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1. Introduction

Let C ⊂ P2 be an irreducible plane curve of degree d over the complex number field

C. We denote by C(C) the field of rational functions on C. Let C̃ be the non-singular model

of C. Since C(C̃) ∼= C(C), a non-constant rational function ϕ on C induces a non-constant

morphism ϕ : C̃ → P1. Let deg ϕ denote the degree of this morphism ϕ. We remark that
deg ϕ = [C(C) : C(ϕ)] = deg (ϕ)0 = deg (ϕ)∞. The gonality of C, denoted by Gon(C), is
defined to be min{deg ϕ | ϕ ∈ C(C)\C}. So by definition, the gonality of C is nothing but the

gonality of C̃. Let ν denote the maximal multiplicity of C. We easily see that Gon(C) ≤ d−ν.
We know that the genus of C is equal to (d − 1)(d − 2)/2 − δ with δ ≥ 0.

THEOREM 1. Let C be an irreducible plane curve of degree d with δ ≥ ν. Letting
d ≡ i (mod ν), define

R(ν, δ, i) = ν2 + (ν − 2)i

2ν(ν − 1)
+

√
δ − ν

ν − 1
+

(ν − 2 + i

2(ν − 1)

)2
.

If d/ν > R(ν, δ, i), then Gon(C) = d − ν.

REMARK 1. Theorem 1 is a generalization of Theorem 2.1 in Coppens and Kato [1]
where they considered the case in which C has only nodes and ordinary cusps. Note that

R(2, δ, 0) = 1 + √
δ − 2, R(2, δ, 1) = 1 + √

δ − 7/4. In general, we have the estimation:
R(ν, δ, i) < 1 + √

δ/(ν − 1).
We have δ < ν if either (i) C is a smooth curve (δ = 0, ν = 1 and Gon(C) = d − 1 for

all d ≥ 2), or (ii) C has one node or one ordinary cusp (δ = 1 and ν = 2 and Gon(C) = d −2
for all d ≥ 3). Cf. [1], [3], [5].

DEFINITION. Let m1, · · · ,mn denote the multiplicities of all singular points (we in-
clude infinitely near singular points) of C. Set η = ∑

(mi/ν)2. Clearly, we have n ≥ η ≥ 1.
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THEOREM 2. Let C be an irreducible plane curve of degree d with ν ≥ 3. We have
Gon(C) = d − ν if

d/ν




> (η + 1)/2, for η < a(ν), η ≥ 5

> 2
√

η − (1 + 1/ν), for a(ν) ≤ η < 4 ,

≥ 3, for 4 ≤ η < 5 ,

where a(ν) = (2 − √
1 − 2/ν)2.

REMARK 2. Note that a(3) = 2.023 · · · and 1 < a(ν) ≤ 1.671 · · · for ν ≥ 4.

We shall show that if η ≥ 2ν + 5, then the criterion in Theorem 1 is more effective than
that in Theorem 2. We also prove some subtle criterions.

THEOREM 3. Let C be an irreducible plane curve of degree d with n singular points
(infinitely near singular points are also counted). We renumber the multiplicities mi’s as
ν = m1 ≥ m2 ≥ m3 ≥ · · · ≥ mn. We have Gon(C) = d − ν if either

(i) n ≤ 2, or
(ii) n = 3 and d/ν > 2, or

(iii) n ≥ 4, d ≥ m2 + m3 + m4 and

d/ν >




(η + 1)/2 if ν = 3, 4 ,

if ν ≥ 5 and η < b(ν), η ≥ c(ν) ,

(1/2){3√
η − (1 + 1/ν)} if ν ≥ 5 and b(ν) ≤ η < c(ν) ,

where b(ν) = (3/2 − √
1/4 − 1/ν)2 and c(ν) = (3/2 + √

1/4 − 1/ν)2.

REMARK 3. In view of Theorem 2, the condition (iii) is meaningful only if a(ν) ≤ η <

5. We remark that a(ν) < b(ν) < c(ν) and 1 < b(ν) ≤ 1.629 · · · and 2.970 · · · ≤ c(ν) < 4
for ν ≥ 5.

2. Rational functions on C and on P2

Let ϕ be a rational function on C. Set r = deg ϕ. We know that a rational function ϕ of

a plane curve C is a restriction of a rational function Φ = g(x, y, z)/h(x, y, z) on P2, where
g and h are relatively prime homogeneous polynomials of the same degree, say k. We call
k the degree of the rational function Φ. A rational function Φ is called a linear function if

k = 1. Classically, one says that ϕ is cut out by the pencil Λ : t0g − t1h = 0 on P2. Let us
consider the rational map

Φ : P2 
 P �→ (h(P ), g(P )) ∈ P1 .

By a sequence of blowing-ups π : X → P2, one can resolve the base points of Φ and the

singularities of C, so that Φ ◦ π : X → P1 becomes a morphism and the strict transform C̃
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of C is non-singular. Write π = π1 ◦ · · · ◦ πs, where πi : Xi → Xi−1 is the blowing-up at a

point Pi ∈ Xi−1 and X0 = P2, Xs = X. Let Ei be the total transform on X of the exceptional

curve of the blowing-up πi . We have a relation of divisors: C̃ = π∗C − ∑
miEi, where mi

is the multiplicity of the strict transform of C on Xi−1 at Pi . Set H = π∗L, where L is a

line on P2. Then, we have the linear equivalence: C̃ ∼ dH − ∑
miEi . It follows from this

and the adjunction formula that δ = ∑
mi(mi − 1)/2. Any fibre D of the morphism Φ ◦ π

is linearly equivalent to a divisor kH − ∑
aiEi with some integers ai . Since DEi ≥ 0 and

D2 = 0, we must have the relation:

k2 =
∑

a2
i

and also we must have ai ≥ 0 for all i. We then obtain the formula:

r = dk −
∑

aimi .

If k = 1, then we must have r = d − mi for some i. In particular, there is a rational function

ϕ with r = d − ν. Note that a rational function g∗/h∗ ∈ C(P2) also induces ϕ if and only if
gh∗ − hg∗ is divisible by the defining polynomial of C. So many different rational functions

on P2 can induce the same rational function ϕ on C.

LEMMA 1. We have the inequality: r + δ ≥ dk − k2.

PROOF. It suffices to show that k2 + δ ≥ ∑
aimi . We see that

k2 + δ −
∑

aimi =
∑
mi �=1

(2ai − mi)
2/4 +

∑
mi �=1

mi(mi − 2)/4 +
∑
mi=1

ai(ai − 1) .

If mi ≥ 2 or mi = 0, then mi(mi − 2) ≥ 0. Since ai is an integer, we have ai(ai − 1) ≥ 0.
Thus we get the desired inequality. �

Let b denote the number of ai with ai �= 0.

LEMMA 2. If r < d − ν, then k ≥ 2 and d/ν < (k
√

b − 1)/(k − 1).

PROOF. If k = 1, then we have r ≥ d − ν. So assume k ≥ 2. By Schwarz’ inequality,

we have
∑

ai ≤ √
bk. We obtain

r ≥ dk −
(∑

ai

)
ν ≥ k(d − ν

√
b) = d − ν + (k − 1)ν

{
d/ν − (k

√
b − 1)/(k − 1)

}
,

which implies the assertion. �

LEMMA 3. If r < d − ν, then k ≥ 2 and k > d/ν − 1. Furthermore, if r = d − ν + s

with s ≥ 0 and k ≥ 2, then k ≥ d/ν − s − 1.
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PROOF. In view of the inequality in Lemma 2, it suffices to note that b ≤ k2. Suppose
r = d − ν + s with s ≥ 0. If k ≥ 2, then we obtain

k + s ≥ k + s/(k − 1) ≥ d/ν − 1 .

�

We renumber ai’s so that a1 ≥ a2 ≥ · · · ≥ ab ≥ 1, ai = 0 for i > b.

LEMMA 4. We have r ≥ d − ν either if b ≤ 2, or if b = 3 and d/ν ≥ 2.

PROOF. (i) b = 1. We have r = k(d − m1) ≥ k(d − ν) ≥ d − ν. (ii) b = 2. By
Bezout’s theorem applied to the curve C and the line passing through P1 and P2, we have the

inequality: d ≥ m1 + m2. On the other hand, since k2 = a2
1 + a2

2, we must have ai < k for
i = 1, 2. Thus we obtain

r = d − ν + (ν − m1) + (k − 1)d − (a1 − 1)m1 − a2m2

≥ d − ν + (k − a1)m1 + (k − a2 − 1)m2 ≥ d − ν .

(iii) b = 3. In case k ≥ 4, by Lemma 2, we have r > d − ν, since (4
√

3 − 1)/3 =
1.976 · · · < 2. In case k ≤ 3, the equation: k2 = a2

1 + a2
2 + a2

3, (3 ≤ a1 + a2 + a3 ≤ 5) has
only one integer solution: k = 3, a1 = a2 = 2, a3 = 1. Under the assumption: d ≥ 2ν, we
obtain r = d − ν + (ν − m1) + 2d − (m1 + 2m2 + m3) ≥ d − ν. �

LEMMA 5. If r < d − ν and k = 2, then b = 4 and d < m1 + m2 + m3 + m4 − ν.

PROOF. We have b = 1 or b = 4. In case b = 4, we must have a1 = a2 = a3 = a4 =
1. So we obtain d − ν > r = 2d − m1 − m2 − m3 − m4, which gives the assertion. �

LEMMA 6. We have the inequality: r ≥ k(d −
√∑

m2
i ).

PROOF. By Schwarz’ inequality, we have

∑
aimi ≤

√∑
a2
i

√∑
m2

i = k

√∑
m2

i ,

which gives the assertion. �

3. Proof of Theorem 1

Let C be an irreducible plane curve of degree d .

LEMMA 7 (Cf. Coppens and Kato[1, 2]). Let ϕ be a rational function on C with r =
deg ϕ. Let l be a positive integer with l < d . Suppose r + δ < (l + 1)(d − l − 1). Then there

exists a rational function on P2 of degree k ≤ l which induces ϕ on C.

PROOF. Assume to the contrary that there are no rational functions of degree ≤ l on

P2 which induces ϕ on C. Following the arguments in [1, 2], one can prove that there exists

a rational function of degree k on P2 which induces ϕ on C with l < k ≤ d − 3 − l. Using
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Lemma 1, we have dk − k2 ≤ r + δ < (l + 1)(d − l − 1), from which we infer that
(l + 1 − k)(d − k − l − 1) > 0. This is absurd, because l + 1 − k ≤ 0 and d − k − l − 1 ≥ 2.

�

PROPOSITION 1. Assume there is a positive integer l such that l ≤ (d/ν) − 1 and
δ − ν < l(d − l − 2). Then we have Gon(C) = d − ν.

PROOF. Suppose there exists a rational function ϕ on C with r = deg ϕ < d − ν. In
this case, we have the inequality:

r + δ ≤ d − ν − 1 + δ < l(d − l − 2) + d − 1 = (l + 1)(d − l − 1) .

So by Lemma 7, there exists a rational function Φ of degree k ≤ l on P2 which induces ϕ on
C. But, since k ≤ l ≤ (d/ν) − 1, by Lemma 3, there cannot exist such a rational function
Φ. �

PROPOSITION 2. If [d/ν] ≥ 2 and ([d/ν] − 1)(d − [d/ν] − 1) > δ − ν, then we have
Gon(C) = d − ν.

REMARK 4. In case ν = 2, this criterion is best possible. See [1], Examples 4,1
and 4,2. We see that the assertion of Proposition 1 is equivalent to that of Proposition 2.
Take a positive integer l which satisfies the two assumptions in Proposition 1. We find that
1 ≤ l ≤ [d/ν] − 1 ≤ (d/ν) − 1. The quadratic function Q(x) = x(d − x − 2) is a
monotone increasing function for the interval 0 ≤ x ≤ (d/2) − 1. Hence we infer that
Q(l) ≤ Q([d/ν] − 1). Thus the integer [d/ν] − 1 also satisfies the two assumptions in
Proposition 1.

Using the latter assertion in Lemma 3, we obtain the following

PROPOSITION 3. Let s be a non-negative integer. Set l = d/ν − s − 2 (if d ≡ 0
(mod ν)), [d/ν] − s − 1 (otherwise). If l ≥ 1 and δ − ν + s + 1 < l(d − l − 2), then
Gon(C) = d − ν and any rational function ϕ with d − ν ≤ deg ϕ ≤ d − ν + s is induced by

a linear function on P2.

PROOF OF THEOREM 1. We reformulate Proposition 2. Letting d = [d/ν]ν + i with
0 ≤ i < ν, the inequality δ − ν < ([d/ν] − 1)(d − [d/ν] − 1) can be written as:

δ − ν

ν − 1
+

(ν − 2 + i

2(ν − 1)

)2
<

{
d

ν
− ν2 + (ν − 2)i

2ν(ν − 1)

}2

.

If δ − ν ≥ 0, then the above inequality is equivalent to the inequality d/ν > R(δ, ν, i).
Furthermore, we easily see that R(δ, ν, i) ≥ 1 + i/ν. So it follows from the inequality
d/ν > R(δ, ν, i) that d > ν + i, which gives d ≥ 2ν + i if d ≡ i (mod ν) and hence
d/ν ≥ 2.

REMARK 5. If δ − ν < 0, then the left hand side of the above inequality is negative. It
follows that the above inequality always holds. In case δ = 1, ν = 2, we have Gon(C) = d−2
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for d ≥ 4. It is well known that Gon(C) = 1 if d = 3. In case δ = 0, ν = 1, we have
Gon(C) = d − 1 for d ≥ 2.

LEMMA 8. We have the estimation:

R(ν, δ, i) < 1 + √
δ/(ν − 1) .

PROOF. Since i ≤ ν − 1, we have

ν2 + (ν − 2)i ≤ ν2 + (ν − 2)(ν − 1) = 2ν(ν − 1) − (ν − 2)

and ν − 2 + i ≤ 2(ν − 1). Thus, we obtain

ν2 + (ν − 2)i

2ν(ν − 1)
≤ 1 and

ν

ν − 1
−

(
ν − 2 + i

2(ν − 1)

)2

> 0 ,

which gives the desired inequality. �

4. Proof of Theorems 2 and 3

Let C be an irreducible plane curve of degree d . Now let π : X → P2 be the minimal

resolution of the singularities of C. We do not require that the inverse image π−1(C) has
normal crossings. In this case, mi ≥ 2 for all i.

LEMMA 9. Assume d/ν > (η + 1)/2. Let ϕ be a rational function on C with r =
deg ϕ < d − ν. Then we can find a rational function Φ on P2 which induces ϕ on C such

that Φ ◦ π : X → P1 becomes a morphism. Furthermore, the degree k of Φ satisfies the
inequality:

k ≤ 1 +
√

η − (1 + 1/ν)

d/ν − √
η

.

PROOF. According to Theorem 3.1 in Serrano [5](See also [4]), such a rational function

exists if C̃
2

> (r + 1)2. On X, we have

C̃
2 − (r + 1)2 ≥ d2 −

∑
m2

i − (d − ν)2

= 2dν −
∑

m2
i − ν2 = 2ν2{d/ν − (η + 1)/2} > 0 .

By Lemma 6, we have d − ν − 1 ≥ r ≥ kν(d/ν − √
η). Thus we obtain

k ≤ d/ν − (1 + 1/ν)

d/ν − √
η

= 1 +
√

η − (1 + 1/ν)

d/ν − √
η

.

�

REMARK 6. Under the hypothesis d/ν > (η + 1)/2, we see that d/ν − √
η = d/ν −

(η + 1)/2 + (
√

η − 1)2/2 > 0. Since k ≥ 1, we must have
√

η − (1 + 1/ν) ≥ 0.

In a similar manner to that in the proof of Lemma 9, we can show the following
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LEMMA 10. Let s be a non-negative integer with s < ν − 1. Let ϕ be a rational
function on C with r = deg ϕ = d − ν + s. If

d/ν > (η + 1)/2 + s + 1

2(ν − s − 1)

{
η − 1 + s + 1

ν

}
,

then we can find a rational function Φ on P2 which induces ϕ on C such that Φ ◦π : X → P1

becomes a morphism. Furthermore, the degree k of Φ satisfies the inequality:

k ≤ 1 +
√

η − 1 + s/ν

d/ν − √
η

.

PROPOSITION 4. Suppose d/ν > (η + 1)/2. We get Gon(C) = d − ν if either
(i) d/ν > 2

√
η − (1 + 1/ν), or

(ii) η ≥ 5, or
(iii) d/ν ≥ 3 and η < 5, or
(iv) d/ν > (1/2)

{
3
√

η − (1 + 1/ν)
}

and d ≥ m2 + m3 + m4 (if n ≥ 4), where the
multiplicities mi’s are renumbered as m1 ≥ m2 ≥ m3 ≥ · · · .

PROOF. Assume there is a rational function ϕ on C with r = deg ϕ < d − ν. By

Lemma 9, we can find a rational function Φ on P2 which induces ϕ on C such that π has
already resolved the base points of Φ. The degree k of Φ must satisfy the inequality in
Lemma 9.

(i) If d/ν > 2
√

η − (1 + 1/ν), then we infer that k < 2. So we get k = 1, which is
impossible by Lemma 3.

(ii) If η ≥ 5, then we have d/ν > 3. We obtain

k < 1 +
√

η − 1

(η + 1)/2 − √
η

= 1 + 2√
η − 1

≤ 1 + 2√
5 − 1

= (3 + √
5)/2 < 3 .

So k ≤ 2, which contradicts Lemma 3.
(iii) We have

k < 1 +
√

5 − 1

3 − √
5

= (3 + √
5)/2 < 3 .

So k ≤ 2, which again contradicts Lemma 3.
(iv) In a similar manner to that in the proof of (i), under the assumption on d/ν, we

obtain k < 3. In case k = 2, by Lemma 5, we get a contradiction. �

PROOF OF THEOREM 2. By Proposition 4, (i), we get Gon(C) = d − ν if d/ν >

max{2√
η − (1 + 1/ν), (η + 1)/2}. We easily see that 2

√
η − (1 + 1/ν) ≥ (η + 1)/2 if

and only if 2 − √
1 − 2/ν ≤ √

η ≤ 2 + √
1 − 2/ν. In case ν ≥ 3, we have the relation:

a(ν) = (2 − √
1 − 2/ν)2 < 5 < (2 + √

1 − 2/ν)2. Using also Proposition 4, (ii), we get
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Gon(C) = d − ν if

d/ν >

{
(η + 1)/2 , for η < a(ν), η ≥ 5

2
√

η − (1 + 1/ν), for a(ν) ≤ η < 5 .

On the other hand, by Proposition 4, (iii), for η < 5, we get Gon(C) = d − ν if d/ν ≥ 3.

Obviously, 2
√

η − (1 + 1/ν) > 3 if and only if
√

η > 2 + 1/(2ν). Thus, for (2 + 1/(2ν))2 <

η < 5, the condition d/ν ≥ 3 is sharper than the condition d/ν > 2
√

η − (1 + 1/ν). Finally,

for the interval 4 ≤ η ≤ (2 + 1/(2ν))2, we find that 3 ≥ 2
√

η − (1 + 1/ν) ≥ 3 − 1/ν.
The inequality d/ν > 3 − 1/ν implies d > 3ν − 1, hence d ≥ 3ν. As a consequence, the
conditions d/ν ≥ 3 and d/ν > 2

√
η − (1 + 1/ν) have the same effect.

REMARK 7. In case ν = 2, we infer from Proposition 4, (i) that if d/2 > (η + 1)/2,

then Gon(C) = d − 2. In this case, δ = η. But the criterion in Theorem 1 is sharper than this
one.

PROPOSITION 5. Suppose ν ≥ 3. If η ≥ 2ν + 5, then the criterion in Theorem 1 is
sharper than that in Theorem 2.

PROOF. It suffices to prove the inequality: (η + 1)/2 > R(ν, δ, i). By definition, we

have δ <
∑

m2
i /2 = ν2η/2. Using Lemma 8, we obtain

R(ν, δ, i) < R(ν, ν2η/2, i) < 1 + ν
√

η/2(ν − 1) .

By an easy manipulation, the inequality: (η + 1)/2 ≥ 1 + ν
√

η/2(ν − 1) can be reduced to
the inequality: η ≥ t (ν), where

t (ν) = ν + 2 + 1

ν − 1
+

√√√√(
ν + 2 + 1

ν − 1

)2

− 1 .

Clearly, we have t (ν) ≤ 2ν + 5. Thus, if η ≥ 2ν + 5, then (η + 1)/2 > R(ν, δ, i). �

PROPOSITION 6. Assume

d/ν > (η + 1)/2 + 1

2(ν − 1)

{
η − 1 + 1

ν

}
.

If either
(i) d/ν > 2

√
η − 1, or

(ii) η > 5, or
(iii) d/ν > 3, η ≤ 5,

then we have Gon(C) = d − ν and any rational function ϕ with deg ϕ = d − ν is induced by

a linear function on P2.

PROOF OF THEOREM 3. Suppose d/ν > (η + 1)/2. Assume there is a rational func-
tion ϕ on C with r = deg ϕ < d − ν. We infer from Lemma 9 that there is a rational function
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Φ on P2 which induces ϕ on C such that π resolves the base points of Φ. It follows that
b ≤ n.

(i), (ii) We first show that d/ν > (η + 1)/2 for the case (i). If n = 1, then we have
η = 1 and so d/ν > 1 = (η+1)/2. If n = 2, then, as we have noticed, we have d ≥ m1+m2.
It follows that d/ν ≥ 1+ (m2/ν) > 1+ (1/2)(m2/ν)2 = (η+1)/2. (ii) Since η ≤ n = 3, we
have d/ν > 2 ≥ (η + 1)/2. Thus, we obtain b ≤ n. By Lemma 4, we derive a contradiction.

(iii) We easily see that (1/2){3√
η − (1 + 1/ν)} ≥ (η + 1)/2 if ν ≤ 4, or if ν ≥ 5 and

b(ν) ≤ η ≤ c(ν). Thus, under the assumptions in (iii), we have

d/ν > max{(1/2){3√
η − (1 + 1/ν)}, (η + 1)/2} .

By Proposition 4, (iv), we arrive at a contradiction.

5. Examples

EXAMPLE 1. Let C be an irreducible plane curve of degree d = km+ 1 defined by the
equation:

y

k∏
i=1

(x − ai)
m − c

k∏
j=1

(y − bj )
m = 0 ,

where the ai’s and the bj ’s are mutually distinct, respectively, bj �= 0 for all j and c is a
general constant. We have Gon(C) = k.

PROOF. By Eisenstein’s criterion applied to the homegenization of the above polyno-
mial, we easily see that the curve C is irreducible. If m = 1, then C is a smooth curve with
Gon(C) = d − 1 = k. In what follows, we assume that m ≥ 2. Under the assumption that

the constant c is general, the curve C has k2 ordinary m-fold singular points Pij = (ai, bj )

for 1 ≤ i, j ≤ k. Thus ν = m and η = k2. In this case, Gon(C) < d − ν. Indeed, the rational

function Φ = ∏
(y − bj )/

∏
(x − ai) of degree k on P2 induces a rational function ϕ on C.

The function Φ has k2 base points Pij on C. This proves that deg ϕ = (km+ 1)k − k2m = k.
Note that k > d/ν − 1.

We now prove that Gon(C) = k. We first see that C(C) ∼= C(ϕ, x). For simplicity’s
sake, we also denote by x, y the rational functions on C induced by x, y. Clearly, we have
C(ϕ, x) ⊂ C(C). Since ϕm = y/c, we obtain y ∈ C(ϕ, x), which implies C(ϕ, x) = C(C).
Now C(ϕ, x) is the rational function field of the curve C′ : ϕ

∏
(x−ai)−c

∏
(cϕm−bj ) = 0.

The curve C′ is of degree d ′ = mk and has one singular point with multiplicity sequence
((m − 1)k, km−2, k − 1) on the line at infinity, where by km−2 we mean k’s repeated m − 2
times. For C′, we use the notation d ′, ν′ and η′. We have

η′ = 1 + (m − 2)/(m − 1)2 + {(k − 1)/k(m − 1)}2 < m/(m − 1) .

We obtain 2
√

η′ − (1 + 1/ν′) < 2
√

m/(m − 1) − 1 − 1/(m − 1)k. Hence, we have d ′/ν′ −
{2√

η′ − (1 + 1/ν′)} > (
√

m/(m − 1)− 1)2 + 1/(m− 1)k > 0. We can show that η′ > a(ν′).
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We therefore conclude from Theorem 2 that Gon(C′) = d ′ − ν′ = k if ν′ ≥ 3. In case ν′ ≤ 2,

by Theorem 3, we can easily check that Gon(C′) = k. Since C and C′ are birational, we get
Gon(C) = k. �

EXAMPLE 2. Let C be an irreducible plane curve of degree d . Suppose C has 9 ordi-
nary triple points. By Theorem 1, we get Gon(C) = d − 3 if d ≥ 14. Let C be the curve of
degree 11 defined by the equation:

y

3∏
i=1

(x − ai)
3(x − a4) − c

3∏
j=1

(y − bj )
3(y − b4) = 0 ,

where the ai’s and the bj ’s are mutually distinct, respectively, bj �= 0 for all j and c is a
general constant. This curve C has 9 ordinary triple points. But we see that Gon(C) ≤ 6 <

11 − 3.

PROOF. We consider the rational function Φ = ∏3
j=1(y − bj )/

∏3
i=1(x − ai) on P2.

Let ϕ be the rational function on C induced by Φ. It turns out that deg ϕ = 6. �

EXAMPLE 3. Let C be an irreducible plane curve of degree d = em defined by the
equation: ym = ∏em

i=1(x − ai), where the ai’s are mutually distinct. We have Gon(C) = m if
e ≥ 2 or = m − 1 if e = 1.

PROOF. If e = 1 or if e = 2 and m = 1, then C is smooth. Otherwise, the curve C

has one singular point with multiplicity sequence ((e − 1)m,me−1) on the line at infinity.
We have ν = (e − 1)m, η = e/(e − 1) and so d/ν = e/(e − 1) = η. In case ν ≥ 3, we can
apply Theorem 2 and we conclude that Gon(C) = d − ν = m. In case ν = 2, we see that
the genus of C is equal to 1 (if m = e = 2) or 0 (if m = 1 and e = 3). Thus we also get
Gon(C) = m. �

EXAMPLE 4. Let C be the transform of an irreducible plane curve Γ of degree m by
a general quadratic transformation. Then C is of degree 2m and has three ordinary m-fold
singular points other than the singular points of Γ . Since a general line is transformed into a

conic, we have a rational function Φ on P2 of degree two which induces a rational function ϕ

on C with deg ϕ ≤ m − 1. In this case, we have d/ν = 2, but Gon(C) = Gon(Γ ) < d − ν.
Cf. Lemma 5. As a consequence, we conclude that the condition in Theorem 3, (ii) is sharp.

EXAMPLE 5. Let C be the plane curve of degree 2m + 1 with m ≥ 2 defined by the

equation: ym+1 − (xm + x2m+1) = 0. We have Gon(C) = m + 1.

PROOF. The point (0, 0) is a singular point with mutiplicity sequence (m) and C also
has a singular point with multiplicity sequence (m,m) on the line at infinity. We have d =
2m + 1, ν = m, n = 3 and η = 3. Thus d/ν = 2 + 1/m > 2. By Theorem 3, (ii), we infer
that Gon(C) = d − ν = m + 1. �

EXAMPLE 6. Let C be the Fermat curve: xm + ym − 1 = 0. Take a rational function

Φ = y/(x − 1) on P2. Let ϕ be the rational function on C induced by Φ. We know that
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Gon(C) = m − 1 = deg ϕ. By the way, we have C(C) = C(x, ϕ) = C(C′), where the curve
C′ is defined by the equation:

ϕm(x − 1)m−1 + (xm − 1)/(x − 1) = 0 .

In this case, the curve C′ has two singular points with multiplicity sequences (m) and (m −
1,m − 1).

EXAMPLE 7. Let C be the curve of degree 9 defined by the equation:
y(x − a1)

5(x − a2)
3 − c(y − b1)

5(y − b2)
3 = 0 ,

where the ai’s and the bi’s are mutually distinct, respectively and the constant c is generally
chosen. Then we have Gon(C) = 4.

PROOF. The curve C has two ordinary singular points of multiplicities 5 and 3, two
singular points with multiplicity sequence (3, 2). We have ν = 5 and η = 12/5. By The-
orem 3, (iii), we conclude that Gon(C) = 9 − 5 = 4. In this example, we cannot apply
Theorem 2. �
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