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Introduction.

Let (M?", w) be a compact symplectic manifold. A symplectic manifold (M, ) is
called a Lefschetz manifold if the mapping Aw™~! : H $ rM) — Hé’%_l(M) is an iso-
morphism. We also say that (M, w) has the Hard Lefschetz property, if the mapping Aok :
H Z)"Ek M) — Hg';'k (M) is an isomorphism for each k < m. By a solvmanifold we mean
a homogeneous space G/I", where G is a simply-connected solvable Lie group and I" is a
lattice, that is, a discrete co-compact subgroup of G. A solvable Lie algebra g is called com-
pletely solvable if ad(X) : g — g has only real eigenvalues for each X € g. Benson and
Gordon [BG1] have proved that no non-toral compact nilmanifolds are Lefschetz manifolds
for any symplectic structure to show that a non-toral compact nilmanifold does not admit any
Kihler structure. Moreover, they conjecture the following :

BENSON-GORDON CONJECTURE [BG2]. Let G be a simply-connected completely
solvable Lie group and I' a lattice of G. Then a compact solvmanifold G /I" admits a Kéihler
structure if and only if it is a torus.

The authors of [AFLM] and [FLS] have constructed examples of 6-dimensional compact
Lefschetz solvmanifolds with the Hard Lefschetz property and without the Hard Lefschetz
property (See Example 5.1 and 5.4). More precisely, let Gg be the simply-connected com-
pletely solvable Lie group defined by

e 0 xef 0 0 0 y
0 e’ 0 xe? 0 0 y
0 0 ¢ 0 0 0 y;
Ge=110 0 0 e’ 0 O yaf|t,x,y1,52,¥3,4€R
0O O 0 0 1 0 x
0 O 0 0 0 1 ¢
0O o0 0 0 0 0 1
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G may be described as the semi-direct product Gg = R? X R*, where o(t, x) is the auto-
morphism of R* given by the matrix

el 0 xé 0

0 e’ 0 xe!
PEXD=10 o o o

0 0 0 et

Fernandez, Le6n and Saralegui [FLS] have proved that G¢ admits a lattice I" and has a sym-
plectic structure. Furthermore, they have proved that G¢/I" is a compact Lefschetz solvman-
ifold without the Hard Lefschetz property.

In the case of nilpotent Lie groups, a necessary and sufficient condition for the existence
of a lattice is known. More precisely, let N be a simply-connected nilpotent Lie group and n
its Lie algebra. Then N admits a lattice if and only if n admits a basis with respect to which
the structure constant of Lie algebra are rational. However, in the case of solvable Lie groups,
no such necessary and sufficient conditions are known. Recently, Tralle [T] proved that the
completely solvable Lie group G%¢ constructed in the paper of Benson and Gordon [BG2] has
no lattices.

The purpose of this paper is to construct examples of higher dimensional completely
solvable Lie groups which admit lattices and compact Lefschetz solvmanifolds. We also
construct compact symplectic solvmanifolds with the Hard Lefschetz property. We consider
Lie subgroups G of the affine transformation group given by

0 0 y
o(t, x) N :
G = 0 0 yu||lreR,xeR", y;eR},
0 -+ 010 x
0 -~ 00 1 ¢
0 -~ 000 1

where ¢(f,x) € Aut(R¥"). Note that G may be described as a semi-direct product
R+ x, R?™, where the group structure is defined by
(t1, X1,y * (2, X2, y,) = (1 +t2, X1 + X0,y + @(t1, X1)y,) .
fort; e R/, x; € R", andy; € R¥".
In section 3, we prove

PROPOSITION 1. Let A;, Bj be the matrices given by

m
k .
A=) af(Ex—i o1 — Exa) i=1,-,1,
k=1

Bj = Zbljh(EZk*Lthl + Expon) j=1,---,n
k<h
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where a{‘, b];h € Q and we assume that [A;, Bj] = [B;, Bj] = 0. We define a map
o : R™ 5 End(R¥™)
by

l n
Pultl, - 1, X1, X)) = ) GAI+ Y xBj.
i=1 j=1

Let ¢(t, X) = exp(@«(t, X)) and we define a group structure of R" xR*" by

(t1,X1,y7) * (t2, X2, ¥2) = (t1 + t2, X1 + X2, ¥; + @(t1, X1)y5)

fort; € Rl,x; € R" andy; € R¥. Then R""'x,R* = (R""' xR x) is a completely
solvable Lie group which has a lattice IT.

In this paper, we always assume that for each k, there exists an i such that af # 0.

If the dimension of G = R"*! waz’" is odd, then we consider the direct product of G
and a 1-dimensional vector space. We denote the direct product and a corresponding compact
solvmanifold by G x R! and G/I" x S! respectively.

THEOREM 2. Let M = G/I" or M = G/I'xS' be a compact solvmanifold con-
structed as in Proposition 1. If M admits a symplectic structure, then M is a compact Lef-
schetz solvmanifold for any symplectic structure.

In section 5, we shall give some examples of compact Lefschetz solvmanifolds. In sec-
tion 6, we consider a completely solvable Lie group G = R"*! X g R>" which is constructed
by A = Y0 (Exk—12k—1 — Exxx), Bi = P¥71 (i = 1,---,n), where P is defined by
P = ZZ’Z_II(Ezk_ 1.2k+1 + E2k 2k+2). Then the matrix form of G has the following linear
part:

(p(tv X) = exp((p*(ts X))

' —t
= kah(xl, oy xp)(e Eog—1,0n—1 + € Eoron)
k<h
wheret € R, x = (x1,---,x,) € R and fi(x1, - -, x,) are the following polynomials:
1
= Y S B .
Sien (X1, -+, xp) Z k1!~--kn!x1 Xp .
k1 +3ky+--+Q2n—1)k,=h—k
ki, k>0

Thus, for each n, we can construct a compact solvmanifold by Proposition 1. We show that
M has a symplectic structure and is a compact Lefschetz solvmanifold without the Hard Lef-
schetz property.

The author would like to express his deep appreciation to Professor Yusuke Sakane for
his thoughtful guidance and encouragement during the completion of this paper.
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1. Definitions and duality on H*(M).

Let (M?", ) be a symplectic manifold and £2*(M) the space of differential forms on
M. We define L, = L : 2KM) — Q2K2(M) by L(a¢) = o A w. Since w is a closed,
Ld = dL. Hence, L induces a linear mapping L : H}‘)R(M) — Hg;,z(M), L{a] = [L(a)].

DEFINITION 1.1. Let (M?", w) be a compact symplectic manifold. If the Lefschetz
mapping L" ! : HII)R(M) — Hé”;{l(M) is an isomorphism, then (M?", w) is called a
Lefschetz manifold. Moreover, for each k < m, the Lefschetz mapping L* : H glgk(M ) —
H Z)";k (M) is an isomorphism, we say that (M, w) has the Hard Lefschetz property.

REMARK. Benson and Gordon have proved that a non-toral compact nilmanifold is not
a Lefschetz manifold for any symplectic structure to show that a non-toral compact nilmani-
fold does not admit any Kéhler structure.

Moreover, we define a star operator

x: Q25M) > Q7 M) fork=0,---,2m
by requiring
k k
Brxa= [\ (G) B )y for fac @),

where vy = ™ /m! and G is the skew-symmetric bivector field dual to w. We also define
d* : QKM) — ¥ (M) to be d* = (—1)F % dx.

DEFINITION 1.2. For a symplectic manifold (M, w), a k-form o € 2%(M) is called
w-harmonic or simply, harmonic, if it satisfies

d*a =da =0.
Let H(/j) (M) = H¥(M) denotes the space of all harmonic k-forms on M. We define sym-

plectic harmonic k-cohomology group Ha]j_hr (M) = H,’l‘r (M) = HK(M) /(BX(M) N H*(M)).
Mathieu proved the following:

MATHIEU’S THEOREM. Let (M*™, ) be a symplectic manifold of dimension 2m.
Then the following two assertions are equivalent:

(a) Foranyk, L : Hg;k(M) — Hg;{k (M) is surjective.

(b) Foranyk, HY (M) = HF.(M).

Using the following propositions, Yan [Yn] gave a simpler, more direct, proof of Math-
ieu’s Theorem.

PROPOSITION 1.3 (Duality on forms ([Yn])).
LF Q" my — 2" (m)
is an isomorphism.
PROPOSITION 1.4 (Duality on harmonic forms ([Yn])).

Lk . Hmfk(M) N Hm+k(M)
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is an isomorphism.
PROPOSITION 1.5 ([Ynl]). Put P"~*(M) = {v € H"(M) | L**'v = 0). Then
PR M)y c H R
In particular, Yan proved the following:

THEOREM 1.6. Let (M*", w) be a symplectic manifold. IfH’D"Ek(M) = H;l';_k(M)
and L* : H’D"Ek(M) — ng;—k(M) is surjective, then ng;—k(M) = H,’;"'k(M) and

Hg];k+2(M) — H$7k+2(M)'

LROOF Let < Hg§k+2(M)' Since L"la € Hg;erk(M), there exists a B €
HpEE (M) = H"7F (M) such that

Lo = LB

Then we have L1 (@ — B A w) = 0, which implies that @« — B A w € P™"K2(M). Since
a=(a—pBAw)+ B Aw, wehave Hgng(M) = H;;sz(M) by Proposition 1.5. Using
Proposition 1.4, we have Hia*(M) = H"**(M). O

COROLLARY 1.7. If(M, w) is a compact Lefschetz manifold, then we have HgR(M)
= H} (M).
h

r

2. Harmonic cohomology groups on G/I".

Now we consider the case of compact symplectic solvmanifolds. Let g be a Lie algebra
and put go = g and let g;+1 = [gi, g;]- A Lie algebra g is called (r + 1)-step solvable if
gr # 0, gr+1 = 0. A Lie group G is called solvable if the Lie algebra g is solvable. If G is a
simply-connected solvable Lie group and I" is a lattice of G, that is, a discrete subgroup of G
such that G/I" is compact, then we say that G/I" is a compact solvmanifold.

DEFINITION 2.1. A solvable Lie algebra g is called completely solvable if ad(X) :
g — g has only real eigenvalues for each X € g. A solvable Lie group G is called completely
solvable if its Lie algebra is completely solvable.

Hattori [H] proved that the Chevalley-Eilenberg cohomology of completely solvable Lie
algebra H*(g) is isomorphic to the de Rham cohomology H}, . (G/I"), where G is the simply-
connected Lie group corresponding to g and I” is a lattice of G.

For a left-G-invariant symplectic form w on a compact solvmanifold G/I", we denote
by H¥(g) the space of all left-G-invariant harmonic forms on G/1I".

PROPOSITION 2.2. Let (M?*", w) be a compact solvmanifold such that w € /\z(g*).
Then

Lk . Hm_k(g) N Hm-‘rk(g)
is an isomorphism.

PROOF. See[Ym]. O
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For a left-G-invariant symplectic form w, let H,’fr (9) = HE (9)/ (B* (g N HE (g)) be
a subspace of Lie algebra cohomology group H*(g). Let (M = G/I',w) be a compact
symplectic completely solvable solvmanifold. By Nomizu and Hattori’s theorem, there exists
a left-G-invariant closed 2-form wq such that w — wy = dy. Note that wy is also a symplectic
form on M.

PROPOSITION 2.3. Let (M = G/I', w) be a compact symplectic completely solvable
solvmanifold. Then for any q we have

HY, (M) = HY (M) = HY, (@),
where wy is a left-G-invariant closed 2-form which is cohomologous to w.
PROOF. We apply Nomizu and Hattori’s theorem (See [H] and [Ym]). O

By Proposition 2.3, we may assume that symplectic structures on M>" = G/I" are
left-G-invariant to study harmonic cohomology groups on a compact completely solvable
solvmanifold M.

Let g be a completely solvable Lie algebra and n be the derived algebra : n = [g, g]. Let
a denote a vector space complementofning:g=a+nanddima =k, dimn = 1.

For simplicity, we denote A\'a* A A/n* by A"/,

LEMMA 2.4 ([BG2)).
k-1
BZm—l(g) — /\
PROOF. See[BG2]. O
PROPOSITION 2.5 (cf.[BG2)).

dim H}., (g) — dim H?" ' (g) = dim {X € (g, gl

i(X)w e /\1’0} .

PROOF. Since L~ : H!(g) — H?>"~1(g) is an isomorphism, we get
dim H,. (g) — dim H" ' (g)
= dimH'(g) — dim(B'(g) N H' (9))
— dimH>" " (g) + dim(B*"~' (g) N'H>" 1 (g))

= dim(B*"~!(g) N H*" " (g)) — dim(B' () N H' (9))

= dim(B>"~(g) N H¥" " (g)

= dim(B>"~(g) N L~ (H' (@))).
Therefore, let B € Z'(g) = H!(g) = /\1’0. Since w is a nondegenerate closed 2-form, we
can write 8 = i (X)w. Moreover,

L" B =i(X)w A" !

1
= —i(X)o".
m
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Thus by Lemma 2.4, we see L™ ~!(8) is exact if and only if X € [g,g]. O

3. A construction of completely solvable Lie groups which admit a lattice.

In this section, we construct completely solvable Lie groups which admit lattices.
Let G¢ be the simply-connected completely solvable Lie group defined by

0 xef 0

e e 0 0 ¥y
0 et 0 xe? 0 0 y
0 0 ¢ 0 0 0 y;
Ge=110 0 0 e’ 0 O yaf|t,x,y1,52,¥3,4€R
0 0 0 0 1 0 «x
0 0 0 0 0 1 ¢
0 o0 0 0 0 0 1

The authors of [FLS] have proved that G¢ admits a lattice and has symplectic structures.
Furthermore, G¢ may be described as the semi-direct product Gg = R? X g R*, where o(t, x)
is the automorphism of R* given by the matrix

w"
=
=

(t,x) =

o o
(=)

0 O

Thus we consider ¢ : R** — Aut(R?") and simply-connected completely solvable Lie
groups G = R"* i, R*" of which matrix form are given by

0 0 y
o(t, x) S :
G = 0 0 yam||reR,xeR", y,---yameR},
0 o 1, O X
0 0O 0 I t
0 0O 0 O 1

where I;, I, are unit matrices. Let B € SL(2,Z) be a unimodular matrix with distinct real
eigenvalues, say, A, 1/A. Take o = logh, i.e., ¢ = A. Then there exists a matrix P €

GL(2,R) such that
-1_(» O
PBP ' = (O 1) -

t
f 1) = (eo eO,) -

Thus if 1on € tyZ, then {P <M)‘ W,V € Z} is invariant by above action.

Let R act on R? by

1
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Hence I' = (t0Z x Z) X, ({P (51)‘11«1’ V] € Z} X {P <522)‘M27 v € Z}) is a lat-
1

tice of Ge.
Moreover we have

PROPOSITION 3.1. Let A;, Bj be the matrices given by

m
k .
A=) af(Ex—iok1— Exo) i=1,-,1,
k=1

B = Zbl;h(EZk*Lthl + Exon) j=1,---,n
k<h

where a{‘, blj‘.h € Q and assume that they satisfy that [A;, Bj] = [B;, Bj] = 0. We define a
map

Ox - Rn+l = Span{Tlv ) T‘ls Xls R Xn} - End(R2m = Span{Y], T Y2m})
by

l n l n
(P*<ZtiTi + Z)@Xj) = Zt,'A,' + ij'Bj .
i=1 =1 i=1 =1

Then G = R Xg R>™ is a completely solvable Lie group which has a lattice.
PROOF. We construct a co-compact lattice of G = R"* i, R*". Let take

Li=atyZ x - xatpxa" "m—DZx - xa" Ym—-1)Z,

[ times n  times

Lz:{P('[“) Ui, V1 EZ} X o0 X {P(Mm> WUms Vm EZ} ,
V] Vm

where a is the least common multiple for denominators of af‘, b’j‘.h. Since L» is invariant by

@(t,x), (t,x) € L1. Then we see I" = L1X L2 is a subgroup of R+ X R2™ 1t is obvious
that the subgroup I" is discrete and co-compact. O

REMARKS. (i) R" x R is a generalization of 3-dimensional completely solvable
Lie group G3 which admits a lattice, where

et 0 0 y
0 e 0 y
Gi=1log o 1 7 ||YyteR
0 0 0 1
(ii) More generally, if bg = spang{B1, - - - , B, } is anilpotent Lie algebra over Q, then
we have that Rt 0 R>" admits a lattice (cf. Raghunathan [R, Theorem 2.12 of Chapter II]).
(iii)) Put a = span{Ty,---,T;}, n = span{Xy,---, X,, Y1, -+, Yop,}. Since n is a

nilpotent Lie algebra, axn is an /-dimensional extension of the nilpotent Lie algebra n of
dimension 2m + n.
(iv) We can consider that R™ x , R¥" /L x, L, is a T>"-bundle over 7.
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If there exists no possibility of confusion, then we denote L%, L5 by 7 0 7",
For ¢ € Hom(R?, Aut(R*")) and ¢ € Hom(R?, Aut(R>"2)), we define ¢ & ¢ : R> —
Aut (R*mitm2)) by

(@@ D)t x)(v1, y2) = (p(t, X)), (P, x))(y2)) for y; € R¥™i.

Let consider R"! X R2™ a5 the matrices of the form

0 -« - 0
(p(taxla"' axi’l) : :

o ... .. 0 vy

0-- 01 O 0 x

A=

0-- 00

0-- 0 o0 xy,

0-- 0 0 -0 1 t

0-. 0 0 .. 0

Then, a global system of coordinates {¢, x1, - -+ , Xn, Y1, - , y2m} for Rt! Xy R ig given

by
t(A)=t, x(A)=x, yi(A)=y.

Moreover, we denote by «, B;, w; the left invariant 1-forms on R ! X R2" guch that

e =(dt)e, (Bi)e=(dxXi)e, (wi)e=(dyi)e-

Similarly, we define a global system coordinates for R X R>™",
Now we consider an other generalization of 3-dimensional completely solvable Lie group
G3 which admits a lattice. Let J (A, m, t) be an (m x m)-matrix as follows.

AL Al 0
JOoum, 1) = o :
.. t)\tfl
0 %
and J(A,m) = J(A,m, 1). Let Ay, Ay be (m; x m;)-matrices (i = 1,2). We define an
(m1 4+ my X my + my)-matrix A @ A, by

(A1 O
Al B A = < 0 A2> .
Let B € SL(n, Z) be a unimodular matrix with distinct positive eigenvalues, A1, --- , A; (I <
n). Then there exists a matrix P € GL(n, R) such that PBP~! = J = J (), mi) DD

J(\1, mi] YD DI (A, mll) D---DJ(A, mﬁll). (Note that J is a Jordan normal form similar
to B.) Moreover let R act on R” by

t> M =JO)=JM.m, )@ - ®J(,mh,1).
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23
Then { P | Ui, -+, Wm € Z ¢ is invariant by ¢(n) forn € Z .
K
Thus we now have a completely solvable Lie group
0
1 . J(t) Do
G=R'x,R"= 0 yo ||y ymeR
0 0 1 ¢
0 0 0 1
which admits a lattice I, where
n1
r=Zx,{P| : Wi, s im € Z
Mm

Similarly to Proposition 3.1, we can generalize this Lie group (See Example 5.3).

4. Main results.

In this section, we use the same notations introduced in section 3.

From now on we consider a solvable Lie group R**' x R?" constructed in Proposition
3.1. Moreover, we assume for each k, there exists an i such that a{‘ # O and if B; = 0 for
each j, then we call R/ i, R*" is A-type.

For simplicity, let wg = wg, A -+ A Wk, for K = (ki,--- , kp). Note that dwg can be
written as

1 n
da)K = —ZaiKOl,' NWK — ZbeHﬁj N wyH ,
i=1 j=1 H

€ R. By a straightforward computation, we see

where aX, bj.( H

! n
0=ddog =+ afe; ndog +> > KB ndoy

i=1 j=1 H
l I n
K _K K1 KH
=— Z a; a;, o, /\a[2/\wK_ZZZai bj ai A Bj Aoy
i1,ir=1 i=1 j=1 H
1 n n
HiKH, ] _ H,HL . )
+2. 2 2 al' bt nBinon = 35 DD bR bRt A By Ao
i=1 j=1 H ji.p=1 H L
Hence,
K3 KH Hy  KH __
a; bj —a; bj =0. “4.1)

Therefore, if a # 0 and ¥ # 0, then a/! # 0.
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LEMMA 4.1. Lety = Z”K crigkor A By Awg be a closed form such that 81 +jjJ =
const, 1K = const. If, for each K such that cyjx # 0, there exists an i such that a # 0,
then y is an exact form.

PROOF. Let p = max{l/ |cjjx # 0}. It suffices to show that y can be written as

follows:
y=do+ Y ch,,Ka, ABJ Aok,

gl<p J
where y’ =3, 3, >k Chyg /\,3] A wg admits the condition in Lemma 4.1. Without

loss of generality, we may assume that ak 1 # 0 for some Ko. Then we have

I n
o1 A wk, = —l/alK(J (da)KO + ZaiKOai A wgk, + Z beOHﬂj A a)H) . 4.2)
i=2

j=1 H
Let¢ = Zﬁ1<p ZJ CIJKOT ABy /\a)KO—i—Z, ZJ ZK;AKO crikay A By Awg. Using
the equation (4.2), we see

y = Z ZCIJKOOH ABy Aok, +¢

gl=p J

SRUPIPI

lelgl=p J

+ (=1)PtE Z ZZZC”KObKOHOt]/{l}/\,BJ/\,B,/\a)H

lelgl=p J H j=I

+ Z 25111(00!1 ANBy Aok, + ¢,

Loy A B A a’Ko)

1¢lel=p J
where
e
- 1Ky
S0 D Gk ABr Aok, = (=P Y Y K, Y1/ A @i A By A ok
leltl=p J lelgl=p J i=2 %
+ Z ZCIJKOOU A By ANwgg
1¢Ltl=p J
and ay/(1y = o A - N, for I = (1,01, - ,ip-1).

Since dy = 0 and {a; A Bj Awk,}e1=p,1e1 are not components of decomposition of d¢,
we have

aIKOEHKO =0.
Thus we obtain
Cryk, =0.
By the same argument, we have
y=d0+y’,
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where y’ =3 ., >; >k €1 o1 A By Awk. By the equation (4.1), we see that " admits
the condition in Lemma 4.1. O

By Lemma 4.1, we have

LEMMA 4.2. (1) Ifa = aao + 11 + a0 € Z%(g), where a;; € N/, then
daz o =day) =dapr =0.
@ ANz c BX).

PROOE. Since

k kh
doy—1 ==Y afa; hogk—1 — Y BB Awm
i k<h,j
k kh
dwoy =Zai0¢i A wo — Z b Bj N wan
i k<h,j

we have

L1 4 2,1
AN — N
Since we assume that, for each k, there exists an i such that af # 0, we have Lemma4.2. O

THEOREM 4.3. Let (G/I, w) be a compact symplectic solvmanifold constructed as in
Proposition 3.1. Then (G/T', w) is a compact Lefschetz manifold, which implies H g rM) =
H }?r (M) for each symplectic form.

PROOF. By Lemma4.2, we can assume that w € A*°+ A%2. Then we have Theorem
4.3 by Proposition 2.5. O

PROPOSITION 4.4. Let G/I" be a compact A-type solvmanifold with a symplectic
structure w. Then (G /I, ) has the Hard Lefschetz property.

PROOF. Since dwg = —Zézlaikai AWK r ke prger CIK@T A @K is a closed
form, then Z]:l:p crxo; Awg is also a closed form. Moreover, it is obvious that if dwg = 0,
then Zﬁ[:p cixkd; A wg is a non-exact closed form. By Lemma 4.1, if dwg # 0, then a
closed form Zﬁ [=p CIKXI N WK is exact. Then for each de Rham cohomology class, we can
choose a representation o« = Z,Kc”(a/ A wg such that dwg = 0.

In the other hand, we can assume that a symplectic form w can be written as

w= w0+ Z Prnwi N wp
kh

where w2 ¢ € /\2’0. Note that w; A wy is closed for each Py, # 0. Then we have

L'a = CI'K'Or N\ WK/ d(,l)/—o,
I'K'*] K K
I'K’
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which implies L¥a is not exact by the above argument. Then A-type has the Hard Lefschetz
property. O

5. Examples.

EXAMPLE 5.1. We consider the following matrices:
m
A= Z(EZk—l,Zk—l — Edj21)
k=1
m—1
B = Z((m — k) Ezk—1,2k+1 + (m — k) Eog 2142) -
k=1
We denote by ¢(¢, x, m) the automorphism of R*” induced by A and B. For example, if
m = 4, then ¢(z, x, 4) can be written as follows.

el 0 3xé 0 3x2e! 0 x3e! 0
0 e 0 3xe! 0 3x%2t 0 x3!

0 0 ¢ 0 2xe! 0 x2! 0
0 0 0 et 0 2xe”t 0 xZ%e!

t,x,4) =

e H=15 o o 0 ¢! 0  xeé 0
0 0 0 0 0 e ! 0 xe™!

0 0 0 0 0 0 e’ 0

0 0 0 0 0 0 0 e !

By a straightforward computation, we see
dogg—1 = —a Nwgg—1 —(m — k) ANwpy1tk=1,--- ,m—1)
dopp =a Nang — (m —k)BANwypyak=1,--- ,m—1)

dwypn—1 = —a A w1

dwyn, = a A wyy, .

Then R? x, R*"/Z? x,, Z*™ has the following non-degenerate closed 2-form:

m—1 k
(=D* (m—-1)
w=aANB+ kE_O K —k = 1)!0)2k+] N W2m—2k -

For example, if m = 4, then
1 1
a):(x/\,B+§a)1 Awg — w3 A wg+ ws A wg — 5(1)7 A w2
is a symplectic structure of R? Mg R3. By Theorem 4.3, we see R? Xy R>" /77 Xy Z%" is a
compact Lefschetz manifold.

REMARKS. (i) Since[@ ABAwIA---Awrm—2] & L’a')‘_z(Hz(g)) for any symplectic
form w (See proof of Theorem 6.7), we have R? X R /72 Xg Z2" does not have the Hard
Lefschetz property.
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(i) R2? Xy R?" is a 1-dimensional extension of the (m + 1)-step nilpotent Lie algebra
n = span{X, Y1, - - - Yo}

EXAMPLE 5.2. Let
(p(tax) - (p(taxaml) @ e @(p(t’x’ms’) )

where m| = --- = mg > Mgy] > -+ > my,m| + --- + myg = m. By Example 5.1,

M = R? Xy R>" /772 X Z*" has symplectic structures. Moreover, we obtain that M =

R? x 0 R>" /72 0 Z*" doesn’t have the Hard Lefschetz property for any symplectic form.
In fact,

[ ABAwIA--- /\6)2](1,1 A CI)Zkl ANEREWA 5)2]%,1 A c?)zks A ANwyn] € H2(m+lis)(g)

isn’t contained in L™ TD=25(H25(g)).
Moreover, consider R?" as a vector space V = span{eq,--- ,ez,}. Then for each
o(t, x) € Aut (R, if necessary, take an other basis of V we can write

(p(tax) = (p(taxaml) - @(p(t7-x7ms/)a

where my = --- = my > Mg > --- > my,m| + --- + mgy = m. In fact, note that

)
0,1 —
0. 1) {e1,e3,,€am—1,€2,+ ,€am} < 0 (bkh)

trix, then consider a Jordan normal form of the (m, m)-type nilpotent matrix.

) , where (b*") is an (m, m)-type nilpotent ma-

EXAMPLE 5.3. Let B € SL(m,Z) be a unimodular matrix with distinct positive
eigenvalues Aq, - - - , A;;. Then we define ¢ : R? — Aut(R4’") by the following:

A1) 0 xXA(t) 0
0 A(—1) 0 xA(—1)

tomeen=| o S50 T
0 0 0 A(—1)
where
etlog)q

At) =

O etlogkm
R? x 0 R*" admits the following lattice:

M1 M1
Z2D<<p P Ui, o s €ELg X - x 1P iy pim €L ¢,

Mm Hm

4 times
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where P € GL(m, R) which admits

A O
PBP~! = &

0 o
By a straightforward computation, we see

dowp = —loghya A wg — B A wam+k »
dwmyk = +loghio A Otk — B N O3m+k
dwyntk = —loghra A Wi
dw3mik = +loghra A w3k -

Then

m m

wo=aANB+ Za)k AN W3k + Z(l)m-i-k N D2m+k
k=1 k=1
is a symplectic form of R? X RY" /772 X AU
By Theorem 4.3, we see R? Xg RY" /772 Mg Z*" is a compact Lefschetz manifold.

EXAMPLE 5.4 (cf.[AFLM]). Let consider the following matrices:

m

A= Zak(E2k71,2k71 — Eak2k)
k=1

B=0.

Then the automorphism ¢(#, x) = ¢(t) induced by A and B can be written as the following
matrix:

et 0
0 et 0
(p =
eamt O
0 0 et
Then M(ay,--- ,ay) = R2 Xy R2m / 72 Xy 72" has the following non-degenerate close 2-

form:
w=aABF+wr Awr+ -+ 0un—1 N Wy -
By Proposition 4.4, for each symplectic form, we have

LF: HmtD=a(g) 5 gomtDta (g forg=0,---,m+1

is an isomorphism. Hence M (ay, - - - , a,,) has the Hard Lefschetz property.
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EXAMPLE 5.5. Let define an automorphism ¢ of R® as follows.

el 0 xef 0 ye'' 0  xye 0
0 et 0 xe? 0 ye@' 0 =xye!
0 0 ¢ 0 0 0 ye' 0
(¢ x.y) = 0 0 0 et 0 0 0 ye™!
PELY=10 0 0 0 ¢ 0 xe 0
0 0 O 0 0 e 0 xe™!
0 o0 0 0 0 0 e 0
0 o0 0 0 0 0 0 e’
Thus we have
doj=—aArw —BAw3—Y Aws5, dox=aAwr—BAws—y A ws,
dos=—aANw3 —yY Aw7;, dos=oAws—y Nwg,
dos=—arnws—BAw7, dog=0ANws— Aws,
dor=—a Aw7, dwg=0oaAws,

where «, 8 and y are left invariant forms such that
e =(dt)e, (Ble=(dx)e, (¥V)e=(dy)e.
Therefore, (R x, R®/Z3 x, Z8) x S! has a symplectic structure, for example
ACAB+YNO+w) Awg — w3 Awg + wa Aws —wy Awy,

where 6 is a left invariant form of R. By Theorem 4.3, (R® x, R®/Z3 x, Z8) x S! is a
Lefschetz manifold.

6. Harmonic cohomology groups on certain compact symplectic solvmanifolds.

In this section, we study certain completely solvable Lie groups G which satisfy the
conditions in Proposition 3.1 and have symplectic structures. We use the same notations
introduced in sections 3, 4.

DEFINITION 6.1. Let V be a vector space and x* € A\?”V*. Then we say y* € A\7V*
is divisible by x* if y* can be written as

y* — x* A Z* ,
where z* € ATTPV*,

Let A, P be the matrices given by
m
A=Y (Ex-12x-1 — Exon)
k=1
m—1
P = Z(EZk—l,2k+l + E2k2k+2) -
k=1
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Foreach! (I =1,---,m — 1), we define (¢;), : R* — End(R?") by
(o)«(t, x1) =tA+x; Pl for t,x; € R.
Now we consider closed 2-forms on R? X g R?m, By definition, we see

{dek—l = —0 Awy—1 — B AN O4i)-1
dani = o A wxy — B N 02xk+1) -

Now we define y; ; = y; by

K

Yil =Vi = Z(—l)kw2(1k+i)+l N wam—2@k+iy for i =0,---

k=0
where K = K (i, ) is the integer such that
IK<m—-—i—1, I(K4+1)>m—i—1.
Then we have
PROPOSITION 6.2. y;; = y; is a closed form on R? X g R?".

PROOF. By a straightforward computation, we see

K

Z(—l)kw2(1k+i)+l N W —2(1k+i)
k=0

d
= d(wit1 A 0an—2i) + -+ (=DXd(@1K 4141 A ©am—20K +1))

=—Bi A @atiy+1 N @2m—2i

+ B A @2214i)+1 AN @2m—23+i) + Bi A @2(14i)+1 AN @2m—2;

+ (DX =B A 020K 41y +1 A ©2m—20(K—1)+i)
— B N @2(K=1)4+i)+1 N @2m—2(1(K —2)+i))

+ (=D& (=B A 20K +1)+1 A @2m—20(K—1)+1))
=0. O

THEOREM 6.3. We define a map ¢, : R"*! — End(R*™) by

n
Qult. X1, X)) =tA+ Y XjByj 1 for t,x1,--+ , x, €R,

J=1
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where Byj_1 = P21 (2j — 1 < m —1). Then R"*! x, R¥ or R"*! i, R?" x R! has a

symplectic structure.
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PROOF. Note that

n
dwni_1 = —a AN wpp—1 — Z,Bj N @2(k+J)—1

j=1
n

dogk =a Nop — Y _Bj Aokt -
j=1

where J = 2j — 1. We show that

m
k
wp2 = Z(—l) Wok41 N W2m—2k
k=0

is a closed 2-form. Fixing an odd number L =2/ — 1 <m — 1, we see

m—1

k
wp2 = Z(—l) Wok41 N W2m—2k
k=0
L—1

Lh

= Y D" rhi i1 A Oam—awLiiv
V=0 h=0
L-1

= (D" Y (=D 0ahivy i1 A 2Lkt -
v=0 h=0

By Proposition 6.2, this implies that

dwo = chkhﬂj N @241 A W2p -
J#l

Since L = 2] — 1 is any odd number, we see that dwp 2 = 0. Thus if n 4 1 is even,

m—1

o=aABi+BAB+ Bt ABat Y (=D it Ao
k=0

is a symplectic structure. Similarly, if n 4 1 is odd, we see that (R"t! x R>") x R! has a
symplectic structure. O
For simplicity, we assume that n + 1 is even unless explicitly stated to the contrary.

Now let @ be a closed 2-form on R"*! X R>" given by

m—1

Zpia A Bi + Zqijﬁi A Bj+ Z T < Z(—l)kw2(k+i)+l A wzm—zk) ,

i=0 k=0
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where p;, gij, ri € R. Then w is non-degenerate if and only if

O pl P P pn
—p1 0 qn q1n
det| @ —gpp - : #0 and ro #0.
: 0 qn—1n
—Pn —qln "  —Yn—1n 0

REMARK. If B = P!, B, = P2, then (R® x R¥") x R! (m > 3) does not have a
symplectic structure. In fact, we set

wo,2 = Z(—l)kw2k+] N @2m—2k -
k=0

By Proposition 6.2, dwp 2 = Zk,hc2kh.32 Awak+1 Awzy. Note that it is necessary that wg 2 is a
closed 2-form to exist a non-degenerate closed 2-form. On the other hand, by Proposition 6.2,
if ¢ is a 2-form such that d¢ = Zk’hclkhﬁl A w2k4+1 N wap, then ¢ is a sum of the following
terms:

> (=Drorantiyit A 0am-20k+i) -

k=0
In particular, let i = 0, we get

k
Z(—l) W41 N W2m—4k -
k=0

However, we see that

k
@02=Y (=D out1 A o2

k=0
2h 2h+1
=Y (=D o1 Aomm-an+ Y (D" ounys A 0am-an—2
h=0 h=0
= Za)4h+l N W2m—4h — Z W4p43 N\ WO2m—4h—2 -
h=0 h=0

Then w2 is not a closed 2-form which implies that (R? Xg R¥") x R! (m > 3) does not
have a symplectic structure.

The matrix form of R**! X R?" constructed in Theorem 6.3 has the following linear
transformation part:

(p(tv X) = exp((p*(ts X))
= Z Sen(xt, -+ xn) (€ Eag—1,0n—1+ ¢ Excon)

k<h
wheret € R, x = (x1,---,x,) € R" and fi,(x1, -+ -, x,) are the following polynomials :
1
Jen(x1, -+, x0) = Z I

kil k!
k1+3ko+--4+Q2n—1)k,=h—k

ki, kn>0
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Now we set

Bxr, o xm) = Y finxn e, X0) Exn

1<k<h<m
For example, we see
1 x %xz %x3 %x“ %xS
0 1 X %xz %x3 %x“
1.2 1.3
@(_x, 6) _ 0 0 1 X Z—!X yx
00 0 1 x gx?
0 0 0 0 1 X
0 0 0 0 0 1
1 x %xz %x3 +y i!x4 +xy %xs + %x2y +z
0 1 X %xz %x3 +y %x“ + xy
00 1 x Lx? I3+
B(x,y,2:6) = ! Ty
00 0 1 x 5ix2
0 0 0 0 1 X
0 0 0 0 0 1

By Proposition 3.1, we see that R"*! Xg R?" admits a lattice and by Theorem 4.3,
R*! Mg R /7! X 77" (x S') is a compact Lefschetz manifold.

COROLLARY 6.5. Let

0 => qun(Ex—12n1+ Exon) . qn €Q
k<h

and set
m—1

Bj=Y cl0*, j=1.n,
k=1
where ¢ € Q. We define ¢.. : R"™™! — End(R™) by

n
Oi(t, X1, -+, Xp) =tA+ijBj for t,x1,---,x, €R.
j=1

Then R X R>" (xR is a symplectic solvable Lie group which admits a lattice.

PROOF. Consider the Jordan normal form of Q and applying Theorem 6.3 (cf. Exam-
ple5.2). O

Moreover, a completely solvable Lie group which is constructed in Theorem 6.3 has the
following exact forms.
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LEMMA 6.6. Form —k > h
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AABIA - ABIADOTADIA - A@DpUt1 A+  AWu—1 A2 A+ Aoy A=+ A Wy

is an exact form on R"+! Xy R>™. (It is not necessary that n + 1 is even.)

PROOF. LetB = 81 A -+ A B,. By a straightforward computation, we see

h
Za/\ﬂz/\---Aﬂn/\wl/\---/\c?)z(k+i)+1/\---/\wzm—l

i=1

— —a A B Aw]
+a A B Aw;
—a A B Aol

4o A B Ao

—a A B Awl
4o A B Ao
—a A B Awi

=—0 AP A®

THEOREM 6.7. For any symplectic structure, we have

> > > >

> > > >

‘A@2k+1/\"'
A DU3 A
A3 A

A W5 A

ANWIA - ANDuh—it1) A A W

NW2gp—1 NW2 N -+
N@pm—1 NW2 A -+
NW2gp—1 NW2 N -+

NW2p—1 NW2 N -+

VAN C’E)Zh AR
A2 A
A O2p—2 A

A O2p—4 A

ANk —1 A A QU] A2 A - A w2y

SN OUhhy—1 N A DUt A D2 A - A o

VAN (O)™

.../\wzm

.../\wzm

N DYhth=)+1 A N1 A2 A D4 A -+ A

CADULT A A O] AW A Ay A Ay, O

dim HYE D 2R i, R¥™) — dim HP' PO TR R b, R = — 1

Then we see that R" 1 x 0 R>" does not have the Hard Lefschetz property.

PROOF. Note that

Hz(g) = span

anBi, BinB; (<)),

m—i—1
Z W2kt 41 A @2m—2k (i =0,---,m —1)
k=0

By a straightforward computation, we see that a decomposable (2m — 2)-form § which is
generated by the wedge product of wy(k4iy+1 A wm—2k ( =0, ,m—1,k=0,--- ,m—

i — 1) is as follows.

OIAWIA - AW+l A AWu—1 A2 A+ ANWpp A -+ A oy

m—k<h.

. m—i—1 .
Since ) 07 Wa(k+i)+1 A®2m—2k is @ sum of w1 Awap, 03 AW, W3 AWIp—2, O5 AW, - - -

)

if § is divisible by w1, then it is divisible by wy,,. Moreover, if it is divisible by w; A w3, then
it is divisible by w2, A wa,—2. Thus if § is divisible by w; A w3 A - -+ A wk—1, then it is
divisible by wo, A wam—2 A -+ A Wam—2k+2-
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By the same argument, it is easy to verify that
w1 /\0)3/\"'/\c2)2k+1 AN N Wam—1 /\sz"'/\c’L\)zm,Qk/\"'/\wzm
and a 2m-form
WL NANWINAN - ANWyp—1 NW2 ANwWqg N\ -+ N Wy
are only generated by the wedge product of w; A Wy, w3 A Wm—2, +++, W2m—1 A @3. By
Lemma 6.6, the above argument implies that the image of
m—i—1
k .

> (Drorpripn Aoamax (=1, m—1)

k=0
by L™+ +D/2=2 ig exact. Hence,

dim Hé"]’l{+(’l+l)*2(Rn+] X R2m) — dim th;n‘i‘(n+l)*2(Rn+] X R2m) >m—1.

Let

T = Zpi(x A Bi + Zqzjﬂi A Bj
m—1
T = Z(—l)kw2k+1 N Wam—2k
k=0
where p;, gij € R. We set T = 7; + r1), where r € R. We shall show Lt e+ /2=22 49 not
exact. Assume that L™+#+1/2=22 — 40 On the other hand,
Lm+n+1)/2-2 .
T=14+rn — ZP,»&/\,Bl AN ABi AN ABr A2
l
+Zi<jQija/\ﬁ] Ao ABIAABiAABy A2
+RAABIA- AR AT,

where P;, Qij, R € Rand 2 = w1 A -+ A wap—1 Awa A -+ A . Since Lntnt/2=2 .
H?(g) — HZ"++D=2(g) is an isomorphism, there exists a non-zero coefficient. For exam-
ple, if P; # 0, then we have

a A Bi ALFOID2=20 — d(a A B A 6)
=(=Da-aABIA-ABAS2.

It is a contradiction. O
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