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Introduction

The Kummer-Artin-Schreier-Witt theory is the unified theory of the Kummer theory and
the Artin-Schreier-Witt theory. We denote by p a prime number and ¢, a primitive p”-th root
of unity such that {,” = ¢,_. Let A = Z,)[¢,]. The Kummer-Artin-Schreier-Witt sequence

0— Z/p"Z)a - Wy L5 v, — 0

has the Artin-Schreier-Witt sequence as the special fiber and the Kummer type sequence as
the generic fiber, where W, and V), are group schemes related to deformations of the addi-
tive group scheme to the multiplicative group scheme (cf. Section 2). This sequence is a
key of the Kummer-Artin-Schreier-Witt theory. The case n = 1 of this theory (the Kummer-
Artin-Schreier theory) was presented by Waterhouse [10] and Sekiguchi-Oort-Suwa [3] inde-
pendently. In the general case, this theory was formulated by Sekiguchi-Suwa [5], [8] and
[7].

Let X be a scheme, G a flat group scheme locally of finite type over X and X’ a scheme
over X such that G acts on X’. The scheme X’ is a G-torsor over X if X’ is locally isomorphic
to G for the flat topology on X. In particular, if G is a finite group scheme, a G-torsor is a
Galois G-extension. Now let PHS(G/ X) be the set of all isomorphism classes of G-torsors

over X. If G is a commutative affine group scheme over X, then PHS(G/ X) S I-?f} (X,G) >
Hé (X, G) (cf. Raynaud [2]). Therefore we can calculate torsors by the cohomology theory.

Our aim of this article is to give concrete descriptions of Z/p?Z-torsors over an A-
scheme X, that is to say, unramified cyclic coverings of degree p? over an A-scheme X. In
order to give them, we use arguments similar to those using in the Kummer theory and the
Artin-Schreier-Witt theory (cf. Section 1). Our main result is as follows:

ASSERTION 1 (cf. Section 3, 3.3). Let X be an A-scheme, U = {U,} an affine open
covering on X. Let f;; € ZY (U, W) be a I-cocycle such that lI/Z([f,-j]) = 0. Then, if
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necessary by taking a refinement of U, there exists b; € I'(Uj,V,) for each j, such that
W2A(f) = (A§ (b, 19(b:)), AT (b;. 19(b)) on Uj N U;. Let h € I'(X,V2). Then a
7./ p*Z-torsor over X is described by w : X' — X locally given by the covering
w2(z;) = (AS(bj, h), AV (bj, b)) on U; x A* =Spec I'(U;, V2) ®4 Alzj],
the gluing being given by
(Ag (=), Ig @), AL ), I G = fi; on (Uj x AN (U; x AY),
and an action of Z) p*Z on X' by
(2j,8) > (Af (zj, i2(9)), Af (zj,ia(s)))  for s € Z/pL.

Here Ag and Af (resp. Ag and AIG) are the polynomials which define the multiplication

on Wh (resp. V»), and IOF and IlF (resp. IOG and IIG) are the polynomials which define the
inverse on Wy (resp. V).

We consider the special two cases, one is the case H'(X,Z/p*Z) = Coker[¥? :

F'(X,W,) — I'(X,V)], and the other is the case H'(X,Z/p*Z) > Ker[¥?
H' (X, W) - H'(X, V)].

ASSERTION 2 (cf. Section 3,3.4). Let B be an A-algebra. We assume that B is a local
ring or p is a nilpoint in B. Let X = Spec B. Then for any unramified p2-cyclic extension C
of B, there exists a morphism f : Spec B — V, such that

SpecC —— W,
l al
Spec B L) %)
is cartesian.

ASSERTION 3 (cf. Theorem 3.6). Let B be a strictly Henselian noetherian local ring
and faithfully flat over A. Let X be a connected flat proper scheme over B. Put Xo = X ®p
B/(¢1 — 1). Let tx : Xo — X be the inclusion induced by 1p : Spec B/({1 — 1) — Spec B.
Then we obtain an isomorphism

HY(X,Z/p*Z) —> {([Lo], [L1]) € Pic®(X)?| (+%) }
where (xx) means the following conditions:

[ix*Lol = [Ox,], exp(ltx*Lol) = [tx™ L]
[Lo®P]1=[Ox]1, [£1®P]=[Lo].

For definition of the homomorphism exr, see Section 3, 3.5.
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In Assertion 3, we see that Z/p>Z-torsors over X are described by line bundles over X
satisfying suitable conditions. This fact is very interesting geometrically. In general, we can
give a correspondence of a Z/ p2Z-torsor over X to a ju p2-torsor over X. Moreover we can

give a Z/ p?Z-torsor over X as successive Néron blow-ups starting from a p2-torsor over X.

ASSERTION 4 (cf. Theorem 4.10). Let X" be a Z] p*Z-torsor over X and X' a A p2-

torsor over X corresponding to X". Then we can give the morphism X" — X' as a composite
of Néron blow-ups.

In Section 1, we recall the Kummer theory and the Artin-Schreier-Witt theory. In Sec-
tion 2, we define the Kummer-Artin-Schreier-Witt group schemes and the Kummer-Artin-
Schreier-Witt exact sequence. Using these, in Section 3, we argue the Kummer-Artin-Schreier-
Witt theory of degree p?, that is to say, we concreately describe a Z/ p*>Z-torsor over X. In
Section 4, we give a Z/ p>Z-torsor over X as successive Néron blow-ups starting from a p2"
torsor over X.

ACKNOWLEDGMENT. The author would like to be very grateful to Prof. T. Sekiguchi
and Prof. N. Suwa who gave him this problem and many advices. By their advices, he could
finish this paper. He would like to express his gratitude.

NOTATIONS.

e We denote by p a prime number and ¢> a primitive p?-th root of unity. We put
t=&-

e Let A be a discrete valuation ring. Let m denote the maximal ideal of A. For A €
m— {0}, we put Ag = A/A and Xo = X Xgspec 4 Spec Agp. Lett : Spec A9 —> Spec A
be the canonical inclusion.

e Let R (resp. F) be a commutative ring (resp. a field). We denote by G, g (resp.
G, r) the additive group scheme over a ring R (resp. a field F) and by G, g (resp.
G, ) the multiplicative group scheme over a ring R (resp. a field F'). We denote by
W, F the group scheme of Witt vectors of length n over a field F'.

e We denote by G = Spec A[T, (\T + 1)~!] the Kummer-Artin-Schreier group
scheme (See Sekiguchi-Oort-Suwa [3], Sekiguchi-Suwa [6]). The group structure
of G® is as follows:

(multiplication) T —> AT @ T+ T ® 1+ 1Q T,
(unit) T — 0,
(inverse) T +—— (—=T)/(AT + 1).

e We denote by X o (resp. Xg, resp. Xp) the small Zariski site (resp. small étale site,

resp. small flat site).
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1. The Kummer theory and the Artin-Schreier-Witt theory

In order to understand the Kummer-Artin-Schreier-Witt theory, we recall the Kummer
theory and the Artin-Schreier-Witt theory.

1.1.  We recall first the Kummer theory. Let n be an integer with n > 1 and u, the set
of n-th roots of unity. Put A = Z[1/n]{u,] and w, a4 = Ker[n : G;n, a4 —> Gy, al. Then we
obtain the sequence of group schemes over A

0—> ptna — Gma —> Gua — 0. (1)

The sequence (1) is an exact sequence of sheaves on (Spec A)¢, and hence it is an exact
sequence of sheaves on (Spec A)g. It is called the Kummer sequence. Since u,, C A, the
group scheme pt,, 4 is (non canonically) isomorphic to the constant group scheme Z/nZ. For
an A-scheme X, the exact sequence (1) induces the cohomology long exact sequence

0 —— I'(X,Z/nZ) —— TI'(X,0%) —— TI'(X,0%)
——— H'(X,Z/nZ) —— H'(X,Gma) —— H' (X,Gpn.4).
Hence we obtain the exact sequence
0— I'(X,0%)/I(X,0%)" — H'(X,Z/nZ) — ,Pic(X) — 0. 2)

We describe the exact sequence (2) more concretely. Now, letf = {U} be an affine open
covering on X and (f;;) € Z LW, O%) a 1-cocycle representing an element n € H I(x, oy)
such that nn = 0. This means that ( fl’;) is a 1-coboundary, and if necessary replacing U a

refinement, we can write
fl.'j’.zbj/b,' on U;NU;,

where bj € I'(U;, O%). Leth € I' (X, O%). We define 7 : X" — X locally by the Kummer
covering

Zi=bjh on Ujx Al = Spec I'(U;, O%) ®4 Alz;],
the gluing being given by
zj/zi=fij on (U; x Ahyn U x A,
and an action of u, on X', that of Z/nZ on X’ by
(&, zj) — ¢z

Then X' is a Z/nZ-torsor over X, and [X'] € H' (X, Z/nZ) is mapped to n € H' (X, O%).
(A) Let B be alocal A-algebraand X = Spec B. Since

HY(X,G,.x) =Pic(X) =0



DESCRIPTIONS OF Z/p2Z-TORSORS 151

by the Hilbert theorem 90, we obtain an isomorphism
B*/(B*)" — H'(X,Z/nZ).

Hence, for any unramified n-cyclic extension C of B, there exists a morphism f : Spec B —
G, 4 such that

SpecC —— Gy.a

| |
!
Spec B ——— Gyu.a

is cartesian.

(B) Let K be an algebraically closed field such that n is an invertible element and X a
connected proper K -scheme. Then, since I' (X, O%) = K™ and the morphism# : K* — K*
is surjective, we obtain an isomorphism

HY(X,Z/nZ) —> ,Pic(X).

1.2.  Werecall the Artin-Schreier-Witt theory. Let X be an F,-scheme and F the Frobe-
nius map over Wy r,. Then we obtain the sequence of group schemes

0 — Z/p"Z —> Wy ¥, — Wak, — 0. 3)

The sequence (3) is an exact sequence of sheaves on (Spec A)¢, and hence it is an exact
sequence of sheaves on (Spec A)g. It is called the Artin-Schreier-Witt sequence. The exact
sequence (3) induces the cohomology long exact sequence

0 —— I'(X,Z/p"Z) —— I[(X,Wur,) — I'(X,Wur,)

—— H'(X,2/p"Z) —— H'(X, Wyr,) —— H'(X, Wyx,).

Now, let i/ = {U;} be an affine open covering on X and (f,»j) e z\W, Wn,F,,)
a 1-cocycle representing an element 5 € HY(X, W,,,Fp) such that F» = p. This means that

f fj — fij) is a 1-coboundary, and we can write
ff;‘_fijzbj_bi on Uj;:=U;NU;

where b; € I'(U;j, Wy x,). Let h € I'(X, W, r,). We define 7 : X' — X locally by the
Artin-Schreier-Witt covering

zf—zjzbj +h on Ujx A" =Specl'(Uj, W, r,) ®a Alz;],
the gluing being given by
zj—zi=f;j on U; x A" N(U; x A",
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and an action of Z/p"Z on X’ by
(zj,8)—>zj+s, for seZ/p"L.

Then X’ is a Z/p"Z-torsor over X, and [X'] € HYX,Z/p"Z) is mapped to n €
HY (X, Wy.r,).
(A) Let B be an F-algebra and X = Spec B. Since

H' (X, Wy5,) =0,
we obtain an isomorphism
Coker[F — 1 : W, (B) —> W,(B)] — H'(X,Z/pZ).

Hence, for any unramified p”-cyclic extension C of B, there exists a morphism f : Spec B —
W F ) such that

SpecC —— W,,,Fp
| r
f
SpecB ——— W,,,Fp

is cartesian.

(B) Let k be an algebraically closed field with characteristic p > 0 and X a connected
proper k-scheme. Then, since I" (X, W,,) = W, (k) and the morphism F — 1 is surjective over
W, (k), we obtain an isomorphism

H'(X,Z/p"Z) — Ker[F — 1 : H'\(X, W) — H'(X, W,)].

REMARK 1.3. If X is smooth overk, H' (X, W,,) is isomorphic to the Dieudonné mod-
ule of FnP_iCX/k. We see the case n = 1.

Let k[e] be the ring of dual numbers ( k[&] = k[T]/(TZ) ). The exact sequence

0— Ga,k e l_[ Gm,k[s] e Gm,k — 0
klel/k

induces the exact sequence
0 — H'(X,Gyx) — Picyi(k[e]) —> Picy (k) ,

where [] isthe Weil restriction functor. Then we get an isomorphism
k[el/k

H'(X. Gq) —> Lie(Picy,;) — Lie(rPicy,;).
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2. The Kummer-Artin-Schreier-Witt group schemes

In this section, we define the Kummer-Artin-Schreier-Witt group schemes and the
Kummer-Artin-Schreier-Witt exact sequence to unify the Kummer theory and the Artin-
Schreier-Witt theory. For details, see [5], [8], [7].

Hereafter, let A = ¢ — 1, A2 = {» — 1 and A = Z()[¢2]. Then A is a discrete valuation
ring and A; is a uniformizing parameter of A. K (resp. k) denotes the fraction field (resp. the
residue field) of A. Then K = Q(¢2) and k = F),.

2.1. Put
p-l k—1 —1
(=D k _ AP
= A d = — —A).
n Z 2 and 7 (pn =)
k=1
Put

p—1 k rp=1 K
T T
F(T) = Z (nk') . G(T) = Z (nk') ’
k=0 k=0

AE (X0, Yo) = AXoYo 4+ Xo + Yo, A§ (X0, Yo) = AP XoYo + Xo + Yo,

AT (X0, X1, Yo, Y1) = AX1 Y1 + X1 F(Yo) + F(Xo)V

+ %{F(XO)F(YO) — F(AXoYo + Xo + Y0)},
AT (Xo, X1, Yo, Y1) = AP X1Y1 + X1G(Yo) + G(Xo)Y

+ ALP{G(XO)G(YO) — G XoYo + Xo + Y0)},
Yo (To) = %p{()»To + 1P -1},

1 [ (AT + F(Ty)? 1
Ui (To, T1) = k—p{w - G<)L—p{()»TO + 1P — 1})} ,

1 1
Wy = Spec A| Ty, T1, , ,
2=>P [0 DA To+ 1 )»T1+F(To)j|

1 1
V> = Spec A| Ty, T, , .
AMPTo+1 APTy + G(To)

Let v denote the p-adic valuation normalized by v(p) = 1. Then

1 1
v(d) = ﬁ, v(h2) =v(n) = m

In fact, AP~1 ~ p and )Lg ~ A in A. Moreover, A>|n and A|5. W, and V) are open subschemes
of the affine space A%. Sekiguchi-Suwa showed the following:
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THEOREM 2.2 (Sekiguchi-Suwa [8], Theorem 5.2).
(1) The polynomials AIF(XO, X1, Yo, Y1), Alc(Xo, X1, Yo, Y1) have their coefficients
in A. Moreover,

(To, T1) — (A5 (Ty® 1,10 Ty) , AY(Ty® 1, T1 ® 1,1 @ T, | @ TY))

defines a structure of group on Wh, and
(To. T1) — (AF (T ® 1, 1@ To) , AT (Th® 1. T1 @ 1, 1@ To, 1 @ T1))

defines a structure of group on V,.
(2) The fraction W, (T, Ty) belongs to A[To, T1, A To+1)"", AT+ F(Tp))~'1. More-
over,

(To, T1) = (Yo (Tv), ¥1(To, T1))

defines an A-homomorphism W2 : Wy — Vs, and Ker[¥? : W — Vs] is isomorphic to the
constant group scheme 2/ p*Z. .

(3)  (Uo, Uy) = (ATo+ 1, ATy + F(Tp)) defines a homomorphism a®) : Wy — G2, of
group schemes over A, and (Uy, U1) — (APTy+ 1, AP T + G(Tp)) defines a homomorphism
al@ Y, - G,%l of group schemes over A. Moreover, aE(F) Whk — GﬁLK and (xg(G) :
Vo x — G,Zn, g are isomorphisms.

(4) The diagram of group schemes over A

aF) 2
W2 _— Gm

qﬂl (-)2l

(G)
o 2
V, —— Gy,

is commutative. Here @2 is defined by
(Uo, Uy) — (U, Uy ' UT).
(5) The special fiber of the exact sequence of group schemes over A
2 i w2
0— Z/p°L)py — W) — V) — 0

is isomorphic to the Artin-Schreier-Witt sequence (3).

Sekiguchi-Suwa have verified this theorem in [8]. We see an outline of the proof of (2).
For the proof, it is enough to show the following congurence relations:
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2 3 =l p
(1) F(T)” = pnT + (pn) T2 4 (pn) T3 4 Z 77k_'Tkp mod A” ;
k=0

2! 3!
AT +1DP =1\ (P, (k)3 5
=1 ~p

N rkp p.
+Z k!T mod AP ;
k=0

()  n” = 7 mod A” .

Our proof which is independent of a general case is different from the one in Sekiguchi-
Suwa [8]. It was given by Suwa. It is as follows:

LEMMA 2.3. Let f(T),g(T) € A[[T1]. If f(T) = g(T) mod A, f(T)? = g(T)?
mod AP.

PROOF. Put
f(T)=g(T)+1h(T), h(T) e AllT]].
Then
p
(TY? = ¢(T)” + <p>x’< (TP~ h(TY* .
f g k; )
Note that A7|(F)AF if k > 1.

LEMMA 2.4. E,(T)? =exp(pT)E,(T?), where E,(T) is the Artin-Hasse exponen-
tial series:

o0 Tpk
E,(T) = exp(Z?).

k=0
PROOF.
00 k 00 k
TP (TP)P
E,(T) = exp(z F) = exp(pT) exp (Z o ) = exp(pT)E,(T7).
k=0 k=0

LEMMA 2.5. Leta € A. Then

p—1 k
T
E,(aT) = E (ak') mod a” .
k=0 :

PROOF. Note that
E,(T) € Zp)[IT1l, E,(T)=exp(T) mod T?.
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PROOF OF (I). By Lemma 2.5, we have
F(T)=E,(nT) mod A
since A|n?. Hence
F(T)? = E,(nT)? mod A?
by Lemma 2.3. Furthermore, by Lemma 2.4,
E,(nT)? =exp(pnT)E,(n?T*) mod A* .
Now

(pn)?

(pm)® A (S TT3 mod A7 .

exp(pnT) =1+ pnT + —— T

In fact,

(pm)* >
v( T )—kv(pn)—v(k')—k{lJr (p—l)} Z[ }

i=1
} 1
k
p(p—1) p—1

k{1+

Hence, if k > 4,

k! - -1
By Lemma 2.5,
r—1
E,mPT) =Y "—'T mod AP
k=0
Therefore

E,(nT)? = exp(pnT)E,(n?T?) mod AP

(P, 7y (pn)? -

2! 3!

p—1 Upk
= <1+pnT+ ) FTP" mod A% .
k=0

Now

—1
(PTY)Z 2 (PTY)3 3 § 77pk pk
(1+p77T+ ST ];)—k!T
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p—

2 3
= pnT + (Pzﬂ') T? (p3n') T3 + Z ¥ mod A7 .

These imply ().

LEMMA 2.6.

k=1
l<p>z( D odp (<k<p—1).
p \k

PROOF.

1(P)=lp(17—1)-'-(17—k+1) 1)k,1(k—1)!
)4

2\ k! = med p

LEMMA 2.7. Leta € A. Then

p—l k—1 1
(— 1) (T)kE(l+aT)p 1 — (aT)? mod pa?

k=1 p

PROOF. Apply Lemma 2.6, developing the right hand side.
LEMMA 2.8. Leta € A. Then

p—1 p—1 i—1 k
1 —1)/ .
E{ Z%(ﬂ)/} =1+aT moda?.

k=0 j=1
PROOF.
— (=D — 1_,
log(1+T)=Z T exp(T):ZET , exp(log(1+T)=1+T.
k=1 k=0
Hence

V1 [E (=it
— - ) L (T} =14 TmodT?,
k!
k=0 ]—]
and we get the assertion by substituting a7 for T.

LEMMA 2.9. Leta € A. Suppose that a?~*|p. Then

() 1+aTl = Zk'{(1+aT)”]—]1—(aT)p} mod a”

2) (1+aT)Z {H(ﬂ)p;(lﬂnp} =1 moda’.
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PROOF. By Lemma 2.7,

P it Y 2 (A +al)? —1—@T)P ) 5
Z—{ a } —{ » } mod pa“.

- 1l{(1+aT)p—1—(aT)p

k
} mod a”
P

since a? 2| p.

PROOF OF (II).

G((AT+1)1’— 1)
AP

AT +1)P —1
E,,(ﬁ%) mod A7

since A|7. Now

Ar+npr-1_ ., AT+ D —1-Q@QT)"
i AP
and
AT+ DP —1—@T)?  ar71 AT + 1P —1—OT)?P
1 = (pn—2)
AP )4 AP
AT + 1P — 1 — (AT)P
_NoT+ P —1—aryry = AT HD @D
A P
Since A7 | pA,

p—1
g{(xT + 1P —1— TP} = Z ('Z)nxk‘T" = pnT mod A .
k=1

Ifi +j+k > p, A?|(pn)'i/ Ak. Hence

AT +1)P —1
Ep("T

) = Ep(P’IT)Ep(ﬁTp)Ep<1 Nt -a +AT)p> mod AP .

p
Applying Lemma 2.9 to a = X, we obtain

(1+/\T)Zk,{H(/\T)p;(HAT)p} = 1 mod A”.
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By Lemma 2.5,
2 3
E,(pnT) =1+ pnT + (pzn') T2 + (p;) 73 mod A7,
p—1 ;}k
~ _ k
E,,(nT)=ZHT mod A” .
k=0
Hence
-1
AT+ 1P =1\ (P? .5 (P 5\ = Pk p
(1+AT)G(T = (14T + 5T+ T ];)HT mod AP .
Now
—1
(P 5 S\ T
(l+pnT+ TR ZET
k=0
—1
_ (P’?)z 2 (P’?)3 3 ] ﬁk pk P
= T+ 5T+ 5T +ZHT mod A
k=0
since A”| pn. These imply (II).
LEMMA 2.10.
A — AL
(H n= 2 mod pAJ.

2 r= )»g + pn mod pkg. Hence A = Aé’ + pn mod AP,
3) A= Afk + kpn)»gk_l)p mod pAb. Hence \¥ = Aé’k + kpnk(zk_l)p mod AP (k > 2).
PrOOF. By Lemma 2.6,

p-l (—1)k-1

3

=1

Ga+DP =28 —1
p

)»/5 mod A? .

=~

Now
Mm+DP—1=2Ar.
These imply (1), (2) and (3).

LEMMA 2.11.
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PROOF. By the definition,
p—1 k-1
(=1
n= — kg .
k=1

Then we obtain

p—l k—1 p
—1
n? = { %Ag} mod A7,
k=1

noting that A|k§ . Now

{(_l)kl }p B (_l)kfl
= mod p .
k k
Hence
—1)k-1 p — 1)kl
{Lx’g} G Ay T
k k
LEMMA 2.12.

p

1 p—1
M -y l<p>kkl '
k=1 p k

PROOF. Develop and divide by pA the right hand side of A? = A?7 + 1 — (A + 1)P.
PROOF OF (III). By Lemma 2.12,

P Ll
i = —2) =—{ —(p>kkl}(pn—)\)
p k=1 p\k

p—1 p p—1 1 (p
=— Akt =7 )ak.
(k) AP p(k)

k=1

Now
p—1 (p) p—1 1 /p p—1 1 (p
—Z )»klrl-i-z—( >kkE—pn+Z—< )kkmod)»p,
k=1 k k=1 p k k=1 P k
since A?|pA. Hence

p—1
- L(pP\.&
=—pn+ — A mod AP .
f=—pn ;p(k)
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On the other hand, by Lemma 2.11,

D (b
=3 E0 kS L)k mod
k=1 k ? k=1 A ?

These, together with Lemma 2.10, imply (III).

EXAMPLE 2.13. p=2

t=—-1, =i, A==-2, M=i—-1, n=r=i—-1, n=-=-2i

FT)=1+@G—-1DT,
G(T)=1-2iT,
W(To) = T — To,

T2 =T +iT¢ —iTy — (i — DToT
2T+ 1
AL (X0, Yo) = —2XoYo + Xo + Yo,

Ui (To, Th) =

’

Af(X(),X], Yo,Y)=2X1"1+X1{1+G—-DYo}+{14+ G- 1)Xo}Y1 + XoYo.

2.14. We supplement the previous subsection. YV, has a structure of group scheme as
follows:
(multiplication) (To, T1) —> (AJ (To® 1,1 ® To), AF (To @ 1, Ti ® 1,1 ® To, 1 ® T1)),
(unit) (7o, T1) — (0, 0),
(inverse) (To, T1) > 17 (To, T1) = (I (To), 1] (To, T1)),
where

F —To F 1 1 —To
Iy (To)) = ———, 1} (To,T1) = - —F .
ATy + 1 A AT + F(Tp) Ao+ 1

The group scheme W is called by the Kummer-Artin-Schreier-Witt group scheme.
V> has a structure of group scheme as follows:
(multiplication) (To, T1) +—> (AS(Th® 1,1 ®@ Tp), AY(THh® 1, 1 ® 1, 1 ® Ty, 1 ® TY)),
(unit) (To, T1) — (0, 0),
(inverse) (To, T1) = 19 (To, T1) = (g’ (To), 17 (To, T1)),
where

G —To G 1 1 —To
Iy(To) = ———, I7(To,T) = — -G :
APTH+ 1 AP | APTy + G(Ty) AP Ty + 1

The sequence of group schemes

i 2
0— Z/p*ZT)a W, v, 50 4)
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is an exact sequence of sheaves on (Spec A)¢, hence it is an exact sequence of sheaves on
(Spec A)g. We call this sequence the Kummer-Artin-Schreier-Witt sequence. The exact se-
quence (4) has the Artin-Schreier-Witt sequence

00— Z/p2Z — Wax F—_; Wor — 0
as the special fiber, and the exact sequence of Kummer type

2
2 9 2
0— pn,y — G, g — G g —0

as the generic fiber.

3. The Kummer-Artin-Schreier-Witt theory

For an A-scheme X, we concretely describe a Z/ p*Z-torsor X' over X.
3.1. The exact sequence (4)
2 ip w2
0—Z/p°Z —> W, — V, — 0
induces the cohomology long exact sequence

0 —— I(X.Z/p7) —2 rxw) -2 rx W )
L H\X.Z/0Z) — HoW) —Ls HAx V).
Since the group scheme W) is smooth, H{ (X, W») =~ H (X, W»).
PROPOSITION 3.2. Let X be an A-scheme. Then

Hi (X, Wh) >~ HL (X, W) .
PROOF. The exact sequence
0— G» — W, — g™ —0
induces the cohomology long exact sequence
H{ (X, G%) — Hi(X, W2) — Hg(X.G™).

Let B be an A-algebra. We assume that B is a local ring or p is a nilpoint in B. Since
H{ (Spec B, G™)) = 0 (Sekiguchi-Oort-Suwa [3]),

Hg (Spec B,W») =0. (6)
Let ¢ : X — Xyar be a natural morphism of sites. Since Rl(p*Wz = 0 by (6), we have

Hi (X, Wy) ~ H} (X, W)
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by the Leray spectral sequence
Hfr(X, R19,W0) = HI (X, W) . (7)
3.3. We describe the exact sequence (5) more concretely. Let X be an A-scheme. Now,
letU = {U,} be an affine open covering on X and f;; = (fij, 9;;) € Z' (U, W) a 1-cocycle

representing an element n = (no, n1) € HY(X, W») such that llfz(r]) = 0. This means that
W f ij)) is a 1-coboundary, and if necessary replacing ¢/ a refinement, we can write

WA(fi) = (AG (bj. I9(Bi)). AT (b;. 19(B:))) on Uy :=U;NU;,

where b; = (boj, b1j) € I'(Uj,V2). Let h = (ho, h1) € I'(X,V2). We definer : X' — X
locally by the covering

w(z)) = ¥(z05, 21)) = (AS (b, h), A (b}, b))

on Ujx A = Spec I'(Uj, V) ®a Alzj],
the gluing being given by
(A§ @j. 17 @)). AT (2. 17 zi) = fij on  (Uj x A*)N (Ui x A?),
and an action of Z/p*Z on X’ by
(zj,8) = (A§ (z), i2(9), AT (zj,2())  for s € Z/p*Z.

Then X' is a Z/ p>Z-torsor over X, and [X'] € H'(X, Z/p*Z) is mapped to 5 = (10, n1) €
H'(X, W)).

3.4. Let B be an A-algebra. We assume that B is a local ring or p is a nilpoint in B.
Let X = Spec B. Then

Hi (X, W1) =0.
by (6). Hence
Coker[¥? : Wh(B) — V2(B)] — HY(X,Z/p*Z)

is an isomorphism. Hence, for any unramified p>-cyclic extension C of B, there exists a
morphism f : Spec B — V), such that
SpecC —— Ws
l al

Spec B L) %)
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is cartesian. That is to say, for any unramified p>-cyclic extension C of B, there exists an
element (bg, b1) € I'(X, V,) such that X’ = Spec B[, B8], where « and B satisfy

1 1 [(AB+ F(a))? 1
11/2, = —{( DY -1}, —  ——— =~ — G| —{(n P —1
(@ ) (Ap{<a+> }M,{ — —{Ga+D? = 1)
= (bo, b1) .
Now, let X’ and X” be Z/ p*Z-torsors. Then, there exist elements (bg, b1) and (b}, b)) €
I'(X, V») such that X’ = Spec B, 8] and X” = Spec B[o’, 8'], where ¥2(a, B) = (b, b1)
and ¥2(/, B) = (by, b}). Then by the exact sequence (5), the following are equivalent:

(i) X’ is isomorphic to X” as Z/ p*Z-torsors over X.
(i) Bla, Bl and B[/, B'] are Z/ p*Z-equivariant over B.
(iii) There is an element (cg, ¢1) € I' (X, ¥W,) such that
(A§ ((bo. b1), 19 (bj, B})), AT (b0, b1), 19}, b)) = W (co, c1).

3.5. Let B be an A-algebra. We assume that B is a noetherian local ring and faithfully
flat over A. And we assume that X is a connected flat proper scheme over B. We define
homomorphisms f> : Wr — G® xspeca G a and g5 : G xspec 4 Gim,a —> 5G4, by

Sfa(xo, x1) = (x0, F(x0) +Ax1) and g,(y,t) = %y) mod A,

for local sections (xo, x1) € Wa, vy € G® andt € G, 4, respectively. Since X is flat over A,
we can see that the sequence of sheaves on (Spec A)zar, (Spec A)g and (Spec A)q

f g
0— W e g(k) Xspec A Gm, A = b Qm,Ag — 0 ®)

is exact. The exact sequence (8) induces the cohomology long exact sequence

0 —— IF'X, W) —2 I'X.GM xx Guyx) —2 I'(Xo.Gu.x,)

f: g
—— HMX, W) —2— HMX, 6D xx Gux) —— HL(X0,Gm.x,).

Now, put C = I'(X, Ox). Then C is finite over B and a semi local ring (cf. [1]). Then by
assumption on X,

I'X,6™ xx Gux) =T'X,6%) x C*, I'(Xo,Gm.x,) = (C/1)*.

Since X belongs to the Jacobson radical of C, the morphism C* — (C/X1)* is surjective.
Hence we obtain an isomorphism

HL(X, W) = Ketlg, : HL(X, G™) x Pic(X) — Pic(Xo)].
Now, the homomorphism

F: g(” —> 1G4
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induces the homomorphism

Fyt Hy(X, ™) — Hi(X, 1:Gm x,) -
Then there is a homomorphism

exr : H (X0, 6™) — HL(X, .G x,)

such that the diagram

F.
HY(X,gW) ————> H'(X,1.Gm.x,)

H'(Xo,G™)

is commutative. Hence we obtain an isomorphism

HL(X, W) — {(c.d) € H' (X, G™) x Pic(X)| d mod A = exp(c mod 1) } .

Let ty : Xo — X be the inclusion induced by tp : Spec By — Spec B. Then we obtain an
isomorphism

o) Hy (X, Wh) —> {(LLol, [£1]) € Pic(X)?| (+) }, )
where (x) means the following conditions:
ix* Lol = [Ox,1,  exp(tx*Lol) = [ix*L1].

Using the isomorphism (9), we describe a Z/ p*>Z-torsor X’ over X geometrically. We
assume that B is a strictly Henselian local ring. For any Z/p?Z-torsor X', let io(X') =
[(fij gij)] € Hélt(X, Wh). We put (no, n1) = [(fij, gij)1- By the isomorphism (9), we have a
one-to-one correspondence between (19, n1) and ([Lo], [£1]) € Pic(X )2 with the conditions
(). Since (179, 1) is the image of X', by the exact sequence (5) we have 11/2(710, ny) = 0.
Hence ©2(([Lo], [£1])) = ([Ox], [Ox]), that is [Lo®”] = [Ox] and [£1®7] = [Lo]. Then
[Lol, [£1] € Pic’(X).

Inversely, we take ([Lo], [£1]) € Pic®(X)? with the conditions (%), [£o®”] = [Ox]
and [£1®P] = [Lo]. Then by the isomorphism (9), we obtain [(fij» 9ij)] € Hélt(X, Wh)
with ™ ([(fij. 9:)))) = (Lol [£1]) uniquely. Now, since ©*([Lo]. [£1]) = ([0x]. [Ox]).
(l1/2(ﬁj, gij)) is a 1-coboundary. Then we can construct a 7/ p*Z-torsor X' over X ( cf.
Subsection 3.3).

On the other hand, since C is a strictly Henselian local ring, w2 X, W) —
I'(X,))) is surjective. Hence we obtain the following:
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THEOREM 3.6. We obtain an isomorphism
o'F) HY(X, 2/ p*Z) —> {([Lo]. [£1]) € Pic®(X)?| (+x) } (10)
where (xx) means the following conditions:
[ix*Lol =[Ox,].  exr(ix™Lol) = [tx*L11.  [Lo®P1=1[O0x]. [£1%7]=[Lo].

We assume that X is an abelian scheme over B. Let G be a smooth affine commutative
group scheme over B. Then

Exth(X,G) — H'(X,Gy)

is injective. Moreover, the image is the set of primitive elements of H (X, Gx) (Serre [9)]).
Here, a € H'(X, Gy) is primitive if m*(a) = pi(a) + p5(a), wherem : X xp X — X is
the multiplication and p; : X xp X — X is the projection to the i-th factor (i = 1, 2). In
particular,

Exth (X, Gy p) = Pic’(X) C Pic(X) = H'(X, G ) .
Moreover, we have

Exty(X,Z/p*Z) > H'(X,Z/p*Z)

by the Kiinneth formula. Hence we obtain the following corollary.

COROLLARY 3.7. We obtain isomorphisms
Exty(X,Z/p*Z) — HL(X,Z/p*Z) (11)
— {(LLol. LL1D) € Pic®(X)?] (#4) } (12)

where (xx) is the conditions given in Theorem 3.6.

REMARK 3.8. The arguments that we gave in Subsections 3.4 and 3.5 have already
been given by Sekiguchi-Suwa [7].

4. Néron blow-ups

In Theorem 3.6, we saw that Z/ p?>Z-torsors over X are described by line bundles over
X. In general, we get the homomorphism H' (X, Z/p*Z) — H'(X, 14,2) induced by the

homomorphism ) : W, — G,Zn. In this section, we shall give a Z/p>Z-torsor X" as
successive “ Néron blow-ups" starting from a i ,2-torsor X ’. Note that ) : W — G,2n is
given by a composite of Néron blow-ups (cf. Sekiguchi-Suwa [4] ). Using this fact, we shall
locally describe X" — X’ as a composite of Néron blow-ups.

A Néron blow-up defined over an affine group scheme was used by Waterhouse-Weisfeiler
[11] to give a classification of one-dimensional affine group schemes. We extend this argu-
ment to schemes (not necessarily affine schemes).
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Let A be a discrete valuation ring and K (resp. k) the fraction field (resp. the residue
field) of A. We denote by r a uniformizing parameter of A.

4.1. We recall the Néron blow-up for a group scheme. For details, see [4], [11]. Let G
be a flat affine group A-scheme of finite type. We denote by G ¢ (resp. Gy) the generic (resp.
the special) fiber of G over A. We denote by A[G] (resp. K[G], resp. k[G] ) the coordinate
ring of G (resp. G, resp. Gg).

Let H be a closed k-subgroup of G;. Let I(H) be the inverse image in A[G] of the
defining ideal of H in k[G]. Then the structure of Hopf algebra on K[G] induces a structure
of Hopf A-algebra on the A-subalgebra A[z~!'I(H)] of K[G]. Then

G" .= Spec A[n 1 (H))
is a flat affine group A-scheme of finite type. The injection
A[G] C AIGH) = Aln 71 (H)]
induces an A-homomorphism G — G. By the definition, the generic fiber Gg — Gk is
an isomorphism. We call the group A-scheme G¥ the Néron blow-up of H in G.
EXAMPLE 4.2.
(1) The Néron blow-up of {0} in G, 4 := Spec A[T]:
Gaa <— G\ = Spec A[Y] = Gy 4
T+ nY.
(2) The Néron blow-up of {1} in G;,,,4 := Spec A[T, T
Guma <— G, = Spec ALY, (x¥ + 1)~ = g™
T—naY+1.

Waterhouse-Weisfeiler [11] showed the following theorem.

THEOREM (Waterhouse-Weisfeiler [11], Theorem 1.4.). Let G and G’ be flat affine
group A-schemes of finite type. Let f : G' — G be an A-homomorphism. If a K -homo-
morphism fx : Gy — Gk is an isomorphism, then the A-homomorphism f : G' — G is
isomorphic to a composite of Néron blow-ups.

The homomorphismaF) : W, — G2, is defined by (Uy, Uy) = (ATo+1, AT1+F(Tp)),
and the generic fiber (x;(F) Whk — Gi’ x is an isomorphism (cf. Theorem 2.2 (3)). The
homomorphism aF) is described using Néron blow-ups by Sekiguchi-Suwa [4].

4.3. Let X be a flat A-scheme. We denote by Xk (resp. Xj) the generic (resp. the

special) fiber of X over A. For a closed subscheme Z of X, let Z be the ideal Ox-sheaf
defining the scheme Z. Then

SpecA[Ox,n_ll]



168 KAZUYOSHI TSUCHIYA

is a flat A-scheme. The injection
Ox C A[Ox, 7~ 'T]

induces an A-morphism Spec A[Ox, 7 ~'Z] — X. By the definition, the generic fiber is an
isomorphism. We denote by XZ or XT a flat A-scheme Spec A[Oy, 71’11] and call it the
Néron blow-up of Z in X or the Néron blow-up of 7 in X.

PROPOSITION 4.4. Let X be a flat A-scheme. Then

X=X and X" =Xg.

PROOF. Let 7y be the ideal Ox-sheaf defined by the scheme X. Since I' (X, Zy) = (0),
AlOx, n ™' Tyl = A[Ox].
Hence
XX = Spec A[Ox]
=X.
Let Z; be the ideal Ox-sheaf defined by @. Since I' (X, Z;) = ' (X, Oy),
AlOx, 7 'T11 = AlOx , 7' Ox]
= Alr'O0x]
= K[Ox].
Hence
X7 = Spec K[Ox]
=Xk .

EXAMPLE 4.5. We consider the affine line A, = Spec A[T].
(1) We calculate the Néron blow-up of {0} in A}L‘. Let Zg be the ideal O, | -sheaf defined

by {0}. Since I'(Al,, Zp) = (T) C A[T],
AlOy1. 7™ To] = A[A[T] + 7' TA[T]]
= Alz"'T)
S A[Y],
where the morphism A[rr*1 T] = A[Y]is defined by T +— Y. Hence
(A} = Spec A[O,, 7' To]
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< Spec A[Y]
=Al.
(2) We calculate the Néron blow-up of VTM)) in Al where N € N. Let Zy be the
ideal O,1 -sheaf defined by V(TM)). Since I'(AL, Zy) = (TN) C A[T),
A0, Iyl = A[AIT] + 7~ ' TV A[T]]
= A[T,Y]/(TN = nY).
Hence
ALY = spec AlO,1, ' Ty]

= Spec A[T, Y1/(TN —nY).

EXAMPLE 4.6. We calculate the Néron blow-up of V((T'—1)) in X := Spec A[T, T-1.
Let 7 be the ideal Ox-sheaf defined by V((T — 1)). Since I'(X,7) = (T — 1) C A[T, T,
AlOx , 7771 = ATAIT, T~ + 7~ 1(T — DA[T, T7']]
=Alz (T =-1),T7]
S ALY, (Y + D7,

where the morphism A[7 (T — 1), T~!1 5 A[Y, (Y + 1)~ !]is defined by T > 7Y + 1.
Hence

xV{T=D) = §pec A[Ox , 77! 7]

< Spec A[Y, (xY + 1)7'].

EXAMPLE 4.7. We consider the projective line PL = Proj A[Ty, T1]. Put
Uy = Spec A[T1/To]l = Spec Al[tp] and U; = Spec A[To/T1] = Spec A[#1].
Then P!, is given by gluing Uy and U; with isomorphisms
Uto <— Uot
H — tal s
where
Uy D Ugi = Spec Alto, 1,'] and Uy D Ui = Spec Alty, 17 '].

(1) We calculate the Néron blow-up of Vi ((Tp, T1)) in P}A. Let Zy be the ideal OPL_
sheaf defined by V, ((Tp, T1)). Then
I'(Uo, Zp) = (t0) C Alto] and  I'(Up,Zp) = (t1) C Alt].
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Now, put
Vo= P+ T s Upand - Vi = @Y+ e Uy
Then
Vo = Uy ‘") = Spec Alto/7]
< Spec A[so]
= Al
and

Vi = U/ = Spec Alr /7]
< Spec Als1]
=Al,
where the morphism Spec A[fp/7] < Spec A[so] is defined by ty > msp and the morphism

Spec At /7] < Spec A[s1] is defined by #; + ms1. Now, put
Vor =W XPL (Uo XPi\ Upj) and Vo=V XPi\ Uy XPL Uy).

Then
Vor = Uy, ™ = Spec A[Alto, 1511 + (t0/7) Alto, 15111
= Spec Aln/, t(;l]
< Spec Also, (nso)*l]

= Spec K[, so_l] ,

where the morphism Spec A[7y/ 7, t(;l] < Spec K [so, sal] is defined by #9 > msg. Similarly
Vio = U\ = Spec Alt /7, 1]
< SpecK[sl,sfl],
where the morphism Spec A[t; /7, tl_l] < Spec K [s1, sl_l] is defined by #; — ms;. Hence
(PL)V+(T0.T1) j5 obtained by gluing Vo ~ Al and V; ~ A, with isomorphisms
Vio <— Vou
s1 —> (71’2S())71 .

Now, we give the special fiber of (P}L\)V“(TO'T')). We have Vo ®4 k ~ A,i and Vi ®4 k >~
A}(. Moreover, Vo1 ®4 k = Spec Altp/m, to_l] ® k = . Similarly, Vio ®4 kK = (. Hence we
have (PIIA)V+((T0,T])) ®a k = A]i UA]i
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(2) We calculate the Néron blow-up of V1 ((Tp)) in Pi‘. Let 77 be the ideal OPL -sheaf
defined by V4 ((Tp)). Then

I'Uy,I1) = (1) = Aly] and I'(U1,1y) = (11) C Alnl.

Now, put
Vo= P00 xp Up and Vi = @'+ 5 Uy
Then
Vo=UY W = g
= Spec K [tp]
=Ak
and

vi = U/ = Spec Al1 /7]
< Spec A[s1]
=Al,
where the morphism Spec A[t /7] < Spec A[s1] is defined by #; +— ms1. Now, put
Vo1 =W ka (Uo XPA Upj) and Vig=WV; XPL Uy ka Uy).
Then
Voi = Ug, = Spec K10, 15 ']
and
Vio = U = Spec Alt /m, 1]
< Spec K [s1, sfl] ,
where the morphism Spec A[#; /7, tl_l] < Spec K [s1, sl_l] is defined by #; — ms;. Hence
(PL)V+(T0) s obtained by gluing Vo ~ A} and V| =~ AL with isomorphisms
Vio <— Vo

S1 —> (m())71 .

Now, we give the special fiber of (P}A)V+((T0)). We have Vo®@a k =@ and Vi @4 k >~ A}(.
Hence we have (PL)V“(TO’T])) Rak = A}(.

4.8. We consider the Kummer-Artin-Schreier Theory (cf. [3], [6]). In this subsection,
let A =¢ —1and A = Z,)[¢]. Then A is a discrete valuation ring and A is a uniformizing
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parameter of A. K (resp. k) denotes the fraction field (resp. the residue field) of A. Then
K =Q(¢)and k = F,. Put

AFX, Y)Y =AXY + X +7Y,
AX,Y)=APXY + X + Y,

1
U(T) = G+ 1P — 1)

Let X be a flat A-scheme and U/ = {U;} an affine open covering on X. Put U; =
Spec A ;. Let X" be a Z/ pZ-torsor over X. Then X" is locally written by

Vj:=X"xx Uj =SpecA;[Y;, \Y; + D"/(#(¥)) —¢)),
where c; € G*)(A;). X" is given by gluing V; with isomorphisms
Vi xx Ujj <V xx Uij
Yj— A (g5, Y0
where U;j = U xx U; andg,»j e I'(Uj;, Q(A)).Forany J.puth; = )chj'—i-l. Thenb; € AT.
We define the scheme X’ locally by
Uj:= X' xx Uj = Spec A;[T;, T, /(T — b)),
the gluing being given by isomorphisms
Uj,- x x Uij Pl Ui, x x Uij

where fi; € I'(U;j, G,). Then X'isa M p-torsor over X.
Now, we describe the morphism X” — X’ using a Néron blow-up. We define the
subscheme Z; of U; by V((T; — 1)). Then

V= (U})Zj
= Spec A;[Y;, \Y; + 1)’1]/()»plII(Yj) —(j—1).

Here the morphism fNj 1V — U;. is defined by 7; — AY; + 1. The scheme X" is given by
gluing V; with isomorphisms

Vi xx Ujj Pl Vi xx Ujj
Yj — Af(g;;. ),
where

9ij = (fij = D/%.
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Therefore we obtain the morphism
X — X'
4.9. Hereafter we use the notations in section 2. We can write A = u ;\)»5 , where
u); € A*. Put
Fu(T) = i ("”AJ# and  G(T) = i “’”Zﬂ
j=0 j=0
fork=0,1,..., p—1.Put
F(T) = F(T) = Fi(T) - and - G(T) = Gi(T) — G (T) .
Put
A§ (X0, Yo) = 25 Xo¥0 + Xo + Yo,

A(lk)(Xo, X1, Y0, Y1) = A X1¥1 + X1 Fee1 (Y0) 4+ Fe1 (Xo) Y1

1 ~ ~ ~
+ it (Xo) Pt (Yo) - Feo1 (AP (Xo, Yo))) ,
2

1

k

¥ (X) = 05X+ 17 =1},
2

1 {(x’;xl + Fi_1(Xo))?

0
w® (X, X)) = ——
X X0 =15 X0+ 1

- ék_l(wo“’)(Xo))} ,
2

xP
o (X0, X1) = 71—,
Ay Xo+1
fork=1,2,..., p.
Let X be a flat A-scheme and U/ = {U;} an affine open covering on X. Put U; =
Spec A;. Let X" be a Z,/ p>Z-torsor over X. Then X" is locally written by

Vi:=X"xxUj
= Spec Aj[Yoj. Y1, (\Yo; + D)™\, (AY1; + F(Yo;)) ']
/o (Yo;) — coj, ¥1(Yoj, Y1;) —c1j),

where (coj, c1j) € Va(Aj). X" is given by gluing V; with isomorphisms

Vi xx Ujj < Vi xx Ui;

(Yoj, Y1) > (AG (f;, Yoi) , AT (]} 935 Yoi, Y12))
where U;; = U; xx U; and (fl.’j,g;j) € I'(Ujj, W»). For any j, put (boj,b1j) =
@@ (coj, c1j) = (WPeoj + 1,4Pe1j + G(cop)). Then (boj, bij) € (AF)*. We define the
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scheme X’ locally by
Uj = X' xx Uj = Spec Aj[Toj, Tvj, Ty, Ty 1/ (T, = boj, Tg; ' Tf = brj).
the gluing being given by isomorphisms
U; X x Uij (L Ui/ X x Uij
(Toj, Thj) —> (fijToi» 9;;T1i)
J

where (f;;, gl-j) e I'(Ujj, G,Zn). Then X' is a M p2-torsor over X.
Now, we describe the morphism X” — X’ using Néron blow-ups.
(1) Step 1. We define the subscheme Z;l’o) of U} by V((Ty; — 1)). Put Vj(l’o) =
Z(1,0)

(U]’-) j . Then

(1,0)

_ — 0 0
VM = Spec A;[¥0;. Y1, (Ga¥o; + D7V Y/ @0 oy v (Yoj. 1)

where

vs (Vo) = 25wV (¥o) = (bo; = 1) and

"0 (o5 11j) = @7 (Yoj. Y1) — bu,
Here the morphism fj(l’o) : Vj(l’o) — U]’. is defined by (Tpj, T1;) — (A2Yo; + 1, Y1;). The
scheme X' i given by gluing Vj(l’o) with isomorphisms

1,0 ~ 1,0
Vj( ) xx Uij <— Vi( ) x x Uij

1

1 1,0 ,0
Yo Y1) — (AP (A Yo g1 " i)

where
1,0) (1,0
0 05 = ((fij = D/r2. gi)) -
Therefore we obtain the morphism

f(l,O) : X/(I,O) X

(2) Step 2. For any 2 < k < p, we define the subscheme Zg.k’o) of Vl.(kfl’o) by
70

V((To)). Put VO = (vEIO) 2T Then

k,0 — — k,0 k,0

V& = Spec A;[Yo;. Yij. 04 Yo; + DL Y/ @0 Gop. w0 (Vo5 1)
where

v " (Yo)) = 25" ¥ (Y0)) = (boj = 1) and
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k,0 k
%( )(YOj,Ylj)Zq)f)(YOj,Ylj)—blj~

Here the morphism fl.(k’o) : Vj(k’o) — Vl.(k_l’o) is defined by (Tp;, T1;) — (A2Yoj, Y1;). The

scheme X’* is given by gluing Vl.(k’o) with isomorphisms
k.0 ~ k0
Vj( ) xx Ujj <— Vi( ) x x Uij
k), (k0 k.0
(Yoj, Y1) — (A (£ Yo, g5 0110)
where

*,0) (k0)y _  (k=1,0) (k—1,0)
(fij 1 9ij )—(fl] /)\2’91']' ).
Therefore we obtain the morphism

f(k,o) : X/(k!o) N X/(k—l,O) )

tep 3. e define the subscheme Z:"" " of V.*° 1j—1). PutvV.m""" =
(3) Step3. We define the subsch zﬁ"” fV](PO)by V((Tyj —1)). P v](””
(p,1)
(vj(”"”)zf . Then
1 _ _ 1 1
VD = Spec Aj[Yo;. Y1, 050, + D7 GaYiy + D7/ Yoy, w7 (Yoj. 1))
where
1 2
vV (Voj) = 24 WP (Yo) = (b — 1) and
1 1
UV Yo V1) = BV Yo Vij) — (b — ).
Here the morphism fj(”’l) : Vj(’”l) — Vj(”’o) is defined by (To;, T1j) — (Yoj, 22Y1; + 1).
The scheme X'"*V is given by gluing Vj(p ‘D Wwith isomorphisms
Vj(p’l) x x Uij Vi Vl.(p’l) x x Uij
)1 ,1
(Yoj. Y1) — (AL AP0 Yo, 48 g8V v
where
1 1 0 0
PV gDy = (P @Y = D).
Therefore we obtain the morphism

F@b x/P) _ x (0

(4) Step 4. Forany 2 < k < p, we define the subscheme Z;p’k) of V}.(p’k_l) by

~ _ (p.k)
V(T — F{_ (Toj) /3571 Put viPO = (v P27 Then
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Y - = -
VPR =Spec A;[Yo;. Y1j. W5 Yo; + DL 08 Y1; + Fimi (Yo;) 1]
k k
1@ (op), w70 (Yo, Y1)
where
J 2
s (Yoj) = 40w (Vo) — (bo; — 1) and
k kp .y, (k ~
U0 Yo 1) = 1P P (Vo 1) — (brj — G (9" (Vo)) -
Here the morphism f;p’k) : Vj(p’k) — Vj(p’k_l) is defined by (To;, T1;) — (Yoj, A2Y1; +
f,é_l (Yoj)/kgfl). The scheme X7 is given by gluing Vl.(p’k) with isomorphisms
k ~ k
Vj(p ) xx Ujj <— Vl.(p ) x x Uij
k k k k
(Yoj. Y1) —> (AL £ Yo, AP0, g0 ¥oi vii)) .
where
k k k—1 k—1 = k—1
gl = G g e = B (P
Therefore we obtain the morphism

f(p,k) . X/(p,k) N X/(p,kfl)‘

We define the morphism £/ : X” — X'"*P) Jocally by
Spec Aj[To;, Tij, 05 To; + 1D™', QU T1; + Epei (To) ™ 1/ P (Top), w7 (Toj, T1 )
«— Spec A;[Yo;, Y1, (WYo; + D)L, (WY1; + F(Yo;) ']
/(P (Yo;) — coj, Y1 (Yo, Y1) — c1j)
(Toj, Thj) —> (uaYoj, upY1j).
Summing up the above argument, we obtain the following theorem.

THEOREM 4.10. Under the above notations, we obtain the morphism X" — X' as
the following:

Fr F(p.p) F(p.2) F(p.D) F(p.0) 72.0) F(10)
xr L ey 00T o) S ) SO ST (L0 S s
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