Токуо J. Матн. Vol. 27, No. 1, 2004

The Gonality of Singular Plane Curves

Masahito OHKOUCHI and Fumio SAKAI

Saitama University

(Communicated by T. Kawasaki)

1. Introduction

Let $C \subset \mathbf{P}^2$ be an irreducible plane curve of degree d over the complex number field \mathbf{C} . We denote by $\mathbf{C}(C)$ the field of rational functions on C. Let \tilde{C} be the non-singular model of C. Since $\mathbf{C}(\tilde{C}) \cong \mathbf{C}(C)$, a non-constant rational function φ on C induces a non-constant morphism $\varphi : \tilde{C} \to \mathbf{P}^1$. Let deg φ denote the degree of this morphism φ . We remark that deg $\varphi = [\mathbf{C}(C) : \mathbf{C}(\varphi)] = \deg(\varphi)_0 = \deg(\varphi)_\infty$. The *gonality* of C, denoted by $\operatorname{Gon}(C)$, is defined to be min{deg $\varphi \mid \varphi \in \mathbf{C}(C) \setminus \mathbf{C}$ }. So by definition, the gonality of C is nothing but the gonality of \tilde{C} . Let ν denote the maximal multiplicity of C. We easily see that $\operatorname{Gon}(C) \leq d-\nu$. We know that the genus of C is equal to $(d-1)(d-2)/2 - \delta$ with $\delta \geq 0$.

THEOREM 1. Let C be an irreducible plane curve of degree d with $\delta \ge v$. Letting $d \equiv i \pmod{v}$, define

$$R(\nu, \delta, i) = \frac{\nu^2 + (\nu - 2)i}{2\nu(\nu - 1)} + \sqrt{\frac{\delta - \nu}{\nu - 1} + \left(\frac{\nu - 2 + i}{2(\nu - 1)}\right)^2}.$$

If $d/\nu > R(\nu, \delta, i)$, then $Gon(C) = d - \nu$.

REMARK 1. Theorem 1 is a generalization of Theorem 2.1 in Coppens and Kato [1] where they considered the case in which *C* has only nodes and ordinary cusps. Note that $R(2, \delta, 0) = 1 + \sqrt{\delta - 2}$, $R(2, \delta, 1) = 1 + \sqrt{\delta - 7/4}$. In general, we have the estimation: $R(\nu, \delta, i) < 1 + \sqrt{\delta/(\nu - 1)}$.

We have $\delta < \nu$ if either (i) *C* is a smooth curve ($\delta = 0$, $\nu = 1$ and Gon(*C*) = d - 1 for all $d \ge 2$), or (ii) *C* has one node or one ordinary cusp ($\delta = 1$ and $\nu = 2$ and Gon(*C*) = d - 2 for all $d \ge 3$). Cf. [1], [3], [5].

DEFINITION. Let m_1, \dots, m_n denote the multiplicities of all singular points (we include infinitely near singular points) of *C*. Set $\eta = \sum (m_i/\nu)^2$. Clearly, we have $n \ge \eta \ge 1$.

Received April 17, 2003

MASAHITO OHKOUCHI AND FUMIO SAKAI

THEOREM 2. Let C be an irreducible plane curve of degree d with $v \ge 3$. We have Gon(C) = d - v if

$$d/\nu \begin{cases} > (\eta+1)/2, & \text{for } \eta < a(\nu), \eta \ge 5 \\ > 2\sqrt{\eta} - (1+1/\nu), & \text{for } a(\nu) \le \eta < 4, \\ \ge 3, & \text{for } 4 \le \eta < 5, \end{cases}$$

where $a(v) = (2 - \sqrt{1 - 2/v})^2$.

REMARK 2. Note that
$$a(3) = 2.023 \cdots$$
 and $1 < a(v) \le 1.671 \cdots$ for $v \ge 4$.

We shall show that if $\eta \ge 2\nu + 5$, then the criterion in Theorem 1 is more effective than that in Theorem 2. We also prove some subtle criterions.

THEOREM 3. Let C be an irreducible plane curve of degree d with n singular points (infinitely near singular points are also counted). We renumber the multiplicities m_i 's as $\nu = m_1 \ge m_2 \ge m_3 \ge \cdots \ge m_n$. We have $Gon(C) = d - \nu$ if either

(i)
$$n \leq 2, or$$

(ii) n = 3 and d/v > 2, or

(iii) $n \ge 4, d \ge m_2 + m_3 + m_4$ and

$$d/\nu > \begin{cases} (\eta + 1)/2 & \text{if } \nu = 3, 4, \\ & \text{if } \nu \ge 5 \text{ and } \eta < b(\nu), \ \eta \ge c(\nu), \\ (1/2)\{3\sqrt{\eta} - (1 + 1/\nu)\} & \text{if } \nu \ge 5 \text{ and } b(\nu) \le \eta < c(\nu), \end{cases}$$

where $b(v) = (3/2 - \sqrt{1/4 - 1/v})^2$ and $c(v) = (3/2 + \sqrt{1/4 - 1/v})^2$.

REMARK 3. In view of Theorem 2, the condition (iii) is meaningful only if $a(v) \le \eta < 5$. We remark that a(v) < b(v) < c(v) and $1 < b(v) \le 1.629 \cdots$ and $2.970 \cdots \le c(v) < 4$ for $v \ge 5$.

2. Rational functions on C and on \mathbf{P}^2

Let φ be a rational function on *C*. Set $r = \deg \varphi$. We know that a rational function φ of a plane curve *C* is a restriction of a rational function $\Phi = g(x, y, z)/h(x, y, z)$ on \mathbf{P}^2 , where *g* and *h* are relatively prime homogeneous polynomials of the same degree, say *k*. We call *k* the *degree* of the rational function Φ . A rational function Φ is called a *linear function* if k = 1. Classically, one says that φ is cut out by the pencil $\Lambda : t_0g - t_1h = 0$ on \mathbf{P}^2 . Let us consider the rational map

$$\Phi: \mathbf{P}^2 \ni P \mapsto (h(P), g(P)) \in \mathbf{P}^1.$$

By a sequence of blowing-ups $\pi : X \to \mathbf{P}^2$, one can resolve the base points of Φ and the singularities of *C*, so that $\Phi \circ \pi : X \to \mathbf{P}^1$ becomes a morphism and the strict transform \tilde{C}

of *C* is non-singular. Write $\pi = \pi_1 \circ \cdots \circ \pi_s$, where $\pi_i : X_i \to X_{i-1}$ is the blowing-up at a point $P_i \in X_{i-1}$ and $X_0 = \mathbf{P}^2$, $X_s = X$. Let E_i be the total transform on *X* of the exceptional curve of the blowing-up π_i . We have a relation of divisors: $\tilde{C} = \pi^*C - \sum m_i E_i$, where m_i is the multiplicity of the strict transform of *C* on X_{i-1} at P_i . Set $H = \pi^*L$, where *L* is a line on \mathbf{P}^2 . Then, we have the linear equivalence: $\tilde{C} \sim dH - \sum m_i E_i$. It follows from this and the adjunction formula that $\delta = \sum m_i (m_i - 1)/2$. Any fibre *D* of the morphism $\Phi \circ \pi$ is linearly equivalent to a divisor $kH - \sum a_i E_i$ with some integers a_i . Since $DE_i \ge 0$ and $D^2 = 0$, we must have the relation:

$$k^2 = \sum a_i^2$$

and also we must have $a_i \ge 0$ for all *i*. We then obtain the formula:

$$r=dk-\sum a_im_i\,.$$

If k = 1, then we must have $r = d - m_i$ for some *i*. In particular, there is a rational function φ with $r = d - \nu$. Note that a rational function $g^*/h^* \in \mathbf{C}(\mathbf{P}^2)$ also induces φ if and only if $gh^* - hg^*$ is divisible by the defining polynomial of *C*. So many different rational functions on \mathbf{P}^2 can induce the same rational function φ on *C*.

LEMMA 1. We have the inequality: $r + \delta \ge dk - k^2$.

PROOF. It suffices to show that $k^2 + \delta \ge \sum a_i m_i$. We see that

$$k^{2} + \delta - \sum a_{i}m_{i} = \sum_{m_{i} \neq 1} (2a_{i} - m_{i})^{2}/4 + \sum_{m_{i} \neq 1} m_{i}(m_{i} - 2)/4 + \sum_{m_{i} = 1} a_{i}(a_{i} - 1).$$

If $m_i \ge 2$ or $m_i = 0$, then $m_i(m_i - 2) \ge 0$. Since a_i is an integer, we have $a_i(a_i - 1) \ge 0$. Thus we get the desired inequality.

Let *b* denote the number of a_i with $a_i \neq 0$.

LEMMA 2. If r < d - v, then $k \ge 2$ and $d/v < (k\sqrt{b} - 1)/(k - 1)$.

PROOF. If k = 1, then we have $r \ge d - \nu$. So assume $k \ge 2$. By Schwarz' inequality, we have $\sum a_i \le \sqrt{bk}$. We obtain

$$r \ge dk - \left(\sum a_i\right) v \ge k(d - v\sqrt{b}) = d - v + (k - 1)v \left\{ \frac{d}{v} - \frac{k\sqrt{b}}{1} - \frac{1}{(k - 1)} \right\},$$

which implies the assertion.

LEMMA 3. If r < d - v, then $k \ge 2$ and k > d/v - 1. Furthermore, if r = d - v + s with $s \ge 0$ and $k \ge 2$, then $k \ge d/v - s - 1$.

 \square

PROOF. In view of the inequality in Lemma 2, it suffices to note that $b \le k^2$. Suppose r = d - v + s with $s \ge 0$. If $k \ge 2$, then we obtain

$$k + s \ge k + s/(k - 1) \ge d/\nu - 1$$
.

We renumber a_i 's so that $a_1 \ge a_2 \ge \cdots \ge a_b \ge 1$, $a_i = 0$ for i > b.

LEMMA 4. We have $r \ge d - v$ either if $b \le 2$, or if b = 3 and $d/v \ge 2$.

PROOF. (i) b = 1. We have $r = k(d - m_1) \ge k(d - v) \ge d - v$. (ii) b = 2. By Bezout's theorem applied to the curve C and the line passing through P_1 and P_2 , we have the inequality: $d \ge m_1 + m_2$. On the other hand, since $k^2 = a_1^2 + a_2^2$, we must have $a_i < k$ for i = 1, 2. Thus we obtain

$$r = d - v + (v - m_1) + (k - 1)d - (a_1 - 1)m_1 - a_2m_2$$

$$\geq d - v + (k - a_1)m_1 + (k - a_2 - 1)m_2 \geq d - v.$$

(iii) b = 3. In case $k \ge 4$, by Lemma 2, we have r > d - v, since $(4\sqrt{3} - 1)/3 = 1.976 \dots < 2$. In case $k \le 3$, the equation: $k^2 = a_1^2 + a_2^2 + a_3^2$, $(3 \le a_1 + a_2 + a_3 \le 5)$ has only one integer solution: k = 3, $a_1 = a_2 = 2$, $a_3 = 1$. Under the assumption: $d \ge 2v$, we obtain $r = d - v + (v - m_1) + 2d - (m_1 + 2m_2 + m_3) \ge d - v$.

LEMMA 5. If r < d - v and k = 2, then b = 4 and $d < m_1 + m_2 + m_3 + m_4 - v$.

PROOF. We have b = 1 or b = 4. In case b = 4, we must have $a_1 = a_2 = a_3 = a_4 = 1$. So we obtain $d - v > r = 2d - m_1 - m_2 - m_3 - m_4$, which gives the assertion.

LEMMA 6. We have the inequality: $r \ge k(d - \sqrt{\sum m_i^2})$.

PROOF. By Schwarz' inequality, we have

$$\sum a_i m_i \leq \sqrt{\sum a_i^2} \sqrt{\sum m_i^2} = k \sqrt{\sum m_i^2},$$

which gives the assertion.

3. Proof of Theorem 1

Let *C* be an irreducible plane curve of degree *d*.

LEMMA 7 (Cf. Coppens and Kato[1, 2]). Let φ be a rational function on C with $r = \deg \varphi$. Let l be a positive integer with l < d. Suppose $r + \delta < (l + 1)(d - l - 1)$. Then there exists a rational function on \mathbf{P}^2 of degree $k \leq l$ which induces φ on C.

PROOF. Assume to the contrary that there are no rational functions of degree $\leq l$ on \mathbf{P}^2 which induces φ on *C*. Following the arguments in [1, 2], one can prove that there exists a rational function of degree *k* on \mathbf{P}^2 which induces φ on *C* with $l < k \leq d - 3 - l$. Using

140

Lemma 1, we have $dk - k^2 \le r + \delta < (l+1)(d-l-1)$, from which we infer that (l+1-k)(d-k-l-1) > 0. This is absurd, because $l+1-k \le 0$ and $d-k-l-1 \ge 2$.

PROPOSITION 1. Assume there is a positive integer l such that $l \leq (d/\nu) - 1$ and $\delta - \nu < l(d - l - 2)$. Then we have $Gon(C) = d - \nu$.

PROOF. Suppose there exists a rational function φ on C with $r = \deg \varphi < d - \nu$. In this case, we have the inequality:

$$r + \delta \le d - \nu - 1 + \delta < l(d - l - 2) + d - 1 = (l + 1)(d - l - 1).$$

So by Lemma 7, there exists a rational function Φ of degree $k \leq l$ on \mathbf{P}^2 which induces φ on *C*. But, since $k \leq l \leq (d/\nu) - 1$, by Lemma 3, there cannot exist such a rational function Φ .

PROPOSITION 2. If $[d/v] \ge 2$ and $([d/v] - 1)(d - [d/v] - 1) > \delta - v$, then we have Gon(C) = d - v.

REMARK 4. In case v = 2, this criterion is best possible. See [1], Examples 4,1 and 4,2. We see that the assertion of Proposition 1 is equivalent to that of Proposition 2. Take a positive integer l which satisfies the two assumptions in Proposition 1. We find that $1 \le l \le [d/v] - 1 \le (d/v) - 1$. The quadratic function Q(x) = x(d - x - 2) is a monotone increasing function for the interval $0 \le x \le (d/2) - 1$. Hence we infer that $Q(l) \le Q([d/v] - 1)$. Thus the integer [d/v] - 1 also satisfies the two assumptions in Proposition 1.

Using the latter assertion in Lemma 3, we obtain the following

PROPOSITION 3. Let *s* be a non-negative integer. Set l = d/v - s - 2 (if $d \equiv 0 \pmod{v}$), $\lfloor d/v \rfloor - s - 1$ (otherwise). If $l \ge 1$ and $\delta - v + s + 1 < l(d - l - 2)$, then $\operatorname{Gon}(C) = d - v$ and any rational function φ with $d - v \le \deg \varphi \le d - v + s$ is induced by a linear function on \mathbf{P}^2 .

PROOF OF THEOREM 1. We reformulate Proposition 2. Letting $d = [d/\nu]\nu + i$ with $0 \le i < \nu$, the inequality $\delta - \nu < ([d/\nu] - 1)(d - [d/\nu] - 1)$ can be written as:

$$\frac{\delta - \nu}{\nu - 1} + \left(\frac{\nu - 2 + i}{2(\nu - 1)}\right)^2 < \left\{\frac{d}{\nu} - \frac{\nu^2 + (\nu - 2)i}{2\nu(\nu - 1)}\right\}^2.$$

If $\delta - \nu \geq 0$, then the above inequality is equivalent to the inequality $d/\nu > R(\delta, \nu, i)$. Furthermore, we easily see that $R(\delta, \nu, i) \geq 1 + i/\nu$. So it follows from the inequality $d/\nu > R(\delta, \nu, i)$ that $d > \nu + i$, which gives $d \geq 2\nu + i$ if $d \equiv i \pmod{\nu}$ and hence $d/\nu \geq 2$.

REMARK 5. If $\delta - \nu < 0$, then the left hand side of the above inequality is negative. It follows that the above inequality always holds. In case $\delta = 1$, $\nu = 2$, we have Gon(*C*) = d-2

for $d \ge 4$. It is well known that Gon(C) = 1 if d = 3. In case $\delta = 0$, $\nu = 1$, we have Gon(C) = d - 1 for $d \ge 2$.

LEMMA 8. We have the estimation:

$$R(\nu, \delta, i) < 1 + \sqrt{\delta/(\nu - 1)}.$$

PROOF. Since $i \leq v - 1$, we have

$$v^{2} + (v - 2)i \le v^{2} + (v - 2)(v - 1) = 2v(v - 1) - (v - 2)$$

and $\nu - 2 + i \leq 2(\nu - 1)$. Thus, we obtain

$$\frac{\nu^2 + (\nu - 2)i}{2\nu(\nu - 1)} \le 1 \quad \text{and} \quad \frac{\nu}{\nu - 1} - \left(\frac{\nu - 2 + i}{2(\nu - 1)}\right)^2 > 0,$$

which gives the desired inequality.

4. Proof of Theorems 2 and 3

Let C be an irreducible plane curve of degree d. Now let $\pi : X \to \mathbf{P}^2$ be the minimal resolution of the singularities of C. We do not require that the inverse image $\pi^{-1}(C)$ has normal crossings. In this case, $m_i \ge 2$ for all i.

LEMMA 9. Assume $d/v > (\eta + 1)/2$. Let φ be a rational function on C with $r = \deg \varphi < d - v$. Then we can find a rational function Φ on \mathbf{P}^2 which induces φ on C such that $\Phi \circ \pi : X \to \mathbf{P}^1$ becomes a morphism. Furthermore, the degree k of Φ satisfies the inequality:

$$k \le 1 + \frac{\sqrt{\eta} - (1 + 1/\nu)}{d/\nu - \sqrt{\eta}}$$

PROOF. According to Theorem 3.1 in Serrano [5](See also [4]), such a rational function exists if $\tilde{C}^2 > (r+1)^2$. On X, we have

$$\tilde{C}^2 - (r+1)^2 \ge d^2 - \sum m_i^2 - (d-\nu)^2$$

= $2d\nu - \sum m_i^2 - \nu^2 = 2\nu^2 \{d/\nu - (\eta+1)/2\} > 0.$

By Lemma 6, we have $d - \nu - 1 \ge r \ge k\nu(d/\nu - \sqrt{\eta})$. Thus we obtain

$$k \le \frac{d/\nu - (1+1/\nu)}{d/\nu - \sqrt{\eta}} = 1 + \frac{\sqrt{\eta - (1+1/\nu)}}{d/\nu - \sqrt{\eta}}.$$

REMARK 6. Under the hypothesis $d/\nu > (\eta + 1)/2$, we see that $d/\nu - \sqrt{\eta} = d/\nu - (\eta + 1)/2 + (\sqrt{\eta} - 1)^2/2 > 0$. Since $k \ge 1$, we must have $\sqrt{\eta} - (1 + 1/\nu) \ge 0$.

In a similar manner to that in the proof of Lemma 9, we can show the following

142

LEMMA 10. Let *s* be a non-negative integer with s < v - 1. Let φ be a rational function on *C* with $r = \deg \varphi = d - v + s$. If

$$d/\nu > (\eta+1)/2 + \frac{s+1}{2(\nu-s-1)} \left\{ \eta - 1 + \frac{s+1}{\nu} \right\},$$

then we can find a rational function Φ on \mathbf{P}^2 which induces φ on C such that $\Phi \circ \pi : X \to \mathbf{P}^1$ becomes a morphism. Furthermore, the degree k of Φ satisfies the inequality:

$$k \le 1 + \frac{\sqrt{\eta} - 1 + s/\nu}{d/\nu - \sqrt{\eta}}$$

PROPOSITION 4. Suppose $d/\nu > (\eta + 1)/2$. We get $Gon(C) = d - \nu$ if either

- (i) $d/v > 2\sqrt{\eta} (1+1/v)$, or
- (ii) $\eta \ge 5$, or
- (iii) $d/v \ge 3$ and $\eta < 5$, or

(iv) $d/\nu > (1/2) \{ 3\sqrt{\eta} - (1+1/\nu) \}$ and $d \ge m_2 + m_3 + m_4$ (if $n \ge 4$), where the multiplicities m_i 's are renumbered as $m_1 \ge m_2 \ge m_3 \ge \cdots$.

PROOF. Assume there is a rational function φ on *C* with $r = \deg \varphi < d - \nu$. By Lemma 9, we can find a rational function Φ on \mathbf{P}^2 which induces φ on *C* such that π has already resolved the base points of Φ . The degree *k* of Φ must satisfy the inequality in Lemma 9.

(i) If $d/\nu > 2\sqrt{\eta} - (1 + 1/\nu)$, then we infer that k < 2. So we get k = 1, which is impossible by Lemma 3.

(ii) If $\eta \ge 5$, then we have $d/\nu > 3$. We obtain

$$k < 1 + \frac{\sqrt{\eta} - 1}{(\eta + 1)/2 - \sqrt{\eta}} = 1 + \frac{2}{\sqrt{\eta} - 1} \le 1 + \frac{2}{\sqrt{5} - 1} = (3 + \sqrt{5})/2 < 3.$$

So $k \leq 2$, which contradicts Lemma 3.

(iii) We have

$$k < 1 + \frac{\sqrt{5} - 1}{3 - \sqrt{5}} = (3 + \sqrt{5})/2 < 3.$$

So $k \leq 2$, which again contradicts Lemma 3.

(iv) In a similar manner to that in the proof of (i), under the assumption on d/v, we obtain k < 3. In case k = 2, by Lemma 5, we get a contradiction.

PROOF OF THEOREM 2. By Proposition 4, (i), we get Gon(C) = d - v if $d/v > max\{2\sqrt{\eta} - (1 + 1/v), (\eta + 1)/2\}$. We easily see that $2\sqrt{\eta} - (1 + 1/v) \ge (\eta + 1)/2$ if and only if $2 - \sqrt{1 - 2/v} \le \sqrt{\eta} \le 2 + \sqrt{1 - 2/v}$. In case $v \ge 3$, we have the relation: $a(v) = (2 - \sqrt{1 - 2/v})^2 < 5 < (2 + \sqrt{1 - 2/v})^2$. Using also Proposition 4, (ii), we get

MASAHITO OHKOUCHI AND FUMIO SAKAI

Gon(C) = d - v if

$$d/\nu > \begin{cases} (\eta+1)/2, & \text{for } \eta < a(\nu), \ \eta \ge 5\\ 2\sqrt{\eta} - (1+1/\nu), & \text{for } a(\nu) \le \eta < 5. \end{cases}$$

On the other hand, by Proposition 4, (iii), for $\eta < 5$, we get $\operatorname{Gon}(C) = d - \nu$ if $d/\nu \ge 3$. Obviously, $2\sqrt{\eta} - (1+1/\nu) > 3$ if and only if $\sqrt{\eta} > 2 + 1/(2\nu)$. Thus, for $(2+1/(2\nu))^2 < \eta < 5$, the condition $d/\nu \ge 3$ is sharper than the condition $d/\nu > 2\sqrt{\eta} - (1+1/\nu)$. Finally, for the interval $4 \le \eta \le (2+1/(2\nu))^2$, we find that $3 \ge 2\sqrt{\eta} - (1+1/\nu) \ge 3 - 1/\nu$. The inequality $d/\nu > 3 - 1/\nu$ implies $d > 3\nu - 1$, hence $d \ge 3\nu$. As a consequence, the conditions $d/\nu \ge 3$ and $d/\nu > 2\sqrt{\eta} - (1+1/\nu)$ have the same effect.

REMARK 7. In case $\nu = 2$, we infer from Proposition 4, (i) that if $d/2 > (\eta + 1)/2$, then Gon(*C*) = d - 2. In this case, $\delta = \eta$. But the criterion in Theorem 1 is sharper than this one.

PROPOSITION 5. Suppose $v \ge 3$. If $\eta \ge 2v + 5$, then the criterion in Theorem 1 is sharper than that in Theorem 2.

PROOF. It suffices to prove the inequality: $(\eta + 1)/2 > R(\nu, \delta, i)$. By definition, we have $\delta < \sum m_i^2/2 = \nu^2 \eta/2$. Using Lemma 8, we obtain

$$R(\nu, \delta, i) < R(\nu, \nu^2 \eta/2, i) < 1 + \nu \sqrt{\eta/2(\nu - 1)}$$
.

By an easy manipulation, the inequality: $(\eta + 1)/2 \ge 1 + \nu \sqrt{\eta/2(\nu - 1)}$ can be reduced to the inequality: $\eta \ge t(\nu)$, where

$$t(\nu) = \nu + 2 + \frac{1}{\nu - 1} + \sqrt{\left(\nu + 2 + \frac{1}{\nu - 1}\right)^2 - 1}.$$

Clearly, we have $t(v) \le 2v + 5$. Thus, if $\eta \ge 2v + 5$, then $(\eta + 1)/2 > R(v, \delta, i)$.

PROPOSITION 6. Assume

$$d/\nu > (\eta + 1)/2 + \frac{1}{2(\nu - 1)} \left\{ \eta - 1 + \frac{1}{\nu} \right\}.$$

If either

- (i) $d/v > 2\sqrt{\eta} 1$, or
- (ii) $\eta > 5, or$
- (iii) $d/v > 3, \eta \le 5$,

then we have Gon(C) = d - v and any rational function φ with deg $\varphi = d - v$ is induced by a linear function on \mathbf{P}^2 .

PROOF OF THEOREM 3. Suppose $d/\nu > (\eta + 1)/2$. Assume there is a rational function φ on *C* with $r = \deg \varphi < d - \nu$. We infer from Lemma 9 that there is a rational function

 Φ on \mathbf{P}^2 which induces φ on C such that π resolves the base points of Φ . It follows that $b \leq n$.

(i), (ii) We first show that $d/v > (\eta + 1)/2$ for the case (i). If n = 1, then we have $\eta = 1$ and so $d/v > 1 = (\eta + 1)/2$. If n = 2, then, as we have noticed, we have $d \ge m_1 + m_2$. It follows that $d/v \ge 1 + (m_2/v) > 1 + (1/2)(m_2/v)^2 = (\eta + 1)/2$. (ii) Since $\eta \le n = 3$, we have $d/v > 2 \ge (\eta + 1)/2$. Thus, we obtain $b \le n$. By Lemma 4, we derive a contradiction.

(iii) We easily see that $(1/2)\{3\sqrt{\eta} - (1+1/\nu)\} \ge (\eta+1)/2$ if $\nu \le 4$, or if $\nu \ge 5$ and $b(\nu) \le \eta \le c(\nu)$. Thus, under the assumptions in (iii), we have

$$d/\nu > \max\{(1/2)\{3\sqrt{\eta} - (1+1/\nu)\}, (\eta+1)/2\}.$$

By Proposition 4, (iv), we arrive at a contradiction.

5. Examples

EXAMPLE 1. Let C be an irreducible plane curve of degree d = km + 1 defined by the equation:

$$y \prod_{i=1}^{k} (x - a_i)^m - c \prod_{j=1}^{k} (y - b_j)^m = 0,$$

where the a_i 's and the b_j 's are mutually distinct, respectively, $b_j \neq 0$ for all j and c is a general constant. We have Gon(C) = k.

PROOF. By Eisenstein's criterion applied to the homegenization of the above polynomial, we easily see that the curve *C* is irreducible. If m = 1, then *C* is a smooth curve with Gon(C) = d - 1 = k. In what follows, we assume that $m \ge 2$. Under the assumption that the constant *c* is general, the curve *C* has k^2 ordinary *m*-fold singular points $P_{ij} = (a_i, b_j)$ for $1 \le i, j \le k$. Thus v = m and $\eta = k^2$. In this case, Gon(C) < d - v. Indeed, the rational function $\Phi = \prod (y - b_j) / \prod (x - a_i)$ of degree *k* on \mathbf{P}^2 induces a rational function φ on *C*. The function Φ has k^2 base points P_{ij} on *C*. This proves that deg $\varphi = (km + 1)k - k^2m = k$. Note that k > d/v - 1.

We now prove that Gon(C) = k. We first see that $C(C) \cong C(\varphi, x)$. For simplicity's sake, we also denote by x, y the rational functions on C induced by x, y. Clearly, we have $C(\varphi, x) \subset C(C)$. Since $\varphi^m = y/c$, we obtain $y \in C(\varphi, x)$, which implies $C(\varphi, x) = C(C)$. Now $C(\varphi, x)$ is the rational function field of the curve $C' : \varphi \prod (x - a_i) - c \prod (c\varphi^m - b_j) = 0$. The curve C' is of degree d' = mk and has one singular point with multiplicity sequence $((m - 1)k, k_{m-2}, k - 1)$ on the line at infinity, where by k_{m-2} we mean k's repeated m - 2 times. For C', we use the notation d', ν' and η' . We have

$$\eta' = 1 + (m-2)/(m-1)^2 + \{(k-1)/k(m-1)\}^2 < m/(m-1).$$

We obtain $2\sqrt{\eta'} - (1 + 1/\nu') < 2\sqrt{m/(m-1)} - 1 - 1/(m-1)k$. Hence, we have $d'/\nu' - \{2\sqrt{\eta'} - (1 + 1/\nu')\} > (\sqrt{m/(m-1)} - 1)^2 + 1/(m-1)k > 0$. We can show that $\eta' > a(\nu')$.

We therefore conclude from Theorem 2 that Gon(C') = d' - v' = k if $v' \ge 3$. In case $v' \le 2$, by Theorem 3, we can easily check that Gon(C') = k. Since *C* and *C'* are birational, we get Gon(C) = k.

EXAMPLE 2. Let C be an irreducible plane curve of degree d. Suppose C has 9 ordinary triple points. By Theorem 1, we get Gon(C) = d - 3 if $d \ge 14$. Let C be the curve of degree 11 defined by the equation:

$$y\prod_{i=1}^{3}(x-a_i)^3(x-a_4)-c\prod_{j=1}^{3}(y-b_j)^3(y-b_4)=0,$$

where the a_i 's and the b_j 's are mutually distinct, respectively, $b_j \neq 0$ for all j and c is a general constant. This curve C has 9 ordinary triple points. But we see that $Gon(C) \leq 6 < 11 - 3$.

PROOF. We consider the rational function $\Phi = \prod_{j=1}^{3} (y - b_j) / \prod_{i=1}^{3} (x - a_i)$ on \mathbf{P}^2 . Let φ be the rational function on *C* induced by Φ . It turns out that deg $\varphi = 6$.

EXAMPLE 3. Let C be an irreducible plane curve of degree d = em defined by the equation: $y^m = \prod_{i=1}^{em} (x - a_i)$, where the a_i 's are mutually distinct. We have Gon(C) = m if $e \ge 2$ or = m - 1 if e = 1.

PROOF. If e = 1 or if e = 2 and m = 1, then *C* is smooth. Otherwise, the curve *C* has one singular point with multiplicity sequence $((e - 1)m, m_{e-1})$ on the line at infinity. We have v = (e - 1)m, $\eta = e/(e - 1)$ and so $d/v = e/(e - 1) = \eta$. In case $v \ge 3$, we can apply Theorem 2 and we conclude that Gon(C) = d - v = m. In case v = 2, we see that the genus of *C* is equal to 1 (if m = e = 2) or 0 (if m = 1 and e = 3). Thus we also get Gon(C) = m.

EXAMPLE 4. Let C be the transform of an irreducible plane curve Γ of degree m by a general quadratic transformation. Then C is of degree 2m and has three ordinary m-fold singular points other than the singular points of Γ . Since a general line is transformed into a conic, we have a rational function Φ on \mathbf{P}^2 of degree two which induces a rational function φ on C with deg $\varphi \leq m - 1$. In this case, we have $d/\nu = 2$, but $\operatorname{Gon}(C) = \operatorname{Gon}(\Gamma) < d - \nu$. Cf. Lemma 5. As a consequence, we conclude that the condition in Theorem 3, (ii) is sharp.

EXAMPLE 5. Let C be the plane curve of degree 2m + 1 with $m \ge 2$ defined by the equation: $y^{m+1} - (x^m + x^{2m+1}) = 0$. We have Gon(C) = m + 1.

PROOF. The point (0, 0) is a singular point with multiplicity sequence (m) and *C* also has a singular point with multiplicity sequence (m, m) on the line at infinity. We have d = 2m + 1, v = m, n = 3 and $\eta = 3$. Thus d/v = 2 + 1/m > 2. By Theorem 3, (ii), we infer that Gon(*C*) = d - v = m + 1.

EXAMPLE 6. Let C be the Fermat curve: $x^m + y^m - 1 = 0$. Take a rational function $\Phi = y/(x-1)$ on \mathbf{P}^2 . Let φ be the rational function on C induced by Φ . We know that

Gon(*C*) = $m - 1 = \deg \varphi$. By the way, we have $\mathbf{C}(C) = \mathbf{C}(x, \varphi) = \mathbf{C}(C')$, where the curve *C'* is defined by the equation:

$$\varphi^m (x-1)^{m-1} + (x^m - 1)/(x-1) = 0.$$

In this case, the curve C' has two singular points with multiplicity sequences (m) and (m - 1, m - 1).

EXAMPLE 7. Let C be the curve of degree 9 defined by the equation:

$$y(x-a_1)^5(x-a_2)^3 - c(y-b_1)^5(y-b_2)^3 = 0$$
,

where the a_i 's and the b_i 's are mutually distinct, respectively and the constant c is generally chosen. Then we have Gon(C) = 4.

PROOF. The curve *C* has two ordinary singular points of multiplicities 5 and 3, two singular points with multiplicity sequence (3, 2). We have $\nu = 5$ and $\eta = 12/5$. By Theorem 3, (iii), we conclude that Gon(*C*) = 9 - 5 = 4. In this example, we cannot apply Theorem 2.

References

- M. COPPENS and T. KATO, The gonality of smooth curves with plane models, Manuscripta Math. 70 (1990), 5–25.
- [2] M. COPPENS and T. KATO, Correction to the gonality of smooth curves with plane models, Manuscripta Math. 71 (1991), 337–338.
- [3] M. NAMBA, Families of meromorphic functions on compact Riemann surfaces, Lecture Notes in Math. 767, Springer (1979).
- [4] R. PAOLETTI, Free pencils on divisors, Math. Ann. 303 (1995), 109–123.
- [5] F. SERRANO, Extension of morphisms defined on a divisor, Math. Ann. 277 (1987), 395–413.

Present Address: DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE, SAITAMA UNIVERSITY, SHIMO-OKUBO, SAKURA-KU, SAITAMA, 338–8570 JAPAN. *e-mail*: mohkouch@rimath.saitama-u.ac.jp fsakai@rimath.saitama-u.ac.jp