The Gonality of Singular Plane Curves

Masahito OHKOUCHI and Fumio SAKAI

Saitama University
(Communicated by T. Kawasaki)

1. Introduction

Let $C \subset \mathbf{P}^{2}$ be an irreducible plane curve of degree d over the complex number field C. We denote by $\mathbf{C}(C)$ the field of rational functions on C. Let \tilde{C} be the non-singular model of C. Since $\mathbf{C}(\tilde{C}) \cong \mathbf{C}(C)$, a non-constant rational function φ on C induces a non-constant morphism $\varphi: \tilde{C} \rightarrow \mathbf{P}^{1}$. Let $\operatorname{deg} \varphi$ denote the degree of this morphism φ. We remark that $\operatorname{deg} \varphi=[\mathbf{C}(C): \mathbf{C}(\varphi)]=\operatorname{deg}(\varphi)_{0}=\operatorname{deg}(\varphi)_{\infty}$. The gonality of C, denoted by $\operatorname{Gon}(C)$, is defined to be $\min \{\operatorname{deg} \varphi \mid \varphi \in \mathbf{C}(C) \backslash \mathbf{C}\}$. So by definition, the gonality of C is nothing but the gonality of \tilde{C}. Let v denote the maximal multiplicity of C. We easily see that $\operatorname{Gon}(C) \leq d-v$. We know that the genus of C is equal to $(d-1)(d-2) / 2-\delta$ with $\delta \geq 0$.

Theorem 1. Let C be an irreducible plane curve of degree d with $\delta \geq v$. Letting $d \equiv i(\bmod \nu)$, define

$$
R(v, \delta, i)=\frac{v^{2}+(v-2) i}{2 v(v-1)}+\sqrt{\frac{\delta-v}{v-1}+\left(\frac{v-2+i}{2(v-1)}\right)^{2}} .
$$

If $d / v>R(v, \delta, i)$, then $\operatorname{Gon}(C)=d-v$.
REMARK 1. Theorem 1 is a generalization of Theorem 2.1 in Coppens and Kato [1] where they considered the case in which C has only nodes and ordinary cusps. Note that $R(2, \delta, 0)=1+\sqrt{\delta-2}, R(2, \delta, 1)=1+\sqrt{\delta-7 / 4}$. In general, we have the estimation: $R(\nu, \delta, i)<1+\sqrt{\delta /(\nu-1)}$.

We have $\delta<v$ if either (i) C is a smooth curve $(\delta=0, \nu=1$ and $\operatorname{Gon}(C)=d-1$ for all $d \geq 2$), or (ii) C has one node or one ordinary cusp ($\delta=1$ and $v=2$ and $\operatorname{Gon}(C)=d-2$ for all $d \geq 3$). Cf. [1], [3], [5].

DEFINITION. Let m_{1}, \cdots, m_{n} denote the multiplicities of all singular points (we include infinitely near singular points) of C. Set $\eta=\sum\left(m_{i} / v\right)^{2}$. Clearly, we have $n \geq \eta \geq 1$.

ThEOREM 2. Let C be an irreducible plane curve of degree d with $v \geq 3$. We have $\operatorname{Gon}(C)=d-v$ if

$$
d / v \begin{cases}>(\eta+1) / 2, & \text { for } \eta<a(v), \eta \geq 5 \\ >2 \sqrt{\eta}-(1+1 / v), & \text { for } a(v) \leq \eta<4, \\ \geq 3, & \text { for } 4 \leq \eta<5,\end{cases}
$$

where $a(v)=(2-\sqrt{1-2 / v})^{2}$.
REMARK 2. Note that $a(3)=2.023 \cdots$ and $1<a(v) \leq 1.671 \cdots$ for $v \geq 4$.
We shall show that if $\eta \geq 2 v+5$, then the criterion in Theorem 1 is more effective than that in Theorem 2. We also prove some subtle criterions.

THEOREM 3. Let C be an irreducible plane curve of degree d with n singular points (infinitely near singular points are also counted). We renumber the multiplicities m_{i} 's as $\nu=m_{1} \geq m_{2} \geq m_{3} \geq \cdots \geq m_{n}$. We have $\operatorname{Gon}(C)=d-v$ if either
(i) $n \leq 2$, or
(ii) $n=3$ and $d / v>2$, or
(iii) $n \geq 4, d \geq m_{2}+m_{3}+m_{4}$ and

$$
d / v> \begin{cases}(\eta+1) / 2 & \text { if } v=3,4 \\ & \text { if } v \geq 5 \text { and } \eta<b(v), \eta \geq c(v), \\ (1 / 2)\{3 \sqrt{\eta}-(1+1 / v)\} & \text { if } v \geq 5 \text { and } b(v) \leq \eta<c(v)\end{cases}
$$

where $b(\nu)=(3 / 2-\sqrt{1 / 4-1 / v})^{2}$ and $c(\nu)=(3 / 2+\sqrt{1 / 4-1 / v})^{2}$.
REMARK 3. In view of Theorem 2, the condition (iii) is meaningful only if $a(\nu) \leq \eta<$ 5. We remark that $a(v)<b(v)<c(v)$ and $1<b(v) \leq 1.629 \cdots$ and $2.970 \cdots \leq c(v)<4$ for $v \geq 5$.

2. Rational functions on C and on \mathbf{P}^{2}

Let φ be a rational function on C. Set $r=\operatorname{deg} \varphi$. We know that a rational function φ of a plane curve C is a restriction of a rational function $\Phi=g(x, y, z) / h(x, y, z)$ on \mathbf{P}^{2}, where g and h are relatively prime homogeneous polynomials of the same degree, say k. We call k the degree of the rational function Φ. A rational function Φ is called a linear function if $k=1$. Classically, one says that φ is cut out by the pencil $\Lambda: t_{0} g-t_{1} h=0$ on \mathbf{P}^{2}. Let us consider the rational map

$$
\Phi: \mathbf{P}^{2} \ni P \mapsto(h(P), g(P)) \in \mathbf{P}^{1} .
$$

By a sequence of blowing-ups $\pi: X \rightarrow \mathbf{P}^{2}$, one can resolve the base points of Φ and the singularities of C, so that $\Phi \circ \pi: X \rightarrow \mathbf{P}^{1}$ becomes a morphism and the strict transform \tilde{C}
of C is non-singular. Write $\pi=\pi_{1} \circ \cdots \circ \pi_{s}$, where $\pi_{i}: X_{i} \rightarrow X_{i-1}$ is the blowing-up at a point $P_{i} \in X_{i-1}$ and $X_{0}=\mathbf{P}^{2}, X_{s}=X$. Let E_{i} be the total transform on X of the exceptional curve of the blowing-up π_{i}. We have a relation of divisors: $\tilde{C}=\pi^{*} C-\sum m_{i} E_{i}$, where m_{i} is the multiplicity of the strict transform of C on X_{i-1} at P_{i}. Set $H=\pi^{*} L$, where L is a line on \mathbf{P}^{2}. Then, we have the linear equivalence: $\tilde{C} \sim d H-\sum m_{i} E_{i}$. It follows from this and the adjunction formula that $\delta=\sum m_{i}\left(m_{i}-1\right) / 2$. Any fibre D of the morphism $\Phi \circ \pi$ is linearly equivalent to a divisor $k H-\sum a_{i} E_{i}$ with some integers a_{i}. Since $D E_{i} \geq 0$ and $D^{2}=0$, we must have the relation:

$$
k^{2}=\sum a_{i}^{2}
$$

and also we must have $a_{i} \geq 0$ for all i. We then obtain the formula:

$$
r=d k-\sum a_{i} m_{i}
$$

If $k=1$, then we must have $r=d-m_{i}$ for some i. In particular, there is a rational function φ with $r=d-v$. Note that a rational function $g^{*} / h^{*} \in \mathbf{C}\left(\mathbf{P}^{2}\right)$ also induces φ if and only if $g h^{*}-h g^{*}$ is divisible by the defining polynomial of C. So many different rational functions on \mathbf{P}^{2} can induce the same rational function φ on C.

Lemma 1. We have the inequality: $r+\delta \geq d k-k^{2}$.
Proof. It suffices to show that $k^{2}+\delta \geq \sum a_{i} m_{i}$. We see that

$$
k^{2}+\delta-\sum a_{i} m_{i}=\sum_{m_{i} \neq 1}\left(2 a_{i}-m_{i}\right)^{2} / 4+\sum_{m_{i} \neq 1} m_{i}\left(m_{i}-2\right) / 4+\sum_{m_{i}=1} a_{i}\left(a_{i}-1\right) .
$$

If $m_{i} \geq 2$ or $m_{i}=0$, then $m_{i}\left(m_{i}-2\right) \geq 0$. Since a_{i} is an integer, we have $a_{i}\left(a_{i}-1\right) \geq 0$. Thus we get the desired inequality.

Let b denote the number of a_{i} with $a_{i} \neq 0$.
Lemma 2. If $r<d-v$, then $k \geq 2$ and $d / v<(k \sqrt{b}-1) /(k-1)$.
Proof. If $k=1$, then we have $r \geq d-v$. So assume $k \geq 2$. By Schwarz' inequality, we have $\sum a_{i} \leq \sqrt{b} k$. We obtain

$$
r \geq d k-\left(\sum a_{i}\right) v \geq k(d-v \sqrt{b})=d-v+(k-1) v\{d / v-(k \sqrt{b}-1) /(k-1)\}
$$

which implies the assertion.
Lemma 3. If $r<d-v$, then $k \geq 2$ and $k>d / v-1$. Furthermore, if $r=d-v+s$ with $s \geq 0$ and $k \geq 2$, then $k \geq d / v-s-1$.

Proof. In view of the inequality in Lemma 2, it suffices to note that $b \leq k^{2}$. Suppose $r=d-v+s$ with $s \geq 0$. If $k \geq 2$, then we obtain

$$
k+s \geq k+s /(k-1) \geq d / v-1
$$

We renumber a_{i} 's so that $a_{1} \geq a_{2} \geq \cdots \geq a_{b} \geq 1, a_{i}=0$ for $i>b$.
Lemma 4. We have $r \geq d-v$ either if $b \leq 2$, or if $b=3$ and $d / v \geq 2$.
Proof. (i) $b=1$. We have $r=k\left(d-m_{1}\right) \geq k(d-v) \geq d-v$. (ii) $b=2$. By Bezout's theorem applied to the curve C and the line passing through P_{1} and P_{2}, we have the inequality: $d \geq m_{1}+m_{2}$. On the other hand, since $k^{2}=a_{1}^{2}+a_{2}^{2}$, we must have $a_{i}<k$ for $i=1,2$. Thus we obtain

$$
\begin{aligned}
r & =d-v+\left(v-m_{1}\right)+(k-1) d-\left(a_{1}-1\right) m_{1}-a_{2} m_{2} \\
& \geq d-v+\left(k-a_{1}\right) m_{1}+\left(k-a_{2}-1\right) m_{2} \geq d-v .
\end{aligned}
$$

(iii) $b=3$. In case $k \geq 4$, by Lemma 2, we have $r>d-v$, since $(4 \sqrt{3}-1) / 3=$ $1.976 \cdots<2$. In case $k \leq 3$, the equation: $k^{2}=a_{1}^{2}+a_{2}^{2}+a_{3}^{2},\left(3 \leq a_{1}+a_{2}+a_{3} \leq 5\right)$ has only one integer solution: $k=3, a_{1}=a_{2}=2, a_{3}=1$. Under the assumption: $d \geq 2 v$, we obtain $r=d-v+\left(v-m_{1}\right)+2 d-\left(m_{1}+2 m_{2}+m_{3}\right) \geq d-v$.

Lemma 5. If $r<d-v$ and $k=2$, then $b=4$ and $d<m_{1}+m_{2}+m_{3}+m_{4}-v$.
Proof. We have $b=1$ or $b=4$. In case $b=4$, we must have $a_{1}=a_{2}=a_{3}=a_{4}=$ 1. So we obtain $d-v>r=2 d-m_{1}-m_{2}-m_{3}-m_{4}$, which gives the assertion.

LEMmA 6. We have the inequality: $r \geq k\left(d-\sqrt{\sum m_{i}^{2}}\right)$.
Proof. By Schwarz' inequality, we have

$$
\sum a_{i} m_{i} \leq \sqrt{\sum a_{i}^{2}} \sqrt{\sum m_{i}^{2}}=k \sqrt{\sum m_{i}^{2}}
$$

which gives the assertion.

3. Proof of Theorem 1

Let C be an irreducible plane curve of degree d.
Lemma 7 (Cf. Coppens and Kato[1, 2]). Let φ be a rational function on C with $r=$ $\operatorname{deg} \varphi$. Let l be a positive integer with $l<d$. Suppose $r+\delta<(l+1)(d-l-1)$. Then there exists a rational function on \mathbf{P}^{2} of degree $k \leq l$ which induces φ on C.

Proof. Assume to the contrary that there are no rational functions of degree $\leq l$ on \mathbf{P}^{2} which induces φ on C. Following the arguments in [1,2], one can prove that there exists a rational function of degree k on \mathbf{P}^{2} which induces φ on C with $l<k \leq d-3-l$. Using

Lemma 1, we have $d k-k^{2} \leq r+\delta<(l+1)(d-l-1)$, from which we infer that $(l+1-k)(d-k-l-1)>0$. This is absurd, because $l+1-k \leq 0$ and $d-k-l-1 \geq 2$.

Proposition 1. Assume there is a positive integer l such that $l \leq(d / v)-1$ and $\delta-v<l(d-l-2)$. Then we have $\operatorname{Gon}(C)=d-v$.

Proof. Suppose there exists a rational function φ on C with $r=\operatorname{deg} \varphi<d-v$. In this case, we have the inequality:

$$
r+\delta \leq d-v-1+\delta<l(d-l-2)+d-1=(l+1)(d-l-1)
$$

So by Lemma 7, there exists a rational function Φ of degree $k \leq l$ on \mathbf{P}^{2} which induces φ on C. But, since $k \leq l \leq(d / v)-1$, by Lemma 3, there cannot exist such a rational function Φ.

Proposition 2. If $[d / v] \geq 2$ and $([d / v]-1)(d-[d / v]-1)>\delta-v$, then we have $\operatorname{Gon}(C)=d-v$.

Remark 4. In case $v=2$, this criterion is best possible. See [1], Examples 4,1 and 4,2 . We see that the assertion of Proposition 1 is equivalent to that of Proposition 2. Take a positive integer l which satisfies the two assumptions in Proposition 1. We find that $1 \leq l \leq[d / v]-1 \leq(d / v)-1$. The quadratic function $Q(x)=x(d-x-2)$ is a monotone increasing function for the interval $0 \leq x \leq(d / 2)-1$. Hence we infer that $Q(l) \leq Q([d / \nu]-1)$. Thus the integer $[d / \nu]-1$ also satisfies the two assumptions in Proposition 1.

Using the latter assertion in Lemma 3, we obtain the following
Proposition 3. Let s be a non-negative integer. Set $l=d / v-s-2$ (if $d \equiv 0$ $(\bmod \nu)),[d / \nu]-s-1$ (otherwise). If $l \geq 1$ and $\delta-v+s+1<l(d-l-2)$, then $\operatorname{Gon}(C)=d-v$ and any rational function φ with $d-v \leq \operatorname{deg} \varphi \leq d-v+s$ is induced by a linear function on \mathbf{P}^{2}.

Proof of Theorem 1. We reformulate Proposition 2. Letting $d=[d / \nu] \nu+i$ with $0 \leq i<\nu$, the inequality $\delta-v<([d / \nu]-1)(d-[d / \nu]-1)$ can be written as:

$$
\frac{\delta-v}{v-1}+\left(\frac{v-2+i}{2(v-1)}\right)^{2}<\left\{\frac{d}{v}-\frac{v^{2}+(v-2) i}{2 v(v-1)}\right\}^{2}
$$

If $\delta-v \geq 0$, then the above inequality is equivalent to the inequality $d / v>R(\delta, v, i)$. Furthermore, we easily see that $R(\delta, v, i) \geq 1+i / v$. So it follows from the inequality $d / v>R(\delta, \nu, i)$ that $d>v+i$, which gives $d \geq 2 v+i$ if $d \equiv i(\bmod v)$ and hence $d / v \geq 2$.

REMARK 5. If $\delta-v<0$, then the left hand side of the above inequality is negative. It follows that the above inequality always holds. In case $\delta=1, v=2$, we have $\operatorname{Gon}(C)=d-2$
for $d \geq 4$. It is well known that $\operatorname{Gon}(C)=1$ if $d=3$. In case $\delta=0, v=1$, we have $\operatorname{Gon}(C)=d-1$ for $d \geq 2$.

LEMMA 8. We have the estimation:

$$
R(v, \delta, i)<1+\sqrt{\delta /(v-1)}
$$

Proof. Since $i \leq v-1$, we have

$$
v^{2}+(v-2) i \leq v^{2}+(v-2)(v-1)=2 v(v-1)-(v-2)
$$

and $v-2+i \leq 2(v-1)$. Thus, we obtain

$$
\frac{v^{2}+(v-2) i}{2 v(v-1)} \leq 1 \quad \text { and } \quad \frac{v}{v-1}-\left(\frac{v-2+i}{2(v-1)}\right)^{2}>0
$$

which gives the desired inequality.

4. Proof of Theorems 2 and 3

Let C be an irreducible plane curve of degree d. Now let $\pi: X \rightarrow \mathbf{P}^{2}$ be the minimal resolution of the singularities of C. We do not require that the inverse image $\pi^{-1}(C)$ has normal crossings. In this case, $m_{i} \geq 2$ for all i.

Lemma 9. Assume $d / v>(\eta+1) / 2$. Let φ be a rational function on C with $r=$ $\operatorname{deg} \varphi<d-v$. Then we can find a rational function Φ on \mathbf{P}^{2} which induces φ on C such that $\Phi \circ \pi: X \rightarrow \mathbf{P}^{1}$ becomes a morphism. Furthermore, the degree k of Φ satisfies the inequality:

$$
k \leq 1+\frac{\sqrt{\eta}-(1+1 / v)}{d / v-\sqrt{\eta}}
$$

Proof. According to Theorem 3.1 in Serrano [5](See also [4]), such a rational function exists if $\tilde{C}^{2}>(r+1)^{2}$. On X, we have

$$
\begin{aligned}
\tilde{C}^{2}-(r+1)^{2} & \geq d^{2}-\sum m_{i}^{2}-(d-v)^{2} \\
& =2 d v-\sum m_{i}^{2}-v^{2}=2 v^{2}\{d / v-(\eta+1) / 2\}>0
\end{aligned}
$$

By Lemma 6, we have $d-v-1 \geq r \geq k v(d / v-\sqrt{\eta})$. Thus we obtain

$$
k \leq \frac{d / v-(1+1 / v)}{d / v-\sqrt{\eta}}=1+\frac{\sqrt{\eta}-(1+1 / v)}{d / v-\sqrt{\eta}} .
$$

REMARK 6. Under the hypothesis $d / v>(\eta+1) / 2$, we see that $d / v-\sqrt{\eta}=d / v-$ $(\eta+1) / 2+(\sqrt{\eta}-1)^{2} / 2>0$. Since $k \geq 1$, we must have $\sqrt{\eta}-(1+1 / v) \geq 0$.

In a similar manner to that in the proof of Lemma 9, we can show the following

Lemma 10. Let s be a non-negative integer with $s<v-1$. Let φ be a rational function on C with $r=\operatorname{deg} \varphi=d-v+s$. If

$$
d / v>(\eta+1) / 2+\frac{s+1}{2(v-s-1)}\left\{\eta-1+\frac{s+1}{v}\right\},
$$

then we can find a rational function Φ on \mathbf{P}^{2} which induces φ on C such that $\Phi \circ \pi: X \rightarrow \mathbf{P}^{1}$ becomes a morphism. Furthermore, the degree k of Φ satisfies the inequality:

$$
k \leq 1+\frac{\sqrt{\eta}-1+s / v}{d / v-\sqrt{\eta}} .
$$

Proposition 4. Suppose $d / v>(\eta+1) / 2$. We get $\operatorname{Gon}(C)=d-v$ if either
(i) $d / v>2 \sqrt{\eta}-(1+1 / v)$, or
(ii) $\eta \geq 5$, or
(iii) $d / v \geq 3$ and $\eta<5$, or
(iv) $d / v>(1 / 2)\{3 \sqrt{\eta}-(1+1 / v)\}$ and $d \geq m_{2}+m_{3}+m_{4}$ (if $n \geq 4$), where the multiplicities m_{i} 's are renumbered as $m_{1} \geq m_{2} \geq m_{3} \geq \cdots$.

Proof. Assume there is a rational function φ on C with $r=\operatorname{deg} \varphi<d-v$. By Lemma 9, we can find a rational function Φ on \mathbf{P}^{2} which induces φ on C such that π has already resolved the base points of Φ. The degree k of Φ must satisfy the inequality in Lemma 9.
(i) If $d / v>2 \sqrt{\eta}-(1+1 / v)$, then we infer that $k<2$. So we get $k=1$, which is impossible by Lemma 3.
(ii) If $\eta \geq 5$, then we have $d / v>3$. We obtain

$$
k<1+\frac{\sqrt{\eta}-1}{(\eta+1) / 2-\sqrt{\eta}}=1+\frac{2}{\sqrt{\eta}-1} \leq 1+\frac{2}{\sqrt{5}-1}=(3+\sqrt{5}) / 2<3 .
$$

So $k \leq 2$, which contradicts Lemma 3 .
(iii) We have

$$
k<1+\frac{\sqrt{5}-1}{3-\sqrt{5}}=(3+\sqrt{5}) / 2<3 .
$$

So $k \leq 2$, which again contradicts Lemma 3 .
(iv) In a similar manner to that in the proof of (i), under the assumption on d / ν, we obtain $k<3$. In case $k=2$, by Lemma 5, we get a contradiction.

Proof of Theorem 2. By Proposition 4, (i), we get $\operatorname{Gon}(C)=d-v$ if $d / v>$ $\max \{2 \sqrt{\eta}-(1+1 / \nu),(\eta+1) / 2\}$. We easily see that $2 \sqrt{\eta}-(1+1 / v) \geq(\eta+1) / 2$ if and only if $2-\sqrt{1-2 / v} \leq \sqrt{\eta} \leq 2+\sqrt{1-2 / v}$. In case $v \geq 3$, we have the relation: $a(\nu)=(2-\sqrt{1-2 / v})^{2}<5<(2+\sqrt{1-2 / v})^{2}$. Using also Proposition 4, (ii), we get
$\operatorname{Gon}(C)=d-v$ if

$$
d / v> \begin{cases}(\eta+1) / 2, & \text { for } \eta<a(\nu), \eta \geq 5 \\ 2 \sqrt{\eta}-(1+1 / v), & \text { for } a(v) \leq \eta<5\end{cases}
$$

On the other hand, by Proposition 4, (iii), for $\eta<5$, we get $\operatorname{Gon}(C)=d-v$ if $d / v \geq 3$. Obviously, $2 \sqrt{\eta}-(1+1 / v)>3$ if and only if $\sqrt{\eta}>2+1 /(2 v)$. Thus, for $(2+1 /(2 v))^{2}<$ $\eta<5$, the condition $d / v \geq 3$ is sharper than the condition $d / v>2 \sqrt{\eta}-(1+1 / v)$. Finally, for the interval $4 \leq \eta \leq(2+1 /(2 v))^{2}$, we find that $3 \geq 2 \sqrt{\eta}-(1+1 / v) \geq 3-1 / v$. The inequality $d / v>3-1 / v$ implies $d>3 v-1$, hence $d \geq 3 v$. As a consequence, the conditions $d / v \geq 3$ and $d / v>2 \sqrt{\eta}-(1+1 / v)$ have the same effect.

REMARK 7. In case $v=2$, we infer from Proposition 4, (i) that if $d / 2>(\eta+1) / 2$, then $\operatorname{Gon}(C)=d-2$. In this case, $\delta=\eta$. But the criterion in Theorem 1 is sharper than this one.

PROPOSITION 5. Suppose $v \geq 3$. If $\eta \geq 2 v+5$, then the criterion in Theorem 1 is sharper than that in Theorem 2.

Proof. It suffices to prove the inequality: $(\eta+1) / 2>R(v, \delta, i)$. By definition, we have $\delta<\sum m_{i}^{2} / 2=v^{2} \eta / 2$. Using Lemma 8 , we obtain

$$
R(v, \delta, i)<R\left(v, v^{2} \eta / 2, i\right)<1+v \sqrt{\eta / 2(v-1)} .
$$

By an easy manipulation, the inequality: $(\eta+1) / 2 \geq 1+v \sqrt{\eta / 2(\nu-1)}$ can be reduced to the inequality: $\eta \geq t(v)$, where

$$
t(v)=v+2+\frac{1}{v-1}+\sqrt{\left(v+2+\frac{1}{v-1}\right)^{2}-1}
$$

Clearly, we have $t(v) \leq 2 v+5$. Thus, if $\eta \geq 2 v+5$, then $(\eta+1) / 2>R(v, \delta, i)$.
Proposition 6. Assume

$$
d / v>(\eta+1) / 2+\frac{1}{2(v-1)}\left\{\eta-1+\frac{1}{v}\right\} .
$$

If either
(i) $d / v>2 \sqrt{\eta}-1$, or
(ii) $\eta>5$, or
(iii) $d / v>3, \eta \leq 5$,
then we have $\operatorname{Gon}(C)=d-v$ and any rational function φ with $\operatorname{deg} \varphi=d-v$ is induced by a linear function on \mathbf{P}^{2}.

Proof of Theorem 3. Suppose $d / v>(\eta+1) / 2$. Assume there is a rational function φ on C with $r=\operatorname{deg} \varphi<d-v$. We infer from Lemma 9 that there is a rational function
Φ on \mathbf{P}^{2} which induces φ on C such that π resolves the base points of Φ. It follows that $b \leq n$.
(i), (ii) We first show that $d / \nu>(\eta+1) / 2$ for the case (i). If $n=1$, then we have $\eta=1$ and so $d / v>1=(\eta+1) / 2$. If $n=2$, then, as we have noticed, we have $d \geq m_{1}+m_{2}$. It follows that $d / v \geq 1+\left(m_{2} / v\right)>1+(1 / 2)\left(m_{2} / v\right)^{2}=(\eta+1) / 2$. (ii) Since $\eta \leq n=3$, we have $d / v>2 \geq(\eta+1) / 2$. Thus, we obtain $b \leq n$. By Lemma 4, we derive a contradiction.
(iii) We easily see that $(1 / 2)\{3 \sqrt{\eta}-(1+1 / v)\} \geq(\eta+1) / 2$ if $v \leq 4$, or if $v \geq 5$ and $b(v) \leq \eta \leq c(v)$. Thus, under the assumptions in (iii), we have

$$
d / v>\max \{(1 / 2)\{3 \sqrt{\eta}-(1+1 / v)\},(\eta+1) / 2\}
$$

By Proposition 4, (iv), we arrive at a contradiction.

5. Examples

EXAMPLE 1. Let C be an irreducible plane curve of degree $d=k m+1$ defined by the equation:

$$
y \prod_{i=1}^{k}\left(x-a_{i}\right)^{m}-c \prod_{j=1}^{k}\left(y-b_{j}\right)^{m}=0
$$

where the a_{i} 's and the b_{j} 's are mutually distinct, respectively, $b_{j} \neq 0$ for all j and c is a general constant. We have $\operatorname{Gon}(C)=k$.

Proof. By Eisenstein's criterion applied to the homegenization of the above polynomial, we easily see that the curve C is irreducible. If $m=1$, then C is a smooth curve with $\operatorname{Gon}(C)=d-1=k$. In what follows, we assume that $m \geq 2$. Under the assumption that the constant c is general, the curve C has k^{2} ordinary m-fold singular points $P_{i j}=\left(a_{i}, b_{j}\right)$ for $1 \leq i, j \leq k$. Thus $v=m$ and $\eta=k^{2}$. In this case, $\operatorname{Gon}(C)<d-v$. Indeed, the rational function $\Phi=\Pi\left(y-b_{j}\right) / \Pi\left(x-a_{i}\right)$ of degree k on \mathbf{P}^{2} induces a rational function φ on C. The function Φ has k^{2} base points $P_{i j}$ on C. This proves that $\operatorname{deg} \varphi=(k m+1) k-k^{2} m=k$. Note that $k>d / v-1$.

We now prove that $\operatorname{Gon}(C)=k$. We first see that $\mathbf{C}(C) \cong \mathbf{C}(\varphi, x)$. For simplicity's sake, we also denote by x, y the rational functions on C induced by x, y. Clearly, we have $\mathbf{C}(\varphi, x) \subset \mathbf{C}(C)$. Since $\varphi^{m}=y / c$, we obtain $y \in \mathbf{C}(\varphi, x)$, which implies $\mathbf{C}(\varphi, x)=\mathbf{C}(C)$. Now $\mathbf{C}(\varphi, x)$ is the rational function field of the curve $C^{\prime}: \varphi \prod\left(x-a_{i}\right)-c \prod\left(c \varphi^{m}-b_{j}\right)=0$. The curve C^{\prime} is of degree $d^{\prime}=m k$ and has one singular point with multiplicity sequence $\left((m-1) k, k_{m-2}, k-1\right)$ on the line at infinity, where by k_{m-2} we mean k 's repeated $m-2$ times. For C^{\prime}, we use the notation d^{\prime}, v^{\prime} and η^{\prime}. We have

$$
\eta^{\prime}=1+(m-2) /(m-1)^{2}+\{(k-1) / k(m-1)\}^{2}<m /(m-1) .
$$

We obtain $2 \sqrt{\eta^{\prime}}-\left(1+1 / \nu^{\prime}\right)<2 \sqrt{m /(m-1)}-1-1 /(m-1) k$. Hence, we have $d^{\prime} / \nu^{\prime}-$ $\left\{2 \sqrt{\eta^{\prime}}-\left(1+1 / \nu^{\prime}\right)\right\}>(\sqrt{m /(m-1)}-1)^{2}+1 /(m-1) k>0$. We can show that $\eta^{\prime}>a\left(v^{\prime}\right)$.

We therefore conclude from Theorem 2 that $\operatorname{Gon}\left(C^{\prime}\right)=d^{\prime}-v^{\prime}=k$ if $v^{\prime} \geq 3$. In case $v^{\prime} \leq 2$, by Theorem 3, we can easily check that $\operatorname{Gon}\left(C^{\prime}\right)=k$. Since C and C^{\prime} are birational, we get $\operatorname{Gon}(C)=k$.

Example 2. Let C be an irreducible plane curve of degree d. Suppose C has 9 ordinary triple points. By Theorem 1, we get $\operatorname{Gon}(C)=d-3$ if $d \geq 14$. Let C be the curve of degree 11 defined by the equation:

$$
y \prod_{i=1}^{3}\left(x-a_{i}\right)^{3}\left(x-a_{4}\right)-c \prod_{j=1}^{3}\left(y-b_{j}\right)^{3}\left(y-b_{4}\right)=0
$$

where the a_{i} 's and the b_{j} 's are mutually distinct, respectively, $b_{j} \neq 0$ for all j and c is a general constant. This curve C has 9 ordinary triple points. But we see that $\operatorname{Gon}(C) \leq 6<$ 11-3.

Proof. We consider the rational function $\Phi=\prod_{j=1}^{3}\left(y-b_{j}\right) / \prod_{i=1}^{3}\left(x-a_{i}\right)$ on \mathbf{P}^{2}. Let φ be the rational function on C induced by Φ. It turns out that $\operatorname{deg} \varphi=6$.

EXAMPLE 3. Let C be an irreducible plane curve of degree $d=e m$ defined by the equation: $y^{m}=\prod_{i=1}^{e m}\left(x-a_{i}\right)$, where the a_{i} 's are mutually distinct. We have $\operatorname{Gon}(C)=m$ if $e \geq 2$ or $=m-1$ if $e=1$.

Proof. If $e=1$ or if $e=2$ and $m=1$, then C is smooth. Otherwise, the curve C has one singular point with multiplicity sequence $\left((e-1) m, m_{e-1}\right)$ on the line at infinity. We have $v=(e-1) m, \eta=e /(e-1)$ and so $d / v=e /(e-1)=\eta$. In case $v \geq 3$, we can apply Theorem 2 and we conclude that $\operatorname{Gon}(C)=d-v=m$. In case $v=2$, we see that the genus of C is equal to 1 (if $m=e=2$) or 0 (if $m=1$ and $e=3$). Thus we also get $\operatorname{Gon}(C)=m$.

EXAMPLE 4. Let C be the transform of an irreducible plane curve Γ of degree m by a general quadratic transformation. Then C is of degree $2 m$ and has three ordinary m-fold singular points other than the singular points of Γ. Since a general line is transformed into a conic, we have a rational function Φ on \mathbf{P}^{2} of degree two which induces a rational function φ on C with $\operatorname{deg} \varphi \leq m-1$. In this case, we have $d / v=2$, but $\operatorname{Gon}(C)=\operatorname{Gon}(\Gamma)<d-v$. Cf. Lemma 5. As a consequence, we conclude that the condition in Theorem 3, (ii) is sharp.

EXAMPLE 5. Let C be the plane curve of degree $2 m+1$ with $m \geq 2$ defined by the equation: $y^{m+1}-\left(x^{m}+x^{2 m+1}\right)=0$. We have $\operatorname{Gon}(C)=m+1$.

Proof. The point $(0,0)$ is a singular point with mutiplicity sequence (m) and C also has a singular point with multiplicity sequence (m, m) on the line at infinity. We have $d=$ $2 m+1, v=m, n=3$ and $\eta=3$. Thus $d / v=2+1 / m>2$. By Theorem 3, (ii), we infer that $\operatorname{Gon}(C)=d-v=m+1$.

EXAMPLE 6. Let C be the Fermat curve: $x^{m}+y^{m}-1=0$. Take a rational function $\Phi=y /(x-1)$ on \mathbf{P}^{2}. Let φ be the rational function on C induced by Φ. We know that
$\operatorname{Gon}(C)=m-1=\operatorname{deg} \varphi$. By the way, we have $\mathbf{C}(C)=\mathbf{C}(x, \varphi)=\mathbf{C}\left(C^{\prime}\right)$, where the curve C^{\prime} is defined by the equation:

$$
\varphi^{m}(x-1)^{m-1}+\left(x^{m}-1\right) /(x-1)=0
$$

In this case, the curve C^{\prime} has two singular points with multiplicity sequences (m) and ($m-$ $1, m-1$).

Example 7. Let C be the curve of degree 9 defined by the equation:

$$
y\left(x-a_{1}\right)^{5}\left(x-a_{2}\right)^{3}-c\left(y-b_{1}\right)^{5}\left(y-b_{2}\right)^{3}=0
$$

where the a_{i} 's and the b_{i} 's are mutually distinct, respectively and the constant c is generally chosen. Then we have $\operatorname{Gon}(C)=4$.

Proof. The curve C has two ordinary singular points of multiplicities 5 and 3, two singular points with multiplicity sequence $(3,2)$. We have $v=5$ and $\eta=12 / 5$. By Theorem 3, (iii), we conclude that $\operatorname{Gon}(C)=9-5=4$. In this example, we cannot apply Theorem 2.

References

[1] M. Coppens and T. Kato, The gonality of smooth curves with plane models, Manuscripta Math. 70 (1990), 5-25.
[2] M. Coppens and T. Kato, Correction to the gonality of smooth curves with plane models, Manuscripta Math. 71 (1991), 337-338.
[3] M. Namba, Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Math. 767, Springer (1979).
[4] R. Paoletti, Free pencils on divisors, Math. Ann. 303 (1995), 109-123.
[5] F. Serrano, Extension of morphisms defined on a divisor, Math. Ann. 277 (1987), 395-413.

Present Address:
Department of Mathematics, Faculty of Science, Saitama University, Shimo-Okubo, Sakura-ku, Saitama, 338-8570 Japan.
e-mail: mohkouch@rimath.saitama-u.ac.jp
fsakai@rimath.saitama-u.ac.jp

