Токуо J. Матн. Vol. 32, No. 1, 2009

Trace Formula for Partial Isometry Case

Dedicated to Professors Shôichi Ôta and Mitsuru Uchiyama on their sixtieth birthdays

Muneo CHO1 and Tadasi HURUYA

Kanagawa University and Niigata University (Communicated by K. Taniyama)

Abstract. Let T = U|T| be the polar decomposition of T. For a semi-hyponormal operator T = U|T| with partial isometry U, if $|T| - |T^*| \in C_1$, then we give the trace formula for the polar decomposition of T.

1. Introduction

Let T = U|T| be an operator with partial isometry U and put $Q = |T| - |T^*|$. Then U|T| = (|T| - Q)U. If Q is a trace class operator, Carey-Pincus' Theorem [2] gives a trace formula associated with the decomposition T = U|T|. In this paper, using a result [4], we give a simple proof of the trace formula of semi-hyponormal operator.

An operator below means a bounded linear operator on a separable infinite dimensional Hilbert space \mathcal{H} . Let \mathcal{C}_1 be the set of all trace class operators. An operator T is said to be semi-hyponormal if $(T^*T)^{1/2} \ge (TT^*)^{1/2}$, that is, $|T| \ge |T^*|$. For a polynomials $p(r) = \sum_{k=0}^{N} a_k r^k$, put $p(|T|) = a_0 + \sum_{k=1}^{N} a_k |T|^k$. $\phi(r, z)$ is said to be *Laurent polynomial* if there exist a non-negative integer N and polynomials $p_k(r)$ such that $\phi(r, z) = \sum_{k=-N}^{N} p_k(r) z^k$. Put $\phi(|T|, U) = \sum_{k=-N}^{-1} p_k(|T|) U^{*|k|} + p_0(|T|) + \sum_{k=1}^{N} p_k(|T|) U^k$.

Let \mathcal{A} be the linear space of all Laurent polynomials. For differentiable functions ϕ , ψ of two variables (r, z), let $J(\phi, \psi)(r, z) = \phi_r(r, z) \cdot \psi_z(r, z) - \phi_z(r, z) \cdot \psi_r(r, z)$ be the Jacobian of ϕ and ψ . Then we have the following.

THEOREM A ([5, Theorem 7]). Let T = U|T| be a semi-hyponormal operator with unitary U and $[|T|, U] \in C_1$. Then there exists a summable function g and it holds

$$\operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)]) = \frac{1}{2\pi} \iint J(\phi, \psi)(r, e^{i\theta}) e^{i\theta} g(r\cos\theta, r\sin\theta) drd\theta$$

for any $\phi, \psi \in \mathcal{A}$.

Received September 1, 2007

2000 Mathematics Subject Classification: 47B20, 47A10

Key words and phrases: Hilbert space, trace, principal function

¹This research is partially supported by Grant-in-Aid Scientific Research No. 17540176.

If $A \in C_1$, then $\operatorname{Tr}([A, B]) = 0$ for any operator B. This implies that if $[X, Y], [X, Z], [Y, Z] \in C_1$, then $[XY, Z] \in C_1, [YX, Z] \in C_1$ and $\operatorname{Tr}([XY, Z]) = \operatorname{Tr}([YX, Z])$.

If
$$|T| - |T^*| \in C_1$$
, then

$$\begin{split} [|T|, U] &= (|T| - |T^*|)U \in C_1, \\ |T|(I - F) &= (|T| - U^*|T|U) + (U^*|T|U - |T|UU^*) \\ &= (|T|U^* - U^*|T|)U + [U^*, |T|U] \\ &= [|T|, U^*]U + [U^*, (|T|U - U|T|)] + [U^*, U|T|] \\ &= [U, |T|]^*U + [U^*, -[U, |T|]] + (|T| - |T^*|) \in C_1. \end{split}$$

Hence,

$$\operatorname{Tr}([XU|T|U^*Y, Z]) = \operatorname{Tr}([X|T|UU^*Y, Z]) = \operatorname{Tr}([X|T|FY, Z]) = \operatorname{Tr}([X|T|Y, Z])$$

We also have that $\operatorname{Tr}([XU^*|T|UY, Z]) = \operatorname{Tr}([X|T|Y, Z])$. In this case, we consider Laurent polynomials such that $\sum_{k=-N}^{-1} p_k(|T|)U^{*|k|} + p_0(|T|) + \sum_{k=1}^{N} p_k(|T|)U^k$ with polynomial $p_k(0) = 0$ for $k = -N, -N + 1, \ldots, N$. In addition, if $[U, U^*] \in C_1$, we consider Laurent polynomials such that $\sum_{k=-N}^{-1} p_k(|T|)U^{*|k|} + p_0(|T|) + \sum_{k=1}^{N} p_k(|T|)U^k$ with polynomial p_k .

THEOREM 1. Let T = U|T| be a semi-hyponormal operator with $|T| - |T^*| \in C_1$. Then there exists a summable function g and it holds

$$\operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)]) = \frac{1}{2\pi} \iint J(\phi, \psi)(r, e^{i\theta}) e^{i\theta} g(r\cos\theta, r\sin\theta) drd\theta,$$

where $\phi(r, z), \psi(r, z)$ are Laurent polynomials such that $\phi(0, z) = \psi(0, z) = 0$

2. Proof

PROOF OF THEOREM 1. Let *T* act on a Hilbert space \mathcal{H} . Let T = U|T| be the polar decomposition of *T* and let $E = U^*U$, $F = UU^*$. Put V = U + (I - E). Then $V = U|_{E(\mathcal{H})} \oplus (I - E)$, V|T| = U|T| and |T|V = |T|U.

Put $\mathbf{H} = \mathcal{H} \oplus \mathcal{H}$. Define operators \tilde{U} , $|\tilde{T}|$ and \tilde{T} on \mathbf{H} by

$$\tilde{U} = \begin{pmatrix} V & I - VV^* \\ 0 & -V^* \end{pmatrix}, \quad |\tilde{T}| = \begin{pmatrix} |T| & 0 \\ 0 & 0 \end{pmatrix} \text{ and } \tilde{T} = \tilde{U}|\tilde{T}|.$$

Then \tilde{U} is a unitary operator. We obtain

$$[V, |T|] = [U, |T|] = U|T|U^*U - |T|U = (|T^*| - |T|)U \in \mathcal{C}_1$$

Hence

$$[\tilde{U}, |\tilde{T}|] = \begin{pmatrix} [V, |T|] & -|T|(I - VV^*) \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} [V, |T|] & -|T|(I - F) \\ 0 & 0 \end{pmatrix} \in \mathcal{C}_1.$$

We have for $n \ge 1$,

$$\tilde{U}^n|\tilde{T}| = \begin{pmatrix} U^n|T| & 0\\ 0 & 0 \end{pmatrix}, \quad |\tilde{T}|\tilde{U}^n = \begin{pmatrix} |T|U^n & *\\ 0 & 0 \end{pmatrix}.$$

It also holds that

$$\begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} XA & XB \\ 0 & 0 \end{pmatrix}, \quad \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} X & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} AX & 0 \\ CX & 0 \end{pmatrix}$$

Hence, for a positive integer n, we have

$$\operatorname{Tr}_{\mathbf{H}}[\tilde{U}^{*n}|\tilde{T}|,\tilde{U}^{*}|\tilde{T}|] = \operatorname{Tr}_{\mathbf{H}}[|\tilde{T}|\tilde{U}^{*n},\tilde{U}^{*}|\tilde{T}|]$$

$$= \operatorname{Tr}[|T|U^{*n}, U^*|T|] = \operatorname{Tr}[U^{*n}|T|, U^*|T|].$$

Define

$$U^{[n]} = \begin{cases} U^{*|n|} & (n < 0) \\ I & (n = 0) \\ U^{n} & (n > 0) \end{cases}$$

It is easy to check that, for integers m, p, positive integers n, q,

(1)
$$\operatorname{Tr}_{\mathbf{H}}([\tilde{U}^{m}|\tilde{T}|^{n},\tilde{U}^{p}|\tilde{T}|^{q}]) = \operatorname{Tr}([U^{[m]}|T|^{n},U^{[p]}|T|^{q}]).$$

Since n, q > 0 and $\phi(r, z), \psi(r, z)$ are Laurent polynomials with $\phi(0, z) = \psi(0, z) = 0$, by (1) we have

(2)
$$\operatorname{Tr}_{\mathbf{H}}([\phi(|\tilde{T}|, \tilde{U}), \psi(|\tilde{T}|, \tilde{U})]) = \operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)]).$$

Since $\tilde{T} = \tilde{U}|\tilde{T}|$ is semi-hyponormal with unitary \tilde{U} and $[|\tilde{T}|, \tilde{U}] \in C_1$, by Theorem A there exists a summable function g and it holds

$$\operatorname{Tr}_{\mathbf{H}}([\phi(|\tilde{T}|,\tilde{U}),\psi(|\tilde{T}|,\tilde{U})]) = \frac{1}{2\pi} \iint J(\phi,\psi)(r,e^{i\theta})e^{i\theta}g(r\cos\theta,r\sin\theta)drd\theta.$$

Hence, by (2) we obtain

$$\operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)]) = \frac{1}{2\pi} \iint J(\phi, \psi)(r, e^{i\theta}) e^{i\theta} g(r\cos\theta, r\sin\theta) drd\theta \,.$$

COROLLARY 2. Let T = U|T| be a semi-hyponormal operator with $|T| - |T^*| \in C_1$ and $[U^*, U] \in C_1$. Then there exists a summable function g and it holds

$$\operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)]) = \frac{1}{2\pi} \iint J(\phi, \psi)(r, e^{i\theta}) e^{i\theta} g(r\cos\theta, r\sin\theta) dr d\theta,$$

where $\phi(r, z)$, $\psi(r, z)$ are Laurent polynomials with $\phi(0, z) = 0$.

PROOF. (1) holds for $n, q \ge 0$ and $n + q \ge 1$. Hence, (2) holds for Laurent polynomials with $\phi(0, z) = 0$ and $\psi(0, z) \ne 0$.

REMARK. Let T be the unilateral shift on ℓ^2 and T = U|T| be the polar decomposition of T. Hence T = U and |T| = I. Let $\phi(r, z) = z^{-1}$ and $\psi(r, z) = z$. Then $\phi(0, z) \neq 0$ and $\psi(0, z) \neq 0$. And we have $J(\phi, \psi) = 0$. On the other hand,

$$\operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)]) = \operatorname{Tr}([U^*, U]) = 1.$$

Hence the trace formula does not hold for ϕ and ψ .

For the Cartesian decomposition T = X + iY, we show the following. Proof is similar to the proof of Theorem 1 of [6]. For the completeness, we give a proof.

THEOREM 3. Let T = X + iY be the Cartesian decomposition of a semi-hyponormal operator T. If $|T| - |T^*| \in C_1$, then there exists a summable function g_T and it holds

$$\operatorname{Tr}([P(X,Y),Q(X,Y)]) = \frac{1}{2\pi i} \iint J(P,Q)(x,y)g_T(x,y)dxdy,$$

for polynomials P and Q.

PROOF. Let T = U|T| be the polar decomposition of T. Let P and Q be polynomials of two variables (x, y). According to the commutator and the Jacobian, we may assume P(0, 0) = Q(0, 0) = 0. We note that

$$\operatorname{Tr}([P(X,Y),Q(X,Y)]) = \operatorname{Tr}\left(\left[P\left(\frac{T+T^*}{2},\frac{T-T^*}{2i}\right),Q\left(\frac{T+T^*}{2},\frac{T-T^*}{2i}\right)\right]\right).$$

Put

$$\tilde{P}(r,z) = P\left(\frac{zr+r/z}{2}, \frac{rz-r/z}{2i}\right) \text{ and } \tilde{Q}(r,z) = Q\left(\frac{zr+r/z}{2}, \frac{rz-r/z}{2i}\right).$$

Then both \tilde{P} and \tilde{Q} are Laurent polynomials with $\tilde{P}(0, z) = \tilde{Q}(0, z) = 0$ and also the following equations hold:

$$\begin{split} \tilde{P}_{r}(r,z) &= P_{x}(r,z)\frac{z+1/z}{2} + P_{y}(r,z)\frac{z-1/z}{2i}, \\ \tilde{P}_{z}(r,z) &= \frac{r}{2}P_{x}(r,z)\left(1-\frac{1}{z^{2}}\right) + \frac{r}{2i}P_{y}(r,z)\left(1+\frac{1}{z^{2}}\right), \\ \tilde{Q}_{r}(r,z) &= Q_{x}(r,z)\frac{z+1/z}{2} + Q_{y}(r,z)\frac{z-1/z}{2i}, \\ \tilde{Q}_{z}(r,z) &= \frac{r}{2}Q_{x}(r,z)\left(1-\frac{1}{z^{2}}\right) + \frac{r}{2i}Q_{y}(r,z)\left(1+\frac{1}{z^{2}}\right) \end{split}$$

Hence we obtain

$$J(\tilde{P}, \tilde{Q})(r, z) = J(P, Q)(x, y) \frac{r}{zi}.$$

Therefore, it holds

(3)
$$J(\tilde{P}, \tilde{Q})(r, e^{i\theta}) = J(P, Q)(x, y) \frac{r}{ie^{i\theta}}.$$

Since $P(X, Y) = \tilde{P}(|T|, U)$ and $Q(X, Y) = \tilde{Q}(|T|, U)$, it holds

(4)
$$\operatorname{Tr}([P(X,Y),Q(X,Y)]) = \operatorname{Tr}([\tilde{P}(|T|,U),\tilde{Q}(|T|,U)]),$$

Since $\tilde{P}(0, z) = \tilde{Q}(0, z) = 0$, by (3), (4) and Theorem 1, we have

$$\begin{aligned} \operatorname{Tr}([P(X,Y),Q(X,Y)]) &= \operatorname{Tr}([P(|T|,U),Q(|T|,U)]) \\ &= \frac{1}{2\pi} \iint J(\tilde{P},\tilde{Q})(r,e^{i\theta})e^{i\theta}g(r\cos\theta,r\sin\theta)drd\theta \\ &= \frac{1}{2\pi i} \iint J(P,Q)(x,y)g(r\cos\theta,r\sin\theta)r\,drd\theta \,. \end{aligned}$$

Put $g_T(x, y) = g(r \cos \theta, r \sin \theta)$ for $x + iy = re^{i\theta}$. Using the transformation $x = r \cos \theta$ and $y = r \sin \theta$, we have

$$\frac{1}{2\pi i} \iint J(P, Q)(x, y)g(r\cos\theta, r\sin\theta)rdrd\theta$$
$$= \frac{1}{2\pi i} \iint J(P, Q)(x, y)g_T(x, y)dxdy = \operatorname{Tr}([P(X, Y), Q(X, Y)]).$$

Hence, it completes the proof.

References

- R. W. CAREY and J. D. PINCUS, *Almost commuting algebras*, Lecture Notes in Math. 574, Springer-Verlag, Berlin, 1973, 19–43.
- [2] R. W. CAREY and J. D. PINCUS, Mosaics, principal functions, and mean motion in von-Neumann algebras, Acta Math. 138 (1977), 153–218.
- [3] M. CHŌ and T. HURUYA, p-hyponormal operators for 0 , Comment. Math.**33**(1993), 23–29.
- [4] M. CHŌ and T. HURUYA, Trace formulae of *p*-hyponormal operators, Studia Math. 161 (2004), 1–18.
- [5] M. CHÖ, T. HURUYA and C. LI, Trace formulae associated with the polar decomposition of operators, Math. Proc. Royal Irish Acad. 105 (2005), 57–69.
- [6] M. CHÖ, T. HURUYA, A. H. KIM and C. LI, Principal functions for high powers of operators, Tokyo J. Math. 29 (2006), 111–116.
- [7] K. F. CLANCEY, Seminormal operators, Lecture Notes in Math. 742, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
- [8] J. W. HELTON and R. HOWE, Integral operators, commutator traces, index and homology, Proceedings of a conference on operator theory, Lecture Notes in Math. 345, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
- [9] M. MARTIN and M. PUTINAR, Lectures on hyponormal operators, Birkhäuser Verlag, Basel, 1989.
- [10] D. XIA, Spectral theory of hyponormal operators, Birkhäuser Verlag, Basel, 1983.

MUNEO CHŌ AND TADASI HURUYA

Present Addresses: MUNEO CHŌ DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, YOKOHAMA, 221–8686 JAPAN. *e-mail:* chiyom01@kanagawa-u.ac.jp

TADASI HURUYA FACULTY OF EDUCATION AND HUMAN SCIENCES, NIIGATA UNIVERSITY, NIIGATA 950–2181, JAPAN.