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Abstract. Upper bounds for the solution l of the equations of the title are derived by using results concerning
the equation axl − byl = c with a, b, c non-zero integers. These solutions are also determined in some special cases.

1. Introduction.

The Diophantine equations on binomial coefficients have been studied by several authors.
We consider the Diophantine equation

(
n

k

)
= xl (1)

in integers n, k, l, x with k > 1, l > 1, x > 1. There is no loss of generality in assuming
n ≥ 2k, since

(
n
k

) = (
n

n−k

)
. It is clear that (1) has infinitely many solutions if k = l = 2. For

k = 3 and l = 2, equation (1) has only the solution n = 50, x = 140, as shown by Watson
[W] and Ljunggren [Lj2] independently. In 1939, Erdös [P1] showed that no solutions exist
if k ≥ 2l or l = 3, and conjectured that if l ≥ 3, then equation (1) has no solutions. Using
an elementary way, Erdös [P2] established in 1951 that if k > 3, then equation (1) has no
solutions.

For the remaining cases k = 2 and k = 3, Tijdeman [Ti] proved in 1976, by means
of an effective inequality of Baker on linear forms in logarithms, that there are only finitely
many solutions all of which can be effectively determined. Terai [Te] used a recent estimate
of linear forms in two logarithms to show that l < 4250. It immediately follows from a result
of Darmon-Merel [DM] that equation (1) has no solutions for k = 2. Their result is derived by
the deep theory of elliptic curves, including Wiles’ proof of most cases of Shimura-Taniyama
conjecture. Györy [G2] settled the case k = 3 by combining a congruence result due to
himself, a result of Darmon-Merel [DM] and a result of Bennett-de Weger [BW] obtained by
linear forms in logarithms and the hypergeometric method.
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In this paper, we consider the following more general equations than (1) for k = 2, 3:(
n

2

)
= cxl , (2)

(
n

3

)
= cxl (3)

with c positive integer.
Our method is based on the deep results concerning the Diophantine equation

axl − byl = c (4)

with a, b, c non-zero integers.
Using an estimate of Mignotte [M], we derive an upper bound for the solution l of (2)

in terms of c (Theorem 1). Further, combining the results of Ribet [Rt] and Darmon-Merel
[DM], we also derive an absolute upper bound for the solution l of (3) (Theorem 7). The
results of Györy [G1] and Bennett [Be] enable us to determine the solutions of (2) under
some conditions when c = p, prime number of the form p = 2al +1 (Theorem 2). It is worth
noting that equation (2) for l = 3, 4 and equation (3) for l = 2, 3, 4 can be easily solved by
using the program packages KASH (cf. [Ka]) and SIMATH (cf. [Si, Sections 4, 6]).

2. The results on the equation axl − byl = c.

In the proof of our theorems, we need the deep results on equation (4).
The following proposition is shown by using a lower bound for linear forms in two

logarithms.

PROPOSITION 1 (Mignotte [M]). Let a, b be positive integers with a �= b and c be a

non-zero integer. Put A = max{a, b, 3} and λ = log

(
1 + log A

| log(a/b)|
)

. Let l be a positive

integer ≥ 3. Suppose that equation (4) has integer solutions x, y with y > |x| > 0. Then

l ≤ max

{
3 log(1.5|c/b|), 7400

logA

λ

}
.

The following powerful proposition depends on the multi-dimensional “hypergeometric
method".

PROPOSITION 2 (Bennett [Be]). Let a, b and l be positive integers with l ≥ 3. Then
the Diophantine equation

| axl − byl| = 1

has at most one solution in positive integers x, y.

Györy [G3] obtained the following lemma by combining Theorem 3 of Ribet [Rt] with
Main theorem of Darmon-Merel [DM], which were proved by means of the theory of elliptic
curves.



DIOPHANTINE EQUATIONS 211

PROPOSITION 3 (Györy [G3]). Let l, α be integers with l ≥ 3 and 0 ≤ α < l. Then
the Diophantine equation

xl − 2αyl = ±1

has no solutions in positive integers x, y except for α = 1, where there is only the trivial
solution (x, y) = (1, 1).

3. The equation
(
n
2

) = cxl .

In what follows, n, x, l denote positive integers with n ≥ 2, x ≥ 2, l ≥ 3.
We use Proposition 1 to obtain an upper bound for the solution l of equation (2).

THEOREM 1. Let c be a positive integer with c ≥ 2. If the equation (2) has solutions
n, x, l, then

l < 21352 log c .

PROOF. Suppose that equation (2) has solutions n, x, l. Then n(n − 1) = 2cxl and so
equation (2) is reduced to solving the following Thue equation:

c1X
l − c2Y

l = 1

where c1, c2,X, Y are positive integers with c1c2 = 2c and XY = x. It follows from Propo-
sition 1 that the equation above yields

l ≤ 7400 · log 2c

log 2
< 21352 logc . �

In the following, under some conditions, we determine the solutions of equation (2). We
follow a cogruence method due to Györy [G2] by means of Eisenstein’s reciprocity laws.

LEMMA 1 (Györy [G1]). Let l be a prime > 3. Let a, b, c be integers such that

al + bl

a + b
= cl , (a, b) = 1 , (a2 − b2, l) = 1 .

Then for each prime r with r �= l and r | a + b, we have

rl−1 ≡ 1 (mod l2) .

Using Lemma 1, we show the following:

LEMMA 2. Let l be a prime > 3. Let p be an odd prime with p �= l and p �≡ 1 (mod l).
If the Diophantine equation

xl − 2pyl = ±1

has solutions in positive integers x, y with y �≡ 0 (mod l), then

pl−1 ≡ 1 (mod l2) .
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PROOF. Suppose that the equation xl − 2pyl = ±1 has solutions in positive integers
x, y with y �≡ 0 (mod l). Since l is odd, we may assume that the right hand side of the
equation is positive sign.

If x + 1 ≡ 0 (mod l), then pl−1 ≡ 1 (mod l2). Indeed, since xl ≡ −1 (mod l2), we have
−2 ≡ 2pyl (mod l2) and hence 1 ≡ pl−1 (mod l2).

Using Lemma 1, we also show that if x + 1 �≡ 0 (mod l), then pl−1 ≡ 1 (mod l2). Since
p �≡ 1 (mod l) and y �≡ 0 (mod l), it follows that

x − 1 = 2pyl
1 ,

xl − 1

x − 1
= yl

2 ,

where y1, y2 are integers with y = y1y2. If x + 1 �≡ 0 (mod l), then Lemma 1 implies that
pl−1 ≡ 1 (mod l2). �

THEOREM 2. Let l be a prime > 3. Let p be a prime such that p = 2al + 1 with
a �≡ 0 (mod l). Further, suppose that pl−1 �≡ 1 (mod l2). Then the Diophantine equation(

n

2

)
= pxl

with x �≡ 0 (mod l) has only the positive integer solution (n, x) = (p, a).

PROOF. In view of the proof of Theorem 1, the equation above is reduced to solving
the following Thue equations:

2Xl − pY l = ±1 , (5)

Xl − 2pY l = ±1 , (6)

where X,Y are positive integers with x = XY .
Since p = 2al + 1, it follows from Proposition 2 that the equation (5) has only the

solution (X, Y ) = (a, 1) and so x = XY = a. Hence we obtain n = p.
We note that p �≡ 1 (mod l), since p = 2al + 1 with a �≡ 0 (mod l). By Lemma 2,

we see that if (6) equation has positive integer solutions X,Y , then pl−1 ≡ 1 (mod l2). This
completes the proof of Theorem 2. �

We use Theorems 1, 2 to show the following:

COROLLARY 1. Let l be an odd prime. The Diophantine equation(
n

2

)
= 3xl

with x �≡ 0 (mod l) has only the positive integer solution (n, x) = (3, 1).

PROOF. As shown in the forthcoming Theorem 3, when l = 3, the equation above has
only the positive integer solution (n, x) = (3, 1). We may assume that l > 3.

In view of the proof of Theorem 1, the equation above is reduced to solving the following
Thue equations:

2Xl − 3Y l = ±1 , (7)
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Xl − 6Y l = ±1 , (8)

where X,Y are positive integers with x = XY .
By Proposition 2, equation (7) has only the solution X = Y = 1 and hence x = XY = 1,

n = 3.
By Theorem 1, equation (8) leads to

l < 21352 log 3 = 23457.56958 · · · .

By Lemma 2 with l > 3, we also have the congruence

3l−1 ≡ 1 (mod l2) .

According to Ribenboim [Rm1, p. 170], it follows that l = 11 is the only prime l satisfying
the congruence above in the range 3 < l < 23458. But using KASH, we see that the equation

X11 − 6Y 11 = ±1

has no positive integer solutions X,Y . �

Similarly, when c = 5, we obtain the following:

COROLLARY 2. Let l be an odd prime. The Diophantine equation(
n

2

)
= 5x2l

with x �≡ 0 (mod l) has no positive integer solutions (n, x).

PROOF. In view of the proof of Theorem 1, the equation above is reduced to solving
the following Thue equations:

2X2l − 5Y 2l = ±1 , (9)

X2l − 10Y 2l = ±1 , (10)

where X,Y are positive integers with x = XY .

Equation (9) is impossible, because −1 =
(

2

5

)
=

( ±1

5

)
= 1, where

(∗
∗
)

denotes the

Jacobi symbol.
By Theorem 1, equation (10) leads to

l ≤ 1

2
· 21352 log 5 = 17182.35915 · · · .

By Lemma 2 with l > 5, we also have the congruence

5l−1 ≡ 1 (mod l2) .

According to Ribenboim [Rm1, p. 170], there is no prime l satisfying the congruence above
in the range 5 < l < 17183. Using KASH, we see that equation (10) with l = 3, 5 has no
positive integer solutions X,Y . �
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4. The equation
(
n
2

) = cxl (l = 3, 4).

In this section, when l = 3, 4 and p = 2al + 1, we determine the solutions of equation
(2) under a certain condition.

First consider equation (2) with l = 3. Then we need the following lemmas. For the
proof of Lemma 3 below, see Ribenboim [Rm1, pp. 96, 106].

LEMMA 3. (i) The Diophantine equation

x2 + x + 1 = y3

has only the solutions in integers (x, y) = (0, 1), (−1, 1), (18, 7), (−19, 7).
(ii) The Diophantine equation

x2 + x + 1 = 3y3

has only the solutions in integers (x, y) = (1, 1), (−2, 1).

LEMMA 4. Let p = 3 or p ≡ −1 (mod 6) be a prime, and m a non-negative integer.
The Diophantine equation

x3 − 2mpy3 = ±1

has only the solutions (p,m, x, y) = (5, 2, 19, 7), (17, 0, 18, 7).

PROOF. First consider the equation x3 − 2mpy3 = ±1 with p ≡ −1 (mod 6). We
may assume that the right hand side of the equation is equal to +1. Write the equation as
(x − 1)(x2 + x + 1) = 2mpy3. Note that x2 + x + 1 is odd and p ≡ −1 (mod 6). If
y �≡ 0 (mod 3), then

x − 1 = 2mpu3 , x2 + x + 1 = v3 ,

where u, v are integers with y = uv. If y ≡ 0 (mod 3), then

x − 1 = 2mp33n−1u3 , x2 + x + 1 = 3v3 ,

where u, v are integers with y = 3nuv, uv �≡ 0 (mod 3) and n ≥ 1. Hence it follows
from Lemma 3 that the equation x3 − 2mpy3 = ±1 has only the solutions (p,m, x, y) =
(5, 2, 19, 7), (17, 0, 18, 7).

Similarly the equation x3 − 2m · 3y3 = ±1 has no positive integer solutions. �

THEOREM 3. Let p be a prime such that p = 2a3 + 1 with a = 1 or a ≡ −1 (mod 3).
The Diophantine equation (

n

2

)
= px3 (11)

has only the positive integer solution (n, x) = (p, a).

PROOF. In view of the proof of Theorem 1, it suffices to consider the following equa-
tions:
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2X3 − pY 3 = ±1 ,

X3 − 2pY 3 = ±1 ,

where X,Y are positive integers with x = XY .
Since p = 2a3 + 1, it follows from Proposition 2 that the first equation above has only

the solution (X, Y ) = (a, 1) and so x = a. Hence we obtain n = p.
We note that p = 3 or p ≡ −1 (mod 6), since p = 2a3 + 1 with a = 1 or a ≡

−1 (mod 3). By Lemma 4 with m = 1, the second equation above has no positive integer
solutions X,Y . �

THEOREM 4. Let p be a prime with 3 ≤ p < 100. Then equation (11) has only the
following positive integer solutions n, x:

p = 3 : (n, x) = (3, 1) ; p = 13 : (n, x) = (27, 3) ;

p = 17 : (n, x) = (17, 2) ; p = 53 : (n, x) = (54, 3) .

PROOF. Since p is prime, equation (11) is reduced to solving the equations 2X3 −
pY 3 = ±1 and X3 − 2pY 3 = ±1. These Thue equations of third degree can be solved by
using KASH. Then there are only the solutions listed above. �

Next consider equation (2) with l = 4. We need the following lemmas.

LEMMA 5 (Ljunggren [Lj1]). The Diophantine equation

x2 + 1 = 2y4

has only the positive integer solutions (x, y) = (1, 1), (239, 13).

LEMMA 6. Let p ≡ 3 (mod 4) be a prime, and m a non-negative integer. The Dio-
phantine equation

x4 − 2mpy4 = ±1

has no positive integer solutions x, y.

PROOF. We may assume that y is odd. Since p ≡ 3 (mod 4), the right hand side of the
equation is equal to +1.

If m > 0, then from p ≡ 3 (mod 4) the equation leads to

x2 + 1 = 2u4 , x2 − 1 = 2m−1pv4 ,

where u, v are positive integers with y = uv. By Lemma 5, the first equation above has
only the positive integer solutions (x, u) = (1, 1), (239, 13), which do not satisfy the second
equation.

If m = 0, then the equation leads to

x2 + 1 = u4 , x2 − 1 = pv4 ,

which has no positive integer solutions. �
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THEOREM 5. Let p be a prime such that p = 2a4+1 with a odd ≥ 1. The Diophantine
equation (

n

2

)
= px4 (12)

has only the positive integer solution (n, x) = (p, a).

PROOF. In view of the proof of Theorem 1, it suffices to consider the following equa-
tions:

2X4 − pY 4 = ±1 ,

X4 − 2pY 4 = ±1 ,

where X,Y are positive integers with x = XY .
Since p = 2a4 + 1, it follows from Proposition 2 that the first equation above has only

the solution (X, Y ) = (a, 1) and so x = a. Hence we obtain n = p.
We note that p ≡ 3 (mod 4), since p = 2a4 + 1 with a odd ≥ 1. By Lemma 6 with

m = 1, the second equation above has no positive integer solutions X,Y . �

THEOREM 6. Let p be a prime with 3 ≤ p < 100. Then equation (12) has only the
following positive integer solutions n, x:

p = 3 : (n, x) = (3, 1) ; p = 31 : (n, x) = (32, 2) ; p = 41 : (n, x) = (82, 3) ;
PROOF. Since p is prime, equation (12) is reduced to solving the equations 2X4 −

pY 4 = ±1 and X4 − 2pY 4 = ±1. These Thue equations of fourth degree can be solved by
using KASH. Then there are only the solutions listed above. �

5. The equation
(
n
3

) = cxl .

In what follows, n, x, l denote positive integers with n ≥ 3, x ≥ 2, l ≥ 3.
In this section, we treat equation (3) when c = pm with p prime > 3 and m ≥ 1. Using

Propositions 1, 3, we show the following:

THEOREM 7. Let p be a prime > 3 and m a positive integer. If the Diophantine
equation (

n

3

)
= pmxl

has solutions n, x, l, then

l ≤ 19128 .

PROOF. Suppose that the equation
(
n
3

) = pmxl has a solution n, x, l. Then

n(n − 1)(n − 2) = 2 · 3 · pmxl .

Now we distinguish two cases: (i) n is odd and (ii) n is even.
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Case (i): n is odd. Then we have the following three subcases according as n,

n − 1, n − 2 is divisible by p. In what follows, x1 and x2 denote a positive integer > 1.
(i,1) (n − 1)(n − 2) = 2xl

1 or 6xl
1.

The first equation has no solutions by Proposition 3. The solution l of the second equation
must satisfy l ≤ 19128 by Proposition 1.

(i,2) n(n − 2) = xl
1 or 3xl

1.

It is clear that the first equation has no solutions since n is odd. From the second equation, we
have

Xl − 3Y l = ±2 .

Thus it follows from Proposition 1 that l ≤ 11728.
(i,3) n(n − 1) = 2xl

1 or 6xl
1.

This case is similar to the case (i,1).
Case (ii): n is even. Then we have the following three subcases according as n,

n − 1, n − 2 is divisible by p.
(ii,1) (n − 1)(n − 2) = 2αxl

1, 3xl
1 or 6xl

1 with α = 1, l.
The first equation has no solutions by Proposition 3. From the second equation, we have

Xl − 3Y l = ±1 .

Thus it follows from Proposition 1 that l ≤ 11728. The solution l of the third equation must
satisfy l ≤ 19128 by Proposition 1.

(ii,2) n(n − 2) = 2xl
1 or 6xl

1.

Note that n is even. From the first equation, we have
n

2

(n

2
− 1

)
= 2l−1xl

2, which has no

solutions by Proposition 3. From the second equation, we have

Xl − 6Y l = ±2

or

3Xl − 2Y l = ±2 .

By Proposition 1, the solution l of these equations must satisfy l ≤ 19128, l ≤ 6201, respec-
tively.

(ii,3) n(n − 1) = 2αxl
1, 3xl

1 or 6xl
1 with α = 1, l.

This case is similar to the case (ii,1). �

6. The equation
(
n
3

) = cxl (l = 2, 3, 4).

In this section, we treat some special cases of equation (3) for l = 2, 3, 4.
We first consider equation (3) when l = 2. More generally, consider the following:

n(n − 1)(n − 2) = dx2 (13)
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for a fixed square-free positive integer d . Then equation (13) is easily reduced to the elliptic
curve

Ed : Y 2 = X3 − d2X ,

where X,Y are positive integers such that Y = d2x,X = d(n − 1). For each “small" d ,
all integral points on this elliptic curve Ed can be easily determined by using SIMATH. It
should be noted that there is a close relationship between congruent numbers and the above
Ed . Recall that a square-free positive integer d is called a congruent number if it is the area
of some right triangle with rational sides. The following fact is well known (cf. Koblitz [Ko,
p. 46]):

d is a congruent number ⇔ Ed(Q) has positive rank.

It is conjectured that if d ≡ 5, 6, or 7 (mod 8), then d is a congruent number.

THEOREM 8. (i) Let p3, q3, p5, q5 be a prime such that p3 ≡ q3 ≡ 3 (mod 8) and
p5 ≡ q5 ≡ 5 (mod 8). If d = p3, p3q3, 2p3q3, 2p5, or 2p5q5, then equation (13) has no
positive integer solutions n, x.

(ii) Let d be a square-free positive integer with 1 ≤ d < 20. Then equation (13) has
only the following positive integer solutions n, x:

d = 5 : (n, x) = (10, 12) ; d = 6 : (n, x) = (3, 1), (4, 2), (50, 140) ;
d = 14 : (n, x) = (9, 6) ; d = 15 : (n, x) = (5, 2).

PROOF. (i) Any d of the above forms is not a congruent number. (See Serf [Se, p.
232]. See also Koblitz [Ko, p. 222] and Tunnell [Tu].) Note that d is not a congruent number
if and only if all integral points on Ed are (X, Y ) = (0, 0), (d, 0), (−d, 0). Hence equation
(13) has no positive integer solutions n, x.

(ii) Using SIMATH, we compute all integral points on elliptic curves Ed for the values
of d above. Then we obtain all positive integer solutions n, x of equation (13) for each d . �

We next consider equation (3) when l = 3.

THEOREM 9. Let p be a prime > 3 and m a positive integer. The Diophantine equa-
tion (

n

3

)
= pmx3

has no positive integer solutions n, x.

PROOF. In view of the proof of Theorem 7, we see that the equation
(
n
3

) = pmx3 is
reduced to solving the Thue equations of third degree, which can be solved by Proposition 2,
Lemma 4 and KASH. Note that KASH is used for only the equation

X3 − 3Y 3 = ±2 .

This Thue equation has only the solution (X, Y ) = (1, 1). Hence our assertion follows. �

We finally consider equation (3) when l = 4.
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THEOREM 10. Let p be a prime > 3 and m a positive integer. The Diophantine
equation (

n

3

)
= pmx4

has no positive integer solutions n, x.

PROOF. In view of the proof of Theorem 7, we see that the equation
(
n
3

) = pmx4 is
reduced to solving the Thue equations of fourth degree, which can be solved by Proposition
2, Lemma 6 and KASH. Note that KASH is used for only the equations

X4 − 3Y 4 = ±2 , 8X4 − 3Y 4 = ±1 .

The first equation has only the solution (X, Y ) = (1, 1), and the second equation has no
solutions. Hence our assertion follows. �
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