Isolation Theorems of the Bochner Curvature Type Tensors

Mitsuhiro ITOH and Daisuke KOBAYASHI

University of Tsukuba
(Communicated by Y. Maeda)

Abstract

An isolation theorem of the Bochner curvature tensor of a Kähler-Einstein manifold is given, when its $L^{n / 2}$-norm is small. Similarly an isolation theorem of the contact Bochner curvature tensor for a Sasakian manifold is obtained. Those theorems are derived from the Weitzenböck formula which gives non-linearity constraint on the Bochner curvature tensors.

1. Introduction

The Weyl conformal curvature tensor is a tensor which measures deviation from the conformal flatness so that it is significant in conformal geometry. As its complex analogue we have the Bochner curvature tensor on a Kähler manifold, and also as its contact analogue the contact Bochner curvature tensor on a Sasakian manifold.

Our purpose of this paper is to show that these Bochner curvature type tensors B obey the following isolation theorems under certain Einstein conditions.

Theorem A. Let (M, J, g) be a compact, connected Kähler-Einstein n-manifold, $n=2 m \geq 4$, with positive scalar curvature s and of $\operatorname{Vol}(g)=1$. Then, there exists a constant $C(n)$, depending only on n such that if $L^{n / 2}$-norm $\|B\|_{L^{n / 2}}<C(n) s$, then $B=0$ so that (M, J, g) is biholomorphically homothetic to the complex projective space $\boldsymbol{C} P^{m}$ with the Fubini-Study metric.

REMARK. It is known that complex surfaces $\boldsymbol{C} P^{2} \# k \overline{\boldsymbol{C} P^{2}}(3 \leq k \leq 8)$ and $\boldsymbol{C} P^{1} \times \boldsymbol{C} P^{1}$ admit Kähler-Einstein metric with positive scalar curvature [16]. Here, $\boldsymbol{C} P^{2} \# k \overline{\boldsymbol{C} P^{2}}$ is the surface obtained by blowing up $\boldsymbol{C} P^{2}$ at k generic points.

THEOREM B. Let (M, ϕ, ξ, η, g) be a compact, connected Sasakian η-Einstein n manifold, $n=2 m+1 \geq 5$, with scalar curvature $s>-(n-1)$ and of $\operatorname{Vol}(g)=1$. Then, there exists a constant $C(n)$, depending only on n such that if $L^{n / 2}$-norm $\|B\|_{L^{n / 2}}<$

[^0]$C(n) n(s+n-1) /(n+1)$, then $B=0$ so that M is D-homothetic to finite quotient of the standard n-sphere.

These theorems are analogous to the following isolation theorem of the Weyl conformal curvature tensor W.

THEOREM ([8]). Let (M, g) be a compact, connected oriented Einstein n-manifold, $n \geq 4$, with positive scalar curvature s and of $\operatorname{Vol}(g)=1$. Then, there exists a constant $C(n)$, depending only on n such that if $L^{n / 2}$-norm $\|W\|_{L^{n / 2}}<C(n) s$, then $W=0$ so that (M, g) is a finite isometric quotient of the standard n-sphere of unit volume.

As a complex analogue of the Weyl conformal curvature tensor, S. Bochner [2] introduced the so-called Bochner curvature tensor using a complex local coordinate;

$$
\begin{aligned}
B_{\alpha \bar{\beta} \gamma \bar{\delta}}= & R_{\alpha \bar{\beta} \gamma \bar{\delta}}-\frac{1}{m+2}\left(R_{\alpha \bar{\beta}} g_{\gamma \bar{\delta}}+R_{\gamma \bar{\beta}} g_{\alpha \bar{\delta}}+g_{\alpha \bar{\beta}} R_{\gamma \bar{\delta}}+g_{\gamma \bar{\beta}} R_{\alpha \bar{\delta}}\right) \\
& +\frac{s}{(m+1)(m+2)}\left(g_{\alpha \bar{\beta}} g_{\gamma \bar{\delta}}+g_{\gamma \bar{\beta} \bar{\beta}} g_{\alpha \bar{\delta}}\right)
\end{aligned}
$$

Y. Kamishima classified completely compact Kähler manifolds with vanishing Bochner curvature tensor in [10].

ThEOREM ([10]). Let M be a compact Kähler $2 m(\geq 4)$-manifold having the vanishing Bochner curvature tensor B. Then M is holomorphically isometric to
(1) the complex projective space $\boldsymbol{C} P^{m}$,
(2) a complex Euclidean space form $T_{C}^{m} / F, F \subset U(m)$,
(3) a complex hyperbolic space form $H_{C}^{m} / \Gamma, \Gamma \subset P U(m, 1)$,
(4) the fiber space $H_{\boldsymbol{C}}^{k} \times \boldsymbol{C} P^{m-k} / \Gamma$ where

$$
\Gamma \subset P U(k, 1) \times P U(m-k+1), \quad k=1,2, \cdots, m-1
$$

Here, F is a finite group and Γ is a discrete cocompact subgroup, both acting properly discontinuously.

For odd dimensional Sasakian manifolds, M. Matsumoto and G. Chûman [13] defined the contact Bochner curvature tensor. A Sasakian manifold with vanishing contact Bochner curvature tensor is studied by M. Matsumoto and G. Chûman [13], T. Ikawa and M. Kon [4]. The isolation theorem of contact Bochner curvature tensor, namely Theorem B, is obtained by arguments based on those studies together with the result of [8].

2. Isolation of the Bochner curvature tensor

2.1. The Weitzenböck formula for the Bochner tensor. In this section, we establish the Weitzenböck formula on the left-exterior derivative d_{L} applied to the Bochner curvature tensor in a Kähler-Einstein manifold which plays an essential role in the proof of Theorem A.

Let (M, g) be a Riemannian n-manifold, and let Λ^{p} denote the bundle of exterior p forms. The operator $d_{L}: \Gamma\left(\Lambda^{p} \otimes \Lambda^{q}\right) \rightarrow \Gamma\left(\Lambda^{p+1} \otimes \Lambda^{q}\right)$ exploited by the first author in [7]
is given by

$$
\begin{equation*}
\left(d_{L} \psi\right)_{i_{0} i_{1} \cdots i_{p} j_{1} \cdots j_{q}}=\sum_{k=0}^{p}(-1)^{k} \nabla_{i_{k}} \psi_{i_{0} i_{1} \cdots \hat{i}_{k} \cdots i_{p} j_{1} \cdots j_{q}} \tag{1}
\end{equation*}
$$

The bundle $\Lambda^{p} \otimes \Lambda^{q}$ carries the inner product inherited from the metric g. Then, with respect to this inner product the operator d_{L} has the formal adjoint $\delta_{L}: \Gamma\left(\Lambda^{p+1} \otimes \Lambda^{q}\right) \rightarrow \Gamma\left(\Lambda^{p} \otimes\right.$ Λ^{q}), given by

$$
\begin{equation*}
\left(\delta_{L} \psi\right)_{i_{1} \cdots i_{p} j_{1} \cdots j_{q}}=-\nabla^{a} \psi_{a i_{1} \cdots i_{p} j_{1} \cdots j_{q}} . \tag{2}
\end{equation*}
$$

Similarly, the right-exterior derivative $d_{R}: \Gamma\left(\Lambda^{p} \otimes \Lambda^{q}\right) \rightarrow \Gamma\left(\Lambda^{p} \otimes \Lambda^{q+1}\right)$ and the formal adjoint δ_{R} are also defined.

REMARK. We may consider the Riemannian curvature tensor R as a section $\Lambda^{2} \otimes \Lambda^{2}$ and the Ricci tensor Ric as a section $\Lambda^{1} \otimes \Lambda^{1}$. The following identities are well known

$$
\begin{equation*}
d_{L} R=0, \quad \delta_{L} R=-d_{R} R i c, \quad \delta_{R} R i c=\delta_{L} R i c=-\frac{1}{2} d s \tag{3}
\end{equation*}
$$

where s is the scalar curvature. The first one reads the second Bianchi identity.
By direct calculation, we have the Weitzenböck formula on the d_{L} as follows:

$$
\begin{align*}
\left(\Delta_{L} \psi\right)_{i j s t} & =\left(d_{L} \delta_{L} \psi+\delta_{L} d_{L} \psi\right)_{i j s t} \\
& =\nabla^{*} \nabla \psi_{i j s t}+R_{i}^{a} \psi_{a j s t}+R_{j}{ }^{a} \psi_{i a s t}-\{R, \psi\}_{i j s t} \tag{4}
\end{align*}
$$

for any $\psi \in \Gamma\left(\Lambda^{2} \otimes \Lambda^{2}\right)$. Here, $\{$,$\} is given by$

$$
\begin{array}{r}
\{S, T\}_{i j s t}=S_{i j}{ }^{a b} T_{a b s t}+S^{a}{ }_{i s}{ }^{b} T_{a j t b}+S^{a}{ }_{j t}{ }^{b} T_{a i s b}-S^{a}{ }_{j s}{ }^{b} T_{a i t b}-S^{a}{ }_{i t}{ }^{b} T_{a j s b}, \\
S, T \in \Gamma\left(\Lambda^{2} \otimes \Lambda^{2}\right) .
\end{array}
$$

The Bochner curvature tensor B has also a real coordinate expression due to S . Tachibana [14]. We adopt in this paper his real coordinate formulation. Namely, let (M, J, g) be a Kähler n-manifold, $n=2 m \geq 4$. Then the Bochner curvature tensor is defined by

$$
\begin{align*}
B_{i j s t}= & R_{i j s t}-\frac{1}{n+4}\left[R_{i s} g_{j t}+R_{j t} g_{i s}-R_{i t} g_{j s}-R_{j s} g_{i t}+J_{i}^{r} R_{r s} J_{j t}\right. \\
& \left.+J_{j}^{r} R_{r t} J_{i s}-J_{i}^{r} R_{r t} J_{j s}-J_{j}^{r} R_{r s} J_{i t}+2{J_{i}}^{r} R_{r j} J_{s t}+2 J_{i j} J_{s}^{r} R_{r t}\right] \\
& +\frac{s}{(n+2)(n+4)}\left[g_{i s} g_{j t}-g_{i t} g_{j s}+J_{i s} J_{j t}-J_{i t} J_{j s}+2 J_{i j} J_{s t}\right] \tag{5}
\end{align*}
$$

where $J_{i j}=J_{i}{ }^{r} g_{r j}$.
The following identities are obtained by the straightforward computation;

$$
\begin{align*}
& B_{i j s t}=-B_{j i s t}=-B_{i j t s}, \tag{6}\\
& B_{i j s t}+B_{j s i t}+B_{s i j t}=0, \tag{7}
\end{align*}
$$

$$
\begin{gather*}
B_{i j s t}=B_{s t i j}, \tag{8}\\
B_{i j s t}=J_{i}{ }^{p} J_{j}^{q} B_{p q s t}, \tag{9}\\
B^{p}{ }_{j p t}=0, \tag{10}
\end{gather*}
$$

from which one sees that the Bochner curvature tensor in a Kähler manifold plays a role of the Weyl conformal curvature tensor in a Riemannian manifold. The identity (9) means that B is J-invariant, i.e., $B(J X, J Y, Z, W)=B(X, Y, Z, W)$ for tangent vectors X, Y, X, W.

The identities $J_{i}^{p} B_{p j s t}=-J_{j}{ }^{p} B_{i p s t}$ and $J^{p q} B_{p q s t}=0$ are derived from these identities.

Set the tensors G and Φ

$$
G_{i j s t}=g_{i s} g_{j t}-g_{i t} g_{j s}, \quad \Phi_{i j s t}=J_{i s} J_{j t}-J_{i t} J_{j s}+2 J_{i j} J_{s t} .
$$

Then, from the above identities of the B, we have

$$
\begin{equation*}
\{G, B\}=\{\Phi, B\}=0 . \tag{11}
\end{equation*}
$$

Now, we consider the Kähler-Einstein case. The Bochner curvature tensor has the following form if and only if M is Kähler-Einstein;

$$
\begin{equation*}
B=R-\frac{s}{n(n+2)}(G+\Phi) . \tag{12}
\end{equation*}
$$

Moreover, when M is Kähler-Einstein, by applying (3) and $\nabla B=\nabla R$, we have

$$
\begin{equation*}
d_{L} B=0, \quad \text { and } \quad \delta_{L} B=0 . \tag{13}
\end{equation*}
$$

So that, from the Weitzenböck formula for the B, we have the following Lemma.
Lemma. Let (M, J, g) be a compact Kähler-Einstein manifold. Then the Bochner curvature tensor B fulfills

$$
\begin{equation*}
0=\Delta_{L} B=\nabla^{*} \nabla B+\frac{2 s}{n} B-\{B, B\} . \tag{14}
\end{equation*}
$$

2.2. Proof of Theorem A. The proof is quite similar to the proof in [8]. So we follow their argument.

Let (M, J, g) be a Kähler-Einstein manifold, $n=2 m \geq 4$, with positive scalar curvature s. We assume that the Bochner curvature B does not vanish identically and consider its norm $\|B\|_{L^{n / 2}}$.

We apply the Sobolev inequality of a compact Riemannian n-manifold, $n \geq 3$, which is described in terms of Yamabe metrics. We take a Yamabe metric in the conformal class [g], represented by g and then obtain the Sobolev inequality

$$
\begin{equation*}
4 \frac{n-1}{n-2}\|\nabla f\|_{L^{2}}^{2} \geq s \operatorname{Vol}(g)^{(2 / n)}\left\{\|f\|_{L^{p}}^{2}-\operatorname{Vol}(g)^{-(2 / n)}\|f\|_{L^{2}}^{2}\right\}, \quad f \in H_{1}^{2}(M) \tag{15}
\end{equation*}
$$

where $p=(2 n / n-2)$. The inequality (15) still holds when f is replaced by any tensor T because of the Kato's inequality

$$
\begin{equation*}
|\nabla| T||\leq|\nabla T| \tag{16}
\end{equation*}
$$

Remark that there is an improved Kato's inequality, for example, as given in [3] as

$$
|\nabla| B||\leq \gamma(n)| \nabla B|
$$

for a certain positive constant $\gamma(n)<1$, since B satisfies the elliptic equations (14). We can make use of this inequality to our argument. However, the improved Kato's constant $\gamma(n)$ is not essential in our argument. So we ignore here this constant.

It is known that any Einstein metric must be Yamabe, provided it is not conformal to the standard n-sphere ($[6,11]$). Since the metric is Kähler-Einstein, g is indeed a Yamabe metric in the conformal class $[g]$. We normalize g by constant rescaling so that $\operatorname{Vol}(g)=1$.

So we get

$$
\begin{equation*}
4 \frac{n-1}{n-2}\|\nabla B\|_{L^{2}}^{2} \geq s\left\{\|B\|_{L^{p}}^{2}-\|B\|_{L^{2}}^{2}\right\} \tag{17}
\end{equation*}
$$

Next, we have the following inequality from (14);

$$
\begin{equation*}
\|\nabla B\|_{L^{2}}^{2}+\frac{2 s}{n}\|B\|_{L^{2}}^{2} \leq C_{n}^{-1}\|B\|_{L^{3}}^{3} \leq C_{n}^{-1}\|B\|_{L^{n / 2}}\|B\|_{L^{p}}^{2} \tag{18}
\end{equation*}
$$

Here, we used the Hölder inequality together with the pointwise inequality

$$
\begin{equation*}
\langle\{B, B\}, B\rangle \leq C_{n}^{-1}|B|^{3} \tag{19}
\end{equation*}
$$

for a constant $C_{n}>0$, depending only on n. Applying the Sobolev inequality (17) yields

$$
\begin{equation*}
C_{n}^{-1}\|B\|_{L^{n / 2}}\|B\|_{L^{p}}^{2} \geq \frac{2 s}{n}\|B\|_{L^{2}}^{2}+\frac{n-2}{4(n-1)} s\left(\|B\|_{L^{p}}^{2}-\|B\|_{L^{2}}^{2}\right) . \tag{20}
\end{equation*}
$$

Assume that $4 \leq n \leq 9$. Then $(2 / n)-((n-2) / 4(n-1))>0$ so that

$$
\begin{equation*}
C_{n}^{-1}\|B\|_{L^{n / 2}} \geq \frac{n-2}{4(n-1)} s \tag{21}
\end{equation*}
$$

If, contrarily, $n \geq 10$, it holds $(2 / n)-((n-2) / 4(n-1))<0$. However $\|B\|_{L^{2}}^{2} \leq\|B\|_{L^{p}}^{2}$, since $p>2$. So,

$$
\begin{equation*}
\left(\frac{2}{n}-\frac{n-2}{4(n-1)}\right) s\|B\|_{L^{2}}^{2} \geq\left(\frac{2}{n}-\frac{n-2}{4(n-1)}\right) s\|B\|_{L^{p}}^{2} . \tag{22}
\end{equation*}
$$

We have thus

$$
\begin{equation*}
C_{n}^{-1}\|B\|_{L^{n / 2}}\|B\|_{L^{p}}^{2} \geq\left\{\left(\frac{2}{n}-\frac{n-2}{4(n-1)}\right) s+\frac{n-2}{4(n-1)} s\right\}\|B\|_{L^{p}}^{2}=\frac{2}{n} s\|B\|_{L^{p}}^{2} \tag{23}
\end{equation*}
$$

giving rise to $\|B\|_{L^{n / 2}} \geq(2 / n) C_{n} s$.

Therefore, if we put $C(n)$ as

$$
\begin{align*}
C(n) & =\frac{n-2}{4(n-1)} C_{n} s, & & 4 \leq n \leq 9, \tag{24}\\
& =\frac{2}{n} C_{n} s, & & 10 \leq n,
\end{align*}
$$

then we get a contradiction giving the complete proof.
REMARK. If $n=4$, the Bochner curvature tensor B of a Kähler metric g is the anti-self-dual part of the Weyl curvature tensor W of $g[5,17]$. That is, it holds in this case $B^{+}=0$ and $B^{-}=W^{-}$, where $B^{ \pm}$and $W^{ \pm}$are the restriction of B and W to $\Lambda^{ \pm}$, respectively. Here the bundle Λ^{2} splits as the Whitney sum $\Lambda^{2}=\Lambda^{+} \oplus \Lambda^{-}, \Lambda^{ \pm}$being the eigenspace bundles of the Hodge star operator $* \in \operatorname{End}\left(\Lambda^{2}\right)$. Then the W and the B leave $\Lambda^{ \pm}$invariant. As was discussed in [9], for a Kähler surface, we have

$$
|\langle\{B, B\}, B\rangle| \leq \sqrt{6}|B|^{3} .
$$

The equality is achieved at a given point if and only if the curvature operator $B=W^{-} \in$ $\operatorname{End}\left(\Lambda^{-}\right)$has distinct eigenvalues at most two.
2.3. The optimal value of the estimate constant $C(4)$. We do not know in general the optimal value of $C(n)$ in Theorem A. However, when M is real 4-dimensional, we shall see that the constant $C(4)=\sqrt{\frac{1}{24}}$ is optimal in our theorem.

Let (M, J, g) be a compact, connected Kähler-Einstein 4-manifold with positive scalar curvature s. Then, since $\left|W^{+}\right|^{2}=\frac{1}{24} s^{2}$, we have the Hirzebruch index theorem and the Gauss-Bonnet theorem (cf. [12])

$$
\begin{gather*}
\left\|W^{+}\right\|_{L^{2}}^{2}=\frac{1}{24} \int_{M} s^{2} d V_{g}=\frac{4}{3} \pi^{2}(2 \chi(M)+3 \tau(M)), \tag{25}\\
\|B\|_{L^{2}}^{2}=\left\|W^{-}\right\|_{L^{2}}^{2}=\frac{1}{24} \int_{M} s^{2} d V_{g}-12 \pi^{2} \tau(M)=\frac{8}{3} \pi^{2}(\chi(M)-3 \tau(M)), \tag{26}
\end{gather*}
$$

where $\chi(M)$ is the Euler-Poincáre characteristic and $\tau(M)$ is the signature of (M, g).
Moreover, since M is a Kähler-Einstein 4-manifold with positive scalar curvature, we see that the Betti numbers satisfy $b_{1}(M)=0$ and $b_{2}^{+}(M)=1$. So, we have

$$
\begin{align*}
& \tau(M)=b_{2}^{+}(M)-b_{2}^{-}(M)=1-b_{2}^{-}(M), \\
& \chi(M)=\sum_{k=0}^{4}(-1)^{k} b_{k}(M)=3+b_{2}^{-}(M) . \tag{27}
\end{align*}
$$

The identities (25), (26) and (27) imply

$$
\begin{equation*}
\left\|W^{+}\right\|_{L^{2}}^{2}=\frac{1}{24} \int_{M} s^{2} d V_{g}=\frac{4}{3} \pi^{2}\left(9-b_{2}^{-}(M)\right), \tag{28}
\end{equation*}
$$

$$
\begin{align*}
\|B\|_{L^{2}}^{2} & =\frac{1}{24} \int_{M} s^{2} d V_{g}-12 \pi^{2} \tau(M)=\frac{8}{3} \pi^{2}(\chi(M)-3 \tau(M)) \tag{29}\\
& =\frac{32}{3} \pi^{2} b_{2}^{-}(M)=\frac{32}{3} \pi^{2}(1-\tau(M))=\frac{32}{3} \pi^{2}(\chi(M)-3)
\end{align*}
$$

From (27) and (29), we easily obtain the following proposition.
Proposition. Let (M, J, g) be a compact, connected Kähler-Einstein 4-manifold, with positive scalar curvature s and of $\operatorname{Vol}(g)=1$. Then, the following are equivalent each other;
i). The Bochner curvature tensor does not vanish identically,
ii). $\quad \tau(M) \leq 0, \quad$ iii). $\quad \chi(M) \geq 4, \quad$ iv). $\quad b_{2}^{-}(M) \geq 1$,
v). $\|B\|_{L^{2}}^{2} \geq \frac{1}{24} s^{2}, \quad$ vi). $\|B\|_{L^{2}}^{2} \geq \frac{8}{3} \pi^{2} \chi(M), \quad$ vii). $\|B\|_{L^{2}}^{2} \geq \frac{32}{3} \pi^{2}$.

For example, when M is homothetic to $\boldsymbol{C} P^{1} \times \boldsymbol{C} P^{1}$ with the standard product metric, all the equalities hold in the above proposition. Thus we see that the value of the estimate constant $C(4)=\sqrt{\frac{1}{24}}$ is optimal in our theorem. Furthermore, in this case, we obtain the isolation theorem of the Bochner curvature tensor even though the constant $C(4) s$ is replaced by $\sqrt{\frac{8}{3} \pi^{2} \chi(M)}$ or $\sqrt{\frac{32}{3} \pi^{2}}$. That is,

Theorem. Let (M, J, g) be a compact, connected Kähler-Einstein 4-manifold with positive scalar curvature and set a positive constant $\varepsilon=\sqrt{\frac{8}{3} \pi^{2} \chi(M)}$ or $\sqrt{\frac{32}{3} \pi^{2}}$. If L^{2}-norm $\|B\|_{L^{2}}<\varepsilon$, then $B=0$.

REMARK. The L^{2}-norm of Bochner curvature tensor of a Kähler-Einstein 4-manifold with positive scalar curvature takes a discrete value represented by the topological invariant such that

$$
\|B\|_{L^{2}}^{2}=\frac{32}{3} \pi^{2} b_{2}^{-}(M), \quad\left(0 \leq b_{2}^{-}(M) \leq 8\right)
$$

Here, $0 \leq b_{2}^{-}(M) \leq 8$ is obtained from (28). For example, the Kähler-Einstein manifold $\boldsymbol{C} P^{2} \# k \overline{\boldsymbol{C} P^{2}}(3 \leq k \leq 8)$ fulfills $b_{2}^{-}=k$ and $\|B\|_{L^{2}}^{2}=\frac{32}{3} \pi^{2} k$.

3. The contact Bochner curvature tensor

3.1. Curvature tensors of Sasakian manifolds. Let $(M,(\phi, \xi, \eta, g))$ be a Sasakian n-manifold, $n=2 m+1 \geq 5$. Then g, η, ξ and ϕ are a Riemannian metric, a 1 -form, a unit Killing vector field and a tensor field of type (1,1), respectively, such that

$$
\begin{gather*}
\eta(X)=g(\xi, X), \quad\left(\nabla_{X} \eta\right)(Y)=g(X, \phi Y) \\
\phi^{2} X=-X+\eta(X) \xi, \quad\left(\nabla_{X} \phi\right)(Y)=g(X, Y) \xi-\eta(Y) X, \tag{30}
\end{gather*}
$$

for any tangent vectors X, Y. From the above, the following identities are derived ([1, 15]).

$$
\begin{align*}
\phi \xi=0, \quad \eta(\phi X) & =0 \\
\phi X=-\nabla_{X} \xi, \quad d \eta(X, Y) & =2 g(X, \phi Y) . \tag{31}
\end{align*}
$$

It is well known that the Riemannian curvature tensor and the Ricci tensor of a Sasakian manifold satisfy

$$
\begin{gather*}
\xi^{p} R_{p j s t}=g_{j s} \eta_{t}-g_{j t} \eta_{s} \\
\phi_{i}^{p} \phi_{j}^{q} R_{p q s t}=R_{i j s t}-G_{i j s t}+{\phi_{i}}^{p} \phi_{j}^{q} G_{p q s t}, \tag{32}\\
\phi_{i}{ }^{p} \phi_{j}{ }^{q} R_{p q}=R_{i j}-(n-1) \eta_{i} \eta_{j}
\end{gather*}
$$

where $G_{i j s t}=g_{i s} g_{j t}-g_{i t} g_{j s}$.
We call $(M,(\phi, \xi, \eta, g)) \eta$-Einstein, if the Ricci tensor has the form $R_{i j}=a g_{i j}+b \eta_{i} \eta_{j}$, where $a=s /(n-1)-1$ and $b=-s /(n-1)+n$. The scalar curvature of an η-Einstein is constant.

The contact Bochner curvature tensor is defined on M by (cf. [13])

$$
\begin{align*}
& B_{i j s t}=R_{i j s t} \\
& \quad-\frac{1}{n+3}\left[R_{i s} g_{j t}+R_{j t} g_{i s}-R_{i t} g_{j s}-R_{j s} g_{i t}+R_{i r} \phi_{s}^{r} \phi_{j t}+R_{j r} \phi_{t}^{r} \phi_{i s}-R_{i r} \phi_{t}^{r} \phi_{j s}\right. \\
& \left.\quad-R_{j r} \phi_{s}^{r} \phi_{i t}+2 R_{i r} \phi_{j}^{r} \phi_{s t}+2 \phi_{i j} R_{s r} \phi_{t}^{r}-R_{i s} \eta_{j} \eta_{t}-R_{j t} \eta_{i} \eta_{s}+R_{i t} \eta_{j} \eta_{s}+R_{j s} \eta_{i} \eta_{t}\right] \\
& \quad+\frac{k+n-1}{n+3}\left[\phi_{i s} \phi_{j t}-\phi_{i t} \phi_{j s}+2 \phi_{i j} \phi_{s t}\right]+\frac{k-4}{n+3}\left[g_{i s} g_{j t}-g_{i t} g_{j s}\right] \\
& \quad-\frac{k}{n+3}\left[g_{i s} \eta_{j} \eta_{t}+g_{j t} \eta_{i} \eta_{s}-g_{i t} \eta_{j} \eta_{s}-g_{j s} \eta_{i} \eta_{t}\right] \tag{33}
\end{align*}
$$

where $k=(s+n-1) /(n+1)$ and $\phi_{i j}=g_{i r} \phi_{j}{ }^{r}$. If $(M,(\phi, \xi, \eta, g))$ is a Boothby-Wang fibering over a Hodge manifold, then the contact Bochner curvature tensor coincides with the pull-back of the Bochner curvature tensor of the base Kähler manifold.

The following identities are obtained similarly to the ones for the Bochner curvature tensor;

$$
\begin{gather*}
B_{i j s l}=-B_{j i s t}=-B_{i j t s}, \tag{34}\\
B_{i j s t}+B_{j s i t}+B_{s i j t}=0, \tag{35}\\
B_{i j s t}=B_{s t i j}, \tag{36}\\
\xi^{p} B_{p j s t}=0, \tag{37}\\
B_{i j s t}=\phi_{i}{ }^{p} \phi_{j}{ }^{q} B_{p q s t}, \tag{38}\\
B^{p}{ }_{j p t}=0 . \tag{39}
\end{gather*}
$$

The contact Bochner curvature tensor in a Sasakian manifold plays a same role of Bochner curvature tensor in a Kähler manifold. (37) means $B(\xi, X, Y, Z)=0$ for all tangent vectors
X, Y, Z. The identities $\phi_{i}{ }^{p} B_{p j s t}=-\phi_{j}^{p} B_{i p s t}$ and $\phi^{p q} B_{p q s t}=0$ are derived from these identities.

A D-homothetic deformation $(\phi, \xi, \eta, g) \mapsto\left(\phi_{c}, \xi_{c}, \eta_{c}, g_{c}\right)$ is defined by

$$
\phi_{c}=\phi, \quad \xi_{c}=c^{-1} \xi, \quad \eta_{c}=c \eta, \quad g_{c}=c g+c(c-1) \eta \otimes \eta,
$$

for a positive constant c, where D means the distribution orthogonal to a contact form η. If (ϕ, ξ, η, g) is a Sasakian structure, then $\left(\phi_{c}, \xi_{c}, \eta_{c}, g_{c}\right)$ is also a Sasakian structure. By direct calculations, we have

$$
\begin{gather*}
R_{g_{c}}=c R_{g}+c\left(c^{2}-1\right)(\eta \otimes \eta) \otimes g-c(c-1) \Phi \tag{40}\\
\operatorname{Ric}_{g_{c}}=\operatorname{Ric}_{g}-2(c-1) g+(c-1)\{(n-1) c+n+1\} \eta \otimes \eta \tag{41}\\
s_{g_{c}}=c^{-1} s_{g}-c^{-1}(c-1)(n-1) \tag{42}
\end{gather*}
$$

where $\Phi_{i j s t}=\phi_{i s} \phi_{j t}-\phi_{i t} \phi_{j s}+2 \phi_{i j} \phi_{s t}$. Here, \boxtimes is the Nomizu-Kulkarni product of symmetric 2-tensors. Moreover, the volume form changes as $d V_{g_{c}}=c^{(n+1) / 2} d V_{g}$.

When we emphasize that a tensor T is determined by the structure tensor (ϕ, ξ, η, g), we denote T by T_{g}.

LEMMA ([13]). As a (1,3)-tensor the contact Bochner curvature tensor is invariant under any D-homothetic deformation.

Now we shall introduce another important tensor U in M defined by

$$
\begin{align*}
U_{i j s t}= & R_{i j s t}-(\rho+1)\left[g_{i s} g_{j t}-g_{i t} g_{j s}\right] \\
& -\rho\left[\phi_{i s} \phi_{j t}-\phi_{i t} \phi_{j s}+2 \phi_{i j} \phi_{s t}-g_{i s} \eta_{j} \eta_{t}-g_{j t} \eta_{i} \eta_{s}+g_{i t} \eta_{j} \eta_{s}+g_{j s} \eta_{i} \eta_{t}\right] \tag{43}\\
= & R_{i j s t}-(\rho+1) G_{i j s t}-\rho(\Phi-(\eta \otimes \eta) \otimes g)_{i j s t},
\end{align*}
$$

where $\rho+1=k /(n-1)$.
The contact Bochner curvature tensor coincides with U if and only if M is η-Einstein.
A Sasakian manifold M is called Sasakian space form if U vanishes identically. It is well known that a Sasakian space form is η-Einstein. So, the contact Bochner curvature tensor of a Sasakian space form vanishes identically.
3.2. Proof of Theorem B. First we show that a Sasakian η-Einstein structure can be D-homothetically deformed to a Sasakain Einstein structure whose contact Bochner curvature tensor coincides with the Weyl conformal curvature tensor. Namely,

Proposition. Let (M, ϕ, ξ, η, g) be a Sasakian η-Einstein $n(\geq 5)$-manifold with scalar curvature $s_{g}>-(n-1)$. Put the positive constant $\alpha=\frac{s_{g}+n-1}{(n-1)(n+1)}$ and consider the D-homothetically deformed structure $\left(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g_{\alpha}\right)$. Then the metric g_{α} is Einstein with Ric $g_{g_{\alpha}}=(n-1) g_{\alpha}$ and $s_{g_{\alpha}}=n(n-1)$. Further the contact Bochner curvature tensor $B_{g_{\alpha}}$ coincides with the Weyl conformal curvature tensor;

$$
B_{g_{\alpha}}=W_{g_{\alpha}}
$$

Proof. From (41) and (42) we see by putting $c=\alpha \operatorname{Ric} c_{g_{\alpha}}=(n-1) g_{\alpha}$ and $s_{g_{\alpha}}=$ $n(n-1)$. On the other hand

$$
\begin{equation*}
B_{g_{\alpha}}=R_{g_{\alpha}}-\frac{1}{2} g_{\alpha} \otimes g_{\alpha}=R_{g_{\alpha}}-\frac{s_{g_{\alpha}}}{2 n(n-1)} g_{\alpha} \otimes g_{\alpha}=W_{g_{\alpha}} \tag{44}
\end{equation*}
$$

Now we will prove Theorem B. So, suppose that B_{g} vanishes. Since the contact Bochner curvature tensor is D-homothetic invariant, $B_{g_{\alpha}}$ also vanishes. From (44), $\left(M, g_{\alpha}\right)$ is a conformally flat, Einstein manifold with the scalar curvature $s_{g_{\alpha}}=n(n-1)$, so that $\left(M, g_{\alpha}\right)$ is a finite isometric quotient of the standard n-sphere.

We assume henceforth that B_{g} does not vanish identically and induces a contradiction. To show that, we put $c=\operatorname{Vol}\left(g_{\alpha}\right)^{-(2 / n)}$, so that $\left(M, c g_{\alpha}\right)$ is compact, connected Einstein, with positive scalar curvature and of $\operatorname{Vol}\left(c g_{\alpha}\right)=1$. As shown in [8], there exists a constant $C(n)$, depending only on n such that

$$
\left\|W_{c g_{\alpha}}\right\|_{L^{n / 2}, c g_{\alpha}} \geq C(n) s_{c g_{\alpha}},
$$

Here the LHS and RHS are now, respectively

$$
\left\|W_{c g_{\alpha}}\right\|_{L^{n / 2}, c g_{\alpha}}=\left\|W_{g_{\alpha}}\right\|_{L^{n / 2}, g_{\alpha}}=\left\|B_{g_{\alpha}}\right\|_{L^{n / 2}, g_{\alpha}}=\alpha^{(1 / n)}\left\|B_{g}\right\|_{L^{n / 2}, g},
$$

and

$$
C(n) s_{c g_{\alpha}}=C(n) n(n-1) \operatorname{Vol}\left(g_{\alpha}\right)^{(2 / n)}=C(n) n(n-1) \alpha^{(n+1) / n} \operatorname{Vol}(g)^{(2 / n)} .
$$

Hence, we have the inequality

$$
\begin{equation*}
\left\|B_{g}\right\|_{L^{n / 2}, g} \geq C(n) n(n-1) \alpha \operatorname{Vol}(g)^{(2 / n)}=C(n) \frac{n\left(s_{g}+n-1\right)}{n+1} \operatorname{Vol}(g)^{(2 / n)} . \tag{45}
\end{equation*}
$$

The inequality (45) is invariant under D-homothetic deformation, while the $L^{n / 2}$-norm of the contact Bochner curvature tensor is not an invariant under D-homothetic deformation. Normalizing the volume by D-homothetic deformation, we get a contradiction to the assumption $\|B\|_{L^{n / 2}}<C(n) \frac{n(s+n-1)}{n+1}$ giving the complete proof.

References

[1] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progr. Math. 203 (2002), Birkhäuser.
[2] S. Bochner, Curvature and Betti numbers, II, Ann. of Math. 50 (1949), 77-93
[3] D. M. J. Calderbank, P. Gauduchon and M. Herzlich, Refined Kato Inequalities and Conformal Weights in Riemannian Geometry, J. Funct. Anal. 173 (2000), 214-255.
[4] T. IKAWA and M. Kon, Sasakian manifolds with vanishing contact Bochner curvature tensor and constant scalar curvature, Coll. Math. 37 (1977), 113-122.
[5] M. Iтон, Self-duality of Kähler surfaces, Compositio Math. 51 (1984), 265-273.
[6] M. Ітон, Yamabe metrics and the space of conformal structures, Intern. J. Math. 2 (1991), 659-671.
[7] M. Ітон, The Weitzenböck formula for the Bach Operator, Nagoya Math. J. 137 (1995), 149-181.
[8] M. Itoh and H. Satoh, Isolation of the Weyl conformal tensor for Einstein manifolds, Proc. Japan Acad. Ser. A 78 (2002), 140-142.
[9] M. Itoh and H. Satoh, Self-dual Weyl conformal tensor equation and pointwise gap theorem, submitted.
[10] Y. Kamishima, Uniformization of Kähler manifolds with vanishing Bochner tensor, Acta. Math. 172 (1994), 299-308.
[11] J. M. Lee and T. H. Parker, The Yamabe problem, Bull. A. M. S. 17 (1987), 37-91 .
[12] C. LeBrun, On four-dimensional Einstein manifolds, The geometric universe (Oxford, 1996), (1998), Oxford Univ. Press, 109-121.
[13] M. Matsumoto and G. Chûman, On the C-Bochner curvature tensor, TRU. Math. 5 (1969), 21-30.
[14] S. Tachibana, On the Bochner curvature tensor, Nat. Sci. Rep. Ochanomizu Univ. 17 (1966), 27-32.
[15] S. Tanno, Promenades on spheres, A sketch book of eight scenes on spheres, Department of Math. Tokyo Inst. of Tech. (1996).
[16] G. Tian and S. T. Yau, Kähler-Einstein metrics on complex surfaces with $C_{1}(M)$ positive, Commun. Math. Phys. 112 (1987), 175-203.
[17] F. Tricerri and L. Vanhecke, Curvature tensors on almost Hermitian manifolds, Trans. A. M. S. 267 (1981), 365-398.

Present Address:

Mitsuhiro Itoh
Institute of Mathematics, University of Tsukuba, 305-8571 Japan.
Daisuke Kobayashi
Tsukuba Shuei High School, Tsukuba, 300-2655 Japan.

[^0]: Received May 12, 2003
 2000 Mathematics Subject Classification. 53C25.
 Key words. Bochner curvature tensor; Kähler-Einstein manifold; Sasakian η-Einstein manifold.

