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Abstract. An isolation theorem of the Bochner curvature tensor of a Kihler-Einstein manifold is given, when
its L"/2-norm is small. Similarly an isolation theorem of the contact Bochner curvature tensor for a Sasakian mani-
fold is obtained. Those theorems are derived from the Weitzenbock formula which gives non-linearity constraint on
the Bochner curvature tensors.

1. Introduction

The Weyl conformal curvature tensor is a tensor which measures deviation from the
conformal flatness so that it is significant in conformal geometry. As its complex analogue we
have the Bochner curvature tensor on a Kihler manifold, and also as its contact analogue the
contact Bochner curvature tensor on a Sasakian manifold.

Our purpose of this paper is to show that these Bochner curvature type tensors B obey
the following isolation theorems under certain Einstein conditions.

THEOREM A. Let (M, J, g) be a compact, connected Kdihler-Einstein n-manifold,
n = 2m > 4, with positive scalar curvature s and of Vol(g) = 1. Then, there exists a
constant C(n), depending only on n such that if L"/*-norm |Bll;n2 < C(n)s, then B = 0
so that (M, J, g) is biholomorphically homothetic to the complex projective space CP™ with
the Fubini-Study metric.

REMARK. It is known that complex surfaces CP?#kCP2 (3 < k < 8) and CP! x CP!
admit Kéhler-Einstein metric with positive scalar curvature [16]. Here, C P2#kCP? is the
surface obtained by blowing up CP? at k generic points.

THEOREM B. Let (M, ¢,&,n,g) be a compact, connected Sasakian n-Einstein n-
manifold, n = 2m + 1 > 5, with scalar curvature s > —(n — 1) and of Vol(g) = 1.
Then, there exists a constant C(n), depending only on n such that ifL"/z-norm |Bllpnp2 <
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Cnn(s +n—1)/(n+ 1), then B = 0 so that M is D-homothetic to finite quotient of the
standard n-sphere.

These theorems are analogous to the following isolation theorem of the Weyl conformal
curvature tensor W.

THEOREM ([8]). Let (M, g) be a compact, connected oriented Einstein n-manifold,
n > 4, with positive scalar curvature s and of Vol(g) = 1. Then, there exists a constant
C(n), depending only on n such that if L/*-norm [Wlln2 < C(n)s, then W = 0 so that
(M, g) is a finite isometric quotient of the standard n-sphere of unit volume.

As a complex analogue of the Weyl conformal curvature tensor, S. Bochner [2] intro-
duced the so-called Bochner curvature tensor using a complex local coordinate;

1
Bopys = Rupys = 5 Rapys + Ry 305 + 9upRys + 95 Ras)
N
e D) e T )

Y. Kamishima classified completely compact Kihler manifolds with vanishing Bochner
curvature tensor in [10].

THEOREM ([10]). Let M be a compact Kihler 2m (> 4)-manifold having the vanishing
Bochner curvature tensor B. Then M is holomorphically isometric to

(1) the complex projective space CP™,

(2) a complex Euclidean space form Tg'/F, F C U(m),

(3) a complex hyperbolic space form Hg' /I", I' C PU(m, 1),

(4) the fiber space Hé‘, x CP"*/I" where

rcpPUk,1)x PUm—-—k+1), k=1,2,---,m—1.

Here, F is a finite group and I' is a discrete cocompact subgroup, both acting properly
discontinuously.

For odd dimensional Sasakian manifolds, M. Matsumoto and G. Chiiman [13] defined
the contact Bochner curvature tensor. A Sasakian manifold with vanishing contact Bochner
curvature tensor is studied by M. Matsumoto and G. Chiiman [13], T. Ikawa and M. Kon [4].
The isolation theorem of contact Bochner curvature tensor, namely Theorem B, is obtained
by arguments based on those studies together with the result of [8].

2. Isolation of the Bochner curvature tensor

2.1. The Weitzenbock formula for the Bochner tensor. In this section, we establish
the Weitzenbock formula on the left-exterior derivative dy applied to the Bochner curvature
tensor in a Kéhler-Einstein manifold which plays an essential role in the proof of Theorem A.

Let (M, g) be a Riemannian n-manifold, and let A? denote the bundle of exterior p-
forms. The operator dy : I'(AP ® A1) — I'(APT! ® A?) exploited by the first author in [7]
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is given by

1)

Goiy+ikipj1Jjq

p
ALV igiyipjijg = Y_(—=DFVi
k=0

The bundle AP ® A? carries the inner product inherited from the metric g. Then, with respect
to this inner product the operator d;, has the formal adjoint §; : I'(APT! @ A9) — I'(A? ®
A7), given by

BLY iy iy jrojy = =V Vaiyip iy - (2)
Similarly, the right-exterior derivative dg : I'(A? @ A1) — I'(AP? ® A1 *1y and the formal
adjoint 5 are also defined.
REMARK. We may consider the Riemannian curvature tensor R as a section A2 ®@ A?
and the Ricci tensor Ric as a section A! @ A!. The following identities are well known

1
diR=0, 6.R = —dgrRic, 5RRiC=5LRiC=—§dS, 3)

where s is the scalar curvature. The first one reads the second Bianchi identity.
By direct calculation, we have the Weitzenbock formula on the d as follows:
(Ap)ijse = dLoLY + 8Ldp)ijs: @
= V*Vijst + RiVajst + R Viast — {R, V}ijst »

forany ¥ € I'(A?® A?). Here, {, }is given by
_ ab a. b a b a . b a. b
(S, Thijst = Sij" " Tabst + S%is Tajir + S jt Taisb—S" js~ Taits — STt Tujsh »
S, T eI(A>® A?).
The Bochner curvature tensor B has also a real coordinate expression due to S. Tachibana
[14]. We adopt in this paper his real coordinate formulation. Namely, let (M, J, ¢g) be a Kéhler
n-manifold, n = 2m > 4. Then the Bochner curvature tensor is defined by
1
Bijst = Rijs — m[Risgjt + Rj1gis — Ritgjs — Rjsgis + Ji" RrsJ js
+J;" Rt Jis — Ji" Rri Jjs — Jj" Res Jis + 20" Ryj Jsi + 2Jij Js" Ryt

s
+ m[gisgjt — Git9js + JisJjr — JirJjs + 2Jij Jst], (5)

where Ji; = Ji" ;.
The following identities are obtained by the straightforward computation;

Bijst = —Bjist = —Bijis (6)
Bijst + Bjsit + Bsijt =0, @)
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Bijst = Byiij ()
Bijst = Jiijquqst ’ (9)
BP jpr =0, (10)

from which one sees that the Bochner curvature tensor in a Kéhler manifold plays a role of
the Weyl conformal curvature tensor in a Riemannian manifold. The identity (9) means that
B is J-invariant, i.e., B(JX, JY, Z, W) = B(X, Y, Z, W) for tangent vectors X, Y, X, W.
The identities J;” Bjss = —J;¥ Bips: and JP9 Bpqs = 0 are derived from these identi-
ties.
Set the tensors G and @

Gijst = Gisgjt — 9itGjs»  Pijst = JisJjr — Jirjs + 2Jij Jsr .
Then, from the above identities of the B, we have

{(G,B}={®,B} =0. (11)

Now, we consider the Kéhler-Einstein case. The Bochner curvature tensor has the fol-
lowing form if and only if M is Kéhler-Einstein;

B=R G+ ®). (12)

Ca(n+2)
Moreover, when M is Kéhler-Einstein, by applying (3) and VB = VR, we have
dpB=0, and §.B=0. (13)

So that, from the Weitzenbock formula for the B, we have the following Lemma.

LEMMA. Let (M, J, g) be a compact Kdihler-Einstein manifold. Then the Bochner cur-
vature tensor B fulfills

2
0=A,B=V*VB+ =B —(B,B). (14)
n

2.2. Proof of Theorem A. The proof is quite similar to the proof in [8]. So we follow
their argument.

Let (M, J, g) be a Kédhler-Einstein manifold, n = 2m > 4, with positive scalar curvature
s. We assume that the Bochner curvature B does not vanish identically and consider its norm
| Bl g2

We apply the Sobolev inequality of a compact Riemannian n-manifold, n > 3, which is
described in terms of Yamabe metrics. We take a Yamabe metric in the conformal class [g],
represented by ¢ and then obtain the Sobolev inequality

4

n—1 _
— SIVFIg2 = sVl @™ I IL, = Vol(g)™*™IIfII.), f € Hi(M) — (15)
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where p = (2n/n — 2). The inequality (15) still holds when f is replaced by any tensor T
because of the Kato’s inequality

IVIT|| = IVT]. (16)
Remark that there is an improved Kato’s inequality, for example, as given in [3] as
IVIB|| < ¥ (m)|VB|

for a certain positive constant y (n) < 1, since B satisfies the elliptic equations (14). We can
make use of this inequality to our argument. However, the improved Kato’s constant y (n) is
not essential in our argument. So we ignore here this constant.

It is known that any Einstein metric must be Yamabe, provided it is not conformal to the
standard n-sphere ([6, 11]). Since the metric is Kidhler-Einstein, g is indeed a Yamabe metric
in the conformal class [g]. We normalize g by constant rescaling so that Vol(g) = 1.

So we get

n—1
n—72

IVBIZ, = s{lIBII7, — BIl3.} - (17)
Next, we have the following inequality from (14);
2s _ _
IVBIZ. + 1Bl < C; 1Bl < GBIz IBIL, - (18)

Here, we used the Holder inequality together with the pointwise inequality
((B, B}, B) < C,|B (19)

for a constant C,, > 0, depending only on n. Applying the Sobolev inequality (17) yields

2s n—2
-1 2 2 2 2
C, Bl IBlizr = ;IIBlle + 70 -1 1)S(IIBIILp —Bll;2)- (20)
Assume that4 < n <9. Then (2/n) — ((n — 2)/4(n — 1)) > 0 so that
CU Bl > 1)
n e a—
n WP = 4=

If, contrarily, n > 10, itholds (2/n)—((n—2)/4(n—1)) < 0. However || B||7, < [|B||Z,,
since p > 2. So,

2 n—2 5 2 n—2 5
- B > - — B . 22
(n 4(n—1)>s” ||L2_(n 4(n_1)>s” 13, (22)
‘We have thus
2 n—2 n—2 2
—1 2 2 2
C, 1Bl IBllzr = {(;— 20— 1)>S+4(n_1)S}|IBIIL1» = ;SIIBIILp (23)

giving rise to || Bl ;n2 = (2/n)Cys.



232 MITSUHIRO ITOH AND DAISUKE KOBAYASHI

Therefore, if we put C(n) as

com=-""2¢ <9
n) = no s _n_ [}
4n—1) (24)
=—Cns, 105"1
n

then we get a contradiction giving the complete proof.

REMARK. If n = 4, the Bochner curvature tensor B of a Kihler metric ¢ is the anti-
self-dual part of the Weyl curvature tensor W of ¢ [5, 17]. That is, it holds in this case B* = 0
and B~ = W~ , where B* and W™ are the restriction of B and W to A¥, respectively. Here
the bundle A? splits as the Whitney sum A% = AT @ A~, AT being the eigenspace bundles
of the Hodge star operator * € End(A?). Then the W and the B leave A¥ invariant. As was
discussed in [9], for a Kéhler surface, we have

(B, B}, B)| < V6|B[.
The equality is achieved at a given point if and only if the curvature operator B = W~ €
End(A7™) has distinct eigenvalues at most two.
2.3. The optimal value of the estimate constant C(4). We do not know in general
the optimal value of C(n) in Theorem A. However, when M is real 4-dimensional, we shall

see that the constant C(4) = ,/ ﬁ is optimal in our theorem.

Let (M, J, g) be a compact, connected Kahler-Einstein 4-manifold with positive scalar

curvature s. Then, since |W+|2 = ﬁsz, we have the Hirzebruch index theorem and the
Gauss-Bonnet theorem (cf. [12])
w7, = i/ 24V, = 372 (M) + 3c(M)) (25)
L2724 |y 973 ’
2 -2 1 2 2 8 2
I1Bll;» =IIW™ll;. = 2 MS dVy — 12n°t(M) = 37 (x(M) —3t(M)), (26)

where y (M) is the Euler-Poincére characteristic and t (M) is the signature of (M, g).
Moreover, since M is a Kéhler-Einstein 4-manifold with positive scalar curvature, we
see that the Betti numbers satisfy b1 (M) = 0 and b;(M) = 1. So, we have

(M) = bl (M) — by, (M) =1—-b; (M),

Lo 27
X(M) =Y " (=1)*b(M) = 3+ b; (M)
k=0
The identities (25), (26) and (27) imply
1 4
2 2 2 -
IWHlLe = 55 | s%dVg = 3720 = by (M)). (28)
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1812, = o / $2dVy — 12772 (M) = S0 (M) = 3e(M))
24 Ju 3
32 32 32 29
= 37y (M) = (1= t(M) = 7> (x (M) = 3)..

From (27) and (29), we easily obtain the following proposition.

PROPOSITION. Let (M, J, g) be a compact, connected Kdhler-Einstein 4-manifold,
with positive scalar curvature s and of Vol(g) = 1. Then, the following are equivalent each
other;

1). The Bochner curvature tensor does not vanish identically,
i). (M) <0, iii). x(M) =>4, iv). by, (M)=>1,

2

. 8 .. 32
122 op5h VD IBIL 2 Sy (M), viD. 1Bl =

. |IB
v). |IBll Z 3 3

For example, when M is homothetic to CP! x CP! with the standard product metric,
all the equalities hold in the above proposition. Thus we see that the value of the estimate

constant C(4) = ,/ﬁ is optimal in our theorem. Furthermore, in this case, we obtain the

isolation theorem of the Bochner curvature tensor even though the constant C(4)s is replaced

by \/gnzx(M) or %n? That is,

THEOREM. Let (M, J, g) be a compact, connected Kdhler-Einstein 4-manifold with

positive scalar curvature and set a positive constant € = \/§JTZX (M) or \/33—2712. If L*-norm
|Bll;2 <&, then B = 0.
REMARK. The L%-norm of Bochner curvature tensor of a Kihler-Einstein 4-manifold

with positive scalar curvature takes a discrete value represented by the topological invariant
such that

32
2
18I, = 5

Here, 0 < b, (M) < 8 is obtained from (28). For example, the Kéhler-Einstein manifold

CP2#kCP2 (3 < k < 8) fulfills by =k and ||B|?, = Zr’%.

7?by (M), (0 <by (M) <8).

3. The contact Bochner curvature tensor

3.1. Curvature tensors of Sasakian manifolds. Let (M, (¢, &, n, g)) be a Sasakian
n-manifold, n = 2m + 1 > 5. Then g, n, & and ¢ are a Riemannian metric, a 1-form, a unit
Killing vector field and a tensor field of type (1, 1), respectively, such that

n(X)=g9E X), Vxn¥) =g(X, oY),

2 (30)
P X =—-X+nX)E, (Vxo)(¥)=gX,V)§-—n¥)X,
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for any tangent vectors X, Y. From the above, the following identities are derived ([1, 15]).
$ =0, n(@X) =0,

(€29
¢X =—-Vx§, dn(X,Y)=29(X,¢Y).

It is well known that the Riemannian curvature tensor and the Ricci tensor of a Sasakian
manifold satisfy

ngpjst =GjsNt — Gjts »
¢ip¢qupqst = Rijst - Gijst + ¢ip¢qupqst s (32)
#i"$; Rpg = Rij — (n — Dnin;,
where Gijs; = gisgjr — Gitgjs-
We call (M, (¢, &, n, g)) n-Einstein, if the Ricci tensor has the form R;; = ag;; +bn;n;,
wherea = s/(n — 1) — 1 and b = —s/(n — 1) 4+ n. The scalar curvature of an n-Einstein is

constant.
The contact Bochner curvature tensor is defined on M by (cf. [13])

Bijst = Rijst
1
- P 3[ isgjr + Rjt 9is — Ritgjs — Rjsgir + Rir¢s" o+ R]r(bt dis — Rirdy" Qs
—Rjr¢s" ¢iz +2Rir¢;" b5t + 2¢ij Rsr " — Ris77j771 — Rjmins + Rimjns + Rjsning]
k+n— —4
+ ﬁ[(ﬁm(bﬂ - ¢1t¢js + 2¢11¢st] + nt3 [gisgjt - gitgjs]
p—— —=Lgisnjn: + gjimins — gimjns — gjsnined, (33)

where k = (s +n —1)/(n+1) and ¢;; = gir¢;". If (M, (¢,§, 1, g)) is a Boothby-Wang
fibering over a Hodge manifold, then the contact Bochner curvature tensor coincides with the
pull-back of the Bochner curvature tensor of the base Kihler manifold.

The following identities are obtained similarly to the ones for the Bochner curvature

tensor;
Bijsi = —Bjiss = —Bijis (34)
Bijst + Bjsit + Byijt =0, (35)
Bijst = Bsiij (36)
EPB s =0, 37)
Bijsi = ¢i’ ¢ Bpyst , (38)
BPjp =0. (39)

The contact Bochner curvature tensor in a Sasakian manifold plays a same role of Bochner
curvature tensor in a Kéhler manifold. (37) means B(§, X, Y, Z) = 0 for all tangent vectors
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X, Y, Z. The identities ¢;” Bpjs; = —@;” Bipss and ¢pP9 B4, = 0 are derived from these
identities.
A D-homothetic deformation (¢, &, n, g) — (P¢, &, ¢, gc) is defined by

pe=¢, Ec=c &, ne=cn, go=cgt+clc—Dn®n,

for a positive constant ¢, where D means the distribution orthogonal to a contact form n. If
(¢, &, n, g) is a Sasakian structure, then (¢, &, n¢, gc) is also a Sasakian structure. By direct
calculations, we have

Ry = cRy+c(c* =D @M@ g—clc— D, (40)
Ricg, = Ricg —2(c—Dg+ (c—D{n—Dc+n+1n®n, (41)
Sge = ¢ Lsg—cHe—D@m—1), (42)

where @5 = ¢isdjr — ditdjs + 2¢ij¢ps:. Here, @® is the Nomizu-Kulkarni product of
symmetric 2-tensors. Moreover, the volume form changes as dV,, = crtD/2g Vg.

When we emphasize that a tensor 7' is determined by the structure tensor (¢, &, 1, g),
we denote T by Tj.

LEMMA ([13]). As a (1, 3)-tensor the contact Bochner curvature tensor is invariant
under any D-homothetic deformation.

Now we shall introduce another important tensor U in M defined by
Uijst = Rijst — (p + Dlgisgjr — girgjs]
— plois®jr — Gitjs + 2¢ijbst — GisnjNe — GjeNitls + Gienjns + gjsnined  (43)
= Rijsi = (0 + DGijsi = p(@ — (1 @ MD Pijst»

where p + 1 =k/(n — 1).
The contact Bochner curvature tensor coincides with U if and only if M is n-Einstein.
A Sasakian manifold M is called Sasakian space form if U vanishes identically. It is well
known that a Sasakian space form is n-Einstein. So, the contact Bochner curvature tensor of
a Sasakian space form vanishes identically.

3.2. Proof of Theorem B. First we show that a Sasakian n-Einstein structure can be
D-homothetically deformed to a Sasakain Einstein structure whose contact Bochner curvature
tensor coincides with the Weyl conformal curvature tensor. Namely,

PROPOSITION. Let (M, ¢, &, n, g) be aSasakian n-Einstein n(> 5)-manifold with scalar

.. -1 .
curvature sq > —(n — 1). Put the positive constant a = % and consider the
D-homothetically deformed structure (¢u, &xs Na» o). Then the metric gy is Einstein with
Ricg, = (n — 1)gy and sg, = n(n — 1). Further the contact Bochner curvature tensor Bg,
coincides with the Weyl conformal curvature tensor;

Bgot = Wgoc .
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PROOF. From (41) and (42) we see by putting ¢ = a Ricg, = (n — 1)gy and sg, =
n(n — 1). On the other hand

1
Bga = Rga - E%{@ga = Rga )ga® Ja = Wga . (44)

S9a

C 2n(n—1

Now we will prove Theorem B. So, suppose that B, vanishes. Since the contact Bochner
curvature tensor is D-homothetic invariant, By, also vanishes. From (44), (M, gy) is a con-
formally flat, Einstein manifold with the scalar curvature s4, = n(n — 1), so that (M, g,) is a
finite isometric quotient of the standard n-sphere.

We assume henceforth that B, does not vanish identically and induces a contradiction.
To show that, we put ¢ = Vol(ga)’(z/ n) . so that (M, cgy) is compact, connected Einstein,
with positive scalar curvature and of Vol(cgy) = 1. As shown in [8], there exists a constant
C(n), depending only on n such that

1Wegy | p2.cq, = C)scg,

Here the LHS and RHS are now, respectively

IWegy Iz cg, = IWa i g, = 1Bg,ll o2 g, = @™ Byl 4 .
and
C()seg, = C(m)n(n — 1)Vol(ge)*™ = Cmyn(n — Ha"/"Vol(g)*/™ .

Hence, we have the inequality

1Byl zn2,4 = C)n(n — DaVol(g)*™ = C(n) Vol(g) /™ (45)

n(sg+n—1)
1

The inequality (45) is invariant under D-homothetic deformation, while the L"/2-norm of the

contact Bochner curvature tensor is not an invariant under D-homothetic deformation. Nor-

malizing the volume by D-homothetic deformation, we get a contradiction to the assumption

|Bllpn2 < C (n)"(s:ifl_l) giving the complete proof.
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