Токуо J. Матн. Vol. 27, No. 1, 2004

Isolation Theorems of the Bochner Curvature Type Tensors

Mitsuhiro ITOH and Daisuke KOBAYASHI

University of Tsukuba

(Communicated by Y. Maeda)

Abstract. An isolation theorem of the Bochner curvature tensor of a Kähler-Einstein manifold is given, when its $L^{n/2}$ -norm is small. Similarly an isolation theorem of the contact Bochner curvature tensor for a Sasakian manifold is obtained. Those theorems are derived from the Weitzenböck formula which gives non-linearity constraint on the Bochner curvature tensors.

1. Introduction

The Weyl conformal curvature tensor is a tensor which measures deviation from the conformal flatness so that it is significant in conformal geometry. As its complex analogue we have the Bochner curvature tensor on a Kähler manifold, and also as its contact analogue the contact Bochner curvature tensor on a Sasakian manifold.

Our purpose of this paper is to show that these Bochner curvature type tensors B obey the following isolation theorems under certain Einstein conditions.

THEOREM A. Let (M, J, g) be a compact, connected Kähler-Einstein n-manifold, $n = 2m \ge 4$, with positive scalar curvature s and of Vol(g) = 1. Then, there exists a constant C(n), depending only on n such that if $L^{n/2}$ -norm $||B||_{L^{n/2}} < C(n)s$, then B = 0so that (M, J, g) is biholomorphically homothetic to the complex projective space $\mathbb{C}P^m$ with the Fubini-Study metric.

REMARK. It is known that complex surfaces $CP^2 \# k \overline{CP^2}$ ($3 \le k \le 8$) and $CP^1 \times CP^1$ admit Kähler-Einstein metric with positive scalar curvature [16]. Here, $CP^2 \# k \overline{CP^2}$ is the surface obtained by blowing up CP^2 at k generic points.

THEOREM B. Let (M, ϕ, ξ, η, g) be a compact, connected Sasakian η -Einstein *n*-manifold, $n = 2m + 1 \ge 5$, with scalar curvature s > -(n - 1) and of Vol(g) = 1. Then, there exists a constant C(n), depending only on n such that if $L^{n/2}$ -norm $||B||_{L^{n/2}} < 1$

Received May 12, 2003

²⁰⁰⁰ Mathematics Subject Classification. 53C25.

Key words. Bochner curvature tensor; Kähler-Einstein manifold; Sasakian η -Einstein manifold.

C(n)n(s + n - 1)/(n + 1), then B = 0 so that M is D-homothetic to finite quotient of the standard n-sphere.

These theorems are analogous to the following isolation theorem of the Weyl conformal curvature tensor W.

THEOREM ([8]). Let (M, g) be a compact, connected oriented Einstein n-manifold, $n \ge 4$, with positive scalar curvature s and of Vol(g) = 1. Then, there exists a constant C(n), depending only on n such that if $L^{n/2}$ -norm $||W||_{L^{n/2}} < C(n)s$, then W = 0 so that (M, g) is a finite isometric quotient of the standard n-sphere of unit volume.

As a complex analogue of the Weyl conformal curvature tensor, S. Bochner [2] introduced the so-called Bochner curvature tensor using a complex local coordinate;

$$\begin{split} B_{\alpha\overline{\beta}\gamma\overline{\delta}} &= R_{\alpha\overline{\beta}\gamma\overline{\delta}} - \frac{1}{m+2} (R_{\alpha\overline{\beta}}g_{\gamma\overline{\delta}} + R_{\gamma\overline{\beta}}g_{\alpha\overline{\delta}} + g_{\alpha\overline{\beta}}R_{\gamma\overline{\delta}} + g_{\gamma\overline{\beta}}R_{\alpha\overline{\delta}}) \\ &+ \frac{s}{(m+1)(m+2)} (g_{\alpha\overline{\beta}}g_{\gamma\overline{\delta}} + g_{\gamma\overline{\beta}}g_{\alpha\overline{\delta}}) \,. \end{split}$$

Y. Kamishima classified completely compact Kähler manifolds with vanishing Bochner curvature tensor in [10].

THEOREM ([10]). Let M be a compact Kähler $2m (\geq 4)$ -manifold having the vanishing Bochner curvature tensor B. Then M is holomorphically isometric to

- (1) the complex projective space CP^m ,
- (2) a complex Euclidean space form T_C^m/F , $F \subset U(m)$,
- (3) a complex hyperbolic space form H^m_C/Γ , $\Gamma \subset PU(m, 1)$,
- (4) the fiber space $H_{\mathbf{C}}^k \times \mathbf{C}P^{m-k}/\Gamma$ where

$$\Gamma \subset PU(k,1) \times PU(m-k+1), \quad k=1,2,\cdots,m-1.$$

Here, F is a finite group and Γ is a discrete cocompact subgroup, both acting properly discontinuously.

For odd dimensional Sasakian manifolds, M. Matsumoto and G. Chûman [13] defined the contact Bochner curvature tensor. A Sasakian manifold with vanishing contact Bochner curvature tensor is studied by M. Matsumoto and G. Chûman [13], T. Ikawa and M. Kon [4]. The isolation theorem of contact Bochner curvature tensor, namely Theorem B, is obtained by arguments based on those studies together with the result of [8].

2. Isolation of the Bochner curvature tensor

2.1. The Weitzenböck formula for the Bochner tensor. In this section, we establish the Weitzenböck formula on the left-exterior derivative d_L applied to the Bochner curvature tensor in a Kähler-Einstein manifold which plays an essential role in the proof of Theorem A.

Let (M, g) be a Riemannian *n*-manifold, and let Λ^p denote the bundle of exterior *p*forms. The operator $d_L : \Gamma(\Lambda^p \otimes \Lambda^q) \to \Gamma(\Lambda^{p+1} \otimes \Lambda^q)$ exploited by the first author in [7]

is given by

$$(d_L\psi)_{i_0i_1\cdots i_pj_1\cdots j_q} = \sum_{k=0}^p (-1)^k \nabla_{i_k}\psi_{i_0i_1\cdots \hat{i_k}\cdots i_pj_1\cdots j_q} \,. \tag{1}$$

The bundle $\Lambda^p \otimes \Lambda^q$ carries the inner product inherited from the metric g. Then, with respect to this inner product the operator d_L has the formal adjoint $\delta_L : \Gamma(\Lambda^{p+1} \otimes \Lambda^q) \to \Gamma(\Lambda^p \otimes \Lambda^q)$, given by

$$(\delta_L \psi)_{i_1 \cdots i_p j_1 \cdots j_q} = -\nabla^a \psi_{a i_1 \cdots i_p j_1 \cdots j_q} \,. \tag{2}$$

Similarly, the right-exterior derivative $d_R : \Gamma(\Lambda^p \otimes \Lambda^q) \to \Gamma(\Lambda^p \otimes \Lambda^{q+1})$ and the formal adjoint δ_R are also defined.

REMARK. We may consider the Riemannian curvature tensor R as a section $\Lambda^2 \otimes \Lambda^2$ and the Ricci tensor Ric as a section $\Lambda^1 \otimes \Lambda^1$. The following identities are well known

$$d_L R = 0, \quad \delta_L R = -d_R Ric, \quad \delta_R Ric = \delta_L Ric = -\frac{1}{2} ds, \qquad (3)$$

where s is the scalar curvature. The first one reads the second Bianchi identity.

By direct calculation, we have the Weitzenböck formula on the d_L as follows:

$$(\Delta_L \psi)_{ijst} = (d_L \delta_L \psi + \delta_L d_L \psi)_{ijst}$$

= $\nabla^* \nabla \psi_{ijst} + R_i^a \psi_{ajst} + R_j^a \psi_{iast} - \{R, \psi\}_{ijst}$, (4)

for any $\psi \in \Gamma(\Lambda^2 \otimes \Lambda^2)$. Here, { , } is given by

$$\{S, T\}_{ijst} = S_{ij}{}^{ab}T_{abst} + S^{a}{}_{is}{}^{b}T_{ajtb} + S^{a}{}_{jt}{}^{b}T_{aisb} - S^{a}{}_{js}{}^{b}T_{aitb} - S^{a}{}_{it}{}^{b}T_{ajsb},$$

$$S, T \in \Gamma(\Lambda^{2} \otimes \Lambda^{2}).$$

The Bochner curvature tensor *B* has also a real coordinate expression due to S. Tachibana [14]. We adopt in this paper his real coordinate formulation. Namely, let (M, J, g) be a Kähler *n*-manifold, $n = 2m \ge 4$. Then the Bochner curvature tensor is defined by

$$B_{ijst} = R_{ijst} - \frac{1}{n+4} [R_{is}g_{jt} + R_{jt}g_{is} - R_{it}g_{js} - R_{js}g_{it} + J_i^r R_{rs}J_{jt} + J_j^r R_{rt}J_{is} - J_i^r R_{rt}J_{js} - J_j^r R_{rs}J_{it} + 2J_i^r R_{rj}J_{st} + 2J_{ij}J_s^r R_{rt}] + \frac{s}{(n+2)(n+4)} [g_{is}g_{jt} - g_{it}g_{js} + J_{is}J_{jt} - J_{it}J_{js} + 2J_{ij}J_{st}],$$
(5)

where $J_{ij} = J_i^r g_{rj}$.

The following identities are obtained by the straightforward computation;

$$B_{ijst} = -B_{jist} = -B_{ijts} , (6)$$

$$B_{ijst} + B_{jsit} + B_{sijt} = 0, (7)$$

MITSUHIRO ITOH AND DAISUKE KOBAYASHI

$$B_{ijst} = B_{stij} , \qquad (8)$$

$$B_{ijst} = J_i^{\ p} J_j^{\ q} B_{pqst} \,, \tag{9}$$

$$B^{p}{}_{jpt} = 0, \qquad (10)$$

from which one sees that the Bochner curvature tensor in a Kähler manifold plays a role of the Weyl conformal curvature tensor in a Riemannian manifold. The identity (9) means that *B* is *J*-invariant, i.e., B(JX, JY, Z, W) = B(X, Y, Z, W) for tangent vectors *X*, *Y*, *X*, *W*.

The identities $J_i{}^p B_{pjst} = -J_j{}^p B_{ipst}$ and $J^{pq} B_{pqst} = 0$ are derived from these identities.

Set the tensors G and Φ

$$G_{ijst} = g_{is}g_{jt} - g_{it}g_{js}$$
, $\Phi_{ijst} = J_{is}J_{jt} - J_{it}J_{js} + 2J_{ij}J_{st}$.

Then, from the above identities of the B, we have

$$\{G, B\} = \{\Phi, B\} = 0. \tag{11}$$

Now, we consider the Kähler-Einstein case. The Bochner curvature tensor has the following form if and only if *M* is Kähler-Einstein;

$$B = R - \frac{s}{n(n+2)}(G + \Phi).$$
 (12)

Moreover, when *M* is Kähler-Einstein, by applying (3) and $\nabla B = \nabla R$, we have

$$d_L B = 0, \quad \text{and} \quad \delta_L B = 0. \tag{13}$$

So that, from the Weitzenböck formula for the *B*, we have the following Lemma.

LEMMA. Let (M, J, g) be a compact Kähler-Einstein manifold. Then the Bochner curvature tensor B fulfills

$$0 = \Delta_L B = \nabla^* \nabla B + \frac{2s}{n} B - \{B, B\}.$$
⁽¹⁴⁾

2.2. Proof of Theorem A. The proof is quite similar to the proof in [8]. So we follow their argument.

Let (M, J, g) be a Kähler-Einstein manifold, $n = 2m \ge 4$, with positive scalar curvature *s*. We assume that the Bochner curvature *B* does not vanish identically and consider its norm $||B||_{L^{n/2}}$.

We apply the Sobolev inequality of a compact Riemannian *n*-manifold, $n \ge 3$, which is described in terms of Yamabe metrics. We take a Yamabe metric in the conformal class [g], represented by g and then obtain the Sobolev inequality

$$4\frac{n-1}{n-2}\|\nabla f\|_{L^2}^2 \ge s \operatorname{Vol}(g)^{(2/n)}\{\|f\|_{L^p}^2 - \operatorname{Vol}(g)^{-(2/n)}\|f\|_{L^2}^2\}, \quad f \in H^2_1(M)$$
(15)

where p = (2n/n - 2). The inequality (15) still holds when f is replaced by any tensor T because of the Kato's inequality

$$|\nabla|T|| \le |\nabla T|. \tag{16}$$

Remark that there is an improved Kato's inequality, for example, as given in [3] as

$$|\nabla|B|| \le \gamma(n) |\nabla B|$$

for a certain positive constant $\gamma(n) < 1$, since *B* satisfies the elliptic equations (14). We can make use of this inequality to our argument. However, the improved Kato's constant $\gamma(n)$ is not essential in our argument. So we ignore here this constant.

It is known that any Einstein metric must be Yamabe, provided it is not conformal to the standard *n*-sphere ([6, 11]). Since the metric is Kähler-Einstein, g is indeed a Yamabe metric in the conformal class [g]. We normalize g by constant rescaling so that Vol(g) = 1.

So we get

$$4\frac{n-1}{n-2} \|\nabla B\|_{L^2}^2 \ge s\{\|B\|_{L^p}^2 - \|B\|_{L^2}^2\}.$$
(17)

Next, we have the following inequality from (14);

$$\|\nabla B\|_{L^{2}}^{2} + \frac{2s}{n} \|B\|_{L^{2}}^{2} \le C_{n}^{-1} \|B\|_{L^{3}}^{3} \le C_{n}^{-1} \|B\|_{L^{n/2}} \|B\|_{L^{p}}^{2}.$$
 (18)

Here, we used the Hölder inequality together with the pointwise inequality

$$\langle \{B, B\}, B \rangle \le C_n^{-1} |B|^3$$
 (19)

for a constant $C_n > 0$, depending only on *n*. Applying the Sobolev inequality (17) yields

$$C_n^{-1} \|B\|_{L^{n/2}} \|B\|_{L^p}^2 \ge \frac{2s}{n} \|B\|_{L^2}^2 + \frac{n-2}{4(n-1)} s(\|B\|_{L^p}^2 - \|B\|_{L^2}^2).$$
(20)

Assume that $4 \le n \le 9$. Then (2/n) - ((n-2)/4(n-1)) > 0 so that

$$C_n^{-1} \|B\|_{L^{n/2}} \ge \frac{n-2}{4(n-1)} s \,. \tag{21}$$

If, contrarily, $n \ge 10$, it holds (2/n) - ((n-2)/4(n-1)) < 0. However $||B||_{L^2}^2 \le ||B||_{L^p}^2$, since p > 2. So,

$$\left(\frac{2}{n} - \frac{n-2}{4(n-1)}\right) s \|B\|_{L^2}^2 \ge \left(\frac{2}{n} - \frac{n-2}{4(n-1)}\right) s \|B\|_{L^p}^2.$$
(22)

We have thus

$$C_n^{-1} \|B\|_{L^{n/2}} \|B\|_{L^p}^2 \ge \left\{ \left(\frac{2}{n} - \frac{n-2}{4(n-1)}\right) s + \frac{n-2}{4(n-1)} s \right\} \|B\|_{L^p}^2 = \frac{2}{n} s \|B\|_{L^p}^2$$
(23)

giving rise to $||B||_{L^{n/2}} \ge (2/n)C_n s$.

MITSUHIRO ITOH AND DAISUKE KOBAYASHI

Therefore, if we put C(n) as

$$C(n) = \frac{n-2}{4(n-1)}C_n s, \quad 4 \le n \le 9,$$

= $\frac{2}{n}C_n s, \qquad 10 \le n,$ (24)

then we get a contradiction giving the complete proof.

REMARK. If n = 4, the Bochner curvature tensor *B* of a Kähler metric *g* is the antiself-dual part of the Weyl curvature tensor *W* of *g* [5, 17]. That is, it holds in this case $B^+ = 0$ and $B^- = W^-$, where B^{\pm} and W^{\pm} are the restriction of *B* and *W* to Λ^{\pm} , respectively. Here the bundle Λ^2 splits as the Whitney sum $\Lambda^2 = \Lambda^+ \oplus \Lambda^-$, Λ^{\pm} being the eigenspace bundles of the Hodge star operator $* \in \text{End}(\Lambda^2)$. Then the *W* and the *B* leave Λ^{\pm} invariant. As was discussed in [9], for a Kähler surface, we have

$$|\langle \{B, B\}, B\rangle| \le \sqrt{6}|B|^3.$$

The equality is achieved at a given point if and only if the curvature operator $B = W^- \in$ End(Λ^-) has distinct eigenvalues at most two.

2.3. The optimal value of the estimate constant C(4). We do not know in general the optimal value of C(n) in Theorem A. However, when *M* is real 4-dimensional, we shall see that the constant $C(4) = \sqrt{\frac{1}{24}}$ is optimal in our theorem.

Let (M, J, g) be a compact, connected Kähler-Einstein 4-manifold with positive scalar curvature s. Then, since $|W^+|^2 = \frac{1}{24}s^2$, we have the Hirzebruch index theorem and the Gauss-Bonnet theorem (cf. [12])

$$\|W^+\|_{L^2}^2 = \frac{1}{24} \int_M s^2 dV_g = \frac{4}{3} \pi^2 (2\chi(M) + 3\tau(M)), \qquad (25)$$

$$\|B\|_{L^{2}}^{2} = \|W^{-}\|_{L^{2}}^{2} = \frac{1}{24} \int_{M} s^{2} dV_{g} - 12\pi^{2}\tau(M) = \frac{8}{3}\pi^{2}(\chi(M) - 3\tau(M)), \quad (26)$$

where $\chi(M)$ is the Euler-Poincáre characteristic and $\tau(M)$ is the signature of (M, g).

Moreover, since *M* is a Kähler-Einstein 4-manifold with positive scalar curvature, we see that the Betti numbers satisfy $b_1(M) = 0$ and $b_2^+(M) = 1$. So, we have

$$\tau(M) = b_2^+(M) - b_2^-(M) = 1 - b_2^-(M),$$

$$\chi(M) = \sum_{k=0}^4 (-1)^k b_k(M) = 3 + b_2^-(M).$$
(27)

The identities (25), (26) and (27) imply

$$\|W^+\|_{L^2}^2 = \frac{1}{24} \int_M s^2 dV_g = \frac{4}{3} \pi^2 (9 - b_2^-(M)), \qquad (28)$$

$$\|B\|_{L^{2}}^{2} = \frac{1}{24} \int_{M} s^{2} dV_{g} - 12\pi^{2}\tau(M) = \frac{8}{3}\pi^{2}(\chi(M) - 3\tau(M))$$

$$= \frac{32}{3}\pi^{2}b_{2}^{-}(M) = \frac{32}{3}\pi^{2}(1 - \tau(M)) = \frac{32}{3}\pi^{2}(\chi(M) - 3).$$
(29)

From (27) and (29), we easily obtain the following proposition.

PROPOSITION. Let (M, J, g) be a compact, connected Kähler-Einstein 4-manifold, with positive scalar curvature s and of Vol(g) = 1. Then, the following are equivalent each other;

i). The Bochner curvature tensor does not vanish identically,

ii).
$$\tau(M) \le 0$$
, iii). $\chi(M) \ge 4$, iv). $b_2^-(M) \ge 1$,
v). $\|B\|_{L^2}^2 \ge \frac{1}{24}s^2$, vi). $\|B\|_{L^2}^2 \ge \frac{8}{3}\pi^2\chi(M)$, vii). $\|B\|_{L^2}^2 \ge \frac{32}{3}\pi^2$

For example, when *M* is homothetic to $CP^1 \times CP^1$ with the standard product metric, all the equalities hold in the above proposition. Thus we see that the value of the estimate constant $C(4) = \sqrt{\frac{1}{24}}$ is optimal in our theorem. Furthermore, in this case, we obtain the isolation theorem of the Bochner curvature tensor even though the constant C(4)s is replaced by $\sqrt{\frac{8}{3}\pi^2\chi(M)}$ or $\sqrt{\frac{32}{3}\pi^2}$. That is,

THEOREM. Let (M, J, g) be a compact, connected Kähler-Einstein 4-manifold with positive scalar curvature and set a positive constant $\varepsilon = \sqrt{\frac{8}{3}\pi^2 \chi(M)}$ or $\sqrt{\frac{32}{3}\pi^2}$. If L^2 -norm $||B||_{L^2} < \varepsilon$, then B = 0.

REMARK. The L^2 -norm of Bochner curvature tensor of a Kähler-Einstein 4-manifold with positive scalar curvature takes a discrete value represented by the topological invariant such that

$$\|B\|_{L^2}^2 = \frac{32}{3}\pi^2 b_2^-(M)\,,\quad (0\leq b_2^-(M)\leq 8)\,.$$

Here, $0 \le b_2^-(M) \le 8$ is obtained from (28). For example, the Kähler-Einstein manifold $CP^2 \# k \overline{CP^2}$ ($3 \le k \le 8$) fulfills $b_2^- = k$ and $\|B\|_{L^2}^2 = \frac{32}{3}\pi^2 k$.

3. The contact Bochner curvature tensor

3.1. Curvature tensors of Sasakian manifolds. Let $(M, (\phi, \xi, \eta, g))$ be a Sasakian *n*-manifold, $n = 2m + 1 \ge 5$. Then g, η, ξ and ϕ are a Riemannian metric, a 1-form, a unit Killing vector field and a tensor field of type (1, 1), respectively, such that

$$\eta(X) = g(\xi, X), \quad (\nabla_X \eta)(Y) = g(X, \phi Y),$$

$$\phi^2 X = -X + \eta(X)\xi, \quad (\nabla_X \phi)(Y) = g(X, Y)\xi - \eta(Y)X,$$
(30)

for any tangent vectors X, Y. From the above, the following identities are derived ([1, 15]).

$$\phi\xi = 0, \quad \eta(\phi X) = 0, \tag{31}$$

$$\phi X = -\nabla_X \xi \,, \quad d\eta(X, Y) = 2g(X, \phi Y) \,.$$

It is well known that the Riemannian curvature tensor and the Ricci tensor of a Sasakian manifold satisfy

$$\xi^{p} R_{pjst} = g_{js} \eta_{t} - g_{jt} \eta_{s} ,$$

$$\phi_{i}^{p} \phi_{j}^{q} R_{pqst} = R_{ijst} - G_{ijst} + \phi_{i}^{p} \phi_{j}^{q} G_{pqst} ,$$

$$\phi_{i}^{p} \phi_{j}^{q} R_{pq} = R_{ij} - (n-1)\eta_{i}\eta_{j} ,$$
(32)

where $G_{ijst} = g_{is}g_{jt} - g_{it}g_{js}$.

We call $(M, (\phi, \xi, \eta, g))$ η -*Einstein*, if the Ricci tensor has the form $R_{ij} = ag_{ij} + b\eta_i\eta_j$, where a = s/(n-1) - 1 and b = -s/(n-1) + n. The scalar curvature of an η -Einstein is constant.

The contact Bochner curvature tensor is defined on M by (cf. [13])

$$B_{ijst} = R_{ijst} - \frac{1}{n+3} [R_{is}g_{jt} + R_{jt}g_{is} - R_{it}g_{js} - R_{js}g_{it} + R_{ir}\phi_{s}^{r}\phi_{jt} + R_{jr}\phi_{t}^{r}\phi_{is} - R_{ir}\phi_{t}^{r}\phi_{js} - R_{jr}\phi_{s}^{r}\phi_{it} + 2R_{ir}\phi_{j}^{r}\phi_{st} + 2\phi_{ij}R_{sr}\phi_{t}^{r} - R_{is}\eta_{j}\eta_{t} - R_{jt}\eta_{i}\eta_{s} + R_{it}\eta_{j}\eta_{s} + R_{js}\eta_{i}\eta_{t}] + \frac{k+n-1}{n+3} [\phi_{is}\phi_{jt} - \phi_{it}\phi_{js} + 2\phi_{ij}\phi_{st}] + \frac{k-4}{n+3} [g_{is}g_{jt} - g_{it}g_{js}] - \frac{k}{n+3} [g_{is}\eta_{j}\eta_{t} + g_{jt}\eta_{i}\eta_{s} - g_{it}\eta_{j}\eta_{s} - g_{js}\eta_{i}\eta_{t}],$$
(33)

where k = (s + n - 1)/(n + 1) and $\phi_{ij} = g_{ir}\phi_j^r$. If $(M, (\phi, \xi, \eta, g))$ is a Boothby-Wang fibering over a Hodge manifold, then the contact Bochner curvature tensor coincides with the pull-back of the Bochner curvature tensor of the base Kähler manifold.

The following identities are obtained similarly to the ones for the Bochner curvature tensor;

$$B_{ijsl} = -B_{jist} = -B_{ijts} , \qquad (34)$$

$$B_{ijst} + B_{jsit} + B_{sijt} = 0, ag{35}$$

$$B_{ijst} = B_{stij} , \qquad (36)$$

$$\xi^p B_{pjst} = 0, \qquad (37)$$

$$B_{ijst} = \phi_i{}^p \phi_j{}^q B_{pqst} , \qquad (38)$$

$$B^p{}_{ipt} = 0. ag{39}$$

The contact Bochner curvature tensor in a Sasakian manifold plays a same role of Bochner curvature tensor in a Kähler manifold. (37) means $B(\xi, X, Y, Z) = 0$ for all tangent vectors

X, Y, Z. The identities $\phi_i{}^p B_{pjst} = -\phi_j{}^p B_{ipst}$ and $\phi^{pq} B_{pqst} = 0$ are derived from these identities.

A *D*-homothetic deformation $(\phi, \xi, \eta, g) \mapsto (\phi_c, \xi_c, \eta_c, g_c)$ is defined by

$$\phi_c = \phi$$
, $\xi_c = c^{-1}\xi$, $\eta_c = c\eta$, $g_c = cg + c(c-1)\eta \otimes \eta$,

for a positive constant c, where D means the distribution orthogonal to a contact form η . If (ϕ, ξ, η, g) is a Sasakian structure, then $(\phi_c, \xi_c, \eta_c, g_c)$ is also a Sasakian structure. By direct calculations, we have

$$R_{g_c} = cR_g + c(c^2 - 1)(\eta \otimes \eta) \bigotimes g - c(c - 1)\Phi, \qquad (40)$$

$$Ric_{g_c} = Ric_g - 2(c-1)g + (c-1)\{(n-1)c + n + 1\}\eta \otimes \eta,$$
(41)

$$s_{g_c} = c^{-1} s_g - c^{-1} (c-1)(n-1), \qquad (42)$$

where $\Phi_{ijst} = \phi_{is}\phi_{jt} - \phi_{it}\phi_{js} + 2\phi_{ij}\phi_{st}$. Here, \bigotimes is the Nomizu-Kulkarni product of symmetric 2-tensors. Moreover, the volume form changes as $dV_{q_c} = c^{(n+1)/2} dV_q$.

When we emphasize that a tensor T is determined by the structure tensor (ϕ, ξ, η, g) , we denote T by T_g .

LEMMA ([13]). As a (1, 3)-tensor the contact Bochner curvature tensor is invariant under any D-homothetic deformation.

Now we shall introduce another important tensor U in M defined by

$$U_{ijst} = R_{ijst} - (\rho + 1)[g_{is}g_{jt} - g_{it}g_{js}] - \rho[\phi_{is}\phi_{jt} - \phi_{it}\phi_{js} + 2\phi_{ij}\phi_{st} - g_{is}\eta_{j}\eta_{t} - g_{jt}\eta_{i}\eta_{s} + g_{it}\eta_{j}\eta_{s} + g_{js}\eta_{i}\eta_{t}]$$
(43)
$$= R_{ijst} - (\rho + 1)G_{ijst} - \rho(\Phi - (\eta \otimes \eta) \bigotimes g)_{ijst},$$

where $\rho + 1 = k/(n - 1)$.

The contact Bochner curvature tensor coincides with U if and only if M is η -Einstein.

A Sasakian manifold M is called *Sasakian space form* if U vanishes identically. It is well known that a Sasakian space form is η -Einstein. So, the contact Bochner curvature tensor of a Sasakian space form vanishes identically.

3.2. Proof of Theorem B. First we show that a Sasakian η -Einstein structure can be *D*-homothetically deformed to a Sasakain Einstein structure whose contact Bochner curvature tensor coincides with the Weyl conformal curvature tensor. Namely,

PROPOSITION. Let (M, ϕ, ξ, η, g) be a Sasakian η -Einstein $n (\geq 5)$ -manifold with scalar curvature $s_g > -(n-1)$. Put the positive constant $\alpha = \frac{s_g+n-1}{(n-1)(n+1)}$ and consider the D-homothetically deformed structure $(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g_{\alpha})$. Then the metric g_{α} is Einstein with $Ric_{g_{\alpha}} = (n-1)g_{\alpha}$ and $s_{g_{\alpha}} = n(n-1)$. Further the contact Bochner curvature tensor $B_{g_{\alpha}}$ coincides with the Weyl conformal curvature tensor;

$$B_{g_{\alpha}} = W_{g_{\alpha}}$$
.

MITSUHIRO ITOH AND DAISUKE KOBAYASHI

PROOF. From (41) and (42) we see by putting $c = \alpha Ric_{g_{\alpha}} = (n-1)g_{\alpha}$ and $s_{g_{\alpha}} = n(n-1)$. On the other hand

$$B_{g_{\alpha}} = R_{g_{\alpha}} - \frac{1}{2} g_{\alpha} \bigotimes g_{\alpha} = R_{g_{\alpha}} - \frac{s_{g_{\alpha}}}{2n(n-1)} g_{\alpha} \bigotimes g_{\alpha} = W_{g_{\alpha}} .$$
(44)

Now we will prove Theorem B. So, suppose that B_g vanishes. Since the contact Bochner curvature tensor is *D*-homothetic invariant, $B_{g_{\alpha}}$ also vanishes. From (44), (M, g_{α}) is a conformally flat, Einstein manifold with the scalar curvature $s_{g_{\alpha}} = n(n-1)$, so that (M, g_{α}) is a finite isometric quotient of the standard *n*-sphere.

We assume henceforth that B_g does not vanish identically and induces a contradiction. To show that, we put $c = \operatorname{Vol}(g_{\alpha})^{-(2/n)}$, so that (M, cg_{α}) is compact, connected Einstein, with positive scalar curvature and of $\operatorname{Vol}(cg_{\alpha}) = 1$. As shown in [8], there exists a constant C(n), depending only on n such that

$$\|W_{cg_{\alpha}}\|_{L^{n/2},cq_{\alpha}} \geq C(n)s_{cg_{\alpha}},$$

Here the LHS and RHS are now, respectively

$$\|W_{cg_{\alpha}}\|_{L^{n/2},cg_{\alpha}} = \|W_{g_{\alpha}}\|_{L^{n/2},g_{\alpha}} = \|B_{g_{\alpha}}\|_{L^{n/2},g_{\alpha}} = \alpha^{(1/n)}\|B_{g}\|_{L^{n/2},g},$$

and

$$C(n)s_{cg_{\alpha}} = C(n)n(n-1)\operatorname{Vol}(g_{\alpha})^{(2/n)} = C(n)n(n-1)\alpha^{(n+1)/n}\operatorname{Vol}(g)^{(2/n)}.$$

Hence, we have the inequality

$$\|B_g\|_{L^{n/2},g} \ge C(n)n(n-1)\alpha \operatorname{Vol}(g)^{(2/n)} = C(n)\frac{n(s_g+n-1)}{n+1}\operatorname{Vol}(g)^{(2/n)}.$$
 (45)

The inequality (45) is invariant under *D*-homothetic deformation, while the $L^{n/2}$ -norm of the contact Bochner curvature tensor is not an invariant under *D*-homothetic deformation. Normalizing the volume by *D*-homothetic deformation, we get a contradiction to the assumption $||B||_{L^{n/2}} < C(n) \frac{n(s+n-1)}{n+1}$ giving the complete proof.

References

- [1] D. E. BLAIR, Riemannian geometry of contact and symplectic manifolds, Progr. Math. 203 (2002), Birkhäuser.
- [2] S. BOCHNER, Curvature and Betti numbers, II, Ann. of Math. 50 (1949), 77–93.
- [3] D. M. J. CALDERBANK, P. GAUDUCHON and M. HERZLICH, Refined Kato Inequalities and Conformal Weights in Riemannian Geometry, J. Funct. Anal. 173 (2000), 214–255.
- [4] T. IKAWA and M. KON, Sasakian manifolds with vanishing contact Bochner curvature tensor and constant scalar curvature, Coll. Math. 37 (1977), 113–122.
- [5] M. ITOH, Self-duality of Kähler surfaces, Compositio Math. 51 (1984), 265–273.
- [6] M. ITOH, Yamabe metrics and the space of conformal structures, Intern. J. Math. 2 (1991), 659-671.
- [7] M. ITOH, The Weitzenböck formula for the Bach Operator, Nagoya Math. J. 137 (1995), 149–181.

- [8] M. ITOH and H. SATOH, Isolation of the Weyl conformal tensor for Einstein manifolds, Proc. Japan Acad. Ser. A 78 (2002), 140–142.
- [9] M. ITOH and H. SATOH, Self-dual Weyl conformal tensor equation and pointwise gap theorem, submitted.
- Y. KAMISHIMA, Uniformization of Kähler manifolds with vanishing Bochner tensor, Acta. Math. 172 (1994), 299–308.
- [11] J. M. LEE and T. H. PARKER, The Yamabe problem, Bull. A. M. S. 17 (1987), 37-91 .
- C. LEBRUN, On four-dimensional Einstein manifolds, *The geometric universe* (Oxford, 1996), (1998), Oxford Univ. Press, 109–121.
- [13] M. MATSUMOTO and G. CHÛMAN, On the C-Bochner curvature tensor, TRU. Math. 5 (1969), 21–30.
- [14] S. TACHIBANA, On the Bochner curvature tensor, Nat. Sci. Rep. Ochanomizu Univ. 17 (1966), 27–32.
- [15] S. TANNO, Promenades on spheres, A sketch book of eight scenes on spheres, Department of Math. Tokyo Inst. of Tech. (1996).
- [16] G. TIAN and S. T. YAU, Kähler-Einstein metrics on complex surfaces with $C_1(M)$ positive, Commun. Math. Phys. **112** (1987), 175–203.
- [17] F. TRICERRI and L. VANHECKE, Curvature tensors on almost Hermitian manifolds, Trans. A. M. S. 267 (1981), 365–398.

Present Address: Mitsuhiro Itoh Institute of Mathematics, University of Tsukuba, 305–8571 Japan.

DAISUKE KOBAYASHI TSUKUBA SHUEI HIGH SCHOOL, TSUKUBA, 300–2655 JAPAN.