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Abstract. In this article, we improve and generalize the result of [O]; the one is the necessary and sufficient
condition of the minimality of Lagrangian submanifolds in adjoint orbits, which are Hermitian symmetric spaces, and
the other is the necessary and sufficient condition of the Hamiltonian stability of minimal Lagrangian submanifolds
in adjoint orbits, which are not necessarily Hermitian symmetric spaces.

1. Introduction

Let (M, w) be a compact Kahler manifold, and L C M a compact minimal Lagrangian
submanifold. Here we say a submanifold L minimal, if it has extremal volume under all
smooth variations of L. In [Oh], Y.-G. Oh investigated the second variation of volume at L,
and then defined the notion of “Hamiltonian stability”’; L is called Hamiltonian stable if the
second variation of volume is nonnegative for all Hamiltonian deformations of L. One of the
main results in [Oh] is the following;

THEOREM 1.1 ([Oh]). Let (M, ) be a compact Kihler-Einstein manifold with p =
cw, where p is the Ricci form of (M, w). For a compact minimal Lagrangian submanifold
L C M, this is Hamiltonian stable if and only if .1(L) > c, where L1(L) is the first positive
eigenvalue of the Laplacian A which acts on C*°(L).

In view of this theorem, it is an interesting problem to investigate A1 (L) for a compact
minimal Lagrangian submanifold L in a Kihler-Einstein manifold. The well-known examples
of Kihler-Einstein manifolds are orbits of the adjoint representation of a compact semisimple
Lie group on its Lie algebra; let G be a compact semisimple Lie group, g its Lie algebra, ( , )
an Adg-invariant inner product on g, and M an adjoit orbit in g. Suppose that the Lie group G
acts on M effectively. In this paper, when we say “adjoint orbit”, we suppose that it satisfies
this condition. Then M has the canonical complex structure J, and the canonical symplectic
form F which is Kihler with respect to J (see [B] or Section 2 below). Note here that the
2-form w associated with (, )|, and J, which is defined by w(X,Y) = (JX, Y)um, is not
always Kéhler but Hermitian.
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The main theorem of [O] is the following.

THEOREM 1.2 ([O]). Let (M*", ], (, )im) be an adjoint orbit in g. Suppose that ® =
aF and that {, )y is Kdhler-Einstein with its Ricci form p = cw for a positive constant
c. Let x : M — g denote the inclusion. Then the following conditions are equivalent for a
minimal Lagrangian submanifold L;

(1) L is Hamiltonian stable.

2) MWL) =c.

(3) All of the coordinate functions of x|, x(L, are eigenfunctions of L with ¢ = A1(L).

Note here that, by the assumption, (M, J, (, )m) is a Hermitian symmetric space.

For example, the adjoint orbit which satisfies the assumption of Theorem 1.2 is the orbit
of

1
5u(n)9\/—1(kp 0 ) A pneR A—pu>0 pr+n—-pu=0)
0 wulh—p

by the adjoint action of SU (n), where I, € gl(p) and I,,—, € gl(n — p) are the identity
matrixes. It is diffeomorphic to the complex Grassmann manifold Gr;_,(C).
In this paper, we improve this theorem as follows.

THEOREM 1.3. Let (M*™, ], (, )m) be an adjoint orbit in g. Suppose that v = o F
and that { , )\m is Kihler-Einstein with its Ricci form p = cw for a positive constant c.
Denote its embedding by x : M — g. Then the following conditions are equivalent for a
Lagrangian submanifold L;

(1) L C M is minimal.

(2) Apx)p =cx|L.

(3) The embedding x|, : L — SY™C=1(/m]c) is minimal.

On the other hand, if the adjoint orbit (M, {, );u) does not satisfy the condition w =
o F, we cannot say about the minimality of Lagrangian submanifolds, but we can generalize
Theorem 1.2 as follows.

THEOREM 1.4. Let (M*",J) be an adjoint orbit in g and x : M — g denote the
embedding. Suppose that a G-invariant Kdhler metric g is Kdhler-Einstein with its Ricci
Jorm p(X,Y) = cg(JX,Y) for a positive constant ¢ and that Ay gx = 2cx. Then the
following three conditions are equivalent, for a compact minimal Lagrangian submanifold
L C M with [, xzdv = 0.

1. L is Hamiltonian stable.

2. MWL) =c

3. All of the coordinate functions of x|, x(L, are ¢ = A1 (L)-eigenfunctions.

In this case, (M, J, g) is not necessarily a Hermitian symmetric space.

Recently, by Goldstein [G], the following theorem was proved.



LAGRANGIAN SUBMANIFOLDS 85

THEOREM 1.5 ([G]). Let (M, w) be a Kdhler manifold, L. C M an oriented closed
minimal Lagrangian submanifold and V a holomorphic vector field defined in a neighbour-
hood of L in M. Then

/ dive Vdv =0.
L

Note here that, we call a vector field V holomorphic if V — iJV € I (T™OM) is
the holomorphic section, or equivalently, if the endmorphism X +— VxV of T,,M is J-
linear. For a holomorphic vector field V, dive V = tracec(X +— VxV) is well-defined and
2Redive V = divV. On the other hand, if (M, w) is Kéhler-Einstein with its Ricci form
p = cw and A (M) = 2c, then gradu is holomorphic, for any first eigenfunction u of the
Laplacian A . So, by Theorem 1.5, the condition || 1, X|Ldv = 0 automatically holds, for any
oriented minimal Lagrangian submanifold.

Examples of adjoint orbits which satisfy the assumption of Theorem 1.4 are given in
Section 4.

2. The adjoint orbits of compact semisimple Lie groups

In this section, we review the notion of the adjoint orbits, Chapter 8 of [B], for the
preparation of the following sections.

Let G be a compact semisimple Lie group, g its Lie algebra, (, ) an Adg- invariant inner
product on g, and M an adjoit orbit in g. Suppose that the Lie group G acts on M effectively.
In this paper, when we say “adjoint orbit”, we suppose that it satisfy this condition. For U € g,
the fundamental vector field Xy, attached to U, is defined by

Xy(w) =[U,w] (weM) 2.1

under the identification g >~ T,g D TyM (w € M). Since G acts on M transitively, any
tangent vector in T, M is written as the value of a fundamental vector field, and we can
identify

TyM ~Image(ady : g —> @) =: My, (weM).
Similarly, we have an identification

NyM ~Ker(ady, : g — g) =: Ly (we M),

where N, M is the normal space of M at w € M.
Next, we will define the canonical complex structure J on M. For w € M, let G, =
{g € G| Ad(g)w = w}, Sy, the connected center of G, and s,, the Lie algebra of S,,. Note
that w € s,,. Then M,, is preserved by Adg, and adz,. Since the restriction of the adjoint
action of G, on M, to S, is completely reducible, we have an Adg, - invariant orthogonal
direct sum decomposition
m
My, = Z Ey, (dimM =2m), (2.2)
j=1
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where each E,, ; is a real two dimensional vector space isomorphic, as an S, representation
space, to the irreducible representation Iy; : Sy, — GL(2; R) defined by

cosaj(s) —sina;(s

I (exp(s)) = ( 05 (5) i )) (s € su). 23)
sinaj(s) cosa;(s)

Here a; € s} is the weight of Iy; (via (, )js,, a; may be viewed as an element of s,,) and

we choose a; so that a;(w) > 0. Then Ey, ; is oriented by the basis for which the action of

Sy 1s represented by I';;. The almost complex structure J on 7'M is defined as

JwX = ! [w,X] (weM, XekEyj). 2.4)
aj(w)
This almost complex structure is integrable and G- invariant, see [B]. We call J the canonical
complex structure of M.
Each G- invariant Kdhler form on M, compatible with J, is constructed as follows; let s
be the vector bundle
5= U Sy — M.

weM
For a G- invariant section o of s, we define the 2-form
By (X,Y)=(oc(w),[U,V]) (weM, X,Y € T,M), (2.5)

where U, V € g are satisfied with X = [U, w], Y = [V, w]. This is the G- invariant, closed
2-form of type (1, 1). Moreover, if o satisfies (a;, o (w)) > 0 forany w € M and j, B is
positive definite. Conversely, for any G- invariant Kidhler form w on M, compatible with J,
there is a G- invariant section o of s, which satisfies (a;, o (w)) > O for any w € M and j,
such that @ = B, see [B]. Note here that the restriction of the Adg- invariant inner product
(, )ongto M is not, in general, Kdhler compatible with the canonical complex structure J,
but Hermitian.

We supply two examples of G- invariant Kédhler forms on M. The first example is given
as follows,

Fp(X,Y)= (w,[U,V]) (weM, X,Y € TyM),

where U, V € g are satisfied with X = [U, w], Y = [V, w] and w is viewed as the tautologi-
cal section of 5. We shall refer to this as the canonical symplectic form of M.

The other one is defined by the G- invariant section y of s; for an orthonormal basis
{ej, Jwej} of (Ey, j,{, ),y is given by

m
yw) = "lej, Juej].

j=1
In fact, for any G- invariant Kéhler metric, we see that its Ricci form is equal to

and p itself is the Kdhler-Einstein form, see [B].
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3. The proofs of Theorems 1.3 and 1.4

First we will prove Theorem 1.3.
In this section, we use the notations prepared in the previous section.
We proved the following lemma in [O].

LEMMA 3.1. Let M*" C g be an adjoint orbit with o = aF. I and H denote the
second fundamental form and the mean curvature vector of x : M — g respectively. Then we
have

11(X,Y)=1I(JX,JY) (X andY arevector fields on M) , 3.1
and

Hy, =

mAC)Y (3.2)
mo

On the other hand, we have the following fundamental fact.

LEMMA 3.2. Letx : (M*",J,g) — (N, §) be an immersion from an almost Her-
mitian manifold (M, J, g) to an Riemannian manifold (N, g). Suppose that the second
SJundamental form 11 of the immersion x satisfies [1(X,Y) = I1(JX,JY). Then an m-
dimensional totally real submanifold L C M is minimal if and only if

F= %r (onL), (3.3)

where T and T are the tension fields of x|; and x respectively.

PROOF. Let H be the mean curvature vector of L C M and {X i}i~, an orthonormal
basis of (TpL, g|r). Then we have

m
# =mH, + Y I1,(X;, Xi)

i=1

m

=mH, + % > U T,(Xi, Xi) + 11,(J Xi, TX)))
i=1

- 1

= me —+ E'L'p .

O

PROOF OF THEOREM 1.3. Let H denote the mean curvature vector of the embedding

L C g. By Lemmas 3.1 and 3.2, a Lagrangian submanifold L is minimal if and only if

Apx)L(w) = —mHy

1
= —5@mHy)
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R AC
o

The assumption that w = «F is Kihler-Einstein with p = cw induces y (w) = caw. Note
here that x : M — g is the natural embedding. So we can identify x (w) and w as the element
of g. Then the minimality of L is equivalent to Ay x|, = cx on L. The proof of Theorem 1.3
has finished. a

Next we will prove Theorem 1.4. Without the assumption w = « F, the second funda-
mental form of the embedding x : M — g does not satisfy (3.1). So in this case, we cannot
say about the minimality of Lagrangian submanifolds as Theorem 1.3. But, by using the fun-
damental inequality which is proved in [CMN], we can generalize Theorem 1.2 to the case
w # aF. So we review the inequality in [CMN].

Let (M™, g) be a closed Riemannian manifold and Ay, 4 the Laplacian of M acting on
C°°(M). We write its eigenvalues 0 = Ag(M) < A\{(M) < Lo(M) < -+- < A < -+ 1 00.

For any smooth map x : M — (R", (, )) from M to an Euclidean space, we have the
spectral decomposition of x

x =x0+ Z Xk 5

k>1
where xo = fM xdvg/ Vol(M) and each coordinate component of xj is in the Ay (M)-
eigenspace. If x is non-constant map, then there are p,q > 1 such that x,,x; # 0 and
x = xo+ ZZ: Xk (if there are infinitely many nonzero xj’s in the spectral decomposition,
we put ¢ = o0). The pair [p, ¢] is called the order of the map x. The inequality which we
want to use is the following.

LEMMA 3.3. Letx: M — (R", (, )) be a non-constant map of the order p, q] from
a compact Riemannian manifold to an Euclidean space. Then we have

Ap(M)(x — x0,x —x0)p2 < 2E(x), (3.4

where E(x) is the energy of the map x. The equality holds if and only if the order of the map
xis[p, pl.

The proof is simple. So we omit it. (See [CMN].) By using Lemma 3.3, we can prove
the following.

PROPOSITION 3.4. Let (M*",J,q) be a compact almost Hermitian manifold of
dimr M = 2m. If there is a smooth immersion x : M — (R¥T1 (| )) which satisfies
the following conditions

(1) Imagex C S*(r),

(2) the energy density function e(x) of x is constant,

() foranyvector fields X and Y on M, (x, X, x.Y) = (x: J X, x,.JY).

Define
£ (x) = {Lm c M totally real, the order ofx|L2is [p,ql, } .
((xj)os (x|L)0) = a
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Then we have

e(x)

2

hp(L) < (3.5)

2

r<—a

forany L € LY (x). The equality holds if and only if the order of x| is [p, pl.

PROOF. Let L € ££(x) and {X,-}:.":1 be an orthonormal basis of (7, L, g|1). Then,
since x satisfies the condition (2) and (3), we have

m
2600) = [ Yol Xiow Xidu,
Lz

1 m
= [ 3 Do XixXi) I Xi 5T X
i=1
=e(x) Vol(L) .
On the other hand, since x satisfies the condition (1), we have

(xjL — (x1L)o, X)L — (x)L)o) 2 = (XL, X)) 12 — ((x12)0, (X1L)0) 12

= (? —a®) Vol(L) .

So this proposition is in consequence of Lemma 3.3. a

As the corollary of Proposition 3.4, when (M, ) is a Kihler-Einstein manifold, we give
a condition for the Hamiltonian stability (this concept was induced in [Oh]) of a compact min-
imal Lagrangian submanifold; let (M, w) be a Kédhler manifold, L C M a compact minimal
Lagrangian submanifold and V a normal variation vector along L. Since L is Lagrangian,
we can regard (V Jw)|, as an 1-form on L. If (V |w)|, is exact, V is called a Hamiltonian
variation vector. A smooth family {¢;} of embeddings of L into M is called a Hamiltonian
deformation, if its derivative is Hamiltonian. Note that Hamiltonian deformations leave La-
grangian submanifolds Lagrangian. We say that a compact minimal Lagrangian submanifold
is Hamiltonian stable, if the second variation of volume is nonnegative for all Hamiltonian
deformations of L. One of the main theorem proved in [Oh] is Theorem 1.1.

COROLLARY 3.5. Let (X, w) be a compact Kihler-Einstein manifold with p = cw
and M (M) = 2c, where p is the Ricci form of (X, w). If there is a smooth immersion
x: M — (Rk+1, (', )) which satisfies the conditions (1), (2) and (3) in Proposition 3.4.
Moreover suppose that x satisfies Ayx = 2c¢(x — xo). Then we have

1. If L is a Hamiltonian stable minimal Lagrangian submanifold, then L € E;; (x) for

some b > (xg, xo)l/2 =a.

2. A compact minimal Lagrangian submanifold L in L (x) is Hamiltonian stable if

and only if .1 (L) = c.
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PROOF. By the condition (1), (2), Ayyx = 2¢(x — xo) and Lemma 3.3, we have

e(x)
2

2 —a?’

If L e £l’: (x) for some b < a, then, by Proposition 3.4

e(x)

AL(L) < Ap(L) < PR

<cC.

So L is not Hamiltonian stable. The assertion 2 can be proved similarly. O

COROLLARY 3.6. Let (Mz’", J, {, )\m) be an adjoint orbit in g. Suppose that w = o F
and that {, )\m is Kdhler-Einstein with its Ricci form p = cow for a positive constant c. Denote
its embedding by x : M — g. Then the following conditions are equivalent for a Lagrangian
submanifold L;

(1) L is minimal and Hamiltonian stable.

2) fL xipdv =0and A1 (L) = c.

PROOF. By Theorem 1.3, if L is minimal and Hamiltonian stable, then (2) holds. On
the other hand, since Aj;x = 2cx by the assumption, if fL x;pdv =0and A1 (L) = c, then the
order of x|z is [1, 1] by Proposition 3.4. So L is minimal and Hamiltonian stable by Theorems
1.2 and 1.3. d

Let (M*™,J, B %) be an adjoint orbit in g and x : M — g denote the embedding. Note

here that the Kahler form B ¢ is Kahler-Einstein with p=cB c. Suppose that Ay gx = 2cx.
In this case, the conditions (1) and (3) in Proposition 3.4 are correct. The condition (2) is
confirmed by the following lemma.

LEMMA 3.7. The energy density function e(x) of the embedding x : (M, J, B°) —
(g, (, ) isequalto Y " @W)® i does not depend on w € M.

=1 {aj,0(w))*

PROOF. By the definition of the energy density function, we have

2m

1
e(@)w) = 2 (¥, ¥;)

i=1
for any orthonormal basis {Y7, - - - , Ya,,} of (TyM, g?), where ¢° (X,Y) = B° (X, JY).
LEMMA 3.8. Let{ey, Jye1, -+, em, Jwem} be anorthonormal basis of (TyM, (, ) \m)
with spangf{e;, Jyei} = Ey.i. Then {X1, JuX1, -+, Xm, JwXm} is an orthonormal basis of
(TyM, g°), where X; = Me,-.

(ai,o (w))
PROOF. For X € E, i, by the difinition of J, we have

] =]
X = ,wl, JpX = ) (3.6)
a; (w) a;(w)
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So,forany Z; € Eyjand Z; € Ey, j (i # j), by (2.5)

99(Zi, Zj) = By (Zi, JwZ))
1
= NIwZi,—Z;
ai(w)aj(w) (o(w), [JwZ; j])
1
= J Z', 5 Z
arwya, (w) (WwZi,ow)], Z;)
=0,
where the third equality is derived from the Adg-invariance of the inner product (, ) on g,

and the fourth one is derived from [J,Z;, 0 (w)] € Ey,; and Z; € E,_ ;. Similarly, since
[o(w), X;] = (ai, o (w))Jy X;, we have

g9 (ei,ei) = B (ei, Jyei)
= m(a(w% [Jwei, —eil)
_ 1
 (ai(w))?
_ Aai, o(w))
T (ai(w)?
(ai, o (w))

(ai(w))?

([G(w)a el]a Jw@)

(eiv ei)

By Lemma 3.8, we have

m

1
e()w) = 3 3 (Xi, Xi) + (X, JuXi)
i=1

If a; is the weight at w € M, then Ad(g)a; is the weight at Ad(g)w € M. So, by the G-
invariance of o and Adg-invariance of (, ), the right hand side is independentof w € M. O

PROOF OF THEOREM 1.4. We have seen that the adjoint orbit (M m g, B%) with
Ap,gx = 2cx satisfies the conditions (1), (2) and (3) in Proposition 3.4. So, by Corollary
3.5, we have proved Theorem 1.4. O

4. The examples of adjoint orbits

In this section, we will see some examples of adjoint orbits which satisfy the assumption
of Theorem 1.4. (But the concrete calculations are given in Appendix.)
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PROPOSITION 4.1. Let (M*™,J, g°) be an adjoint orbit and x : M — g denote the
embedding. Then the tension field T of the embedding x is

ai (w)
Ty =2 E [Jwei, eil, 4.1
w a,,o(w)) wei, €l ( )
where {e1, Jyer, -+, em, Jwen) is an orthonormal basis of (TyM, (, )\m) withe; € Ey ;.

PROOF. We compute the second fundamental form 77 of (M, g°) — (g,{(, })). In
particular, we only want to know /7 (X, X). Let D and V denote the Levi-Civita connections
of (g, (, )) and (M, g?) respectively. Then, by the definition of the second fundamental form,
I1I,(X,X)=(DxX)(w) — (VxX)(w). Since I is the tensor, I I,,(X, X) = I, Xy, Xu),
where the fundamental vector field Xy (U € g) satisfies X (w) = Xy (w) = [U, w].

(Dxy Xu)(w) =[U, [U, w]]. (4.2)
On the other hand, for Vx, Xy, we have the following lemma.
LEMMA 4.2.
9’ (Vx, Xu, Xv) = ¢° Xiv,u1, Xv) - (4.3)

PROOF. In general, if X is a Killing vector field, then we have ¢°(VyX, Z) +
g°(VzX,Y) =0. Since Xy and Xy are Killing vector fields,

9° Xyv.u1, Xv) = 9° ([(Xu, Xv1, Xv)
=9°(Vx, Xv, Xv) — 9% (Vx, Xu, Xv)
=97 (Vx, Xu, Xv).
Note here that [ Xy, Xv] is the bracket of the vector fields. O

LEMMA 4.3. Let X € Ey j . Then we have

I,(Xj, X;) = [JwX;, X;]. “4.4)

aj(w)
PROOF. By using (3.6) and (4.2), 11,,(Xj, X ;) is computed as

Iy(Xj, X;) = (Dx, X/wx )(w) — (Vx,w X nx; ) (w)
a (w) (M) a (w) (w)

1
= ——[JuX;, Xj] = (Vx,,x. Xwwx;)(w).
a (w) v ] :w(w) aj (w)

Since the second term of the right hand side of the above equation is tangent to M at w, it is
sufficient to prove that

9o (Vx oy, Xox;, Xp) = QZ;(VXJWX/ Xonx;, JuXi) =0, 4.5)
ajwy  ajw ajwy 4w
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for any k.

9w (Vx g x, Xowx; Xi) = g7, (VX%XJW S Xnx)  (by (3.6)

a; (w) ("’) (w) (w) aj (w)

=gZ,(X[wak wa,-],X/u,xj) (by Lemma 4.2)

ag(w) * a;(w) aj(w)
_ 1
 (aj(w)ar(w)
B 1
T (aj(w))2ax(w)

(o), [[NwXj, JuXil, X;1)

(WwXj, [o(w), X;11, JuXk),

where the third equality is derived from the definition of ¢, and the fourth one is
derived from the Adg-invariance of (, ). Since o(w) € s, and X; € E, j, we have
[o(w), X;] = (aj,o(w))JuX;. So g3, (Vx,, X; X wx;, Xr) equals to zero. Similarly

aj (w)

aj (w)

o (Vx X X nx; , JwXk) equals to zero. O
(w) (M)

By Lemma 3.8 and Lemma 4.3, we have

m

Ty = Z(Ilw(xi: Xi) + 11y (JuXi, JuXi))

Z a (w) [Jwe[a ei]a

(ai, o (w))
where {e1, Jyei, -, em, Jyen} is an orthonormal basis of (T,M,( , )u) and X; =
(Z’ (:)()w)) e;. Thus the proof of Proposition 4.1 has finished. O

For example, if the canonical symplectic form F' is Kihler-Einstein with p = cF, then
(M, F) satisfies the assumption in Theorem 1.4.

PROPOSITION 4.4. Let (M*", J, F) be an adjoint orbit in g and x : M — g denote
the embedding. Suppose that the canonical symplectic form F is Kdihler-Einstein with p =
cF. Then we have Ay x = 2cx. Thus, by Theorem 1.4, the following three conditions are
equivalent, for a compact minimal Lagrangian submanifold L C (M, F) with fL xiLdv =0.

1. L is Hamiltonian stable.

2. MWL) =c.

3. All of the coordinate functions of xr, fo, are ¢ = M (L)-eigenfunctions.
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PROOF. The assumption p = cF is equivalent to y (w) = cw for any w € M. On the
other hand, the tension field 7 of the embedding x : (M, J, F) — (g, (, )) is

Tw = 2y (w)

by Proposition 4.1. So Ay x = —1, = 2cx. O

The examples of adjoint orbits which satisfy y (w) = cw are as follows (see Appendix);
e Let G = SU(n). The adjoint orbit of

:31]171

V-1

- Bily, € su(n)

IB(IIPq

satisfies y (w) = cw, where ) p; = n and §; = Z?:l-i—l pi — Zf;‘f Di-
e Let G = SO(2n). The adjoint orbits of

Vl‘lpl
1
- € s0(2n) (Zpi +r =n>
c Yol
qv Pq
OIZr
and
Y1p1
: ' / 2 1=
- yq_ljprl € s0(2n) (Z pit+1= n)
Ly
2 Y Pq Pa
—Lay
satisfy y (w) = cw, where
J
0 -1
J=<1 O)eg[(Z), Jp = € gl(Zp),
J

- %(pi_1)+l7i+l+"'+pq+r (i=1-,9—1)),
' .

%(Pq—l)-kr (i=q),
and

1
ViIZE(Pi+1)+Pi+1+"'+pq'
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On the other hand, we have an example which does not p = d F for any constant d > 0, but
Apyx = 2cx;
Let G = SO (4). The adjoint orbit of

J 0
H €s0(d) (1 > pa > 0)
0 uaJ

does not p = dF for any constantd > 0, but Ay x = 2cx. (See Appendix.)

A. Appendix

In this Appendix, we compute y and the tension field T of the embedding x : (M, J, BY =
p) — (g, (, ), when G is SU(n) or SO (n).

A.1l. The case G = SU (n)
We use (X,Y) = —trace XY, X, Y € su(n), as the Adgy (,) invariant inner product on
su(n). Let M be the adjoint orbit of

widp, 0
wy =+ —1 e su(n),

0 Kqlp,
where u; and p; satisfy the following conditions;

q q
K1 > o> g, ij=n, ijﬂj=0,
j=1 j=1

and I, € gl(p) is the identity matrix. If ¢ = 2, then we can see that { , )| satisfies the
assumption of Theorem 1.2. So we suppose that g > 2.
By simple calculation, we see that

0 X1 - Xig
X1 0
My, = - ‘ ; Xij € M(pi, pj; O ¢ s
Xy, e 0
exp(v/—101)1p, 0 q
Swy = 3 2 pifi=0¢,
0 exp(vV—=10,)1,,) =1
and
O11p, 0 q
Swy = 1V —1 ;Y pifi=0
=1

0 9‘1 IPq
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Next, we give an Adg,, -decomposition of My,,.

Forl<i<j<gq,1<k<pjand1 <[ < p;, we prepare the following matrices;

X11 P _x]p/
Xiijky =1 - | eMpi,pj; C),
Xpil = Xpip;
where
o 1 (a=kandb=1),
=10 (otherwise)
i J
. il o Xyjan
elij.kly = NG : € My, ,
il Xk
and
I J
il oo Xgia
/1] Js
Sfijky = —= . € My, ,
{]s } \/z : 0
il Xijan

where the blank parts of the matrices above are zero matrices. Then we have an Adg,,  de-
composition of My, as follows;

My, = Z Z Enwg fij k1) »

I<i<j<q 1<k<p;
I<l<p;

where
Euwg (ij.kiy = spanrieijkiy, fiijkiy} -
Moreover we see, by simple matrix calculation, the following.
o {e(ijk1y, fiijkiy} 1s an orthonormal basis of (Ey, (ij ki}, (5 ))-
o On Ey (ij:ki)» the weight ay;j. k1) of Sy is
O11p,
agjiy | V=1 =06 —0;.

9‘1 IPq
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e The canonical complex structure J is given by

1

Jwoetijy = —————[wo, eyjry] = fiiju
wo €{ij,kl} a{ij,kl}(wo) {ij . kl} {ij kl}
at wo.
[ ]
Bilp,
y(wo) = v—1 ,Bllm € Suy »
IBquq
-1
for f; = Z?:m Pj = 2= Pj-
e Forl <i<j<g,
aij = (aijkly, ¥ (wo))
=Bi — Bj
Pi + Pi+1 (G=i+1)), (A.1)
=\ Pi +2pi+1 + piy2 (G=i+2),

pi +2(piv1 + -+ pj-)+p; (G>i+2).

By Proposition 4.1 and some calculations,

. —Pilp;
1<i<j<qg %

il o pily,

A.2. The case G = SO(2n)

We use (X,Y) = —trace XY, X, Y € so(2n) as an Adso(2,) invariant inner product on
s0(2n). Different from the G = SU (n) case, we investigate adjoint orbits of the following
types respectively; let

J 0
o= (? ‘01) cgzR, J,=| - |esemp.
0 J
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Case 1. The adjoint orbit M (Sp(l)(%")pq‘r) of the following element;
m1dp,
w) = - € so(2n),

Hq JPq
012r

where u;, p;, and r satisfy the following conditions;

q
mr>-->pug >0, p;>0, r>0, Zpi—i—r:n.
i=1

Case 2. The adjoint orbit M (S p? (%")pq) of the following element;
H‘] JPI
wy = € so(2n),

Hq JPq

where p; and p; satisfy the following conditions;

q
ur>-->png >0, p;i>0, Zp,:n.
i=1

A’/‘ISO(Zn)

Case 3. The adjoint orbit (o p

) of the following element;

w1 dp,
w3 = e s0(2n),
g Jp,
—gd

where ©; and p; satisfy the following conditions;
q
H1>-o>ug >0, p;i>0, Zpi+1=n-
i=1

By simple calculation,

Case 1.
X - Xy X
) ) ) Xi; € Imageady, C so(2pi),
Image ad,,, = . : S| Xij € MQ2pi,2pj; R) (0 <)),
—Xig - Xgq  Xq X; € M2p;,2r; R)
—IX; - _qu 0
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where

0 A12 Alq

—A

SN A | PV

. —a

_Alq 0
Rpl(gl)

Swy = 301, .6 €eR
Rp, (6g)
IZr
where
cosf —sinf 0
sinf  cosf
Rp(©) = € S0Q2p).
cosf —sinf
0 sinf  cosf
1 Jp,
511)12 ;[1’...’l‘qeR
tqJp,
0
Case 2.
X1 e X
Image ady,, = . |. Xii € Imagead;, Cso(2pi),
g w2 — t. . ) XU c M(zpthj’ R) (l - J)
X1y - Xy
Ry, (81)
Swy = ;01,---,0, €R
Rp, (04)
tJp,
Swy = st tg €R

99
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100
Case 3.
_ Xii eImageadel_ C s0(2pi),
X - X4 Xi Xij € M2pi,2pj; R) (i < j),
: X e MQ2pi, 2R (1<i<qg—1),
Image ad,,, = . ) S )}pl:t(A A )q
_){lq qu Xq q 1, b’ q)
t t -
=Xy - =Xy 0 whereAje{(Z );a,bER}
a

nJp,
Swy = st e tg €R
1gJdp,
—tgJ
Next we give an Ad,, -decomposition of Image ad,,,, y (w;) and t,, foreachi =1, 2,3

We prepare the following matrices in gl(2; R);
0 1 -1 0
er=0hL, e=1/J, €3=<1 O)’ 64=<0 1).

Forl <i <g,and1 <j <k < p;,

Jj k
3 il : ey
€ jk) = ) € Imageadjpl_ C s0(2pi),
k —e3
and
J k
» il : ey
€Gijk) = € Image adjpi C s0(2p;).
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Forl<i<j<g,1<k=<pi,1<l<pj,andm=1,2,3,4,

l

iy =k | -+ em € M(2pi,2pj; R).

Forl<i<g,1<j<pi,1<k<r,andm=1,2,3,4,

k

frn(l,';jk)=j e e M(2pi,2r;R).

Forl <i<gqg,1<j<pij,andm=1,2,3,4,

f??;j): Jlem | eM©2p;i,2;R).

Case 1. In this case, let

1

3 _ . -

€ jky) = 5 i e?i;jk) € Image ady, ,
i

4 1 -

€ jk) = 5 i e?’_;jk) € Imagead,,, ,
i J
. ll : é?t?j;kl)
€Gij:kl) = 3 : € Image ad,, ,

_tzm

A €(ijikl)

101
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and
i
. 1 il jﬁ;;jk)
Trajn = 5 . € Imageady, .
t ~l’41
=Gk

Then we have an Adg,, decomposition of Image ad,, as follows;

Imageady, = » Y Dy ajb

I<i<q 1<j<k=p;

1 2
+ > D (Euy i T Ean i)

I<i<j<q 1<k<p;
I<l<p;

1 2
+ Z Z By aizji + Fonsje)

I<i<q 1<j=<pi
1<k<r
where
3 4
Dy i; jiy = spanwrieg; jiy € ji} »
1 1 2 2 3 4
Evyy ijskty = SPANRIC ) s €k} By ijikty = SPANRI€G 1y €ijsiny ) »
and
1 1 2 2 3 4
Fuy i ji = SPANRU v iy Jraisjiod s Fuy ;i = SPanr{f G, jioys Jris ot
Moreover we see, by simple matrix calculation, the following.
2
Jri jwy s and
{fr3(i;jk), fr“(i;jk)} are orthonormal basises of (Dy,, ¢ jk), {5 ))»
1 2 1 2
(Ew],(ij;kl)’ (, ), (Ew|,(ij;kl)’ (., N, (Fw],(i;jk)’ (,)),and (Fw],(i;jk)’ (., ) respec-
tively.
. 1 2 1 2 . ; o
e On Dy, i:jk)» Ewl)(ij;kl), Ewl’(ij;kl), le’(i;jk), and le)(i;jk), their weights, ag;:. i),

3 4 1 2 3 4 1
* {¢G:jn €siiob agiay €agin b i €t Vi

1 2 1 2 : : .
AGiikty GGkt Qs j» and ag. ik respectively, of the action of Sy, are as follows; for
t1Jp,
X = B € 5y, ,
tq4Jp,

0

we have
ag; jn(X) =2t , a(l,-j;kl)(X) =t —1tj,
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Ay X) =t + 17, ag (X)) = af oy (X) =1
Vl‘lpl

y(wy) = E ,
quPq
OIZr

where
Spi—D+pipi+-+pg+r (=1 ,g-1D,

Vi = :
35(pg — D +r i =q.

By Proposition 4.1 and some calculations,
T1Jp,

'Cwl =
Tq Jpq

012r

where
i—1

q
i Wi — L Kj— Hi
T=—(—(pi—1)—2r)— Z%P-/"Z%W
Vi j=irt ViV =t T
(A2)

i—1

q
i + 1 )+ i
D vl TR Dvwrwl
=it Yi TV = Yj TVi

Case 2. This case is interpreted as Case 1 with r = 0. So we have

Yidpy
y(wr) = ,
YaJp,
where
Ypi—D4pigi+-tpg G=1--,q—1),
Yi =
3(pg = 1) (i=4q),
and
T1Jp,
Twy, = s

Tq JPq
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where
i—1

q
Mi Wi — 1 Hj — Mi
n=-Tpi=D-| ) T ——Lp -y L
1

S i ‘Svi—v
(A3)

q i1
i+ )+ Wi
-1 2 Sl +Z%l’f
j=it1 ViV RN
Case 3. In this case, let
f('?;j) = fl’“f(i;jl) € Imagead,, .

Then we have an Adg,,, decomposition of Image ad,,, as follows;

Image ad,; = Z Z Doy iz k)

I<i<q 1<j<k=p;

1 2
+ > Y Euyimn T Ean i)

I<i<j=<q 1<k=<p;
1<i<p;

+ Y D Faap tFanag)

I<i<g—-11<j<pi

+ Z w%(qj)’

1<j<pq
where
3 4
Dy, iz jiy = spanrieg. jr: € ji} -
Eb iy = SPanrieiqns €t En iy = SPAnriel s €
w3, (ij:kl) = SPAMRE Gjikly €Gijiki)S + Fws,(ijskt) = SPAMRE ki) €Gijski) ) -
and

1 1 2 2 3 4
Fys iy = spanklf. jy Sapbs Fuyy = spanrifG. s i) -

By the similar calculation in Case 1, we see that

Y1dpy

v(ws) = Ya—=1Jp, P ’
Tq‘]Pq

Whereyi=%(pi+1)+pi+1+~'+pq @=1,---,g—1).

T1Jp,

Tq JPq
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where

q
i Wi — Wi Wi+ U
—t=—(pi—D+ p'( + )
l Vi Z ! Vi —Vj VitV

j=i+l
i—1 Wi — Wi ,U«+P«
+ij<_ JT R K ,> (A4)
= Vi~ Vi Vi +Vi
+ P
SRl G (Y I Lo
)/i+J/q Yi — Vq
and
T Ay
~ J q J q
=Y pL 4N, BS TR (A.5)
; "vi—va ; Tyit+ v

PROPOSITION A.l1. In Case 2, let ¢ = 2, and p1 = p» = 1. Then we have 1y, =
—2w».

Note that, in this case, p is not equal to d F', for any constant d.

PROOF. First we prove that p is not equal to ¢ F', for any constant c. By the hypothesis,

wy 18
(1 0O
" _( 0 MzJ) ’

where 1 > w2 > 0. On the other hand,

y(wn) = (é 8) .

So by the definitions of p and F, we have proved that p is not equal to d F, for any constant
d. On the other hand, by the equation (A.3), we have 7,,, = —2w>. O

A.3. Thecase G =SO0(2n—+1)
In this case, we only write down the results; let M be the adjoint orbit of wg € so(2n+1),
where
n1dp,

. q
wo = ’ (u1>'~>uq,2pi=n).
qJp, i=1
0
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Then we have

Y1dp,
- 1
y(wp) = Vi =zpi+pit1+-+Pg)s
Yo/ 2
4+ Pq
0
T1Jp,
tw() == )
74 Jp,
0
where
Mi z Wi — Wj Wi+
i i J i J
=t 3 (S )
Yi =it Yi —Vj VitV
(A.6)
- Wi — i B
- M 4
+ g (FL ),
= Vi —Vi Vi T Vi
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