Trace Formula for Partial Isometry Case

Dedicated to Professors Shôichi Ôta and Mitsuru Uchiyama on their sixtieth birthdays

Muneo CHŌ ${ }^{1}$ and Tadasi HURUYA

Kanagawa University and Niigata University
(Communicated by K. Taniyama)

Abstract

Let $T=U|T|$ be the polar decomposition of T. For a semi-hyponormal operator $T=U|T|$ with partial isometry U, if $|T|-\left|T^{*}\right| \in \mathcal{C}_{1}$, then we give the trace formula for the polar decomposition of T.

1. Introduction

Let $T=U|T|$ be an operator with partial isometry U and put $Q=|T|-\left|T^{*}\right|$. Then $U|T|=(|T|-Q) U$. If Q is a trace class operator, Carey-Pincus' Theorem [2] gives a trace formula associated with the decomposition $T=U|T|$. In this paper, using a result [4], we give a simple proof of the trace formula of semi-hyponormal operator.

An operator below means a bounded linear operator on a separable infinite dimensional Hilbert space \mathcal{H}. Let \mathcal{C}_{1} be the set of all trace class operators. An operator T is said to be semi-hyponormal if $\left(T^{*} T\right)^{1 / 2} \geq\left(T T^{*}\right)^{1 / 2}$, that is, $|T| \geq\left|T^{*}\right|$. For a polynomials $p(r)=$ $\sum_{k=0}^{N} a_{k} r^{k}$, put $p(|T|)=a_{0}+\sum_{k=1}^{N} a_{k}|T|^{k} . \phi(r, z)$ is said to be Laurent polynomial if there exist a non-negative integer N and polynomials $p_{k}(r)$ such that $\phi(r, z)=\sum_{k=-N}^{N} p_{k}(r) z^{k}$. Put $\phi(|T|, U)=\sum_{k=-N}^{-1} p_{k}(|T|) U^{*|k|}+p_{0}(|T|)+\sum_{k=1}^{N} p_{k}(|T|) U^{k}$.

Let \mathcal{A} be the linear space of all Laurent polynomials. For differentiable functions ϕ, ψ of two variables (r, z), let $J(\phi, \psi)(r, z)=\phi_{r}(r, z) \cdot \psi_{z}(r, z)-\phi_{z}(r, z) \cdot \psi_{r}(r, z)$ be the Jacobian of ϕ and ψ. Then we have the following.

Theorem A ([5, Theorem 7]). Let $T=U|T|$ be a semi-hyponormal operator with unitary U and $[|T|, U] \in \mathcal{C}_{1}$. Then there exists a summable function g and it holds

$$
\operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)])=\frac{1}{2 \pi} \iint J(\phi, \psi)\left(r, e^{i \theta}\right) e^{i \theta} g(r \cos \theta, r \sin \theta) d r d \theta
$$

for any $\phi, \psi \in \mathcal{A}$.
Received September 1, 2007
2000 Mathematics Subject Classification: 47B20, 47A10
Key words and phrases: Hilbert space, trace, principal function
${ }^{1}$ This research is partially supported by Grant-in-Aid Scientific Research No. 17540176.

If $A \in \mathcal{C}_{1}$, then $\operatorname{Tr}([A, B])=0$ for any operator B. This implies that if $[X, Y],[X, Z],[Y, Z] \in \mathcal{C}_{1}$, then $[X Y, Z] \in \mathcal{C}_{1},[Y X, Z] \in \mathcal{C}_{1}$ and $\operatorname{Tr}([X Y, Z])=$ $\operatorname{Tr}([Y X, Z])$.

If $|T|-\left|T^{*}\right| \in \mathcal{C}_{1}$, then

$$
\begin{aligned}
{[|T|, U] } & =\left(|T|-\left|T^{*}\right|\right) U \in \mathcal{C}_{1} \\
|T|(I-F) & =\left(|T|-U^{*}|T| U\right)+\left(U^{*}|T| U-|T| U U^{*}\right) \\
& =\left(|T| U^{*}-U^{*}|T|\right) U+\left[U^{*},|T| U\right] \\
& =\left[|T|, U^{*}\right] U+\left[U^{*},(|T| U-U|T|)\right]+\left[U^{*}, U|T|\right] \\
& =[U,|T|]^{*} U+\left[U^{*},-[U,|T|]\right]+\left(|T|-\left|T^{*}\right|\right) \in \mathcal{C}_{1} .
\end{aligned}
$$

Hence,
$\operatorname{Tr}\left(\left[X U|T| U^{*} Y, Z\right]\right)=\operatorname{Tr}\left(\left[X|T| U U^{*} Y, Z\right]\right)=\operatorname{Tr}([X|T| F Y, Z])=\operatorname{Tr}([X|T| Y, Z])$.
We also have that $\operatorname{Tr}\left(\left[X U^{*}|T| U Y, Z\right]\right)=\operatorname{Tr}([X|T| Y, Z])$. In this case, we consider Laurent polynomials such that $\sum_{k=-N}^{-1} p_{k}(|T|) U^{*|k|}+p_{0}(|T|)+\sum_{k=1}^{N} p_{k}(|T|) U^{k}$ with polynomial $p_{k}(0)=0$ for $k=-N,-N+1, \ldots, N$. In addition, if $\left[U, U^{*}\right] \in \mathcal{C}_{1}$, we consider Laurent polynomials such that $\sum_{k=-N}^{-1} p_{k}(|T|) U^{*|k|}+p_{0}(|T|)+\sum_{k=1}^{N} p_{k}(|T|) U^{k}$ with polynomial p_{k}.

THEOREM 1. Let $T=U|T|$ be a semi-hyponormal operator with $|T|-\left|T^{*}\right| \in \mathcal{C}_{1}$. Then there exists a summable function g and it holds

$$
\operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)])=\frac{1}{2 \pi} \iint J(\phi, \psi)\left(r, e^{i \theta}\right) e^{i \theta} g(r \cos \theta, r \sin \theta) d r d \theta
$$

where $\phi(r, z), \psi(r, z)$ are Laurent polynomials such that $\phi(0, z)=\psi(0, z)=0$

2. Proof

Proof of Theorem 1. Let T act on a Hilbert space \mathcal{H}. Let $T=U|T|$ be the polar decomposition of T and let $E=U^{*} U, F=U U^{*}$. Put $V=U+(I-E)$. Then $V=$ $U_{\mid E(\mathcal{H})} \oplus(I-E), V|T|=U|T|$ and $|T| V=|T| U$.

Put $\mathbf{H}=\mathcal{H} \oplus \mathcal{H}$. Define operators $\tilde{U},|\tilde{T}|$ and \tilde{T} on \mathbf{H} by

$$
\tilde{U}=\left(\begin{array}{cc}
V & I-V V^{*} \\
0 & -V^{*}
\end{array}\right), \quad|\tilde{T}|=\left(\begin{array}{cc}
|T| & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad \tilde{T}=\tilde{U}|\tilde{T}|
$$

Then \tilde{U} is a unitary operator. We obtain

$$
[V,|T|]=[U,|T|]=U|T| U^{*} U-|T| U=\left(\left|T^{*}\right|-|T|\right) U \in \mathcal{C}_{1}
$$

Hence

$$
[\tilde{U},|\tilde{T}|]=\left(\begin{array}{cc}
{[V,|T|]} & -|T|\left(I-V V^{*}\right) \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
{[V,|T|]} & -|T|(I-F) \\
0 & 0
\end{array}\right) \in \mathcal{C}_{1}
$$

We have for $n \geq 1$,

$$
\tilde{U}^{n}|\tilde{T}|=\left(\begin{array}{cc}
U^{n}|T| & 0 \\
0 & 0
\end{array}\right), \quad|\tilde{T}| \tilde{U}^{n}=\left(\begin{array}{cc}
|T| U^{n} & * \\
0 & 0
\end{array}\right) .
$$

It also holds that

$$
\left(\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{cc}
X A & X B \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)\left(\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
A X & 0 \\
C X & 0
\end{array}\right)
$$

Hence, for a positive integer n, we have

$$
\begin{aligned}
& \operatorname{Tr}_{\mathbf{H}}\left[\tilde{U}^{* n}|\tilde{T}|, \tilde{U}^{*}|\tilde{T}|\right]=\operatorname{Tr}_{\mathbf{H}}\left[|\tilde{T}| \tilde{U}^{* n}, \tilde{U}^{*}|\tilde{T}|\right] \\
& =\operatorname{Tr}\left[|T| U^{* n}, U^{*}|T|\right]=\operatorname{Tr}\left[U^{* n}|T|, U^{*}|T|\right]
\end{aligned}
$$

Define

$$
U^{[n]}= \begin{cases}U^{*|n|} & (n<0) \\ I & (n=0) \\ U^{n} & (n>0)\end{cases}
$$

It is easy to check that, for integers m, p, positive integers n, q,

$$
\begin{equation*}
\operatorname{Tr}_{\mathbf{H}}\left(\left[\tilde{U}^{m}|\tilde{T}|^{n}, \tilde{U}^{p}|\tilde{T}|^{q}\right]\right)=\operatorname{Tr}\left(\left[U^{[m]}|T|^{n}, U^{[p]}|T|^{q}\right]\right) . \tag{1}
\end{equation*}
$$

Since $n, q>0$ and $\phi(r, z), \psi(r, z)$ are Laurent polynomials with $\phi(0, z)=\psi(0, z)=0$, by (1) we have

$$
\begin{equation*}
\operatorname{Tr}_{\mathbf{H}}([\phi(|\tilde{T}|, \tilde{U}), \psi(|\tilde{T}|, \tilde{U})])=\operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)]) . \tag{2}
\end{equation*}
$$

Since $\tilde{T}=\tilde{U}|\tilde{T}|$ is semi-hyponormal with unitary \tilde{U} and $[|\tilde{T}|, \tilde{U}] \in \mathcal{C}_{1}$, by Theorem A there exists a summable function g and it holds

$$
\operatorname{Tr}_{\mathbf{H}}([\phi(|\tilde{T}|, \tilde{U}), \psi(|\tilde{T}|, \tilde{U})])=\frac{1}{2 \pi} \iint J(\phi, \psi)\left(r, e^{i \theta}\right) e^{i \theta} g(r \cos \theta, r \sin \theta) d r d \theta
$$

Hence, by (2) we obtain

$$
\operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)])=\frac{1}{2 \pi} \iint J(\phi, \psi)\left(r, e^{i \theta}\right) e^{i \theta} g(r \cos \theta, r \sin \theta) d r d \theta
$$

Corollary 2. Let $T=U|T|$ be a semi-hyponormal operator with $|T|-\left|T^{*}\right| \in \mathcal{C}_{1}$ and $\left[U^{*}, U\right] \in \mathcal{C}_{1}$. Then there exists a summable function g and it holds

$$
\operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)])=\frac{1}{2 \pi} \iint J(\phi, \psi)\left(r, e^{i \theta}\right) e^{i \theta} g(r \cos \theta, r \sin \theta) d r d \theta
$$

where $\phi(r, z), \psi(r, z)$ are Laurent polynomials with $\phi(0, z)=0$.

Proof. (1) holds for $n, q \geq 0$ and $n+q \geq 1$. Hence, (2) holds for Laurent polynomials with $\phi(0, z)=0$ and $\psi(0, z) \neq 0$.

REMARK. Let T be the unilateral shift on ℓ^{2} and $T=U|T|$ be the polar decomposition of T. Hence $T=U$ and $|T|=I$. Let $\phi(r, z)=z^{-1}$ and $\psi(r, z)=z$. Then $\phi(0, z) \neq 0$ and $\psi(0, z) \neq 0$. And we have $J(\phi, \psi)=0$. On the other hand,

$$
\operatorname{Tr}([\phi(|T|, U), \psi(|T|, U)])=\operatorname{Tr}\left(\left[U^{*}, U\right]\right)=1
$$

Hence the trace formula does not hold for ϕ and ψ.
For the Cartesian decomposition $T=X+i Y$, we show the following. Proof is similar to the proof of Theorem 1 of [6]. For the completeness, we give a proof.

Theorem 3. Let $T=X+i Y$ be the Cartesian decomposition of a semi-hyponormal operator T. If $|T|-\left|T^{*}\right| \in \mathcal{C}_{1}$, then there exists a summable function g_{T} and it holds

$$
\operatorname{Tr}([P(X, Y), Q(X, Y)])=\frac{1}{2 \pi i} \iint J(P, Q)(x, y) g_{T}(x, y) d x d y
$$

for polynomials P and Q.
Proof. Let $T=U|T|$ be the polar decomposition of T. Let P and Q be polynomials of two variables (x, y). According to the commutator and the Jacobian, we may assume $P(0,0)=Q(0,0)=0$. We note that

$$
\operatorname{Tr}([P(X, Y), Q(X, Y)])=\operatorname{Tr}\left(\left[P\left(\frac{T+T^{*}}{2}, \frac{T-T^{*}}{2 i}\right), Q\left(\frac{T+T^{*}}{2}, \frac{T-T^{*}}{2 i}\right)\right]\right)
$$

Put

$$
\tilde{P}(r, z)=P\left(\frac{z r+r / z}{2}, \frac{r z-r / z}{2 i}\right) \text { and } \tilde{Q}(r, z)=Q\left(\frac{z r+r / z}{2}, \frac{r z-r / z}{2 i}\right)
$$

Then both \tilde{P} and \tilde{Q} are Laurent polynomials with $\tilde{P}(0, z)=\tilde{Q}(0, z)=0$ and also the following equations hold:

$$
\begin{aligned}
& \tilde{P}_{r}(r, z)=P_{x}(r, z) \frac{z+1 / z}{2}+P_{y}(r, z) \frac{z-1 / z}{2 i} \\
& \tilde{P}_{z}(r, z)=\frac{r}{2} P_{x}(r, z)\left(1-\frac{1}{z^{2}}\right)+\frac{r}{2 i} P_{y}(r, z)\left(1+\frac{1}{z^{2}}\right) \\
& \tilde{Q}_{r}(r, z)=Q_{x}(r, z) \frac{z+1 / z}{2}+Q_{y}(r, z) \frac{z-1 / z}{2 i} \\
& \tilde{Q}_{z}(r, z)=\frac{r}{2} Q_{x}(r, z)\left(1-\frac{1}{z^{2}}\right)+\frac{r}{2 i} Q_{y}(r, z)\left(1+\frac{1}{z^{2}}\right) .
\end{aligned}
$$

Hence we obtain

$$
J(\tilde{P}, \tilde{Q})(r, z)=J(P, Q)(x, y) \frac{r}{z i}
$$

Therefore, it holds

$$
\begin{equation*}
J(\tilde{P}, \tilde{Q})\left(r, e^{i \theta}\right)=J(P, Q)(x, y) \frac{r}{i e^{i \theta}} \tag{3}
\end{equation*}
$$

Since $P(X, Y)=\tilde{P}(|T|, U)$ and $Q(X, Y)=\tilde{Q}(|T|, U)$, it holds

$$
\begin{equation*}
\operatorname{Tr}([P(X, Y), Q(X, Y)])=\operatorname{Tr}([\tilde{P}(|T|, U), \tilde{Q}(|T|, U)]) \tag{4}
\end{equation*}
$$

Since $\tilde{P}(0, z)=\tilde{Q}(0, z)=0$, by (3), (4) and Theorem 1, we have

$$
\begin{aligned}
\operatorname{Tr}([P(X, Y), Q(X, Y)]) & =\operatorname{Tr}([\tilde{P}(|T|, U), \tilde{Q}(|T|, U)]) \\
& =\frac{1}{2 \pi} \iint J(\tilde{P}, \tilde{Q})\left(r, e^{i \theta}\right) e^{i \theta} g(r \cos \theta, r \sin \theta) d r d \theta \\
& =\frac{1}{2 \pi i} \iint J(P, Q)(x, y) g(r \cos \theta, r \sin \theta) r d r d \theta
\end{aligned}
$$

Put $g_{T}(x, y)=g(r \cos \theta, r \sin \theta)$ for $x+i y=r e^{i \theta}$. Using the transformation $x=r \cos \theta$ and $y=r \sin \theta$, we have

$$
\begin{aligned}
& \frac{1}{2 \pi i} \iint J(P, Q)(x, y) g(r \cos \theta, r \sin \theta) r d r d \theta \\
& \quad=\frac{1}{2 \pi i} \iint J(P, Q)(x, y) g_{T}(x, y) d x d y=\operatorname{Tr}([P(X, Y), Q(X, Y)]) .
\end{aligned}
$$

Hence, it completes the proof.

References

[1] R. W. Carey and J. D. Pincus, Almost commuting algebras, Lecture Notes in Math. 574, Springer-Verlag, Berlin, 1973, 19-43.
[2] R. W. Carey and J. D. Pincus, Mosaics, principal functions, and mean motion in von-Neumann algebras, Acta Math. 138 (1977), 153-218.
[3] M. Chō and T. Huruya, p-hyponormal operators for $0<p<1 / 2$, Comment. Math. 33 (1993), 23-29.
[4] M. Chō and T. Huruya, Trace formulae of p-hyponormal operators, Studia Math. 161 (2004), 1-18.
[5] M. Chō, T. Huruya and C. Li, Trace formulae associated with the polar decomposition of operators, Math. Proc. Royal Irish Acad. 105 (2005), 57-69.
[6] M. Chō, T. Huruya, A. H. Kim and C. Li, Principal functions for high powers of operators, Tokyo J. Math. 29 (2006), 111-116.
[7] K. F. Clancey, Seminormal operators, Lecture Notes in Math. 742, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
[8] J. W. Helton and R. Howe, Integral operators, commutator traces, index and homology, Proceedings of a conference on operator theory, Lecture Notes in Math. 345, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
[9] M. MARTIN and M. Putinar, Lectures on hyponormal operators, Birkhäuser Verlag, Basel, 1989.
[10] D. XIA, Spectral theory of hyponormal operators, Birkhäuser Verlag, Basel, 1983.

Present Addresses:
Muneo Chō
Department of Mathematics,
Kanagawa University,
YоконамA, 221-8686 JAPAN.
e-mail: chiyom01@kanagawa-u.ac.jp
Tadasi Huruya
Faculty of Education and Human Sciences,
Niigata University,
NiIGATA 950-2181, JAPAN.

