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Abstract. An isolation theorem of the Bochner curvature tensor of a Kähler-Einstein manifold is given, when

its Ln/2-norm is small. Similarly an isolation theorem of the contact Bochner curvature tensor for a Sasakian mani-
fold is obtained. Those theorems are derived from the Weitzenböck formula which gives non-linearity constraint on
the Bochner curvature tensors.

1. Introduction

The Weyl conformal curvature tensor is a tensor which measures deviation from the
conformal flatness so that it is significant in conformal geometry. As its complex analogue we
have the Bochner curvature tensor on a Kähler manifold, and also as its contact analogue the
contact Bochner curvature tensor on a Sasakian manifold.

Our purpose of this paper is to show that these Bochner curvature type tensors B obey
the following isolation theorems under certain Einstein conditions.

THEOREM A. Let (M, J, g) be a compact, connected Kähler-Einstein n-manifold,
n = 2m ≥ 4, with positive scalar curvature s and of Vol(g) = 1. Then, there exists a

constant C(n), depending only on n such that if Ln/2-norm ‖B‖Ln/2 < C(n)s, then B = 0
so that (M, J, g) is biholomorphically homothetic to the complex projective space CPm with
the Fubini-Study metric.

REMARK. It is known that complex surfaces CP 2#kCP 2 (3 ≤ k ≤ 8) and CP 1 × CP 1

admit Kähler-Einstein metric with positive scalar curvature [16]. Here, CP 2#kCP 2 is the

surface obtained by blowing up CP 2 at k generic points.

THEOREM B. Let (M, φ, ξ, η, g) be a compact, connected Sasakian η-Einstein n-
manifold, n = 2m + 1 ≥ 5, with scalar curvature s > −(n − 1) and of Vol(g) = 1.

Then, there exists a constant C(n), depending only on n such that if Ln/2-norm ‖B‖Ln/2 <
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C(n)n(s + n − 1)/(n + 1), then B = 0 so that M is D-homothetic to finite quotient of the
standard n-sphere.

These theorems are analogous to the following isolation theorem of the Weyl conformal
curvature tensor W .

THEOREM ([8]). Let (M, g) be a compact, connected oriented Einstein n-manifold,
n ≥ 4, with positive scalar curvature s and of Vol(g) = 1. Then, there exists a constant
C(n), depending only on n such that if Ln/2-norm ‖W‖Ln/2 < C(n)s, then W = 0 so that
(M, g) is a finite isometric quotient of the standard n-sphere of unit volume.

As a complex analogue of the Weyl conformal curvature tensor, S. Bochner [2] intro-
duced the so-called Bochner curvature tensor using a complex local coordinate;

Bαβγ δ = Rαβγ δ − 1

m+ 2
(Rαβgγ δ + Rγβgαδ + gαβRγ δ + gγ βRαδ)

+ s

(m+ 1)(m+ 2)
(gαβgγ δ + gγ βgαδ) .

Y. Kamishima classified completely compact Kähler manifolds with vanishing Bochner
curvature tensor in [10].

THEOREM ([10]). LetM be a compact Kähler 2m(≥ 4)-manifold having the vanishing
Bochner curvature tensor B. Then M is holomorphically isometric to

(1) the complex projective space CPm,
(2) a complex Euclidean space form T mC /F, F ⊂ U(m),

(3) a complex hyperbolic space form Hm
C /Γ, Γ ⊂ PU(m, 1),

(4) the fiber spaceHk
C × CPm−k/Γ where

Γ ⊂ PU(k, 1)× PU(m− k + 1) , k = 1, 2, · · · ,m− 1 .

Here, F is a finite group and Γ is a discrete cocompact subgroup, both acting properly
discontinuously.

For odd dimensional Sasakian manifolds, M. Matsumoto and G. Chûman [13] defined
the contact Bochner curvature tensor. A Sasakian manifold with vanishing contact Bochner
curvature tensor is studied by M. Matsumoto and G. Chûman [13], T. Ikawa and M. Kon [4].
The isolation theorem of contact Bochner curvature tensor, namely Theorem B, is obtained
by arguments based on those studies together with the result of [8].

2. Isolation of the Bochner curvature tensor

2.1. The Weitzenböck formula for the Bochner tensor. In this section, we establish
the Weitzenböck formula on the left-exterior derivative dL applied to the Bochner curvature
tensor in a Kähler-Einstein manifold which plays an essential role in the proof of Theorem A.

Let (M, g) be a Riemannian n-manifold, and let Λp denote the bundle of exterior p-
forms. The operator dL : Γ (Λp ⊗Λq) → Γ (Λp+1 ⊗Λq) exploited by the first author in [7]
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is given by

(dLψ)i0i1···ipj1···jq =
p∑
k=0

(−1)k∇ikψi0i1···îk ···ipj1···jq . (1)

The bundleΛp⊗Λq carries the inner product inherited from the metric g . Then, with respect

to this inner product the operator dL has the formal adjoint δL : Γ (Λp+1 ⊗Λq) → Γ (Λp ⊗
Λq), given by

(δLψ)i1 ···ipj1···jq = −∇aψai1···ipj1···jq . (2)

Similarly, the right-exterior derivative dR : Γ (Λp ⊗Λq) → Γ (Λp ⊗Λq+1) and the formal
adjoint δR are also defined.

REMARK. We may consider the Riemannian curvature tensor R as a section Λ2 ⊗Λ2

and the Ricci tensor Ric as a section Λ1 ⊗Λ1. The following identities are well known

dLR = 0 , δLR = −dRRic , δRRic = δLRic = −1

2
ds , (3)

where s is the scalar curvature. The first one reads the second Bianchi identity.

By direct calculation, we have the Weitzenböck formula on the dL as follows:

(∆Lψ)ijst = (dLδLψ + δLdLψ)ijst

= ∇∗∇ψijst + Ri
aψajst + Rj

aψiast − {R,ψ}ijst ,
(4)

for any ψ ∈ Γ (Λ2 ⊗Λ2). Here, { , } is given by

{S, T }ijst = Sij
abTabst + Sais

b
Tajtb + Sajt

b
Taisb−SajsbTaitb − Sait

b
Tajsb ,

S, T ∈ Γ (Λ2 ⊗Λ2) .

The Bochner curvature tensorB has also a real coordinate expression due to S. Tachibana
[14]. We adopt in this paper his real coordinate formulation. Namely, let (M, J, g) be a Kähler
n-manifold, n = 2m ≥ 4. Then the Bochner curvature tensor is defined by

Bijst = Rijst − 1

n+ 4
[Risgj t + Rjtgis − Ritgjs − Rjsgit + Ji

rRrsJjt

+ Jj
rRrt Jis − Ji

rRrtJjs − Jj
rRrsJit + 2JirRrjJst + 2Jij Js rRrt ]

+ s

(n+ 2)(n+ 4)
[gisgj t − gitgjs + JisJjt − JitJjs + 2Jij Jst ] , (5)

where Jij = Ji
rgrj .

The following identities are obtained by the straightforward computation;

Bijst = −Bjist = −Bijts , (6)

Bijst + Bjsit + Bsijt = 0 , (7)
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Bijst = Bstij , (8)

Bijst = Ji
pJj

qBpqst , (9)

Bpjpt = 0 , (10)

from which one sees that the Bochner curvature tensor in a Kähler manifold plays a role of
the Weyl conformal curvature tensor in a Riemannian manifold. The identity (9) means that
B is J -invariant, i.e., B(JX, JY,Z,W) = B(X, Y,Z,W) for tangent vectors X,Y,X,W .

The identities JipBpjst = −JjpBipst and JpqBpqst = 0 are derived from these identi-
ties.

Set the tensorsG and Φ

Gijst = gisgj t − gitgjs , Φijst = JisJjt − JitJjs + 2Jij Jst .

Then, from the above identities of the B, we have

{G,B} = {Φ,B} = 0 . (11)

Now, we consider the Kähler-Einstein case. The Bochner curvature tensor has the fol-
lowing form if and only if M is Kähler-Einstein;

B = R − s

n(n+ 2)
(G+Φ) . (12)

Moreover, when M is Kähler-Einstein, by applying (3) and ∇B = ∇R, we have

dLB = 0 , and δLB = 0 . (13)

So that, from the Weitzenböck formula for the B, we have the following Lemma.

LEMMA. Let (M, J, g) be a compact Kähler-Einstein manifold. Then the Bochner cur-
vature tensor B fulfills

0 = ∆LB = ∇∗∇B + 2s

n
B − {B,B} . (14)

2.2. Proof of Theorem A. The proof is quite similar to the proof in [8]. So we follow
their argument.

Let (M, J, g) be a Kähler-Einstein manifold, n = 2m ≥ 4,with positive scalar curvature
s. We assume that the Bochner curvature B does not vanish identically and consider its norm
‖B‖Ln/2 .

We apply the Sobolev inequality of a compact Riemannian n-manifold, n ≥ 3, which is
described in terms of Yamabe metrics. We take a Yamabe metric in the conformal class [g],
represented by g and then obtain the Sobolev inequality

4
n− 1

n− 2
‖∇f ‖2

L2 ≥ sVol(g)(2/n){‖f ‖2
Lp − Vol(g)−(2/n)‖f ‖2

L2} , f ∈ H 2
1 (M) (15)
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where p = (2n/n − 2). The inequality (15) still holds when f is replaced by any tensor T
because of the Kato’s inequality

|∇|T || ≤ |∇T | . (16)

Remark that there is an improved Kato’s inequality, for example, as given in [3] as

|∇|B|| ≤ γ (n)|∇B|
for a certain positive constant γ (n) < 1, since B satisfies the elliptic equations (14). We can
make use of this inequality to our argument. However, the improved Kato’s constant γ (n) is
not essential in our argument. So we ignore here this constant.

It is known that any Einstein metric must be Yamabe, provided it is not conformal to the
standard n-sphere ([6, 11]). Since the metric is Kähler-Einstein, g is indeed a Yamabe metric
in the conformal class [g]. We normalize g by constant rescaling so that Vol(g) = 1.

So we get

4
n− 1

n− 2
‖∇B‖2

L2 ≥ s{‖B‖2
Lp − ‖B‖2

L2} . (17)

Next, we have the following inequality from (14);

‖∇B‖2
L2 + 2s

n
‖B‖2

L2 ≤ C−1
n ‖B‖3

L3 ≤ C−1
n ‖B‖Ln/2‖B‖2

Lp . (18)

Here, we used the Hölder inequality together with the pointwise inequality

〈{B,B}, B〉 ≤ C−1
n |B|3 (19)

for a constant Cn > 0, depending only on n. Applying the Sobolev inequality (17) yields

C−1
n ‖B‖Ln/2‖B‖2

Lp ≥ 2s

n
‖B‖2

L2 + n− 2

4(n− 1)
s(‖B‖2

Lp − ‖B‖2
L2) . (20)

Assume that 4 ≤ n ≤ 9. Then (2/n)− ((n− 2)/4(n− 1)) > 0 so that

C−1
n ‖B‖Ln/2 ≥ n− 2

4(n− 1)
s . (21)

If, contrarily, n ≥ 10, it holds (2/n)−((n−2)/4(n−1)) < 0. However ‖B‖2
L2 ≤ ‖B‖2

Lp ,

since p > 2. So, (
2

n
− n− 2

4(n− 1)

)
s‖B‖2

L2 ≥
(

2

n
− n− 2

4(n− 1)

)
s‖B‖2

Lp . (22)

We have thus

C−1
n ‖B‖Ln/2‖B‖2

Lp ≥
{(

2

n
− n− 2

4(n− 1)

)
s + n− 2

4(n− 1)
s

}
‖B‖2

Lp = 2

n
s‖B‖2

Lp (23)

giving rise to ‖B‖Ln/2 ≥ (2/n)Cns.
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Therefore, if we put C(n) as

C(n) = n− 2

4(n− 1)
Cns , 4 ≤ n ≤ 9 ,

= 2

n
Cns , 10 ≤ n ,

(24)

then we get a contradiction giving the complete proof.

REMARK. If n = 4, the Bochner curvature tensor B of a Kähler metric g is the anti-
self-dual part of the Weyl curvature tensorW of g [5, 17]. That is, it holds in this case B+ = 0
and B− = W−, where B± and W± are the restriction of B and W to Λ±, respectively. Here

the bundle Λ2 splits as the Whitney sum Λ2 = Λ+ ⊕Λ−, Λ± being the eigenspace bundles
of the Hodge star operator ∗ ∈ End(Λ2). Then the W and the B leave Λ± invariant. As was
discussed in [9], for a Kähler surface, we have

|〈{B,B}, B〉| ≤ √
6|B|3 .

The equality is achieved at a given point if and only if the curvature operator B = W− ∈
End(Λ−) has distinct eigenvalues at most two.

2.3. The optimal value of the estimate constant C(4). We do not know in general
the optimal value of C(n) in Theorem A. However, when M is real 4-dimensional, we shall

see that the constant C(4) =
√

1
24 is optimal in our theorem.

Let (M, J, g) be a compact, connected Kähler-Einstein 4-manifold with positive scalar

curvature s. Then, since |W+|2 = 1
24s

2, we have the Hirzebruch index theorem and the
Gauss-Bonnet theorem (cf. [12])

‖W+‖2
L2 = 1

24

∫
M

s2dVg = 4

3
π2(2χ(M)+ 3τ (M)) , (25)

‖B‖2
L2 = ‖W−‖2

L2 = 1

24

∫
M

s2dVg − 12π2τ (M) = 8

3
π2(χ(M)− 3τ (M)) , (26)

where χ(M) is the Euler-Poincáre characteristic and τ (M) is the signature of (M, g).
Moreover, since M is a Kähler-Einstein 4-manifold with positive scalar curvature, we

see that the Betti numbers satisfy b1(M) = 0 and b+
2 (M) = 1. So, we have

τ (M) = b+
2 (M)− b−

2 (M) = 1 − b−
2 (M) ,

χ(M) =
4∑
k=0

(−1)kbk(M) = 3 + b−
2 (M) .

(27)

The identities (25), (26) and (27) imply

‖W+‖2
L2 = 1

24

∫
M

s2dVg = 4

3
π2(9 − b−

2 (M)) , (28)
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‖B‖2
L2 = 1

24

∫
M

s2dVg − 12π2τ (M) = 8

3
π2(χ(M)− 3τ (M))

= 32

3
π2b−

2 (M) = 32

3
π2(1 − τ (M)) = 32

3
π2(χ(M)− 3) .

(29)

From (27) and (29), we easily obtain the following proposition.

PROPOSITION. Let (M, J, g) be a compact, connected Kähler-Einstein 4-manifold,
with positive scalar curvature s and of Vol(g) = 1. Then, the following are equivalent each
other;

i). The Bochner curvature tensor does not vanish identically,

ii). τ (M) ≤ 0, iii). χ(M) ≥ 4, iv). b−
2 (M) ≥ 1,

v). ‖B‖2
L2 ≥ 1

24
s2, vi). ‖B‖2

L2 ≥ 8

3
π2χ(M), vii). ‖B‖2

L2 ≥ 32

3
π2.

For example, when M is homothetic to CP 1 × CP 1 with the standard product metric,
all the equalities hold in the above proposition. Thus we see that the value of the estimate

constant C(4) =
√

1
24 is optimal in our theorem. Furthermore, in this case, we obtain the

isolation theorem of the Bochner curvature tensor even though the constant C(4)s is replaced

by
√

8
3π

2χ(M) or
√

32
3 π

2. That is,

THEOREM. Let (M, J, g) be a compact, connected Kähler-Einstein 4-manifold with

positive scalar curvature and set a positive constant ε =
√

8
3π

2χ(M) or
√

32
3 π

2. If L2-norm

‖B‖L2 < ε, then B = 0.

REMARK. The L2-norm of Bochner curvature tensor of a Kähler-Einstein 4-manifold
with positive scalar curvature takes a discrete value represented by the topological invariant
such that

‖B‖2
L2 = 32

3
π2b−

2 (M) , (0 ≤ b−
2 (M) ≤ 8) .

Here, 0 ≤ b−
2 (M) ≤ 8 is obtained from (28). For example, the Kähler-Einstein manifold

CP 2#kCP 2 (3 ≤ k ≤ 8) fulfills b−
2 = k and ‖B‖2

L2 = 32
3 π

2k.

3. The contact Bochner curvature tensor

3.1. Curvature tensors of Sasakian manifolds. Let (M, (φ, ξ, η, g)) be a Sasakian
n-manifold, n = 2m+ 1 ≥ 5. Then g, η, ξ and φ are a Riemannian metric, a 1-form, a unit
Killing vector field and a tensor field of type (1, 1), respectively, such that

η(X) = g(ξ,X) , (∇Xη)(Y ) = g(X, φY ) ,

φ2X = −X + η(X)ξ , (∇Xφ)(Y ) = g(X, Y )ξ − η(Y )X ,
(30)
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for any tangent vectors X, Y . From the above, the following identities are derived ([1, 15]).

φξ = 0 , η(φX) = 0 ,

φX = −∇Xξ , dη(X, Y ) = 2g(X, φY ) .
(31)

It is well known that the Riemannian curvature tensor and the Ricci tensor of a Sasakian
manifold satisfy

ξpRpjst = gjsηt − gj t ηs ,

φi
pφj

qRpqst = Rijst −Gijst + φi
pφj

qGpqst ,

φi
pφj

qRpq = Rij − (n− 1)ηiηj ,

(32)

where Gijst = gisgj t − gitgjs .
We call (M, (φ, ξ, η, g)) η-Einstein, if the Ricci tensor has the formRij = agij +bηiηj ,

where a = s/(n− 1) − 1 and b = −s/(n− 1)+ n. The scalar curvature of an η-Einstein is
constant.

The contact Bochner curvature tensor is defined on M by (cf. [13])

Bijst = Rijst

− 1

n+ 3
[Risgj t + Rjtgis − Ritgjs − Rjsgit + Rirφs

rφjt + Rjrφt
rφis − Rirφt

rφjs

− Rjrφs
rφit + 2Rirφj

rφst + 2φijRsrφt
r − Risηj ηt − Rjtηiηs + Ritηj ηs + Rjsηiηt ]

+ k + n− 1

n+ 3
[φisφjt − φitφjs + 2φijφst ] + k − 4

n+ 3
[gisgj t − gitgjs ]

− k

n+ 3
[gisηjηt + gj t ηiηs − git ηj ηs − gjsηiηt ] , (33)

where k = (s + n− 1)/(n+ 1) and φij = girφj r . If (M, (φ, ξ, η, g)) is a Boothby-Wang
fibering over a Hodge manifold, then the contact Bochner curvature tensor coincides with the
pull-back of the Bochner curvature tensor of the base Kähler manifold.

The following identities are obtained similarly to the ones for the Bochner curvature
tensor;

Bijsl = −Bjist = −Bijts , (34)

Bijst + Bjsit + Bsijt = 0 , (35)

Bijst = Bstij , (36)

ξpBpjst = 0 , (37)

Bijst = φi
pφj

qBpqst , (38)

Bpjpt = 0 . (39)

The contact Bochner curvature tensor in a Sasakian manifold plays a same role of Bochner
curvature tensor in a Kähler manifold. (37) means B(ξ,X, Y,Z) = 0 for all tangent vectors
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X, Y, Z. The identities φipBpjst = −φjpBipst and φpqBpqst = 0 are derived from these
identities.

A D-homothetic deformation (φ, ξ, η, g) �→ (φc, ξc, ηc, gc) is defined by

φc = φ , ξc = c−1ξ , ηc = cη , gc = cg + c(c− 1)η⊗ η ,

for a positive constant c, where D means the distribution orthogonal to a contact form η. If
(φ, ξ, η, g) is a Sasakian structure, then (φc, ξc, ηc, gc) is also a Sasakian structure. By direct
calculations, we have

Rgc = cRg + c(c2 − 1)(η⊗ η)©∧ g − c(c − 1)Φ , (40)

Ricgc = Ricg − 2(c − 1)g + (c − 1){(n− 1)c+ n+ 1}η⊗ η , (41)

sgc = c−1sg − c−1(c − 1)(n− 1) , (42)

where Φijst = φisφjt − φitφjs + 2φijφst . Here, ©∧ is the Nomizu-Kulkarni product of

symmetric 2-tensors. Moreover, the volume form changes as dVgc = c(n+1)/2dVg .
When we emphasize that a tensor T is determined by the structure tensor (φ, ξ, η, g),

we denote T by Tg .

LEMMA ([13]). As a (1, 3)-tensor the contact Bochner curvature tensor is invariant
under any D-homothetic deformation.

Now we shall introduce another important tensor U in M defined by

Uijst = Rijst − (ρ + 1)[gisgj t − gitgjs ]
− ρ[φisφjt − φitφjs + 2φijφst − gisηj ηt − gj t ηiηs + git ηj ηs + gjsηiηt ]

= Rijst − (ρ + 1)Gijst − ρ(Φ − (η⊗ η)©∧ g)ijst ,

(43)

where ρ + 1 = k/(n− 1).
The contact Bochner curvature tensor coincides with U if and only if M is η-Einstein.
A Sasakian manifoldM is called Sasakian space form ifU vanishes identically. It is well

known that a Sasakian space form is η-Einstein. So, the contact Bochner curvature tensor of
a Sasakian space form vanishes identically.

3.2. Proof of Theorem B. First we show that a Sasakian η-Einstein structure can be
D-homothetically deformed to a Sasakain Einstein structure whose contact Bochner curvature
tensor coincides with the Weyl conformal curvature tensor. Namely,

PROPOSITION. Let (M, φ, ξ, η, g) be a Sasakian η-Einstein n(≥ 5)-manifold with scalar

curvature sg > −(n − 1). Put the positive constant α = sg+n−1
(n−1)(n+1) and consider the

D-homothetically deformed structure (φα, ξα, ηα, gα). Then the metric gα is Einstein with
Ricgα = (n − 1)gα and sgα = n(n − 1). Further the contact Bochner curvature tensor Bgα

coincides with the Weyl conformal curvature tensor;
Bgα = Wgα .
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PROOF. From (41) and (42) we see by putting c = α Ricgα = (n − 1)gα and sgα =
n(n− 1). On the other hand

Bgα = Rgα − 1

2
gα©∧ gα = Rgα − sgα

2n(n− 1)
gα©∧ gα = Wgα . (44)

Now we will prove Theorem B. So, suppose that Bg vanishes. Since the contact Bochner
curvature tensor is D-homothetic invariant, Bgα also vanishes. From (44), (M, gα) is a con-
formally flat, Einstein manifold with the scalar curvature sgα = n(n− 1), so that (M, gα) is a
finite isometric quotient of the standard n-sphere.

We assume henceforth that Bg does not vanish identically and induces a contradiction.

To show that, we put c = Vol(gα)−(2/n), so that (M, cgα) is compact, connected Einstein,
with positive scalar curvature and of Vol(cgα) = 1. As shown in [8], there exists a constant
C(n), depending only on n such that

‖Wcgα‖Ln/2,cgα ≥ C(n)scgα ,

Here the LHS and RHS are now, respectively

‖Wcgα‖Ln/2,cgα = ‖Wgα‖Ln/2,gα = ‖Bgα‖Ln/2,gα = α(1/n)‖Bg‖Ln/2,g ,
and

C(n)scgα = C(n)n(n − 1)Vol(gα)(2/n) = C(n)n(n − 1)α(n+1)/nVol(g)(2/n) .

Hence, we have the inequality

‖Bg‖Ln/2,g ≥ C(n)n(n− 1)αVol(g)(2/n) = C(n)
n(sg + n− 1)

n+ 1
Vol(g)(2/n) . (45)

The inequality (45) is invariant under D-homothetic deformation, while the Ln/2-norm of the
contact Bochner curvature tensor is not an invariant under D-homothetic deformation. Nor-
malizing the volume by D-homothetic deformation, we get a contradiction to the assumption

‖B‖Ln/2 < C(n)n(s+n−1)
n+1 giving the complete proof.
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