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Introduction

The Kummer-Artin-Schreier-Witt theory is the unified theory of the Kummer theory and
the Artin-Schreier-Witt theory. We denote by p a prime number and ζn a primitive pn-th root
of unity such that ζnp = ζn−1. Let A = Z(p)[ζn]. The Kummer-Artin-Schreier-Witt sequence

0 −→ (Z/pnZ)A
in−→Wn

Ψ n−→ Vn −→ 0

has the Artin-Schreier-Witt sequence as the special fiber and the Kummer type sequence as
the generic fiber, where Wn and Vn are group schemes related to deformations of the addi-
tive group scheme to the multiplicative group scheme (cf. Section 2). This sequence is a
key of the Kummer-Artin-Schreier-Witt theory. The case n = 1 of this theory (the Kummer-
Artin-Schreier theory) was presented by Waterhouse [10] and Sekiguchi-Oort-Suwa [3] inde-
pendently. In the general case, this theory was formulated by Sekiguchi-Suwa [5], [8] and
[7].

Let X be a scheme,G a flat group scheme locally of finite type over X and X′ a scheme
overX such thatG acts onX′. The schemeX′ is aG-torsor overX ifX′ is locally isomorphic
to G for the flat topology on X. In particular, if G is a finite group scheme, a G-torsor is a
Galois G-extension. Now let PHS(G/X) be the set of all isomorphism classes of G-torsors

overX. IfG is a commutative affine group scheme overX, then PHS(G/X)
∼→ Ȟ 1

fl (X,G)
∼→

H 1
fl (X,G) (cf. Raynaud [2]). Therefore we can calculate torsors by the cohomology theory.

Our aim of this article is to give concrete descriptions of Z/p2Z-torsors over an A-

scheme X, that is to say, unramified cyclic coverings of degree p2 over an A-scheme X. In
order to give them, we use arguments similar to those using in the Kummer theory and the
Artin-Schreier-Witt theory (cf. Section 1). Our main result is as follows:

ASSERTION 1 (cf. Section 3, 3.3). Let X be an A-scheme, U = {Uj } an affine open

covering on X. Let f ij ∈ Z1(U,W2) be a 1-cocycle such that Ψ 2([f ij ]) = 0. Then, if
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necessary by taking a refinement of U, there exists bj ∈ Γ (Uj ,V2) for each j, such that

Ψ 2(f ij ) = (ΛG0 (bj , I
G(bi )),Λ

G
1 (bj , I

G(bi ))) on Uj ∩ Ui . Let h ∈ Γ (X,V2). Then a

Z/p2Z-torsor over X is described by π : X′ → X locally given by the covering

Ψ 2(zj ) = (ΛG0 (bj ,h),ΛG1 (bj ,h)) on Uj ×A2 = SpecΓ (Uj ,V2)⊗A A[zj ] ,
the gluing being given by

(ΛF0 (zj , I
F
0 (zi )),Λ

F
1 (zj , I

F
1 (zi ))) = f ij on (Uj ×A2) ∩ (Ui ×A2) ,

and an action of Z/p2Z on X′ by

(zj , s) �−→ (ΛF0 (zj , i2(s)),Λ
F
1 (zj , i2(s))) for s ∈ Z/p2Z .

Here ΛF0 and ΛF1 (resp. ΛG0 and ΛG1 ) are the polynomials which define the multiplication

on W2 (resp. V2), and IF0 and IF1 (resp. IG0 and IG1 ) are the polynomials which define the
inverse on W2 (resp. V2).

We consider the special two cases, one is the case H 1(X,Z/p2Z)
∼→ Coker[Ψ 2 :

Γ (X,W2) → Γ (X,V2)], and the other is the case H 1(X,Z/p2Z)
∼→ Ker[Ψ 2 :

H 1(X,W2)→ H 1(X,V2)].
ASSERTION 2 (cf. Section 3, 3.4). Let B be an A-algebra. We assume that B is a local

ring or p is a nilpoint in B. Let X = SpecB. Then for any unramified p2-cyclic extension C
of B, there exists a morphism f : SpecB → V2 such that

SpecC −−−−→ W2⏐⏐� Ψ 2

⏐⏐�
SpecB

f−−−−→ V2

is cartesian.

ASSERTION 3 (cf. Theorem 3.6). Let B be a strictly Henselian noetherian local ring
and faithfully flat over A. Let X be a connected flat proper scheme over B. Put X0 = X ⊗B
B/(ζ1 − 1). Let ιX : X0 → X be the inclusion induced by ιB : SpecB/(ζ1 − 1)→ SpecB.
Then we obtain an isomorphism

H 1
fl (X,Z/p2Z)

∼−→ {([L0], [L1]) ∈ Pic0(X)2| (∗∗) }
where (∗∗) means the following conditions:

[ιX∗L0] = [OX0] , exF ([ιX∗L0]) = [ιX∗L1]
[L0
⊗p] = [OX] , [L1

⊗p] = [L0] .
For definition of the homomorphism exF , see Section 3, 3.5.
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In Assertion 3, we see that Z/p2Z-torsors over X are described by line bundles over X
satisfying suitable conditions. This fact is very interesting geometrically. In general, we can

give a correspondence of a Z/p2Z-torsor over X to a µp2 -torsor over X. Moreover we can

give a Z/p2Z-torsor overX as successive Néron blow-ups starting from a µp2 -torsor overX.

ASSERTION 4 (cf. Theorem 4.10). Let X′′ be a Z/p2Z-torsor over X and X′ a µp2-

torsor overX corresponding toX′′. Then we can give the morphismX′′ → X′ as a composite
of Néron blow-ups.

In Section 1, we recall the Kummer theory and the Artin-Schreier-Witt theory. In Sec-
tion 2, we define the Kummer-Artin-Schreier-Witt group schemes and the Kummer-Artin-
Schreier-Witt exact sequence. Using these, in Section 3, we argue the Kummer-Artin-Schreier-

Witt theory of degree p2, that is to say, we concreately describe a Z/p2Z-torsor over X. In

Section 4, we give a Z/p2Z-torsor overX as successive Néron blow-ups starting from a µp2 -
torsor over X.

ACKNOWLEDGMENT. The author would like to be very grateful to Prof. T. Sekiguchi
and Prof. N. Suwa who gave him this problem and many advices. By their advices, he could
finish this paper. He would like to express his gratitude.

NOTATIONS.

• We denote by p a prime number and ζ2 a primitive p2-th root of unity. We put
ζ = ζ p2 .
• Let A be a discrete valuation ring. Let m denote the maximal ideal of A. For λ ∈

m−{0}, we putA0 = A/λ andX0 = X×SpecASpecA0. Let ι : SpecA0 −→ SpecA
be the canonical inclusion.
• Let R (resp. F ) be a commutative ring (resp. a field). We denote by Ga,R (resp.

Ga,F ) the additive group scheme over a ring R (resp. a field F ) and by Gm,R (resp.
Gm,F ) the multiplicative group scheme over a ring R (resp. a field F ). We denote by
Wn,F the group scheme of Witt vectors of length n over a field F .

• We denote by G(λ) = SpecA[T , (λT + 1)−1] the Kummer-Artin-Schreier group
scheme (See Sekiguchi-Oort-Suwa [3], Sekiguchi-Suwa [6]). The group structure

of G(λ) is as follows:
(multiplication) T �−→ λT ⊗ T + T ⊗ 1+ 1⊗ T ,
(unit) T �−→ 0,
(inverse) T �−→ (−T )/(λT + 1).

• We denote by Xzar (resp. Xét, resp. Xfl) the small Zariski site (resp. small étale site,
resp. small flat site).
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1. The Kummer theory and the Artin-Schreier-Witt theory

In order to understand the Kummer-Artin-Schreier-Witt theory, we recall the Kummer
theory and the Artin-Schreier-Witt theory.

1.1. We recall first the Kummer theory. Let n be an integer with n > 1 and µn the set
of n-th roots of unity. Put A = Z[1/n][µn] and µn,A = Ker[n : Gm,A −→ Gm,A]. Then we
obtain the sequence of group schemes over A

0 −→ µn,A −→ Gm,A
n−→ Gm,A −→ 0 . (1)

The sequence (1) is an exact sequence of sheaves on (SpecA)ét, and hence it is an exact
sequence of sheaves on (SpecA)fl. It is called the Kummer sequence. Since µn ⊂ A, the
group scheme µn,A is (non canonically) isomorphic to the constant group scheme Z/nZ. For
an A-scheme X, the exact sequence (1) induces the cohomology long exact sequence

0 −−−−→ Γ (X,Z/nZ) −−−−→ Γ (X,O∗X)
n−−−−→ Γ (X,O∗X)

−−−−→ H 1(X,Z/nZ) −−−−→ H 1(X,Gm,A)
n−−−−→ H 1(X,Gm,A) .

Hence we obtain the exact sequence

0 −→ Γ (X,O∗X)/Γ (X,O∗X)n −→ H 1(X,Z/nZ) −→ nPic(X) −→ 0 . (2)

We describe the exact sequence (2) more concretely. Now, let U = {Uj } be an affine open

covering on X and (fij ) ∈ Z1(U,O∗X) a 1-cocycle representing an element η ∈ H 1(X,O∗X)
such that nη = 0. This means that (f nij ) is a 1-coboundary, and if necessary replacing U a

refinement, we can write

f nij = bj/bi on Uj ∩ Ui ,
where bj ∈ Γ (Uj ,O∗X). Let h ∈ Γ (X,O∗X). We define π : X′ → X locally by the Kummer
covering

znj = bjh on Uj × A1 = SpecΓ (Uj ,O∗X)⊗A A[zj ] ,
the gluing being given by

zj /zi = fij on (Uj × A1) ∩ (Ui × A1) ,

and an action of µn on X′, that of Z/nZ on X′ by

(ζ, zj ) �−→ ζ zj .

Then X′ is a Z/nZ-torsor over X, and [X′] ∈ H 1(X,Z/nZ) is mapped to η ∈ H 1(X,O∗X).
(A) Let B be a local A-algebra and X = SpecB. Since

H 1(X,Gm,K) = Pic(X) = 0
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by the Hilbert theorem 90, we obtain an isomorphism

B∗/(B∗)n ∼−→ H 1(X,Z/nZ) .

Hence, for any unramified n-cyclic extension C of B, there exists a morphism f : SpecB →
Gm,A such that

SpecC −−−−→ Gm,A⏐⏐� n

⏐⏐�
SpecB

f−−−−→ Gm,A

is cartesian.
(B) Let K be an algebraically closed field such that n is an invertible element and X a

connected properK-scheme. Then, sinceΓ (X,O∗X) = K∗ and the morphism n : K∗ −→ K∗
is surjective, we obtain an isomorphism

H 1(X,Z/nZ)
∼−→ nPic(X) .

1.2. We recall the Artin-Schreier-Witt theory. LetX be an Fp-scheme andF the Frobe-
nius map overWn,Fp . Then we obtain the sequence of group schemes

0 −→ Z/pnZ −→ Wn,Fp
F−1−→ Wn,Fp −→ 0 . (3)

The sequence (3) is an exact sequence of sheaves on (SpecA)ét, and hence it is an exact
sequence of sheaves on (SpecA)fl. It is called the Artin-Schreier-Witt sequence. The exact
sequence (3) induces the cohomology long exact sequence

0 −−−−→ Γ (X,Z/pnZ) −−−−→ Γ (X,Wn,Fp )
F−1−−−−→ Γ (X,Wn,Fp )

−−−−→ H 1(X,Z/pnZ) −−−−→ H 1(X,Wn,Fp )
F−1−−−−→ H 1(X,Wn,Fp ) .

Now, let U = {Uj } be an affine open covering on X and (f ij ) ∈ Z1(U,Wn,Fp )

a 1-cocycle representing an element η ∈ H 1(X,Wn,Fp ) such that Fη = η. This means that

(f
p

ij − f ij ) is a 1-coboundary, and we can write

f
p
ij − f ij = bj − bi on Uij := Uj ∩ Ui

where bj ∈ Γ (Uj ,Wn,Fp ). Let h ∈ Γ (X,Wn,Fp ). We define π : X′ → X locally by the
Artin-Schreier-Witt covering

z
p
j − zj = bj + h on Uj × An = SpecΓ (Uj ,Wn,Fp )⊗A A[zj ] ,

the gluing being given by

zj − zi = f ij on (Uj ×An) ∩ (Ui ×An) ,
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and an action of Z/pnZ on X′ by

(zj , s) �−→ zj + s , for s ∈ Z/pnZ .

Then X′ is a Z/pnZ-torsor over X, and [X′] ∈ H 1(X,Z/pnZ) is mapped to η ∈
H 1(X,Wn,Fp ).

(A) Let B be an Fp-algebra and X = SpecB. Since

H 1(X,Wn,Fp ) = 0 ,

we obtain an isomorphism

Coker[F − 1 : Wn(B) −→ Wn(B)] ∼−→ H 1(X,Z/pZ) .

Hence, for any unramified pn-cyclic extensionC ofB, there exists a morphism f : SpecB →
Wn,Fp such that

SpecC −−−−→ Wn,Fp⏐⏐� F−1

⏐⏐�
SpecB

f−−−−→ Wn,Fp

is cartesian.
(B) Let k be an algebraically closed field with characteristic p > 0 and X a connected

proper k-scheme. Then, since Γ (X,Wn) = Wn(k) and the morphism F − 1 is surjective over
Wn(k), we obtain an isomorphism

H 1(X,Z/pnZ)
∼−→ Ker[F − 1 : H 1(X,Wn) −→ H 1(X,Wn)] .

REMARK 1.3. IfX is smooth over k,H 1(X,Wn) is isomorphic to the Dieudonné mod-
ule of FnPicX/k. We see the case n = 1.

Let k[ε] be the ring of dual numbers ( k[ε] ∼→ k[T ]/(T 2) ). The exact sequence

0 −→ Ga,k −→
∏
k[ε]/k

Gm,k[ε] −→ Gm,k −→ 0

induces the exact sequence

0 −→ H 1(X,Ga,k) −→ PicX/k(k[ε]) −→ PicX/k(k) ,

where
∏

k[ε]/k
is the Weil restriction functor. Then we get an isomorphism

H 1(X,Ga)
∼−→ Lie(PicX/k)

∼−→ Lie(FPicX/k) .
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2. The Kummer-Artin-Schreier-Witt group schemes

In this section, we define the Kummer-Artin-Schreier-Witt group schemes and the
Kummer-Artin-Schreier-Witt exact sequence to unify the Kummer theory and the Artin-
Schreier-Witt theory. For details, see [5], [8], [7].

Hereafter, let λ = ζ − 1, λ2 = ζ2 − 1 and A = Z(p)[ζ2]. Then A is a discrete valuation
ring and λ2 is a uniformizing parameter of A. K (resp. k) denotes the fraction field (resp. the
residue field) of A. ThenK = Q(ζ2) and k = Fp.

2.1. Put

η =
p−1∑
k=1

(−1)k−1

k
λk2 and η̃ = λp−1

p
(pη − λ) .

Put

F(T ) =
p−1∑
k=0

(ηT )k

k! , G(T ) =
p−1∑
k=0

(η̃T )k

k! ,

ΛF0 (X0, Y0) = λX0Y0 +X0 + Y0 , Λ
G
0 (X0, Y0) = λpX0Y0 +X0 + Y0 ,

ΛF1 (X0,X1, Y0, Y1) = λX1Y1 + X1F(Y0)+ F(X0)Y1

+ 1

λ
{F(X0)F (Y0)− F(λX0Y0 + X0 + Y0)} ,

ΛG1 (X0,X1, Y0, Y1) = λpX1Y1 + X1G(Y0)+G(X0)Y1

+ 1

λp
{G(X0)G(Y0)−G(λpX0Y0 +X0 + Y0)} ,

Ψ0(T0) = 1

λp
{(λT0 + 1)p − 1} ,

Ψ1(T0, T1) = 1

λp

{
(λT1 + F(T0))

p

λT0 + 1
−G

(
1

λp
{(λT0 + 1)p − 1}

)}
,

W2 = SpecA

[
T0, T1,

1

λT0 + 1
,

1

λT1 + F(T0)

]
,

V2 = SpecA

[
T0, T1,

1

λpT0 + 1
,

1

λpT1 +G(T0)

]
.

Let v denote the p-adic valuation normalized by v(p) = 1. Then

v(λ) = 1

p − 1
, v(λ2) = v(η) = 1

p(p − 1)
.

In fact, λp−1 ∼ p and λp2 ∼ λ inA.Moreover, λ2|η and λ|η̃. W2 and V2 are open subschemes

of the affine space A2. Sekiguchi-Suwa showed the following:



154 KAZUYOSHI TSUCHIYA

THEOREM 2.2 (Sekiguchi-Suwa [8], Theorem 5.2).

(1) The polynomials ΛF1 (X0,X1, Y0, Y1),Λ
G
1 (X0,X1, Y0, Y1) have their coefficients

in A. Moreover,

(T0, T1) �−→ (ΛF0 (T0 ⊗ 1, 1⊗ T0) ,Λ
F
1 (T0 ⊗ 1, T1 ⊗ 1, 1⊗ T0, 1⊗ T1))

defines a structure of group on W2, and

(T0, T1) �−→ (ΛG0 (T0 ⊗ 1, 1⊗ T0) ,Λ
G
1 (T0 ⊗ 1, T1 ⊗ 1, 1⊗ T0, 1⊗ T1))

defines a structure of group on V2.

(2) The fractionΨ1(T0, T1) belongs toA[T0, T1, (λT0+1)−1, (λT1+F(T0))
−1].More-

over,

(T0, T1) �−→ (Ψ0(T0), Ψ1(T0, T1))

defines an A-homomorphism Ψ 2 : W2 → V2, and Ker[Ψ 2 : W2 → V2] is isomorphic to the
constant group scheme Z/p2Z .

(3) (U0, U1) �→ (λT0+1, λT1+F(T0)) defines a homomorphism α(F) :W2 → G2
m of

group schemes over A, and (U0, U1) �→ (λpT0 + 1, λpT1 +G(T0)) defines a homomorphism

α(G) : V2 → G2
m of group schemes over A. Moreover, α(F)K : W2,K → G2

m,K and α(G)K :
V2,K → G2

m,K are isomorphisms.

(4) The diagram of group schemes over A

W2
α(F)−−−−→ G2

m

Ψ 2

⏐⏐� Θ2

⏐⏐�
V2

α(G)−−−−→ G2
m

is commutative. Here Θ2 is defined by

(U0, U1) �−→ (U
p

0 , U
−1
0 U

p

1 ) .

(5) The special fiber of the exact sequence of group schemes over A

0 −→ (Z/p2Z)A
i2−→W2

Ψ 2−→ V2 −→ 0

is isomorphic to the Artin-Schreier-Witt sequence (3).

Sekiguchi-Suwa have verified this theorem in [8]. We see an outline of the proof of (2).
For the proof, it is enough to show the following congurence relations:
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(I) F(T )p ≡ pηT + (pη)
2

2! T 2 + (pη)
3

3! T 3 +
p−1∑
k=0

ηkp

k! T
kp mod λp ;

(II) (λT + 1)G

(
(λT + 1)p − 1

λp

)
≡ pηT + (pη)

2

2! T 2 + (pη)
3

3! T 3

+
p−1∑
k=0

η̃k

k! T
kp mod λp ;

(III) ηp ≡ η̃ mod λp .

Our proof which is independent of a general case is different from the one in Sekiguchi-
Suwa [8]. It was given by Suwa. It is as follows:

LEMMA 2.3. Let f (T ), g (T ) ∈ A[[T ]]. If f (T ) ≡ g (T ) mod λ, f (T )p ≡ g (T )p

mod λp.

PROOF. Put

f (T ) = g (T )+ λh(T ) , h(T ) ∈ A[[T ]] .
Then

f (T )p = g (T )p +
p∑
k=1

(
p

k

)
λkg (T )p−kh(T )k .

Note that λp|(p
k

)
λk if k ≥ 1.

LEMMA 2.4. Ep(T )
p = exp(pT )Ep(T p), where Ep(T ) is the Artin-Hasse exponen-

tial series:

Ep(T ) = exp

( ∞∑
k=0

T p
k

pk

)
.

PROOF.

Ep(T )
p = exp

( ∞∑
k=0

T p
k

pk−1

)
= exp(pT ) exp

( ∞∑
k=0

(T p)p
k

pk

)
= exp(pT )Ep(T

p) .

LEMMA 2.5. Let a ∈ A. Then

Ep(aT ) ≡
p−1∑
k=0

(aT )k

k! mod ap .

PROOF. Note that

Ep(T ) ∈ Z(p)[[T ]] , Ep(T ) ≡ exp(T ) mod T p .
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PROOF OF (I). By Lemma 2.5, we have

F(T ) ≡ Ep(ηT ) mod λ

since λ|ηp. Hence

F(T )p ≡ Ep(ηT )p mod λp

by Lemma 2.3. Furthermore, by Lemma 2.4,

Ep(ηT )
p ≡ exp(pηT )Ep(ηpT p) mod λp .

Now

exp(pηT ) ≡ 1+ pηT + (pη)
2

2! T 2 + (pη)
3

3! T 3 mod λp .

In fact,

v

(
(pη)k

k!
)
= kv(pη)− v(k!) = k

{
1+ 1

p(p − 1)

}
−
∞∑
i=1

[
k

pi

]

≥ k
{

1+ 1

p(p − 1)

}
− k 1

p − 1

= k p − 1

p
.

Hence, if k ≥ 4,

v

(
(pη)k

k!
)
≥ k p − 1

p
≥ v(λp) = p

p − 1
.

By Lemma 2.5,

Ep(η
pT p) ≡

p−1∑
k=0

ηpk

k! T
pk mod λp .

Therefore

Ep(ηT )
p ≡ exp(pηT )Ep(ηpT p) mod λp

≡
(

1+ pηT + (pη)
2

2! T 2 + (pη)
3

3! T 3
) p−1∑
k=0

ηpk

k! T
pk mod λp .

Now (
1+ pηT + (pη)

2

2! T 2 + (pη)
3

3! T 3
) p−1∑
k=0

ηpk

k! T
pk
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≡ pηT + (pη)
2

2! T 2 + (pη)
3

3! T 3 +
p−1∑
k=0

ηpk

k! T
pk mod λp .

These imply (I).

LEMMA 2.6.

1

p

(
p

k

)
≡ (−1)k−1

k
mod p (1 ≤ k ≤ p − 1) .

PROOF.

1

p

(
p

k

)
= 1

p

p(p − 1) · · · (p − k + 1)

k! ≡ (−1)k−1 (k − 1)!
k! mod p .

LEMMA 2.7. Let a ∈ A. Then

p−1∑
k=1

(−1)k−1

k
(aT )k ≡ (1+ aT )p − 1− (aT )p

p
mod pa2 .

PROOF. Apply Lemma 2.6, developing the right hand side.

LEMMA 2.8. Let a ∈ A. Then

p−1∑
k=0

1

k!
{ p−1∑
j=1

(−1)j−1

j
(aT )j

}k
≡ 1+ aT mod ap .

PROOF.

log(1+ T ) =
∞∑
k=1

(−1)k−1

k
T k , exp(T ) =

∞∑
k=0

1

k!T
k , exp(log(1+ T )) = 1+ T .

Hence

p−1∑
k=0

1

k!
{ p−1∑
j=1

(−1)j−1

j
(T )j

}k
≡ 1+ T mod T p ,

and we get the assertion by substituting aT for T .

LEMMA 2.9. Let a ∈ A. Suppose that ap−2|p. Then

(1) 1+ aT ≡
p−1∑
k=0

1

k!
{
(1+ aT )p − 1− (aT )p

p

}k
mod ap ;

(2) (1+ aT )
p−1∑
k=0

1

k!
{

1+ (aT )p − (1+ aT )p
p

}k
≡ 1 mod ap .
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PROOF. By Lemma 2.7,

p−1∑
k=0

1

k!
{ p−1∑
j=1

(−1)j−1

j
(aT )j

}k
≡
p−1∑
k=0

1

k!
{
(1+ aT )p − 1− (aT )p

p

}k
mod pa2 .

Hence, by Lemma 2.8, we get

1+ aT ≡
p−1∑
k=0

1

k!
{ p−1∑
j=1

(−1)j−1

j
(aT )j

}k
mod ap

≡
p−1∑
k=0

1

k!
{
(1+ aT )p − 1− (aT )p

p

}k
mod ap

since ap−2|p.
PROOF OF (II).

G

(
(λT + 1)p − 1

λp

)
≡ Ep

(
η̃
(λT + 1)p − 1

λp

)
mod λp

since λ|η̃. Now

η̃
(λT + 1)p − 1

λp
= η̃T p + η̃ (λT + 1)p − 1− (λT )p

λp

and

η̃
(λT + 1)p − 1− (λT )p

λp
= λp−1

p
(pη − λ)(λT + 1)p − 1− (λT )p

λp

= η

λ
{(λT + 1)p − 1− (λT )p} − (λT + 1)p − 1− (λT )p

p
.

Since λp|pλ,

η

λ
{(λT + 1)p − 1− (λT )p} =

p−1∑
k=1

(
p

k

)
ηλk−1T k ≡ pηT mod λp .

If i + j + k ≥ p, λp|(pη)i η̃j λk . Hence

Ep

(
η̃
(λT + 1)p − 1

λp

)
≡ Ep(pηT )Ep(η̃T p)Ep

(
1+ (λT )p − (1+ λT )p

p

)
mod λp .

Applying Lemma 2.9 to a = λ, we obtain

(1+ λT )
p−1∑
k=0

1

k!
{

1+ (λT )p − (1+ λT )p
p

}k
≡ 1 mod λp.
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By Lemma 2.5,

Ep(pηT ) ≡ 1+ pηT + (pη)
2

2! T 2 + (pη)
3

3! T 3 mod λp ,

Ep(η̃T ) ≡
p−1∑
k=0

η̃k

k! T
k mod λp .

Hence

(1+ λT )G
(
(λT + 1)p − 1

λp

)
≡

(
1+ pηT + (pη)

2

2! T 2 + (pη)
3

3! T 3
) p−1∑
k=0

η̃k

k! T
pk mod λp .

Now (
1+ pηT + (pη)

2

2! T 2 + (pη)
3

3! T 3
) p−1∑
k=0

η̃k

k! T
pk

≡ pηT + (pη)
2

2! T 2 + (pη)
3

3! T 3 +
p−1∑
k=0

η̃k

k! T
pk mod λp

since λp|pη̃. These imply (II).

LEMMA 2.10.

(1) η ≡ λ− λp2
p

mod pλp2 .

(2) λ ≡ λp2 + pη mod pλp2 . Hence λ ≡ λp2 + pη mod λp.

(3) λk ≡ λpk2 + kpηλ(k−1)p
2 mod pλp2 . Hence λk ≡ λpk2 + kpηλ(k−1)p

2 mod λp(k ≥ 2).

PROOF. By Lemma 2.6,

η =
p−1∑
k=1

(−1)k−1

k
λk2 ≡

(λ2 + 1)p − λp2 − 1

p
mod λp .

Now

(λ2 + 1)p − 1 = λ .
These imply (1), (2) and (3).

LEMMA 2.11.

ηp ≡
p−1∑
k=1

(−1)k−1

k
λ
pk

2 ≡
p−1∑
k=1

1

p

(
p

k

)
λ
pk

2 mod λp .
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PROOF. By the definition,

η =
p−1∑
k=1

(−1)k−1

k
λk2 .

Then we obtain

ηp ≡
{ p−1∑
k=1

(−1)k−1

k
λk2

}p
mod λp ,

noting that λ|λp2 . Now {
(−1)k−1

k

}p
≡ (−1)k−1

k
mod p .

Hence {
(−1)k−1

k
λk2

}p
≡ (−1)k−1

k
λ
pk

2 mod λp .

LEMMA 2.12.

λp−1

p
= −

p−1∑
k=1

1

p

(
p

k

)
λk−1 .

PROOF. Develop and divide by pλ the right hand side of λp = λp + 1− (λ+ 1)p.

PROOF OF (III). By Lemma 2.12,

η̃ = λp−1

p
(pη − λ) = −

{ p−1∑
k=1

1

p

(
p

k

)
λk−1

}
(pη − λ)

= −
p−1∑
k=1

(
p

k

)
λk−1η +

p−1∑
k=1

1

p

(
p

k

)
λk .

Now

−
p−1∑
k=1

(
p

k

)
λk−1η +

p−1∑
k=1

1

p

(
p

k

)
λk ≡ −pη +

p−1∑
k=1

1

p

(
p

k

)
λk mod λp ,

since λp|pλ. Hence

η̃ ≡ −pη +
p−1∑
k=1

1

p

(
p

k

)
λk mod λp .
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On the other hand, by Lemma 2.11,

ηp ≡
p−1∑
k=1

(−1)k−1

k
λ
pk

2 ≡
p−1∑
k=1

1

p

(
p

k

)
λ
pk

2 mod λp .

These, together with Lemma 2.10, imply (III).

EXAMPLE 2.13. p = 2

ζ = −1, ζ2 = i, λ = −2, λ2 = i − 1, η = λ2 = i − 1, η̃ = −2i

F (T ) = 1+ (i − 1)T ,

G(T ) = 1− 2iT ,

Ψ0(T0) = T 2
0 − T0 ,

Ψ1(T0, T1) = T 2
1 − T1 + iT 2

0 − iT 3
0 − (i − 1)T0T1

−2T0 + 1
,

ΛF0 (X0, Y0) = −2X0Y0 +X0 + Y0 ,

ΛF1 (X0,X1, Y0, Y1) = −2X1Y1 +X1{1+ (i − 1)Y0} + {1+ (i − 1)X0}Y1 + X0Y0 .

2.14. We supplement the previous subsection. W2 has a structure of group scheme as
follows:
(multiplication) (T0, T1) �−→ (ΛF0 (T0 ⊗ 1, 1⊗ T0),Λ

F
1 (T0 ⊗ 1, T1 ⊗ 1, 1⊗ T0, 1⊗ T1)),

(unit) (T0, T1) �−→ (0, 0),
(inverse) (T0, T1) �−→ IF (T0, T1) = (IF0 (T0), I

F
1 (T0, T1)),

where

IF0 (T0) = −T0

λT0 + 1
, IF1 (T0, T1) = 1

λ

{
1

λT1 + F(T0)
− F

( −T0

λT0 + 1

)}
.

The group scheme W2 is called by the Kummer-Artin-Schreier-Witt group scheme.
V2 has a structure of group scheme as follows:

(multiplication) (T0, T1) �−→ (ΛG0 (T0 ⊗ 1, 1⊗ T0),Λ
G
1 (T0 ⊗ 1, T1 ⊗ 1, 1⊗ T0, 1⊗ T1)),

(unit) (T0, T1) �−→ (0, 0),
(inverse) (T0, T1) �−→ IG(T0, T1) = (IG0 (T0), I

G
1 (T0, T1)),

where

IG0 (T0) = −T0

λpT0 + 1
, IG1 (T0, T1) = 1

λp

{
1

λpT1 +G(T0)
−G

( −T0

λpT0 + 1

)}
.

The sequence of group schemes

0 −→ (Z/p2Z)A
i2−→W2

Ψ 2−→ V2 −→ 0 (4)
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is an exact sequence of sheaves on (SpecA)ét, hence it is an exact sequence of sheaves on
(SpecA)fl. We call this sequence the Kummer-Artin-Schreier-Witt sequence. The exact se-
quence (4) has the Artin-Schreier-Witt sequence

0 −→ Z/p2Z −→ W2,k
F−1−→ W2,k −→ 0

as the special fiber, and the exact sequence of Kummer type

0 −→ µp2 −→ G2
m,K

Θ2−→ G2
m,K −→ 0

as the generic fiber.

3. The Kummer-Artin-Schreier-Witt theory

For an A-scheme X, we concretely describe a Z/p2Z-torsor X′ over X.

3.1. The exact sequence (4)

0 −→ Z/p2Z
i2−→W2

Ψ 2−→ V2 −→ 0

induces the cohomology long exact sequence

0 −−−−→ Γ (X,Z/p2Z)
i2−−−−→ Γ (X,W2)

Ψ 2−−−−→ Γ (X,V2)

−−−−→ H 1
ét(X,Z/p2Z)

i2−−−−→ H 1
ét(X,W2)

Ψ 2−−−−→ H 1
ét(X,V2) .

(5)

Since the group scheme W2 is smooth,H 1
ét(X,W2) � H 1

fl (X,W2).

PROPOSITION 3.2. Let X be an A-scheme. Then

H 1
fl (X,W2) � H 1

zar(X,W2) .

PROOF. The exact sequence

0 −→ G(λ) −→W2 −→ G(λ) −→ 0

induces the cohomology long exact sequence

H 1
fl (X,G(λ)) −→ H 1

fl (X,W2) −→ H 1
fl (X,G(λ)) .

Let B be an A-algebra. We assume that B is a local ring or p is a nilpoint in B. Since

H 1
fl (SpecB,G(λ)) = 0 (Sekiguchi-Oort-Suwa [3]),

H 1
fl (SpecB,W2) = 0 . (6)

Let ϕ : Xfl → Xzar be a natural morphism of sites. Since R1ϕ∗W2 = 0 by (6), we have

H 1
fl (X,W2) � H 1

zar(X,W2)
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by the Leray spectral sequence

H
p
zar(X,R

qϕ∗W2) �⇒ H
p+q
fl (X,W2) . (7)

3.3. We describe the exact sequence (5) more concretely. LetX be anA-scheme. Now,

let U = {Uj } be an affine open covering on X and f ij = (fij , g ij ) ∈ Z1(U,W2) a 1-cocycle

representing an element η = (η0, η1) ∈ H 1(X,W2) such that Ψ 2(η) = 0. This means that

(Ψ 2(f ij )) is a 1-coboundary, and if necessary replacing U a refinement, we can write

Ψ 2(f ij ) = (ΛG0 (bj , IG(bi )),ΛG1 (bj , IG(bi ))) on Uij := Uj ∩ Ui ,
where bj = (b0j , b1j ) ∈ Γ (Uj ,V2). Let h = (h0, h1) ∈ Γ (X,V2). We define π : X′ → X

locally by the covering

Ψ 2(zj ) = Ψ 2(z0j , z1j ) = (ΛG0 (bj ,h),ΛG1 (bj ,h))

on Uj × A2 = SpecΓ (Uj ,V2)⊗A A[zj ] ,
the gluing being given by

(ΛF0 (zj , I
F (zi )),Λ

F
1 (zj , I

F (zi ))) = f ij on (Uj ×A2) ∩ (Ui ×A2) ,

and an action of Z/p2Z on X′ by

(zj , s) �−→ (ΛF0 (zj , i2(s)),Λ
F
1 (zj , i2(s))) for s ∈ Z/p2Z .

Then X′ is a Z/p2Z-torsor over X, and [X′] ∈ H 1(X,Z/p2Z) is mapped to η = (η0, η1) ∈
H 1(X,W2).

3.4. Let B be an A-algebra. We assume that B is a local ring or p is a nilpoint in B.
Let X = SpecB. Then

H 1
fl (X,W2) = 0 .

by (6). Hence

Coker[Ψ 2 :W2(B) −→ V2(B)] ∼−→ H 1(X,Z/p2Z)

is an isomorphism. Hence, for any unramified p2-cyclic extension C of B, there exists a
morphism f : SpecB → V2 such that

SpecC −−−−→ W2⏐⏐� Ψ 2

⏐⏐�
SpecB

f−−−−→ V2
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is cartesian. That is to say, for any unramified p2-cyclic extension C of B, there exists an
element (b0, b1) ∈ Γ (X,V2) such that X′ = SpecB[α, β], where α and β satisfy

Ψ 2(α, β) =
(

1

λp
{(λα + 1)p − 1}, 1

λp

{
(λβ + F(α))p

λα + 1
−G

(
1

λp
{(λα + 1)p − 1}

)})
= (b0, b1) .

Now, letX′ andX′′ be Z/p2Z-torsors. Then, there exist elements (b0, b1) and (b′0, b′1) ∈
Γ (X,V2) such that X′ = SpecB[α, β] and X′′ = SpecB[α′, β ′], where Ψ 2(α, β) = (b0, b1)

and Ψ 2(α′, β ′) = (b′0, b′1). Then by the exact sequence (5), the following are equivalent:

(i) X′ is isomorphic to X′′ as Z/p2Z-torsors over X.

(ii) B[α, β] and B[α′, β ′] are Z/p2Z-equivariant over B.
(iii) There is an element (c0, c1) ∈ Γ (X,W2) such that

(ΛG0 ((b0, b1), I
G(b′0, b′1)),Λ

G
1 ((b0, b1), I

G(b′0, b′1)) = Ψ 2(c0, c1).

3.5. Let B be an A-algebra. We assume that B is a noetherian local ring and faithfully
flat over A. And we assume that X is a connected flat proper scheme over B. We define

homomorphisms f2 :W2→ G(λ) ×SpecA Gm,A and g 2 : G(λ) ×SpecA Gm,A → ι∗Gm,A0 by

f2(x0, x1) = (x0, F (x0)+ λx1) and g 2(y, t) =
t

F (y)
mod λ ,

for local sections (x0, x1) ∈W2, y ∈ G(λ) and t ∈ Gm,A, respectively. Since X is flat over A,
we can see that the sequence of sheaves on (SpecA)zar, (SpecA)ét and (SpecA)fl

0 −→W2
f2−→ G(λ) ×SpecA Gm,A

g 2−→ ι∗gm,A0
−→ 0 (8)

is exact. The exact sequence (8) induces the cohomology long exact sequence

0 −−−−→ Γ (X,W2)
f2−−−−→ Γ (X,G(λ) ×X Gm,X)

g 2−−−−→ Γ (X0,Gm,X0)

−−−−→ H 1
ét(X,W2)

f2−−−−→ H 1
ét(X,G(λ) ×X Gm,X)

g 2−−−−→ H 1
ét(X0,Gm,X0) .

Now, put C = Γ (X,OX). Then C is finite over B and a semi local ring (cf. [1]). Then by
assumption on X,

Γ (X,G(λ) ×X Gm,X) = Γ (X,G(λ))× C∗ , Γ (X0,Gm,X0) = (C/λ)∗ .
Since λ belongs to the Jacobson radical of C, the morphism C∗ −→ (C/λ)∗ is surjective.
Hence we obtain an isomorphism

H 1
ét(X,W2)

∼−→ Ker[g 2 : H 1
ét(X,G(λ))× Pic(X) −→ Pic(X0)] .

Now, the homomorphism

F : G(λ) −→ ι∗Gm,A0
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induces the homomorphism

F∗ : H 1
ét(X,G(λ)) −→ H 1

ét(X, ι∗Gm,X0) .

Then there is a homomorphism

exF : H 1
ét(X0,G(λ)) −→ H 1

ét(X, ι∗Gm,X0)

such that the diagram

H 1(X,G(λ)) H 1(X, ι∗Gm,X0)

H 1(X0,G(λ))

F∗

exF

is commutative. Hence we obtain an isomorphism

H 1
ét(X,W2)

∼−→ {(c, d) ∈ H 1(X,G(λ))× Pic(X)| d mod λ = exF (c mod λ) } .
Let ιX : X0 → X be the inclusion induced by ιB : SpecB0 → SpecB. Then we obtain an
isomorphism

α(F) : H 1
ét(X,W2)

∼−→ {([L0], [L1]) ∈ Pic(X)2| (∗) } , (9)

where (∗) means the following conditions:

[ιX∗L0] = [OX0] , exF ([ιX∗L0]) = [ιX∗L1] .
Using the isomorphism (9), we describe a Z/p2Z-torsor X′ over X geometrically. We

assume that B is a strictly Henselian local ring. For any Z/p2Z-torsor X′, let i2(X′) =
[(fij , g ij )] ∈ H 1

ét(X,W2).We put (η0, η1) = [(fij , g ij )]. By the isomorphism (9), we have a

one-to-one correspondence between (η0, η1) and ([L0], [L1]) ∈ Pic(X)2 with the conditions

(∗). Since (η0, η1) is the image of X′, by the exact sequence (5) we have Ψ 2(η0, η1) = 0.

Hence Θ2(([L0], [L1])) = ([OX], [OX]), that is [L0
⊗p] = [OX] and [L1

⊗p] = [L0]. Then
[L0], [L1] ∈ Pic0(X).

Inversely, we take ([L0], [L1]) ∈ Pic0(X)2 with the conditions (∗), [L0
⊗p] = [OX]

and [L1
⊗p] = [L0]. Then by the isomorphism (9), we obtain [(fij , g ij )] ∈ H 1

ét(X,W2)

with α(F)([(fij , g ij )]) = ([L0], [L1]) uniquely. Now, sinceΘ2([L0], [L1]) = ([OX], [OX]),
(Ψ 2(fij , g ij )) is a 1-coboundary. Then we can construct a Z/p2Z-torsor X′ over X ( cf.
Subsection 3.3).

On the other hand, since C is a strictly Henselian local ring, Ψ 2 : Γ (X,W2) →
Γ (X,V2) is surjective. Hence we obtain the following:
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THEOREM 3.6. We obtain an isomorphism

α(F) : H 1
ét(X,Z/p2Z)

∼−→ {([L0], [L1]) ∈ Pic0(X)2| (∗∗) } (10)

where (∗∗) means the following conditions:
[ιX∗L0] = [OX0] , exF ([ιX∗L0]) = [ιX∗L1] , [L0

⊗p] = [OX] , [L1
⊗p] = [L0] .

We assume that X is an abelian scheme over B. Let G be a smooth affine commutative
group scheme over B. Then

Ext1B(X,G) −→ H 1(X,GX)

is injective. Moreover, the image is the set of primitive elements of H 1(X,GX) (Serre [9]).

Here, a ∈ H 1(X,GX) is primitive if m∗(a) = p∗1(a) + p∗2(a), where m : X ×B X → X is
the multiplication and pi : X ×B X → X is the projection to the i-th factor (i = 1, 2). In
particular,

Ext1B(X,Gm,B) = Pic0(X) ⊂ Pic(X) = H 1(X,Gm,B) .

Moreover, we have

Ext1B(X,Z/p2Z)
∼→ H 1(X,Z/p2Z)

by the Künneth formula. Hence we obtain the following corollary.

COROLLARY 3.7. We obtain isomorphisms

Ext1B(X,Z/p2Z)
∼−→ H 1

ét(X,Z/p2Z) (11)

∼−→ {([L0], [L1]) ∈ Pic0(X)2| (∗∗) } (12)

where (∗∗) is the conditions given in Theorem 3.6.

REMARK 3.8. The arguments that we gave in Subsections 3.4 and 3.5 have already
been given by Sekiguchi-Suwa [7].

4. Néron blow-ups

In Theorem 3.6, we saw that Z/p2Z-torsors over X are described by line bundles over

X. In general, we get the homomorphism H 1(X,Z/p2Z) → H 1(X,µp2) induced by the

homomorphism α(F) : W2 → G2
m. In this section, we shall give a Z/p2Z-torsor X′′ as

successive “ Néron blow-ups" starting from a µp2 -torsor X′. Note that α(F) : W2 → G2
m is

given by a composite of Néron blow-ups (cf. Sekiguchi-Suwa [4] ). Using this fact, we shall
locally describe X′′ → X′ as a composite of Néron blow-ups.

A Néron blow-up defined over an affine group scheme was used by Waterhouse-Weisfeiler
[11] to give a classification of one-dimensional affine group schemes. We extend this argu-
ment to schemes (not necessarily affine schemes).
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Let A be a discrete valuation ring and K (resp. k) the fraction field (resp. the residue
field) of A. We denote by π a uniformizing parameter of A.

4.1. We recall the Néron blow-up for a group scheme. For details, see [4], [11]. Let G
be a flat affine group A-scheme of finite type. We denote byGK (resp. Gk) the generic (resp.
the special) fiber of G over A. We denote by A[G] (resp. K[G], resp. k[G] ) the coordinate
ring of G (resp. GK , resp. Gk).

Let H be a closed k-subgroup of Gk . Let I (H) be the inverse image in A[G] of the
defining ideal of H in k[G]. Then the structure of Hopf algebra on K[G] induces a structure
of Hopf A-algebra on the A-subalgebraA[π−1I (H)] of K[G]. Then

GH := SpecA[π−1I (H)]
is a flat affine group A-scheme of finite type. The injection

A[G] ⊂ A[GH ] = A[π−1I (H)]
induces an A-homomorphism GH → G. By the definition, the generic fiber GHK → GK is

an isomorphism. We call the group A-schemeGH the Néron blow-up of H in G.

EXAMPLE 4.2.
(1) The Néron blow-up of {0} in Ga,A := SpecA[T ]:

Ga,A←− G{0}a,A = SpecA[Y ] � Ga,A

T �−→ πY .

(2) The Néron blow-up of {1} in Gm,A := SpecA[T , T −1]:
Gm,A←− G{1}m,A = SpecA[Y, (πY + 1)−1] � G(π)

T �−→ πY + 1 .

Waterhouse-Weisfeiler [11] showed the following theorem.

THEOREM (Waterhouse-Weisfeiler [11], Theorem 1.4.). Let G and G′ be flat affine
group A-schemes of finite type. Let f : G′ → G be an A-homomorphism. If a K-homo-
morphism fK : G′K → GK is an isomorphism, then the A-homomorphism f : G′ → G is
isomorphic to a composite of Néron blow-ups.

The homomorphismα(F) :W2 → G2
m is defined by (U0, U1) �→ (λT0+1, λT1+F(T0)),

and the generic fiber α(F)K : W2,K → G2
m,K is an isomorphism (cf. Theorem 2.2 (3)). The

homomorphism α(F) is described using Néron blow-ups by Sekiguchi-Suwa [4].

4.3. Let X be a flat A-scheme. We denote by XK (resp. Xk) the generic (resp. the
special) fiber of X over A. For a closed subscheme Z of X, let I be the ideal OX-sheaf
defining the scheme Z. Then

SpecA[OX, π
−1I]
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is a flat A-scheme. The injection

OX ⊂ A[OX, π
−1I]

induces an A-morphism SpecA[OX, π
−1I] → X. By the definition, the generic fiber is an

isomorphism. We denote by XZ or XI a flat A-scheme SpecA[OX, π
−1I] and call it the

Néron blow-up of Z in X or the Néron blow-up of I in X.

PROPOSITION 4.4. Let X be a flat A-scheme. Then

XX = X and X∅ = XK .

PROOF. Let I0 be the ideal OX-sheaf defined by the schemeX. Since Γ (X,I0) = (0),
A[OX, π

−1I0] = A[OX] .
Hence

XX = SpecA[OX]
= X .

Let I1 be the ideal OX-sheaf defined by ∅. Since Γ (X,I1) = Γ (X,OX),

A[OX, π
−1I1] = A[OX , π

−1OX]
= A[π−1OX]
= K[OX] .

Hence

X∅ = SpecK[OX]
= XK .

EXAMPLE 4.5. We consider the affine line A1
A = SpecA[T ].

(1) We calculate the Néron blow-up of {0} in A1
A. Let I0 be the idealOA1

A
-sheaf defined

by {0}. Since Γ (A1
A,I0) = (T ) ⊂ A[T ],

A[OA1
A
, π−1I0] = A[A[T ] + π−1T A[T ]]

= A[π−1T ]
∼→ A[Y ] ,

where the morphism A[π−1T ] ∼→ A[Y ] is defined by T �→ πY . Hence

(A1
A)
{0} = SpecA[OA1

A
, π−1I0]
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∼← SpecA[Y ]
= A1

A .

(2) We calculate the Néron blow-up of V ((T N)) in A1
A, where N ∈ N. Let IN be the

ideal OA1
A

-sheaf defined by V ((T N)). Since Γ (A1
A,IN) = (T N) ⊂ A[T ],

A[OA1
A
, π−1IN ] = A[A[T ] + π−1T NA[T ]]

= A[T , Y ]/(T N − πY) .
Hence

(A1
A)
V ((T N)) = SpecA[OA1

A
, π−1IN ]

= SpecA[T , Y ]/(T N − πY) .

EXAMPLE 4.6. We calculate the Néron blow-up of V ((T−1)) inX := SpecA[T , T −1].
Let I be the ideal OX-sheaf defined by V ((T − 1)). Since Γ (X,I) = (T − 1) ⊂ A[T , T −1],

A[OX , π
−1I] = A[A[T , T−1] + π−1(T − 1)A[T , T −1]]

= A[π−1(T − 1) , T −1]
∼→ A[Y, (πY + 1)−1] ,

where the morphism A[π−1(T − 1), T −1] ∼→ A[Y, (πY + 1)−1] is defined by T �→ πY + 1.
Hence

XV ((T−1)) = SpecA[OX , π
−1I]

∼← SpecA[Y, (πY + 1)−1] .

EXAMPLE 4.7. We consider the projective line P1
A = ProjA[T0, T1]. Put

U0 = SpecA[T1/T0] = SpecA[t0] and U1 = SpecA[T0/T1] = SpecA[t1] .
Then P1

A is given by gluing U0 and U1 with isomorphisms

U10
∼←− U01

t1 �−→ t−1
0 ,

where

U0 ⊃ U01 = SpecA[t0, t−1
0 ] and U1 ⊃ U10 = SpecA[t1, t−1

1 ] .
(1) We calculate the Néron blow-up of V+((T0, T1)) in P1

A. Let I0 be the ideal OP1
A

-

sheaf defined by V+((T0, T1)). Then

Γ (U0,I0) = (t0) ⊂ A[t0] and Γ (U1,I0) = (t1) ⊂ A[t1] .
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Now, put

V0 = (P1
A)
V+((T0,T1)) ×P1

A
U0 and V1 = (P1

A)
V+((T0,T1)) ×P1

A
U1 .

Then

V0 = UV ((t0))0 = SpecA[t0/π]
∼← SpecA[s0]
= A1

A

and

V1 = UV ((t1))1 = SpecA[t1/π]
∼← SpecA[s1]
= A1

A ,

where the morphism SpecA[t0/π] ∼← SpecA[s0] is defined by t0 �→ πs0 and the morphism

SpecA[t1/π] ∼← SpecA[s1] is defined by t1 �→ πs1. Now, put

V01 = V0 ×P1
A
(U0 ×P1

A
U1) and V10 = V1 ×P1

A
(U0 ×P1

A
U1) .

Then

V01 = UV ((t0))01 = SpecA[A[t0, t−1
0 ] + (t0/π)A[t0, t−1

0 ]]
= SpecA[t0/π, t−1

0 ]
∼← SpecA[s0, (πs0)−1]
= SpecK[s0, s−1

0 ] ,

where the morphism SpecA[t0/π, t−1
0 ]

∼← SpecK[s0, s−1
0 ] is defined by t0 �→ πs0. Similarly

V10 = UV ((t1))10 = SpecA[t1/π, t−1
1 ]

∼← SpecK[s1, s−1
1 ] ,

where the morphism SpecA[t1/π, t−1
1 ]

∼← SpecK[s1, s−1
1 ] is defined by t1 �→ πs1. Hence

(P1
A)
V+((T0,T1)) is obtained by gluing V0 � A1

A and V1 � A1
A with isomorphisms

V10
∼←− V01

s1 �−→ (π2s0)
−1 .

Now, we give the special fiber of (P1
A)
V+((T0,T1)). We have V0⊗A k � A1

k and V1⊗A k �
A1
k . Moreover, V01 ⊗A k = SpecA[t0/π, t−1

0 ] ⊗ k = ∅. Similarly, V10 ⊗A k = ∅. Hence we

have (P1
A)
V+((T0,T1)) ⊗A k = A1

k

∐
A1
k.



DESCRIPTIONS OF Z/p2Z-TORSORS 171

(2) We calculate the Néron blow-up of V+((T0)) in P1
A. Let I1 be the ideal OP1

A
-sheaf

defined by V+((T0)). Then

Γ (U0,I1) = (1) = A[t0] and Γ (U1,I1) = (t1) ⊂ A[t1] .
Now, put

V0 = (P1
A)
V+((T0)) ×P1

A
U0 and V1 = (P1

A)
V+((T0)) ×P1

A
U1 .

Then

V0 = UV ((1))0 = U∅0
= SpecK[t0]
= A1

K

and

V1 = UV ((t1))1 = SpecA[t1/π]
∼← SpecA[s1]
= A1

A ,

where the morphism SpecA[t1/π] ∼← SpecA[s1] is defined by t1 �→ πs1. Now, put

V01 = V0 ×P1
A
(U0 ×P1

A
U1) and V10 = V1 ×P1

A
(U0 ×P1

A
U1) .

Then

V01 = U∅01 = SpecK[t0, t−1
0 ]

and

V10 = UV ((t1))10 = SpecA[t1/π, t−1
1 ]

∼← SpecK[s1, s−1
1 ] ,

where the morphism SpecA[t1/π, t−1
1 ]

∼← SpecK[s1, s−1
1 ] is defined by t1 �→ πs1. Hence

(P1
A)
V+((T0)) is obtained by gluing V0 � A1

K and V1 � A1
A with isomorphisms

V10
∼←− V01

s1 �−→ (πt0)
−1 .

Now, we give the special fiber of (P1
A)
V+((T0)). We have V0⊗A k = ∅ and V1⊗A k � A1

k .

Hence we have (P1
A)
V+((T0,T1)) ⊗A k = A1

k.

4.8. We consider the Kummer-Artin-Schreier Theory (cf. [3], [6]). In this subsection,
let λ = ζ − 1 and A = Z(p)[ζ ]. Then A is a discrete valuation ring and λ is a uniformizing
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parameter of A. K (resp. k) denotes the fraction field (resp. the residue field) of A. Then
K = Q(ζ ) and k = Fp. Put

ΛF (X, Y ) = λXY +X + Y ,
ΛG(X, Y ) = λpXY +X + Y ,

Ψ (T ) = 1

λp
{(λT + 1)p − 1} .

Let X be a flat A-scheme and U = {Uj } an affine open covering on X. Put Uj =
SpecAj . Let X′′ be a Z/pZ-torsor over X. Then X′′ is locally written by

Vj := X′′ ×X Uj = SpecAj [Yj , (λYj + 1)−1]/(Ψ (Yj )− cj ) ,
where cj ∈ G(λp)(Aj ). X′′ is given by gluing Vj with isomorphisms

Vj ×X Uij ∼←− Vi ×X Uij
Yj �−→ ΛF (g ij , Yi) ,

whereUij = Uj×XUi and g ij ∈ Γ (Uij ,G(λ)). For any j , put bj = λpcj+1. Then bj ∈ A×j .
We define the scheme X′ locally by

U ′j := X′ ×X Uj = SpecAj [Tj , T −1
j ]/(T pj − bj ) ,

the gluing being given by isomorphisms

U ′j ×X Uij ∼←− U ′i ×X Uij
Tj �−→ fij Ti ,

where fij ∈ Γ (Uij ,Gm). Then X′ is a µp-torsor over X.
Now, we describe the morphism X′′ → X′ using a Néron blow-up. We define the

subscheme Zj of U ′j by V ((Tj − 1)). Then

Vj = (U ′j )Zj
= SpecAj [Yj , (λYj + 1)−1]/(λpΨ (Yj )− (bj − 1)) .

Here the morphism f̃j : Vj → U ′j is defined by Tj �→ λYj + 1. The scheme X′′ is given by

gluing Vj with isomorphisms

Vj ×X Uij ∼←− Vi ×X Uij
Yj �−→ ΛF (g ij , Yi) ,

where

g ij = (fij − 1)/λ .
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Therefore we obtain the morphism

f̃ : X′′ −→ X′ .

4.9. Hereafter we use the notations in section 2. We can write λ = uλλ
p

2 , where

uλ ∈ A×. Put

F̂k(T ) =
k∑
j=0

(ηu−1
λ T )j

j ! and Ĝk(T ) =
k∑
j=0

(η̃u
−p
λ T )j

j !
for k = 0, 1, . . . , p − 1. Put

F̂
′
k(T ) = F̂k(T )− F̂k−1(T ) and Ĝ

′
k(T ) = Ĝk(T )− Ĝk−1(T ) .

Put

Λ
(k)
0 (X0, Y0) = λk2X0Y0 +X0 + Y0 ,

Λ
(k)
1 (X0,X1, Y0, Y1) = λk2X1Y1 +X1F̂k−1(Y0)+ F̂k−1(X0)Y1

+ 1

λk2

{F̂k−1(X0)F̂k−1(Y0)− F̂k−1(Λ
(p)

0 (X0, Y0))} ,

Ψ
(k)
0 (X) = 1

λ
kp

2

{(λk2X + 1)p − 1} ,

Ψ
(k)
1 (X0,X1) = 1

λ
kp

2

{
(λk2X1 + F̂k−1(X0))

p

λ
p
2X0 + 1

− Ĝk−1(Ψ
(p)

0 (X0))

}
,

Φ
(k)
1 (X0,X1) = X

p

1

λk2X0 + 1
,

for k = 1, 2, . . . , p.
Let X be a flat A-scheme and U = {Uj } an affine open covering on X. Put Uj =

SpecAj . Let X′′ be a Z/p2Z-torsor over X. Then X′′ is locally written by

Vj : = X′′ ×X Uj
= SpecAj [Y0j , Y1j , (λY0j + 1)−1, (λY1j + F(Y0j ))

−1]
/(Ψ0(Y0j )− c0j , Ψ1(Y0j , Y1j )− c1j ) ,

where (c0j , c1j ) ∈ V2(Aj). X
′′ is given by gluing Vj with isomorphisms

Vj ×X Uij ∼←− Vi ×X Uij
(Y0j , Y1j ) �−→ (ΛF0 (f

′
ij , Y0i ) ,Λ

F
1 (f

′
ij , g

′
ij , Y0i , Y1i ))

where Uij = Uj ×X Ui and (f ′ij , g ′ij ) ∈ Γ (Uij ,W2). For any j , put (b0j , b1j ) =
α(G)(c0j , c1j ) = (λpc0j + 1, λpc1j + G(c0j )). Then (b0j , b1j ) ∈ (A×j )2. We define the
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scheme X′ locally by

U ′j := X′ ×X Uj = SpecAj [T0j , T1j , T
−1

0j , T
−1

1j ]/(T p0j − b0j , T
−1

0j T
p

1j − b1j ) ,

the gluing being given by isomorphisms

U ′j ×X Uij ∼←− U ′i ×X Uij
(T0j , T1j ) �−→ (fij T0i , g ij T1i) ,

where (fij , g ij ) ∈ Γ (Uij ,G2
m). Then X′ is a µp2 -torsor over X.

Now, we describe the morphism X′′ → X′ using Néron blow-ups.

(1) Step 1. We define the subscheme Z(1,0)j of U ′j by V ((T0j − 1)). Put V (1,0)j =
(U ′j )

Z
(1,0)
j . Then

V
(1,0)
j = SpecAj [Y0j , Y1j , (λ2Y0j + 1)−1, Y−1

1j ]/(ψ(1,0)0 (Y0j ), ψ
(1,0)
1 (Y0j , Y1j )) ,

where

ψ
(1,0)
0 (Y0j ) = λp2Ψ (1)

0 (Y0j )− (b0j − 1) and

ψ
(1,0)
1 (Y0j , Y1j ) = Φ(1)1 (Y0j , Y1j )− b1j .

Here the morphism f̃
(1,0)
j : V (1,0)j → U ′j is defined by (T0j , T1j ) �→ (λ2Y0j + 1, Y1j ). The

scheme X′(1,0) is given by gluing V (1,0)j with isomorphisms

V
(1,0)
j ×X Uij ∼←− V (1,0)i ×X Uij
(Y0j , Y1j ) �−→ (Λ

(1)
0 (f

(1,0)
ij , Y0i ), g

(1,0)
ij Y1i) ,

where

(f
(1,0)
ij , g (1,0)ij ) = ((fij − 1)/λ2, g ij ) .

Therefore we obtain the morphism

f̃ (1,0) : X′(1,0) −→ X′ .

(2) Step 2. For any 2 ≤ k ≤ p, we define the subscheme Z(k,0)j of V (k−1,0)
j by

V ((T0j )). Put V (k,0)j = (V (k−1,0)
j )

Z
(k,0)
j . Then

V
(k,0)
j = SpecAj [Y0j , Y1j , (λ

k
2Y0j + 1)−1, Y−1

1j ]/(ψ(k,0)0 (Y0j ), ψ
(k,0)
1 (Y0j , Y1j )) ,

where

ψ
(k,0)
0 (Y0j ) = λkp2 Ψ (k)

0 (Y0j )− (b0j − 1) and
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ψ
(k,0)
1 (Y0j , Y1j ) = Φ(k)1 (Y0j , Y1j )− b1j .

Here the morphism f̃
(k,0)
j : V (k,0)j → V

(k−1,0)
j is defined by (T0j , T1j ) �→ (λ2Y0j , Y1j ). The

scheme X′(k,0) is given by gluing V (k,0)j with isomorphisms

V
(k,0)
j ×X Uij ∼←− V (k,0)i ×X Uij
(Y0j , Y1j ) �−→ (Λ

(k)
0 (f

(k,0)
ij , Y0i ), g

(k,0)
ij Y1i) ,

where

(f
(k,0)
ij , g (k,0)ij ) = (f (k−1,0)

ij /λ2, g
(k−1,0)
ij ) .

Therefore we obtain the morphism

f̃ (k,0) : X′(k,0) −→ X′(k−1,0)
.

(3) Step 3. We define the subscheme Z(p,1)j of V (p,0)j by V ((T1j − 1)). Put V (p,1)j =
(V

(p,0)
j )

Z
(p,1)
j . Then

V
(p,1)
j = SpecAj [Y0j , Y1j , (λ

p

2Y0j + 1)−1 , (λ2Y1j + 1)−1]/(ψ(p,1)0 (Y0j ), ψ
(p,1)
1 (Y0j , Y1j )) ,

where

ψ
(p,1)
0 (Y0j ) = λp

2

2 Ψ
(p)

0 (Y0j )− (b0j − 1) and

ψ
(p,1)
1 (Y0j , Y1j ) = λp2Ψ (1)

1 (Y0j , Y1j )− (b1j − 1) .

Here the morphism f̃
(p,1)
j : V (p,1)j → V

(p,0)
j is defined by (T0j , T1j ) �→ (Y0j , λ2Y1j + 1).

The scheme X′(p,1) is given by gluing V (p,1)j with isomorphisms

V
(p,1)
j ×X Uij ∼←− V (p,1)i ×X Uij
(Y0j , Y1j ) �−→ (Λ

(p)

0 (f
(p,1)
ij , Y0i ),Λ

(1)
0 (g (p,1)ij , Y1i )) ,

where

(f
(p,1)
ij , g (p,1)ij ) = (f (p,0)ij , (g (p,0)ij − 1)/λ2) .

Therefore we obtain the morphism

f̃ (p,1) : X′(p,1) −→ X′(p,0) .

(4) Step 4. For any 2 ≤ k ≤ p, we define the subscheme Z(p,k)j of V (p,k−1)
j by

V ((T1j − F̂ ′k−1(T0j )/λ
k−1
2 )). Put V (p,k)j = (V (p,k−1)

j )
Z
(p,k)
j . Then
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V
(p,k)
j =SpecAj [Y0j , Y1j , (λ

p
2 Y0j + 1)−1, (λk2Y1j + F̂k−1(Y0j ))

−1]
/(ψ

(p,k)

0 (Y0j ), ψ
(p,k)

1 (Y0j , Y1j )) ,

where

ψ
(p,k)

0 (Y0j ) = λp
2

2 Ψ
(p)

0 (Y0j )− (b0j − 1) and

ψ
(p,k)

1 (Y0j , Y1j ) = λkp2 Ψ (k)
1 (Y0j , Y1j )− (b1j − Ĝk−1(Ψ

(p)

0 (Y0j ))) .

Here the morphism f̃
(p,k)

j : V (p,k)j → V
(p,k−1)
j is defined by (T0j , T1j ) �→ (Y0j , λ2Y1j +

F̂ ′k−1(Y0j )/λ
k−1
2 ). The scheme X′(p,k) is given by gluing V (p,k)j with isomorphisms

V
(p,k)

j ×X Uij ∼←− V (p,k)i ×X Uij
(Y0j , Y1j ) �−→ (Λ

(p)

0 (f
(p,k)

ij , Y0i),Λ
(k)
1 (f

(p,k)

ij , g (p,k)ij , Y0i , Y1i )) ,

where

(f
(p,k)
ij , g (p,k)ij ) = (f (p,k−1)

ij , g (p,k−1)
ij /λ2 − F̂ ′k−1(f

(p,k−1)
ij )/λk2) .

Therefore we obtain the morphism

f̃ (p,k) : X′(p,k) −→ X′(p,k−1)
.

We define the morphism f̃ ′ : X′′ → X′(p,p) locally by

SpecAj [T0j , T1j , (λ
p

2 T0j + 1)−1, (λ
p

2 T1j + F̂p−1(T0j ))
−1]/(ψ(p,p)0 (T0j ), ψ

(p,p)

1 (T0j , T1j ))

←− SpecAj [Y0j , Y1j , (λY0j + 1)−1, (λY1j + F(Y0j ))
−1]

/(Ψ0(Y0j )− c0j , Ψ1(Y0j , Y1j )− c1j )

(T0j , T1j ) �−→ (uλY0j , uλY1j ) .

Summing up the above argument, we obtain the following theorem.

THEOREM 4.10. Under the above notations, we obtain the morphism X′′ → X′ as
the following:

X′′ f̃ ′−→ X′(p,p) f̃
(p,p)

−→ · · · f̃
(p,2)

−→ X′(p,1) f̃
(p,1)

−→ X′(p,0) f̃
(p,0)

−→ · · · f̃
(2,0)

−→ X′(1,0) f̃
(1,0)

−→ X′ .
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