi

∫∫
J (P,Q)(x, y)gT (x, y)dxdy = Tr([P(X, Y ),Q(X, Y )]) .

Hence, it completes the proof. �
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