Square Integrable Solutions of $\Delta u+\lambda u=0$ on Noncompact Manifolds

Reiji KONNO

Meiji University

Abstract

The Schrödinger-type equation $-\Delta u+V u=\lambda u$ on a noncompact Riemannian manifold \mathcal{M} has no nontrivial square integrable solution u for any positive constant λ, if the metric and the function V satisfy certain conditions near the infinity. A set of conditions of that kind was given by the author in the case that the metric is rotationally symmetric. It contained a condition which required smallness of the curvatures of \mathcal{M} in the distance. But we have had a question whether the set could remain sufficient even if we remove that condition. The present paper answers it negatively by constructing a square integrable solution for a metric which satisfies all the conditions except the one in question.

Let \mathcal{M} be a d-dimensional Riemannian manifold ($d \geq 2$) which admits a global system of coordinates $(r, \omega) \in\left(r_{0}, \infty\right) \times S^{d-1}$ therewith the metric is represented as

$$
\begin{equation*}
d s^{2}=d r^{2}+\rho(r)^{2} d \omega^{2} \tag{1}
\end{equation*}
$$

where $d \omega$ is the standard metric of S^{d-1} and ρ is a positive function. Let Δ denote the Laplacian (Laplace-Beltrami operator) of \mathcal{M} and $V(r, \omega)$ be a function defined on \mathcal{M}; then consider the equation

$$
\begin{equation*}
-\Delta u+V u=\lambda u \tag{2}
\end{equation*}
$$

where λ is an arbitrary positive constant. What we are concerned in the present paper is the behavior of the solution u near $r=\infty$, especially the existence or nonexistence of square integrable solutions.

Many authors dealt with this or a similar type of problem when \mathcal{M} is a complete noncompact manifold having negative or positive definite curvatures (e.g. [1]-[3] and [6]-[8]). But in this article we do not require the completeness of the manifolds. We only assume an asymptotic behavior of $\rho(r)$ for large r. In that sense, we are treating a local problem at the infinity. As to the curvatures, the definiteness of the sign of the curvatures is not asked. Only their absolute values are of interest.

There is a theorem due to the author which offers a set of conditions assuring the nonexistence of square integrable solutions. Our purpose is to examine the efficiency of those conditions. Let us quote it here.

ThEOREM A ([5, Theorem 1 combined with its corollary]). Let $\psi(r)$ be a positive function of $r\left(r_{0} \leq r<\infty\right)$ which is locally absolutely continuous and satisfies the following

[^0]conditions:
\[

$$
\begin{gathered}
\int_{r_{0}}^{\infty} \psi(r) d r=\infty \\
\psi(r)^{-1} \dot{\psi}(r)+\psi(r) \geq-\alpha \quad(\text { for a.e. large } r)
\end{gathered}
$$
\]

(the dot representing $d / d r$) with some positive constant α, and

$$
\int_{r_{0}}^{\infty} \exp \left(-\int_{r_{0}}^{r} \psi(s) d s\right) d r=\infty
$$

Suppose that the function $\rho(r)$ satisfies the following conditions (i)-(v):
(i) $\rho \in C^{1}\left(r_{0}, \infty\right), \rho(r)>0, \dot{\rho}(r) \geq 0$ in $r_{0}<r<\infty, \rho(r) \rightarrow \infty(r \rightarrow \infty)$ and $\dot{\rho}$ is locally absolutely continuous in $r_{0}<r<\infty$,
(ii) $\rho(r)^{-1} \dot{\rho}(r)=o(1)(r \rightarrow \infty)$,
(iii) $2 \rho(r)^{-1} \dot{\rho}(r) \geq \psi(r)$ (for large $\left.r\right)$,
(iv) $\rho(r)^{-3} \dot{\rho}(r)^{3}=o(\psi(r))(r \rightarrow \infty)$,
(v) $\rho(r)^{-1} \ddot{\rho}(r)=o(\psi(r))(r \rightarrow \infty$, a.e. $r)$.

Furthermore, let

$$
V(r, \omega)=V_{1}(r, \omega)+V_{2}(r, \omega)
$$

where $V_{1}(r, \omega)$ and $V_{2}(r, \omega)$ are functions which satisfy the following conditions:
(vi) $\quad V_{1}(r, \omega)$ is real-valued, continuous and locally absolutely continuous in r for almost every fixed $\omega \in S^{n-1}$, and

$$
V_{1}(r, \omega)=o(1), \quad \dot{V}_{1}(r, \omega)=o(\psi(r)) \quad(r \rightarrow \infty, \text { uniformly in } \omega),
$$

(vii) $\quad V_{2}(r, \omega)$ is complex-valued, bounded and measurable, and satisfies

$$
V_{2}(r, \omega)=o(\psi(r)) \quad(r \rightarrow \infty, \text { uniformly in } \omega) .
$$

Let λ be an arbitrary positive constant. Then no solution u of (2) is square integrable except $u \equiv 0$.

The condition (v) implies that the absolute values of the curvatures of \mathcal{M} should decrease in a sufficiently rapid manner. But it has been an open problem whether that condition was indispensable. In this article we will illustrate an example of ρ which satisfies (i)-(iv) with a certain ψ for which (2) has a square integrable solution. The existence of such an example indicates that (i)-(iv) alone are insufficient and hence (v) or some other condition is needed in order to guarantee the nonexistence of nontrivial L^{2}-solutions.

Let us consider the simple case where $V \equiv 0$, because that seems to tell best the essential point. Our construction goes in the reverse direction. That means, we at first pick up an L^{2} function u, and then study the property of ρ for which

$$
\begin{equation*}
\Delta u+\lambda u \equiv \frac{1}{\rho^{d-1}} \frac{\partial}{\partial r}\left(\rho^{d-1} \frac{\partial u}{\partial r}\right)+\frac{1}{\rho^{2}} \Lambda u+\lambda u=0 \tag{3}
\end{equation*}
$$

holds (Λ is the Laplacian of S^{d-1}). Before beginning the construction, we change the function u to

$$
\begin{equation*}
v(r, \omega)=\rho(r)^{\frac{d-1}{2}} u(r, \omega) \tag{4}
\end{equation*}
$$

Then v satisfies

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial r^{2}}+\frac{1}{\rho^{2}} \Lambda v-\left[\frac{(d-1)(d-3)}{4} \frac{\dot{\rho}^{2}}{\rho^{2}}+\frac{d-1}{2} \frac{\ddot{\rho}}{\rho}\right] v+\lambda v=0 \tag{5}
\end{equation*}
$$

where a dot represents $d / d r$. Note that $u \in L^{2}(\mathcal{M})$ if and only if $v \in L^{2}\left(\left(r_{0}, \infty\right) \times\right.$ $S^{d-1} ; d r d S$), where $d S$ is the measure of S^{d-1}.

Now, let $r_{0} \geq 1$, write $n=[r]$, the largest integer not exceeding r, and set

$$
\left\{\begin{array}{l}
r=n+s, \tag{6}\\
\lambda=\pi^{2}, \\
v(r, \omega)=v(r)=\frac{\sin \pi r}{n(n+1)}\left(n+1-s+\frac{1}{2 \pi} \sin 2 \pi r\right) \\
\quad(n \leq r<n+1 ; \quad n=1,2, \cdots) .
\end{array}\right.
$$

The function v depends only on r, hence $\Lambda u=0$ and, as is easily seen, $v \in C^{2}\left(r_{0}, \infty\right) \cap$ $L^{2}\left(r_{0}, \infty\right)$ as a function of the single variable r. (The number $\lambda=\pi^{2}$ is not essential. We can get a similar example for any $\lambda>0$ by changing the scale of the variable r.) What we intend to show is the following statement:

THEOREM B. We can find a positive C^{1}-function $\rho(r)$ and positive constants k_{1}, k_{2} and r_{*} such that ρ satisfies the relation (5) with the v given by (6) and yields the estimate

$$
\begin{equation*}
\frac{k_{1}}{r} \leq \frac{\dot{\rho}(r)}{\rho(r)} \leq \frac{k_{2}}{r} \tag{7}
\end{equation*}
$$

for $r \geq r_{*}$.
If we prove this theorem, the conditions (i)-(iv) of Theorem A are fulfilled with $\psi(r)=$ $k_{1} / 2 r$, although (3) has a square integrable solution u. Therefore, we shall be able to conclude that the condition (v) is significant.

Let us consider the following function

$$
\begin{equation*}
x(r)=\frac{(d-1) r}{2} \frac{\dot{\rho}(r)}{\rho(r)} \tag{8}
\end{equation*}
$$

Then a straightforward calculation and the equation (5) show that

$$
\begin{equation*}
\frac{d}{d r} x(r)=\frac{1}{r} x(r)(1-x(r))+h(r) \tag{9}
\end{equation*}
$$

where $h(r)$ is the continuous function given by

$$
\begin{align*}
h(r) & =r\left(\pi^{2}+\frac{\ddot{v}(r)}{v(r)}\right) \\
& =-\frac{4 \pi r \sin 2 \pi r}{n+1-s+\frac{1}{2 \pi} \sin 2 \pi r} \tag{10}\\
& =-\frac{4 \pi(n+s) \sin 2 \pi s}{n+1-s+\frac{1}{2 \pi} \sin 2 \pi s}
\end{align*}
$$

for $n \leq r=n+s<n+1,(n=1,2, \cdots)$. Note that the inequality (7) is equivalent to

$$
c_{1} \leq x(r) \leq c_{2} \quad\left(r \geq r_{*}\right)
$$

where c_{1} and c_{2} are some positive constants. Therefore, our purpose will be achieved by proving the following proposition.

Proposition 0. We can find a positive integer n_{0} and positive constants c_{1} and c_{2} such that the initial value problem

$$
\left\{\begin{array}{l}
\frac{d}{d r} x(r)=\frac{1}{r} x(r)(1-x(r))+h(r) \quad\left(n_{0}<r\right) \tag{11}\\
x\left(n_{0}\right)=\alpha_{0}
\end{array}\right.
$$

has a unique solution $x(r)$ throughout $n_{0} \leq r<\infty$ which satisfies

$$
c_{1} \leq x(r) \leq c_{2} \quad\left(n_{0} \leq r<\infty\right)
$$

provided the initial value α_{0} lies in the interval

$$
\begin{equation*}
4.2 \leq \alpha_{0} \leq 4.4 \tag{12}
\end{equation*}
$$

We will prove this proposition in stages. First we show
Proposition 1. For $n \leq r \leq n+1(n=1,2, \cdots)$ we have

$$
h(r)=-4 \pi \sin 2 \pi s+\frac{1}{n}\left(4 \pi \sin 2 \pi s-8 \pi s \sin 2 \pi s+2 \sin ^{2} 2 \pi s\right)+R(r), \quad|R(r)| \leq \frac{4 \pi}{n^{2}} .
$$

Proof. One has

$$
\begin{aligned}
h(r) & =-\frac{4 \pi\left(1+\frac{s}{n}\right) \sin 2 \pi s}{1+\frac{1}{n}\left(1-s+\frac{1}{2 \pi} \sin 2 \pi s\right)} \\
& =-4 \pi \sin 2 \pi s+\frac{4 \pi}{n} \sin 2 \pi s\left(1-2 s+\frac{1}{2 \pi} \sin 2 \pi s\right)+R(r) \\
R(r) & =-\frac{1}{n^{2}} \cdot \frac{4 \pi \sin 2 \pi s\left(1-s+\frac{1}{2 \pi} \sin 2 \pi s\right)\left(1-2 s+\frac{1}{2 \pi} \sin 2 \pi s\right)}{1+\frac{1}{n}\left(1-s+\frac{1}{2 \pi} \sin 2 \pi s\right)}
\end{aligned}
$$

for $n \leq r<n+1$, which shows $|R(r)| \leq 4 \pi / n^{2}$ because

$$
0 \leq 1-s+\frac{1}{2 \pi} \sin 2 \pi s \leq 1, \quad-1 \leq 1-2 s+\frac{1}{2 \pi} \sin 2 \pi s \leq 1 .
$$

Next we consider an initial value problem in the interval $n \leq r$ for each integer n separately in order to observe the influence of the magnitude of $x(n)$ on that of $x(n+1)$.

PROPOSITION 2. We can find a positive integer n_{1} and a positive constant β_{1} such that for each integer $n \geq n_{1}$ and any real number $\alpha, 4.2 \leq \alpha \leq 4.4$, the solution of

$$
\left\{\begin{array}{l}
\frac{d}{d r} x(r)=\frac{1}{r} x(r)(1-x(r))+h(r) \quad(n<r) \tag{13}\\
x(n)=\alpha
\end{array}\right.
$$

satisfies $x(r) \leq \beta_{1}$ in the interval of the form $n \leq r \leq r_{1}, r_{1}$ being any number, as long as $x(r)$ exists there.

Proof. The proposition is clear from

$$
x(n+s)=\alpha+\int_{n}^{n+s} h(r) d r+\int_{n}^{n+s} \frac{1}{r} x(r)(1-x(r)) d r
$$

because $|h(r)| \leq 8 \pi(r \geq 1)$ and $x(1-x) / r \leq 1 / 4 r$.
Proposition 3. There exist an integer n_{2} and a number β_{2} such that if $n \geq n_{2}$ and $4.2 \leq \alpha \leq 4.4$ then the solution of (13) exists everywhere in the interval $n \leq r \leq n+\frac{3}{2}$ and fulfills

$$
\begin{equation*}
x(r) \geq \beta_{2} \tag{14}
\end{equation*}
$$

for $n \leq r \leq n+\frac{3}{2}$.
REMARK. The number $3 / 2$ does not have a special meaning. One has only to show that $x(r)$ exists for $n \leq r \leq n+1$ and satisfies the differential equation (for the left derivative) even at $r=n$.

Proof. (I) Consider the differential equation for a function $\varphi_{n}(r)$:

$$
\left\{\begin{array}{l}
\frac{d}{d r} \varphi_{n}(r)=\frac{1}{r} \varphi_{n}(r)\left(1-\varphi_{n}(r)\right)-\frac{5 \pi n+\frac{1}{4}}{r} \quad(n<r), \tag{15}\\
\varphi_{n}(n)=\alpha-\varepsilon
\end{array}\right.
$$

where ε is an arbitrary constant, $0<\varepsilon<1 / 2$. Put $k_{n}=\sqrt{5 \pi n}$, then we have

$$
\tan ^{-1} \frac{\varphi_{n}-\frac{1}{2}}{k_{n}}=\tan ^{-1} \frac{\alpha-\varepsilon-\frac{1}{2}}{k_{n}}-k_{n} \log \left(1+\frac{s}{n}\right)
$$

($\tan ^{-1}$ is the principal value) at least in some interval. But since $k_{n} \log \left(1+\frac{s}{n}\right)=O(1 / \sqrt{n})$ for large n, the solution φ_{n} exists in $n \leq r \leq n+\frac{3}{2}$ if n is sufficiently large. We therefore get

$$
\varphi_{n}=\frac{1}{2}+\frac{\alpha-\varepsilon-\frac{1}{2}-k_{n} \tan \left\{k_{n} \log \left(1+\frac{s}{n}\right)\right\}}{1+\frac{\alpha-\varepsilon-\frac{1}{2}}{k_{n}} \tan \left\{k_{n} \log \left(1+\frac{s}{n}\right)\right\}}
$$

It is clear that if n is not less than some number, say, n_{2}, then φ_{n} fulfills

$$
\beta_{2} \leq \varphi_{n}(r) \leq \beta_{2}^{\prime} \quad\left(n \leq r \leq n+\frac{3}{2}\right)
$$

for some real numbers $\beta_{2}, \beta_{2}^{\prime}$ which are independent of n.
(II) We will show that $x(r)$ exists in $n \leq r \leq n+\frac{3}{2}$. Set $y(r):=x(r)-\varphi_{n}(r)$. Suppose contrary to the conclusion that $x(r)$ ceases to exist somewhere before $n+\frac{3}{2}$. Due to Proposition 2 and the existence theorem for ordinary differential equations, such a case occurs only when $x(r)$ diverges to $-\infty$ at that point. Hence we can find a number $\gamma\left(n<\gamma<n+\frac{3}{2}\right)$ such that $\lim _{r \rightarrow \gamma-0} y(r)=0$ and $y(r)>0$ in the interval $n \leq r<\gamma$.

Now, take n_{2} so large that for any $n \geq n_{2}, h(r)$ admits the following estimate from below:

$$
h(r) \geq-4 \pi\left(1+\frac{s}{n}\right) \geq-\frac{5 \pi n+\frac{1}{4}}{r} \quad\left(n \leq r \leq n+\frac{3}{2}\right) .
$$

Then from Proposition 2 and from the first part of this proof, one sees

$$
\begin{aligned}
\frac{d y}{d r} & =\frac{1}{r} x(1-x)+h(r)-\frac{1}{r} \varphi_{n}\left(1-\varphi_{n}\right)+\frac{1}{r}\left(5 \pi n+\frac{1}{4}\right) \\
& \geq \frac{1}{r}\left(x-\varphi_{n}\right)\left(1-x-\varphi_{n}\right) \\
& \geq-\frac{\beta_{1}+\beta_{2}^{\prime}}{n} y \quad(n<r<\gamma)
\end{aligned}
$$

if $n \geq n_{2}$ and r stays in the interval $n<r<\gamma$. Therefore, putting $M=\left(\beta_{1}+\beta_{2}^{\prime}\right) / n$, we have

$$
y(r) \geq y(n) e^{-M(r-n)} \geq \varepsilon e^{-3 M / 2}>0 \quad(n \leq r<\gamma) .
$$

But this is incompatible with $y(r) \rightarrow 0(r \rightarrow \gamma-0)$. Hence $x(r)$ exists throughout the interval $n \leq r \leq n+\frac{3}{2}$ and is not less than $\varphi_{n}(r)$ there. This establishes the proposition.

Proposition 4. Suppose $n \geq n_{2}$. Let x be the solution of (13) and write $\alpha=a+2$. If $4.2 \leq \alpha \leq 4.4$, then $x(r)$ admits the expression

$$
\left\{\begin{align*}
& x(r)= a+2 \cos 2 \pi s+\frac{1}{n}\left[\left(-a^{2}+a-1+4 \cos 2 \pi s\right) \cdot s+2(1-\cos 2 \pi s)\right. \tag{16}\\
&\left.\quad-\frac{2 a+1}{\pi} \sin 2 \pi s-\frac{3}{4 \pi} \sin 4 \pi s\right]+R^{*}(r) \quad(n \leq r \leq n+1), \\
&\left|R^{*}(r)\right| \leq \frac{\beta_{3}}{n^{2}}
\end{align*}\right.
$$

where β_{3} is some positive number independent of n and r.
Proof. For saving the description, we write $\eta \pm \delta$ to denote an entity which lies between $\eta-\delta$ and $\eta+\delta$ so that the expression

$$
\xi=\eta \pm \delta
$$

stands for

$$
|\xi-\eta| \leq \delta
$$

Moreover, by the calculation

$$
\xi=\eta \pm \text { smaller }=\eta \pm \text { bigger }
$$

we state

$$
|\xi-\eta| \leq \text { smaller } \quad \text { therefore } \quad|\xi-\eta| \leq \text { bigger }
$$

Now, let $n \geq n_{2}$ and $n \leq r \leq n+1$. From $\beta_{2} \leq x(r) \leq \beta_{1}$ we get $|x(r)(1-x(r))| \leq \beta_{4}$ where β_{4} dose not depend on n nor on r. Hence, from (13) it follows that

$$
\begin{equation*}
x(r)=a+2+\int_{n}^{n+s} h(r) d r \pm \beta_{4} \log \left(1+\frac{s}{n}\right) \tag{17}
\end{equation*}
$$

On the other hand, Proposition 1 shows that

$$
\begin{align*}
\int_{n}^{n+s} h(r) d r= & -2+2 \cos 2 \pi s+\frac{1}{n}(s+2-2 \cos 2 \pi s+4 s \cos 2 \pi s \tag{18}\\
& \left.-\frac{2}{\pi} \sin 2 \pi s-\frac{1}{4 \pi} \sin 4 \pi s\right)+\int_{n}^{n+s} R(r) d r
\end{align*}
$$

Therefore, since $|R(r)| \leq 4 \pi / n^{2}$, one sees

$$
x(r)=a+2 \cos 2 \pi s \pm \frac{\beta_{5}}{n}
$$

for some β_{5} and hence one can choose a number β_{6} to compute

$$
\begin{aligned}
\frac{1}{r} x(1-x) & =\frac{1}{n\left(1+\frac{s}{n}\right)}\left(a+2 \cos 2 \pi s \pm \frac{\beta_{5}}{n}\right)\left(1-a-2 \cos 2 \pi s \pm \frac{\beta_{5}}{n}\right) \\
& =\frac{1}{n}(a+2 \cos 2 \pi s)(1-a-2 \cos 2 \pi s) \pm \frac{\beta_{6}}{n^{2}}
\end{aligned}
$$

Substituting this estimate together with (18) to the equation (13) and integrating both sides from n to $n+s$ again, we obtain, by setting $\beta_{3}=\beta_{6}+4 \pi$, that

$$
\begin{aligned}
x(r)= & a+2+\int_{n}^{n+s} h(r) d r+\frac{1}{n} \int_{0}^{s}(a+2 \cos 2 \pi t)(1-a-2 \cos 2 \pi t) d t \pm \frac{\beta_{3}}{n^{2}} \\
= & a+2 \cos 2 \pi s+\frac{1}{n}\left[\left(-a^{2}+a-1+4 \cos 2 \pi s\right) \cdot s+2(1-\cos 2 \pi s)\right. \\
& \left.-\frac{1+2 a}{\pi} \sin 2 \pi s-\frac{3}{4 \pi} \sin 4 \pi s\right] \pm \frac{\beta_{3}}{n^{2}} .
\end{aligned}
$$

Proposition 5. We can find an integer n_{3} such that if $n \geq n_{3}$ and $4.2 \leq \alpha \leq 4.4$ then x of (13) satisfies $4.2 \leq x(n+1) \leq 4.4$.

Proof. Set $\alpha=a+2$. By Proposition 4, the solution of (13) fulfills

$$
x(n+1)=a+2-\frac{1}{n}\left(a^{2}-a-3\right) \pm \frac{\beta_{3}}{n^{2}}
$$

provided $n \geq n_{2}$ and $4.2 \leq \alpha \leq 4.4$. But since $a+2-\left(a^{2}-a-3\right) / n$ is an increasing function of a in the interval $2.2 \leq a \leq 2.4$ for fixed $n \geq 4$, it follows that

$$
4.2+\frac{0.36}{n}-\frac{\beta_{3}}{n^{2}} \leq x(n+1) \leq 4.4-\frac{0.36}{n}+\frac{\beta_{3}}{n^{2}}
$$

Hence if n_{3} is an integer $\geq \max \left(n_{2}, 4, \beta_{3} / 0.36\right)$, we have $4.2 \leq x(n+1) \leq 4.4$, provided $n \geq n_{3}$.

Proof of Proposition 0. At first we note that if $x_{1}(r)$ and $x_{2}(r)$ are the solutions of

$$
\left\{\begin{array}{l}
\frac{d}{d r} x_{1}(r)=\frac{1}{r} x_{1}(r)\left(1-x_{1}(r)\right)+h(r) \quad\left(n<r<n+\frac{3}{2}\right) \\
x_{1}(n)=\alpha
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\frac{d}{d r} x_{2}(r)=\frac{1}{r} x_{2}(r)\left(1-x_{2}(r)\right)+h(r) \quad(n+1<r<n+2) \tag{19}\\
x_{2}(n+1)=x_{1}(n+1)
\end{array}\right.
$$

for large n respectively, then the connected function

$$
x(r)= \begin{cases}x_{1}(r) & (n \leq r \leq n+1), \\ x_{2}(r) & (n+1 \leq r \leq n+2)\end{cases}
$$

is the solution in the interval $n \leq r \leq n+2$, because the solution of the initial value problem (19) is unique. Hence Proposition 5 tells that if $n_{0} \geq n_{3}$ and $4.2 \leq \alpha_{0} \leq 4.4$, then the solution of

$$
\left\{\begin{array}{l}
\dot{x}(r)=\frac{1}{r} x(r)(1-x(r))+h(r) \quad\left(n_{0}<r\right) \tag{20}\\
x\left(n_{0}\right)=\alpha_{0}
\end{array}\right.
$$

exists throughout $n_{0} \leq r<\infty$ and fulfills $4.2 \leq x(n) \leq 4.4$ for any integer $n \geq n_{0}$. Take n_{0} so large that
$\frac{1}{n_{0}}\left|\left(-a^{2}+a-1+4 \cos 2 \pi s\right) \cdot s+2(1-\cos 2 \pi s)-\frac{1+2 a}{\pi} \sin 2 \pi s-\frac{3}{4 \pi} \sin 4 \pi s\right|+\frac{\beta_{3}}{n_{0}^{2}} \leq 0.1$
holds for $0 \leq s \leq 1$. Then from (16) we ontain

$$
\begin{aligned}
0.1 & \leq x([r])-4-0.1 \\
& \leq x(r) \\
& \leq x([r])+0.1 \\
& \leq 4.5
\end{aligned}
$$

and Theorem B as well as Proposition 0 is established.
REMARK 1. Since $\frac{\ddot{\rho}}{\dot{\rho}}=\frac{h}{x}-\frac{d-3}{2} \frac{\dot{\rho}}{\rho}$, we have $\frac{\ddot{\rho}}{\dot{\rho}} \nrightarrow 0$. Hence the condition (v) of Theorem A can not be fulfilled by any ψ satisfying (iii).

REMARK 2. The Schrödinger equation $-\Delta u+q(x) u=\lambda u, \lambda>0$ in a Euclidean space E^{d} can possess a nontrivial square integrable solution u if we simply assume $q(x)=$ $o(1)$ as $|x| \rightarrow \infty$. Such $q(x)$ and u were shown first by von Neumann and Wigner [9] and then generalized by Kato [4]. The solution $u(x)$ of [9] has, in effect, the form

$$
\left\{\begin{array}{l}
u(x)=u(r)=r^{-\frac{d-1}{2}} v_{1}(r), \quad r=|x|, \tag{6'}\\
v_{1}(r)=\frac{\sin \sqrt{\lambda} r}{1+(2 \sqrt{\lambda} r-\sin 2 \sqrt{\lambda} r)^{2}}
\end{array}\right.
$$

which corresponds to the potential $q(x)=q(r)$ through

$$
q(r)=\frac{\ddot{v}_{1}(r)}{v_{1}(r)}+\lambda-\frac{(d-1)(d-3)}{4 r^{2}}
$$

It is natural to consider the equation

$$
\begin{equation*}
\frac{d}{d r} x(r)=\frac{1}{r} x(r)(1-x(r))+r\left(\frac{\ddot{v}_{1}(r)}{v_{1}(r)}+\lambda\right) \tag{9'}
\end{equation*}
$$

instead of (6) and (9) of the present paper. But the solution of $\left(9^{\prime}\right)$ is not positive definite. It means, the function $\rho(r)$ which satisfies (8) is not monotone increasing, hence the condition (i) of Theorem A is partly violated besides (v). Another choice, for example,

$$
v_{2}(r)=\frac{\sin \sqrt{\lambda} r}{2+2 \sqrt{\lambda} r-\sin 2 \sqrt{\lambda} r}
$$

also gives an oscillating $\rho(r)$, and so forth. The choice of $v(r)$ is thus delicate.

References

[1] H. Donnelly, Spectral geometry for certain noncompact Riemannian manifolds, Math. Z. 169 (1979), 6376.
[2] H. Donnelly, Eigenvalues embedded in the continuum for negatively curved manifolds, Michigan Math. J. 28 (1981), 53-62.
[3] L. KARP, Noncompact Riemannian manifolds with purely continuous spectrum, Michigan Math. J. 31 (1984), 339-347.
[4] T. Kato, Growth property of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math. 12 (1959), 403-425.
[5] R. Konno, A remark on the Schrödinger-type equation on manifolds, I, Memoir of the Inst. Sci. and Tech. Meiji Univ. 38 No. 3 (1999), 27-34.
[6] H. P. MCKEAN, An upper bound to the spectrum of Δ on a manifold of negative curvature, J. Differential Geom. 4 (1970), 359-366.
[7] M. A. Pinsky, The spectrum of the Laplacian on a manifold of negative curvature. I, J. Differential Geom. 13 (1978), 87-91.
[8] M. A. Pinsky, The spectrum of the Laplacian on a manifold of negative curvature. II, J. Differential Geom. 14 (1979), 609-620.
[9] J. von Neumann and E. P. Wigner, Über merkwürdige diskrete Eigenwerte, Phisik. Z. 50 (1929), 465467.

Present Address:
Department of Mathematics, School of Science and Technology,
Meiji University,
Higashimita, Tama-Ku, Kawasaki, 214-8571 Japan.

[^0]: Received September 27, 2001

