On the Interval Maps Associated to the α-mediant Convergents

Rie NATSUI
Keio University
(Communicated by Y. Maeda)

1. Introduction

For an irrational number $x \in(0,1)$, if a non-zero rational number $\frac{p}{q},(p, q)=1$, satisfies $\left|x-\frac{p}{q}\right|<\frac{1}{2 q^{2}}$, then it is the nth regular principal convergent $\frac{p_{n}}{q_{n}}$ for some $n \geq 1$. Here, the nth regular principal convergents are defined by the regular continued fraction expansion of x :

$$
x=\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{3}}+\cdots .
$$

We put

$$
\begin{cases}p_{-1}=p_{-1}(x)=1, & p_{0}=p_{0}(x)=0 \\ q_{-1}=q_{-1}(x)=0, & q_{0}=q_{0}(x)=1\end{cases}
$$

and

$$
\left\{\begin{array}{l}
p_{n}=p_{n}(x)=a_{n} \cdot p_{n-1}+p_{n-2} \\
q_{n}=q_{n}(x)=a_{n} \cdot q_{n-1}+q_{n-2}
\end{array} \quad \text { for } \quad n \geq 1\right.
$$

Then it is well-known that

$$
\frac{p_{n}}{q_{n}}=\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\cdots+\frac{1 \mid}{\mid a_{n}} \quad \text { for } \quad n \geq 1
$$

If $x \in[k, k+1)$ for an integer k, we define its nth regular principal convergent by $\frac{p_{n}(x-k)}{q_{n}(x-k)}+k=\frac{p_{n}(x-k)+k \cdot q_{n}(x-k)}{q_{n}(x-k)}$.

Received March 3, 2003; revised May 6, 2003
2002 Mathematics Subject Classification. 11J70, 11K50

For some $x \in(0,1)$, there exists $\frac{p}{q}$ with $(p, q)=1$ and $\left|x-\frac{p}{q}\right|<\frac{1}{q^{2}}$, which is not the nth regular principal convergent for any $n \geq 0$. However, we can find such a fraction $\frac{p}{q}$ in the set $\left\{\frac{p_{n}-p_{n-1}}{q_{n}-q_{n-1}}, \frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}: n \geq 1\right\}$. This leads us to the notion of the regular mediant convergents of level $n, \frac{u_{n, t}}{v_{n, t}}$, which is defined by

$$
\left\{\begin{array}{l}
u_{n, t}=t \cdot p_{n}+p_{n-1} \\
v_{n, t}=t \cdot q_{n}+q_{n-1}
\end{array} \quad \text { for } \quad 1 \leq t<a_{n+1}, n \geq 0\right.
$$

The regular principal and the regular mediant convergents are obtained by the following maps T and F of [0, 1], which are called the Gauss map and the Farey map, respectively, see [2]:

$$
T(x)= \begin{cases}\frac{1}{x}-\left[\frac{1}{x}\right] & \text { if } \quad x \in(0,1] \tag{1.1}\\ 0 & \text { if } \quad x=0\end{cases}
$$

and

$$
F(x)=\left\{\begin{array}{ll}
\frac{x}{1-x} & \text { if } \\
x \in\left[0, \frac{1}{2}\right) \\
\frac{1-x}{x} & \text { if }
\end{array} \quad x \in\left[\frac{1}{2}, 1\right], ~ \$\right.
$$

where $[y]=n$ if $y \in[n, n+1)$. We get the coefficients of the regular continued fraction expansion of $x \in[0,1]$ by

$$
a_{n}=a_{n}(x)=\left[\left(T^{n-1}(x)\right)^{-1}\right], \quad n \geq 1
$$

We refer to Sh. Ito [3] on the relation between F and the regular mediant convergents. In this paper, we generalize the notion of the mediant convergents to the continued fraction expansion introduced by H. Nakada [5], which are called the α-continued fraction expansion. The α continued fraction expansion is a generalization of the regular continued fraction expansion and is induced by the following map T_{α} of $\mathbf{I}_{\alpha}=[\alpha-1, \alpha]$ for $\frac{1}{2} \leq \alpha \leq 1$:

$$
T_{\alpha}(x)= \begin{cases}\left|\frac{1}{x}\right|-\left[\left|\frac{1}{x}\right|\right]_{\alpha} & \text { if } x \in \mathbf{I}_{\alpha} \backslash\{0\} \\ 0 & \text { if } \quad x=0\end{cases}
$$

where $[y]_{\alpha}=n$ if $y \in[n-1+\alpha, n+\alpha)$. We note that T_{1} is the Gauss map. For $n \geq 1$, put

$$
\varepsilon_{\alpha, n}=\varepsilon_{\alpha, n}(x)=\operatorname{sgn} T_{\alpha}^{n-1}(x)
$$

$$
c_{\alpha, n}=c_{\alpha, n}(x)=\left[\left|\frac{1}{T_{\alpha}^{n-1}(x)}\right|\right]_{\alpha} \quad\left(\text { or }=\infty \quad \text { if } \quad T_{\alpha}^{n-1}(x)=0\right) .
$$

Then we have the α-continued fraction expansion of $x \in \mathbf{I}_{\alpha}$:

$$
x=\frac{\varepsilon_{\alpha, 1} \mid}{\mid c_{\alpha, 1}}+\frac{\varepsilon_{\alpha, 2} \mid}{\mid c_{\alpha, 2}}+\frac{\varepsilon_{\alpha, 3} \mid}{\mid c_{\alpha, 3}}+\cdots, \quad c_{\alpha, n} \geq 1 .
$$

Next for $n \geq 1$, we define the nth α-principal convergents $\frac{p_{\alpha, n}}{q_{\alpha, n}}$ by

$$
\left\{\begin{array} { l c }
{ p _ { \alpha , - 1 } = 1 , } & { p _ { \alpha , 0 } = 0 } \\
{ q _ { \alpha , - 1 } = 0 , } & { q _ { \alpha , 0 } = 1 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
p_{\alpha, n}=c_{\alpha, n} \cdot p_{\alpha, n-1}+\varepsilon_{\alpha, n} \cdot p_{\alpha, n-2} \\
q_{\alpha, n}=c_{\alpha, n} \cdot q_{\alpha, n-1}+\varepsilon_{\alpha, n} \cdot q_{\alpha, n-2} .
\end{array}\right.\right.
$$

We note that the $\left\{q_{\alpha, n}\right\}$ is strictly increasing, see [5]. Also we define the α-mediant convergents of level $n \geq 0,\left\{\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}: 1 \leq t<c_{\alpha, n+1}\right\}$, by

$$
\left\{\begin{array}{l}
u_{\alpha, n, t}=t \cdot p_{\alpha, n}+\varepsilon_{\alpha, n+1} \cdot p_{\alpha, n-1} \tag{1.2}\\
v_{\alpha, n, t}=t \cdot q_{\alpha, n}+\varepsilon_{\alpha, n+1} \cdot q_{\alpha, n-1}
\end{array} \quad \text { for } \quad 1 \leq t<c_{\alpha, n+1}\right.
$$

In $\S 2$, we define a new map G_{α} for each $\alpha, \frac{1}{2} \leq \alpha \leq 1$ and show how G_{α} induces the sequence of the α-principal and the α-mediant convergents. We call G_{α} the α-Farey map of the first type. We note that G_{α} is the same as F in the above if $\alpha=1$. Our idea for getting the mediant convergents is slightly different from the one in [3]. In §3, we give some estimates on the error term of the convergence of $\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}$ to $x \in \mathbf{I}_{\alpha}$. The first assertion is its upper estimate:

$$
\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|<\frac{1}{q_{\alpha, n} \cdot q_{\alpha, n-1}} .
$$

This shows that $\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}$ converges to x. The second assertion is

$$
\limsup _{\substack{1 \leq t<c_{\alpha, n+1} \\ n \rightarrow \infty}} v_{\alpha, n, t}^{2}\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|=\infty \quad \text { (a.e.), }
$$

though

$$
\liminf _{\substack{1 \leq t<c_{\alpha, n+1} \\ n \rightarrow \infty}} v_{\alpha, n, t}^{2}\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|<2 \quad \text { if } \quad c_{\alpha, n} \geq 2 \quad \text { occur infinitely often. }
$$

This means that we can not give any estimates after the normalization by the square of the denominator. For the asymptotic behavior of the values

$$
\begin{equation*}
v_{\alpha, n, t}^{2}\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|, \tag{1.3}
\end{equation*}
$$

we give a 2-dimensional map $\widehat{G_{\alpha}}$ which we call the "natural extension" of G_{α} in $\S 4$. By this map, we can discuss the distribution of (1.3) for almost every x by using the ratio ergodic theorem. In §5, we describe a relation between the α-mediant convergents and the regular mediant convergents. Actually, we show that the set of the α-principal and the α-mediant convergents coincides with the set of the regular's. K. Dajani and C. Kraaikamp [1] showed that Lehner fractions induce the set of the regular principal and the regular mediant convergents. They also showed that this set includes all principal convergents arising from S-expansions, see [4] for the definition of S-expansions. In this sense, they called this set "the mother of all semi-regular continued fractions". Our claim is that we can construct the "mother" from any α-continued fractions, $\frac{1}{2} \leq \alpha \leq 1$, by producing the α-mediant convergents. Incidentally, it is easy to see that

$$
\frac{u_{\alpha, n, 1}}{v_{\alpha, n, 1}}=\frac{u_{\alpha, n-1, c_{\alpha, n}-1}}{v_{\alpha, n-1, c_{\alpha, n}-1}} \quad \text { if } \quad \varepsilon_{\alpha, n+1}=-1
$$

This means that one rational number appears twice when $\varepsilon_{\alpha, n+1}=-1$ in the approximating sequence. In the final part of this paper, we give a new map $F_{\alpha}, \frac{1}{2} \leq \alpha \leq 1$, the α-Farey map of the second type, which also induces the α-principal and the α-mediant convergents without $\frac{u_{\alpha, n-1, c_{\alpha, n}-1}}{v_{\alpha, n-1, c_{\alpha, n}-1}}$ if $\varepsilon_{\alpha, n+1}=-1$.

2. The α-Farey maps and the α-mediant convergents

For a real number $\alpha, \frac{1}{2} \leq \alpha \leq 1$, we put $\mathbf{J}_{\alpha}=\left[\alpha-1, \frac{1}{\alpha}\right]$. Define a map G_{α} of \mathbf{J}_{α} by

$$
G_{\alpha}(x)= \begin{cases}-\frac{x}{1+x} & \text { if } \\ \frac{x}{1-x} & \text { if } \quad x \in\left[0, \frac{1}{1+\alpha}\right]:=\mathbf{J}_{\alpha, 2} \\ \frac{1-x}{x} & \text { if } \quad x \in\left(\frac{1}{1+\alpha}, \frac{1}{\alpha}\right]:=\mathbf{J}_{\alpha, 3}\end{cases}
$$

We note that G_{1} is the Farey map for the regular continued fractions. In this sense, G_{α} is a generalization of the Farey map. We call this map the α-Farey map of the first type, because we give a map which will be called the α-Farey map of the second type in the final part of this paper.

In order to get the α-principal and the α-mediant convergents of $x \in \mathbf{J}_{\alpha}$ by the iterations of G_{α}, it is convenient to use the following matrices:

$$
V_{-}=\left(\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right), \quad V_{+}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad U=\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right) .
$$

Since

$$
\frac{a x+b}{c x+d}=\frac{u}{v} \quad \text { with } \quad\binom{u}{v}=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x z}{z}
$$

for any real numbers x and $z \neq 0$, we denote

$$
A(x)=\frac{a x+b}{c x+d} \quad \text { and } \quad A(-\infty)=A(\infty)=\frac{a}{c} \quad \text { for } \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Hence, we can write

$$
G_{\alpha}(x)=\left\{\begin{array}{lll}
V_{-}^{-1}(x) & \text { if } & x \in \mathbf{J}_{\alpha, 1} \\
V_{+}^{-1}(x) & \text { if } & x \in \mathbf{J}_{\alpha, 2} \\
U^{-1}(x) & \text { if } & x \in \mathbf{J}_{\alpha, 3}
\end{array}\right.
$$

Next, we put

$$
M_{n}(x):=\left\{\begin{array}{lll}
V_{-} & \text {if } & \left(G_{\alpha}\right)^{n-1}(x) \in \mathbf{J}_{\alpha, 1} \\
V_{+} & \text {if } & \left(G_{\alpha}\right)^{n-1}(x) \in \mathbf{J}_{\alpha, 2} \\
U & \text { if } & \left(G_{\alpha}\right)^{n-1}(x) \in \mathbf{J}_{\alpha, 3}
\end{array}\right.
$$

Then, we get a sequence of matrices

$$
M_{1}(x), \quad M_{2}(x), \cdots
$$

from the iterations of G_{α} for each $x \in \mathbf{J}_{\alpha}$. Here, all matrices M_{n} 's are of determinants ± 1. To investigate relationship between T_{α} and G_{α}, we need the following lemmas.

Lemma 1.
(i) $\left(\begin{array}{ll}0 & 1 \\ 1 & t\end{array}\right)=\underbrace{\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) \cdots\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)}_{t-1}\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)=\underbrace{V_{+} \cdots V_{+}}_{t-1} U$ for $t \geq 1$.
(ii) $\quad\left(\begin{array}{cc}0 & -1 \\ 1 & t\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right) \underbrace{\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right) \cdots\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)}_{t-2}\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)=V_{-} \underbrace{V_{+} \cdots V_{+}}_{t-2} U$

$$
\text { for } t \geq 2 \text {. }
$$

Lemma 2. Suppose that $x \in \mathbf{J}_{\alpha}$. If $x \in\left[-\frac{1}{j-1+\alpha},-\frac{1}{j+\alpha}\right) \cup$ $\left(\frac{1}{j+\alpha}, \frac{1}{j-1+\alpha}\right]$, then $G_{\alpha}(x) \in\left(\frac{1}{j-1+\alpha}, \frac{1}{j-2+\alpha}\right]$ for $j \geq 2$.

We put

$$
k_{0}(x):=0 \quad \text { and } \quad k_{n}(x):=\min \left\{k>k_{n-1}(x):\left(G_{\alpha}\right)^{k-1}(x) \in \mathbf{J}_{\alpha, 3}\right\}, n \geq 1
$$

Next proposition shows that T_{α} is obtained as a jump transformation in the sense of F . Schweiger, see [9].

Proposition 1.

$$
\left(G_{\alpha}\right)^{k_{1}(x)}(x)=T_{\alpha}(x) \quad \text { for } \quad x \in \mathbf{I}_{\alpha}=[\alpha-1, \alpha]
$$

PROOF. If $x \in\left(\frac{1}{j+\alpha}, \frac{1}{j-1+\alpha}\right] \cap \mathbf{I}_{\alpha}$, then by Lemma 2, we see

$$
\begin{equation*}
M_{1}(x) M_{2}(x) \cdots M_{k_{1}(x)}(x)=\underbrace{V_{+} \cdots V_{+}}_{j-1} U \text { for } j \geq 1 \tag{2.1}
\end{equation*}
$$

Hence, from Lemma 1, we have

$$
\left(G_{\alpha}\right)^{k_{1}(x)}(x)=U^{-1} \underbrace{V_{+}^{-1} \cdots V_{+}^{-1}}_{j-1}(x)=\left(\begin{array}{cc}
-j & 1 \tag{2.2}\\
1 & 0
\end{array}\right)(x)=\frac{-j x+1}{x}=T_{\alpha}(x) .
$$

If $x \in\left[-\frac{1}{j-1+\alpha},-\frac{1}{j+\alpha}\right) \cap \mathbf{I}_{\alpha}$, then by Lemma 2 again, we see

$$
\begin{equation*}
M_{1}(x) M_{2}(x) \cdots M_{k_{1}(x)}(x)=V_{-} \underbrace{V_{+} \cdots V_{+}}_{j-2} U \text { for } j \geq 2 \tag{2.3}
\end{equation*}
$$

Thus, we also have

$$
\left(G_{\alpha}\right)^{k_{1}(x)}(x)=U^{-1} \underbrace{V_{+}^{-1} \cdots V_{+}^{-1}}_{j-2} V_{-}^{-1}(x)=\left(\begin{array}{cc}
j & 1 \tag{2.4}\\
-1 & 0
\end{array}\right)(x)=T_{\alpha}(x)
$$

For any two numbers x and $x^{\prime} \in \mathbf{I}_{\alpha}$, their α-continued fraction expansions are different from each other since the expansions converge to x and x^{\prime}, respectively. Thus we have the following.

Corollary 1.

$$
\left(M_{1}(x), M_{2}(x), \cdots\right) \neq\left(M_{1}\left(x^{\prime}\right), M_{2}\left(x^{\prime}\right), \cdots\right) \quad \text { whenever } \quad x \neq x^{\prime} \in \mathbf{J}_{\alpha} .
$$

Proof. Suppose that $x \neq x^{\prime} \in \mathbf{J}_{\alpha}$. If $k_{1}(x) \neq k_{1}\left(x^{\prime}\right)$ or $M_{i}(x) \neq M_{i}\left(x^{\prime}\right)$ for some $1 \leq i \leq k_{1}(x)$, then the assertion is clear. So we assume that $k_{1}(x)=k_{1}\left(x^{\prime}\right)$ and $M_{i}(x)=$ $M_{i}\left(x^{\prime}\right)$ for $1 \leq i \leq k_{1}(x)$. Then Lemma 2 implies that

$$
x \text { and } x^{\prime} \in\left[-\frac{1}{k_{1}(x)-1+\alpha},-\frac{1}{k_{1}(x)+\alpha}\right) \cup\left(\frac{1}{k_{1}(x)+\alpha}, \frac{1}{k_{1}(x)-1+\alpha}\right]
$$

and

$$
G_{\alpha}^{k_{1}(x)}(x) \neq G_{\alpha}^{k_{1}(x)}\left(x^{\prime}\right)
$$

since $G_{\alpha}^{k_{1}(x)}$ is a one-to-one map on $\left[-\frac{1}{k_{1}(x)-1+\alpha},-\frac{1}{k_{1}(x)+\alpha}\right) \cup\left(\frac{1}{k_{1}(x)+\alpha}\right.$, $\left.\frac{1}{k_{1}(x)-1+\alpha}\right]$. Then we get sequences

$$
M_{k_{1}(x)+1}(x), M_{k_{1}(x)+2}(x), \cdots
$$

and

$$
M_{k_{1}(x)+1}\left(x^{\prime}\right), M_{k_{1}(x)+2}\left(x^{\prime}\right), \cdots
$$

Here we note that

$$
G_{\alpha}^{k_{1}(x)}(x) \in \mathbf{I}_{\alpha} \quad \text { and } \quad G_{\alpha}^{k_{1}(x)}\left(x^{\prime}\right)=G_{\alpha}^{k_{1}\left(x^{\prime}\right)}\left(x^{\prime}\right) \in \mathbf{I}_{\alpha}
$$

By (2.1), (2.2), (2.3) and (2.4), the above sequences correspond to the α-continued fraction expansions of $G_{\alpha}^{k_{1}(x)}(x)$ and $G_{\alpha}^{k_{1}(x)}\left(x^{\prime}\right)$, which are not the same.

Finally we have the following theorem, which connects the map G_{α} to the α-mediant convergents explicitly.

THEOREM 1. For $x \in \mathbf{I}_{\alpha}$, we have
(i) If $l=k_{n}(x), n \geq 1$,

$$
M_{1}(x) M_{2}(x) \cdots M_{l}(x)=\left(\begin{array}{ll}
p_{\alpha, n-1} & p_{\alpha, n} \tag{2.5}\\
q_{\alpha, n-1} & q_{\alpha, n}
\end{array}\right)
$$

(ii) If $l=k_{n}(x)+t, 1 \leq t<c_{\alpha, n+1}, n \geq 0$,

$$
M_{1}(x) M_{2}(x) \cdots M_{l}(x)=\left(\begin{array}{cc}
u_{\alpha, n, t} & p_{\alpha, n} \tag{2.6}\\
v_{\alpha, n, t} & q_{\alpha, n}
\end{array}\right)
$$

Proof. First, we show (2.5) by induction on n.
[I] $n=1$
From (2.1), (2.2), (2.3) and (2.4), we have

$$
M_{1}(x) M_{2}(x) \cdots M_{k_{1}(x)}(x)=\left(\begin{array}{cc}
0 & \varepsilon_{\alpha, 1} \\
1 & c_{\alpha, 1}
\end{array}\right)=\left(\begin{array}{cc}
p_{\alpha, 0} & p_{\alpha, 1} \\
q_{\alpha, 0} & q_{\alpha, 1}
\end{array}\right) .
$$

[II] Suppose we have

$$
M_{1}(x) M_{2}(x) \cdots M_{k_{m}(x)}(x)=\left(\begin{array}{cc}
p_{\alpha, m-1} & p_{\alpha, m} \\
q_{\alpha, m-1} & q_{\alpha, m}
\end{array}\right)
$$

and

$$
\left(G_{\alpha}\right)^{k_{m}(x)}(x)=T_{\alpha}^{m}(x)=: y .
$$

Then, we see

$$
M_{k_{m}(x)+1}(x) M_{k_{m}(x)+2}(x) \cdots M_{k_{m+1}(x)}(x)=M_{1}(y) M_{2}(y) \cdots M_{k_{1}(y)}(y)
$$

since $k_{1}(y)=k_{m+1}(x)-k_{m}(x)$. Thus,

$$
M_{k_{m}(x)+1}(x) \cdots M_{k_{m+1}(x)}(x)=\left(\begin{array}{cc}
0 & \varepsilon_{\alpha, 1}(y) \\
1 & c_{\alpha, 1}(y)
\end{array}\right)=\left(\begin{array}{cc}
0 & \varepsilon_{\alpha, m+1}(x) \\
1 & c_{\alpha, m+1}(x)
\end{array}\right)
$$

Hence, we have

$$
M_{1}(x) M_{2}(x) \cdots M_{k_{m+1}(x)}(x)=\left(\begin{array}{cc}
p_{\alpha, m-1} & p_{\alpha, m} \\
q_{\alpha, m-1} & q_{\alpha, m}
\end{array}\right)\left(\begin{array}{cc}
0 & \varepsilon_{\alpha, m+1} \\
1 & c_{\alpha, m+1}
\end{array}\right)=\left(\begin{array}{cc}
p_{\alpha, m} & p_{\alpha, m+1} \\
q_{\alpha, m} & q_{\alpha, m+1}
\end{array}\right) .
$$

Moreover, we see that

$$
\left(G_{\alpha}\right)^{k_{m+1}(x)}(x)=\left(G_{\alpha}\right)^{k_{m+1}(x)-k_{m}(x)}\left(\left(G_{\alpha}\right)^{k_{m}(x)}(x)\right)=T_{\alpha}\left(T_{\alpha}^{m}(x)\right)=T_{\alpha}^{m+1}(x)
$$

Consequently, we have

$$
M_{1}(x) M_{2}(x) \cdots M_{k_{n}(x)}(x)=\left(\begin{array}{cc}
p_{\alpha, n-1} & p_{\alpha, n} \tag{2.7}\\
q_{\alpha, n-1} & q_{\alpha, n}
\end{array}\right) \quad \text { for any } \quad n \geq 1
$$

Next, we prove (2.6). If $\left(G_{\alpha}\right)^{k_{n}(x)}(x)=T_{\alpha}^{n}(x)>0$, then $\varepsilon_{\alpha, n+1}(x)=1$, otherwise $\varepsilon_{\alpha, n+1}(x)=-1$. So by (2.7), we see that

$$
\begin{aligned}
M_{1}(x) M_{2}(x) \cdots M_{k_{n}(x)+t}(x) & =\left(\begin{array}{ll}
p_{\alpha, n-1} & p_{\alpha, n} \\
q_{\alpha, n-1} & q_{\alpha, n}
\end{array}\right)\left(\begin{array}{cc}
\varepsilon_{\alpha, n+1} & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)^{t-1} \\
& =\left(\begin{array}{ll}
p_{\alpha, n-1} & p_{\alpha, n} \\
q_{\alpha, n-1} & q_{\alpha, n}
\end{array}\right)\left(\begin{array}{cc}
\varepsilon_{\alpha, n+1} & 0 \\
t & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
u_{\alpha, n, t} & p_{\alpha, n} \\
v_{\alpha, n, t} & q_{\alpha, n}
\end{array}\right)
\end{aligned}
$$

for $1 \leq t<c_{\alpha, n+1}$.
The following is a direct consequence of Theorem 1.
Corollary 2. We have

$$
\left(M_{1}(x) M_{2}(x) \cdots M_{l}(x)\right)(\infty)=\left\{\begin{array}{lc}
\frac{p_{\alpha, n-1}}{q_{\alpha, n-1}} & \text { if } \quad l=k_{n}(x), n \geq 1 \\
\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}} & \text { if } \quad l=k_{n}(x)+t \\
1 \leq t<c_{\alpha, n+1}, \quad n \geq 0
\end{array}\right.
$$

REMARK. In [3], the regular mediant convergents were obtained as

$$
\left(M_{1}(x) M_{2}(x) \cdots M_{l-1}(x)\right)(1) .
$$

3. The convergence of the approximation

In this section, we discuss the convergence of the α-mediant convergents to x. We put

$$
x_{l}=\left(G_{\alpha}\right)^{l}(x) \text { for } l \geq 0 .
$$

From the definitions of G_{α} and M_{n} in $\S 2$, we see that

$$
\begin{equation*}
x=\left(M_{1}(x) M_{2}(x) \cdots M_{l}(x)\right)\left(x_{l}\right) . \tag{3.1}
\end{equation*}
$$

First, we show the fundamental formulas concerning the error of the α-principal and the α mediant convergents to x.

PROPOSITION 2.
(i) If $l=k_{n}(x), n \geq 1$,

$$
q_{\alpha, n-1}^{2}\left|x-\frac{p_{\alpha, n-1}}{q_{\alpha, n-1}}\right|=\frac{1}{\left|x_{l}-\left(-\frac{q_{\alpha, n}}{q_{\alpha, n-1}}\right)\right|}
$$

(ii) If $l=k_{n}(x)+t, 1 \leq t<c_{\alpha, n+1}, n \geq 0$,

$$
v_{\alpha, n, t}^{2}\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|=\frac{1}{\left|x_{l}-\left(-\frac{q_{\alpha, n}}{v_{\alpha, n, t}}\right)\right|}
$$

REmARK. We note that

$$
\left(M_{1}(x) M_{2}(x) \cdots M_{l}(x)\right)^{-1}(\infty)= \begin{cases}-\frac{q_{\alpha, n}}{q_{\alpha, n-1}} & \text { if } \quad l=k_{n}(x), n \geq 1 \\ -\frac{q_{\alpha, n}}{v_{\alpha, n, t}} & \text { if } \quad l=k_{n}(x)+t \\ 1 \leq t<c_{\alpha, n+1}, \quad n \geq 0\end{cases}
$$

see Theorem 1.
Proof. (i) If $l=k_{n}(x), n \geq 1$, from (3.1) and (2.5), we see that
$q_{\alpha, n-1}^{2}\left|x-\frac{p_{\alpha, n-1}}{q_{\alpha, n-1}}\right|=q_{\alpha, n-1}^{2}\left|\frac{p_{\alpha, n-1} x_{l}+p_{\alpha, n}}{q_{\alpha, n-1} x_{l}+q_{\alpha, n}}-\frac{p_{\alpha, n-1}}{q_{\alpha, n-1}}\right|=\frac{1}{\left|x_{l}-\left(-\frac{q_{\alpha, n}}{q_{\alpha, n-1}}\right)\right|}$.
(ii) From (3.1) and (2.6), we conclude the assertion by the same calculation.

From this proposition, it is possible to show that the sequence of the α-mediant convergents certainly converges to x. However, this convergence also follows from Theorem 2 below. To prove it, we need the following lemma.

Lemma 3. For $n \geq 0$, we have
(i) $v_{\alpha, n, 1}>q_{\alpha, n-1}$,
(ii) $v_{\alpha, n, t}>(t-1) q_{\alpha, n}$ for $2 \leq t<c_{\alpha, n+1}$.

Proof. If $t \geq 2$, then

$$
v_{\alpha, n, t}=t \cdot q_{\alpha, n} \pm q_{\alpha, n-1}>(t-1) q_{\alpha, n}
$$

since $q_{\alpha, n}$ is strictly increasing.
Suppose that $t=1$. If $\varepsilon_{\alpha, n+1}=-1$, then either $\varepsilon_{\alpha, n}=-1$ and $c_{\alpha, n} \geq 3$ or $\varepsilon_{\alpha, n}=1$ and $c_{\alpha, n} \geq 2$ holds, see H. Nakada [5], p. 403. In the first case, we have

$$
v_{\alpha, n, t}=q_{\alpha, n}-q_{\alpha, n-1} \geq 3 q_{\alpha, n-1}-q_{\alpha, n-2}-q_{\alpha, n-1}>q_{\alpha, n-1}
$$

In the latter case,

$$
v_{\alpha, n, t}=q_{\alpha, n}-q_{\alpha, n-1} \geq 2 q_{\alpha, n-1}+q_{\alpha, n-2}-q_{\alpha, n-1}>q_{\alpha, n-1}
$$

This completes the proof of this lemma.
From Proposition 2 (ii) and Lemma 3, we have the following theorem which implies the convergence of $\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}$ to x.

THEOREM 2. For $n \geq 0$ and $1 \leq t<c_{\alpha, n+1}$, we have

$$
\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|<\frac{1}{q_{\alpha, n} \cdot q_{\alpha, n-1}} .
$$

Proof. If $l \neq k_{n}(x)$, we see $x_{l}>0$. From Proposition 2 (ii), we see

$$
\begin{aligned}
\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|= & \frac{1}{v_{\alpha, n, t}^{2}} \frac{1}{\left|x_{l}-\left(-\frac{q_{\alpha, n}}{v_{\alpha, n, t}}\right)\right|} \\
= & \frac{1}{v_{\alpha, n, t}}\left|\frac{1}{v_{\alpha, n, t} x_{l}+q_{\alpha, n}}\right| \\
= & \frac{1}{v_{\alpha, n, t}}\left|\frac{1}{\left(t \cdot q_{\alpha, n}+\varepsilon_{\alpha, n+1} \cdot q_{\alpha, n-1}\right) x_{l}+q_{\alpha, n}}\right| \\
& <\frac{1}{v_{\alpha, n, t}} \cdot \frac{1}{q_{\alpha, n}}
\end{aligned}
$$

Then from Lemma 3, we have the assertion of the theorem.
The above theorem shows that $\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|$ is bounded by $\frac{1}{q_{\alpha, n-1}^{2}}$. However, next theorem shows that $v_{\alpha, n, t}^{2}\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|$ is not bounded by any absolute constant.

THEOREM 3. We have the following:
(i) $\limsup _{\substack{1 \leq t<c_{\alpha, n+1} \\ n \rightarrow \infty}} v_{\alpha, n, t}^{2}\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|=\infty \quad$ (a.e. x),
(ii) $\quad \liminf _{\substack{1 \leq t<c_{\alpha, n+1} \\ n \rightarrow \infty}} v_{\alpha, n, t}^{2}\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|<2 \quad$ if $\quad c_{\alpha, n+1} \geq 2$ occur infinitely often.

Proof. Suppose $c_{\alpha, n+1}>4 M$ for any sufficiently large M. Let $l=k_{n}(x)+t, t=$ $\left[\frac{c_{\alpha, n+1}}{2}\right]$. Since $\left(G_{\alpha}\right)^{k_{n}(x)}(x)=T_{\alpha}^{n}(x)$ and $\left[\left|\frac{1}{T_{\alpha}^{n}(x)}\right|\right]_{\alpha}=c_{\alpha, n+1}$, we see that

$$
\frac{1}{c_{\alpha, n+1}+\alpha}<\left|\left(G_{\alpha}\right)^{k_{n}(x)}(x)\right| \leq \frac{1}{c_{\alpha, n+1}-1+\alpha}
$$

Hence, from Lemma 2,

$$
\frac{1}{c_{\alpha, n+1}-\left[\frac{c_{\alpha, n+1}}{2}\right]+\alpha}<x_{l} \leq \frac{1}{c_{\alpha, n+1}-1-\left[\frac{c_{\alpha, n+1}}{2}\right]+\alpha} .
$$

Thus we have

$$
\begin{equation*}
x_{l}<\frac{2}{c_{\alpha, n+1}-4} . \tag{3.2}
\end{equation*}
$$

By Lemma 3 (ii), we have

$$
\left(\frac{c_{\alpha, n+1}}{2}-2\right) q_{\alpha, n}<\left(\left[\frac{c_{\alpha, n+1}}{2}\right]-1\right) q_{\alpha, n}<v_{\alpha, n, t}
$$

and so

$$
\begin{equation*}
\frac{q_{\alpha, n}}{v_{\alpha, n, t}}<\frac{2}{c_{\alpha, n+1}-4} . \tag{3.3}
\end{equation*}
$$

From Proposition 2 (ii), (3.2) and (3.3), we have

$$
v_{\alpha, n, t}^{2}\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right| \geq \frac{1}{\left|\frac{2}{c_{\alpha, n+1}-4}+\frac{2}{c_{\alpha, n+1}-4}\right|}=\frac{\left|c_{\alpha, n+1}-4\right|}{4}>M-1
$$

By the ergodicity of T_{α}, there exist infinitely many such n 's for almost every x. On the other hand, if we choose $t=1$ with any $n \geq 0$ such that $c_{\alpha, n+1} \geq 2$, we have

$$
v_{\alpha, n, 1}^{2}\left|x-\frac{u_{\alpha, n, 1}}{v_{\alpha, n, 1}}\right|=\frac{1}{\left|x_{l}-\left(-\frac{q_{\alpha, n}}{v_{\alpha, n, 1}}\right)\right|}=\frac{1}{\left|x_{l}+\frac{q_{\alpha, n}}{q_{\alpha, n} \pm q_{\alpha, n-1}}\right|}<\frac{q_{\alpha, n} \pm q_{\alpha, n-1}}{q_{\alpha, n}}<2
$$

since $x_{l}>0$ and $q_{\alpha, n}>q_{\alpha, n-1}$. This completes the proof of the theorem.
Recall $x_{l}=\left(M_{1}(x) M_{2}(x) \cdots M_{l}(x)\right)^{-1}(x)$. From the remark after Proposition 2, we see that the explicit value of $q_{\alpha, n}^{2}\left|x-\frac{p_{\alpha, n}}{q_{\alpha, n}}\right|$ or $v_{\alpha, n, t}^{2}\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|$ is determined by the images of
x and ∞ by $\left(M_{1}(x) M_{2}(x) \cdots M_{l}(x)\right)^{-1}$. This leads us to the notion of the natural extension of G_{α}, which is defined in next section.

4. Natural extension of G_{α}

In this section, we discuss the distribution of $v_{\alpha, n, t}^{2}\left|x-\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}\right|$ using a 2-dimensional map $\widehat{G_{\alpha}}$, which is called the natural extension of G_{α}.

We define the map $\widehat{G_{\alpha}}$ of $\widehat{\mathbf{J}_{\alpha}}$ as follows:

$$
\widehat{\mathbf{J}}_{\alpha}=\left\{\begin{array}{l}
{\left[\alpha-1, \frac{1-2 \alpha}{\alpha}\right) \times\left[-\infty,-\frac{\sqrt{5}+3}{2}\right] \cup\left[\frac{1-2 \alpha}{\alpha}, 0\right) \times[-\infty,-2] \cup[0, \alpha)} \\
\quad \times[-\infty, 0] \cup\left[\alpha, \frac{1-\alpha}{\alpha}\right) \times\left[-\frac{\sqrt{5}+1}{2}, 0\right] \cup\left[\frac{1-\alpha}{\alpha}, \frac{\alpha}{1-\alpha}\right) \times[-1,0] \\
\cup\left[\frac{\alpha}{1-\alpha}, \frac{1}{\alpha}\right] \times\left[-\frac{\sqrt{5}-1}{2}, 0\right] \quad \text { if } \frac{1}{2} \leq \alpha \leq \frac{\sqrt{5}-1}{2} \\
{[\alpha-1,0) \times[-\infty,-2] \cup[0, \alpha) \times[-\infty, 0] \cup\left[\alpha, \frac{1}{\alpha}\right] \times[-1,0]} \\
\text { if } \frac{\sqrt{5}-1}{2} \leq \alpha \leq 1
\end{array}\right.
$$

and

$$
\widehat{G_{\alpha}}(x, y)= \begin{cases}\left(-\frac{x}{1+x},-\frac{y}{1+y}\right) & \text { if } x \in \mathbf{J}_{\alpha, 1} \\ \left(\frac{x}{1-x}, \frac{y}{1-y}\right) & \text { if } x \in \mathbf{J}_{\alpha, 2} \\ \left(\frac{1-x}{x}, \frac{1-y}{y}\right) & \text { if } x \in \mathbf{J}_{\alpha, 3}\end{cases}
$$

From Proposition 2 (ii), we see that the deviation of the α-mediant convergent $\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}$ from x normalized by $v_{\alpha, n, t}^{2}$ is equal to $\left|\frac{1}{x_{l}-y_{l}}\right|$ with $\left(x_{l}, y_{l}\right)={\widehat{G_{\alpha}}}^{l}(x, \infty), l=\sum_{i=1}^{n} k_{i}(x)+t$ for $x \in \mathbf{J}_{\alpha}, 1 \leq t<c_{\alpha, n+1}$. A number of properties associated to the approximation by α mediant convergents are obtained by dynamical behaviors of this map. One of the important applications which are obtained from the construction of $\widehat{G_{\alpha}}$ is the derivation of the density function of the absolutely continuous invariant measure for G_{α}. In the rest of this section, the most of proofs can be completed by routine calculation, and therefore, we will only sketch the ideas involved.

Proposition 3. $\widehat{G_{\alpha}}$ is a one-to-one onto map of $\widehat{\mathbf{J}_{\alpha}}$ modulo a set of Lebesgue measure 0.

Proof. We put

$$
\widehat{\mathbf{J}_{\alpha, i}}=\left\{(x, y) \in \widehat{\mathbf{J}_{\alpha}}: x \in \mathbf{J}_{\alpha, i}\right\}, \quad i=1,2,3
$$

and

$$
\widehat{\mathbf{K}_{\alpha, i}}=\widehat{G_{\alpha}} \widehat{\mathbf{J}_{\alpha, i}}, \quad i=1,2,3 .
$$

It is easy to see the following:
case (i) $\frac{1}{2} \leq \alpha \leq \frac{\sqrt{5}-1}{2}$

$$
\begin{aligned}
\widehat{\mathbf{K}_{\alpha, 1}}= & {\left[0, \frac{2 \alpha-1}{1-\alpha}\right] \times[-2,-1] \cup\left[\frac{2 \alpha-1}{1-\alpha}, \frac{1-\alpha}{\alpha}\right] \times\left[-\frac{\sqrt{5}+1}{2},-1\right] } \\
\widehat{\mathbf{K}_{\alpha, 2}}= & {\left[0, \frac{\alpha}{1-\alpha}\right] \times[-1,0] \cup\left[\frac{\alpha}{1-\alpha}, \frac{1}{\alpha}\right] \times\left[-\frac{\sqrt{5}-1}{2}, 0\right] } \\
\widehat{\mathbf{K}_{\alpha, 3}}= & {\left[\alpha-1, \frac{1-2 \alpha}{\alpha}\right] \times\left[-\infty,-\frac{\sqrt{5}+3}{2}\right] \cup\left[\frac{1-2 \alpha}{\alpha}, \frac{2 \alpha-1}{1-\alpha}\right] \times[-\infty,-2] } \\
& \cup\left[\frac{2 \alpha-1}{1-\alpha}, \alpha\right] \times\left[-\infty,-\frac{\sqrt{5}+1}{2}\right]
\end{aligned}
$$

case (ii) $\quad \frac{\sqrt{5}-1}{2} \leq \alpha \leq 1$

$$
\begin{aligned}
& \widehat{\mathbf{K}_{\alpha, 1}}=\left[0, \frac{1-\alpha}{\alpha}\right] \times[-2,-1], \\
& \widehat{\mathbf{K}_{\alpha, 2}}=\left[0, \frac{1}{\alpha}\right] \times[-1,0], \\
& \widehat{\mathbf{K}_{\alpha, 3}}=\left[\alpha-1, \frac{1-\alpha}{\alpha}\right] \times[-\infty,-2] \cup\left[\frac{1-\alpha}{\alpha}, \alpha\right] \times[-\infty,-1] .
\end{aligned}
$$

Then we see

- $\widehat{G_{\alpha}}$ maps $\widehat{\mathbf{J}_{\alpha, i}}$ to $\widehat{\mathbf{K}_{\alpha, i}}$ one-to-one and onto fashion,
- $\bigcup_{i=1}^{3} \widehat{\mathbf{K}_{\alpha, i}}=\widehat{\mathbf{J}_{\alpha}}$,
- the interiors of $\widehat{\mathbf{K}_{\alpha, i}}, i=1,2,3$, are disjoint from each other.

Hence, we have the assertion of this proposition.
Proposition 4. The measure $\widehat{\mu_{\alpha}}$ given by the density function $\widehat{h_{\alpha}}(x, y)=\frac{1}{(x-y)^{2}}$ is an invariant measure for $\widehat{G_{\alpha}}$.

Proof. It is easy to check that

$$
\widehat{h_{\alpha}}\left(\widehat{G_{\alpha}}(x, y)\right) \cdot\left|\operatorname{det}\left(D \widehat{G_{\alpha}}(x, y)\right)\right| \cdot{\widehat{h_{\alpha}}}^{-1}(x, y)=1 \quad \text { (a.e.), }
$$

which implies the assertion of this proposition, where $\operatorname{det}\left(D \widehat{G_{\alpha}}(x, y)\right)$ denotes the determinant of the Jacobian matrix $D \widehat{G_{\alpha}}(x, y)$.

REMARK.

$$
\iint_{\widehat{\mathbf{J}_{\alpha}}} \widehat{h_{\alpha}}(x, y) d x d y=\infty .
$$

THEOREM 4. The dynamical system $\left(\widehat{\mathbf{J}_{\alpha}}, \widehat{G_{\alpha}}, \widehat{\mu_{\alpha}}\right)$ is ergodic.
Proof. We put

$$
\widehat{\mathbf{I}_{\alpha}}= \begin{cases}{\left[\alpha-1, \frac{1-2 \alpha}{\alpha}\right) \times\left[-\infty,-\frac{\sqrt{5}+3}{2}\right] \cup\left[\frac{1-2 \alpha}{\alpha}, \frac{2 \alpha-1}{1-\alpha}\right) \times[-\infty,-2]} \\ \cup\left[\frac{2 \alpha-1}{1-\alpha}, \alpha\right] \times\left[-\infty,-\frac{\sqrt{5}+1}{2}\right] & \text { if } \quad \frac{1}{2} \leq \alpha \leq \frac{\sqrt{5}-1}{2}, \\ {\left[\alpha-1, \frac{1-\alpha}{\alpha}\right) \times[-\infty,-2] \cup\left[\frac{1-\alpha}{\alpha}, \alpha\right] \times[-\infty,-1]} & \text { if } \quad \frac{\sqrt{5}-1}{2} \leq \alpha \leq 1 .\end{cases}
$$

It is not so hard to see that $\widehat{\mathbf{I}_{\alpha}}$ is invariant under the map $(x, y) \mapsto{\widehat{G_{\alpha}}}^{k_{1}(x)}(x, y)$ and this map is the induced transformation $\left(\widehat{G_{\alpha}}\right)_{\mathbf{I}_{\alpha}}$ of $\widehat{G_{\alpha}}$. It is also possible to show that $\widehat{G_{\alpha}}{ }^{k_{1}(\cdot)}$ is isomorphic to the map $\widehat{T_{\alpha}}$ of H. Nakada [5], via the isomorphism $(x, w) \mapsto\left(x,-\frac{1}{w}\right)$. Since $\widehat{T_{\alpha}}$ is ergodic, so are $\left(\widehat{G_{\alpha}}\right)_{\widehat{\mathbf{I}_{\alpha}}}$ and ${\widehat{G_{\alpha}}}^{k_{1}(x)}(x, y) \in \widehat{\mathbf{I}_{\alpha}}$ for any $(x, y) \in \widehat{\mathbf{J}_{\alpha}}$. Then we have the ergodicity of $\widehat{G_{\alpha}}$ from the ergodicity of $\left(\widehat{G_{\alpha}}\right)_{\widehat{\mathbf{I}_{\alpha}}}$.

REMARK. For the notion of the induced transformation and its ergodicity, we refer to K. Petersen [8].

We put

$$
h_{\alpha}(x)=\int_{\left\{y:(x, y) \in \widehat{\left.\mathbf{J}_{\alpha}\right\}}\right.} \widehat{h_{\alpha}}(x, y) d y .
$$

Then, we have the following corollaries:
Corollary 3. The measure μ_{α}, which is defined by $d \mu_{\alpha}(x)=h_{\alpha}(x) d x$, is infinite and G_{α}-invariant.

Corollary 4. The dynamical system $\left(\mathbf{J}_{\alpha}, G_{\alpha}, \mu_{\alpha}\right)$ is ergodic.
Next proposition shows that a number of " $\widehat{\mu_{\alpha}}$-a.e. (x, y) " properties induce " μ_{α}-a.e. x ".

Proposition 5. For any $(x, z) \in \widehat{\mathbf{J}_{\alpha}}$, we put $\left(x_{l}, z_{l}\right)={\widehat{G_{\alpha}}}^{l}(x, z)$. Then we see

$$
\lim _{l \rightarrow \infty}\left|z_{l}-y_{l}\right|=0
$$

where $\left(x_{l}, y_{l}\right)={\widehat{G_{\alpha}}}^{l}(x, \infty)$.
Proof. For $(x, z) \in \widehat{\mathbf{I}_{\alpha}}$, it is possible to show that

$$
\lim _{n \rightarrow \infty}\left|z_{k_{n}(x)}-y_{k_{n}(x)}\right|=0 .
$$

Then the rest of the proof is easy.
By this proposition and the ratio ergodic theorem, we can get some metric properties of the α-mediant convergents, which were given by Sh. Ito for the regular case, see [3]. However we do not discuss them in detail. For basic facts on ergodic theory, we refer to K. Petersen [8].

For example, we can get the following:
Put

$$
\frac{\eta_{l}}{\xi_{l}}:=\left(M_{1}(x) M_{2}(x) \cdots M_{l}(x)\right)(\infty) .
$$

Then, for almost every $x \in \mathbf{I}_{\alpha}$, we have

$$
\frac{\sharp\left\{n: 1 \leq n \leq N, \xi_{l}^{2}\left|x-\frac{\eta_{l}}{\xi_{l}}\right|<t\right\}}{\sharp\left\{n: 1 \leq n \leq N, \xi_{l}^{2}\left|x-\frac{\eta_{l}}{\xi_{l}}\right|<t^{\prime}\right\}}=\frac{t}{t^{\prime}} \quad \text { for any } \quad 0<t, t^{\prime} \leq c_{\alpha},
$$

where

$$
c_{\alpha}= \begin{cases}\frac{\alpha}{\frac{\sqrt{5}-1}{2}-\alpha+1} & \text { if } \quad \frac{1}{2} \leq \alpha \leq \alpha^{*} \\ 1-\alpha & \text { if } \quad \alpha^{*}<\alpha \leq \frac{\sqrt{5}-1}{2} \\ \frac{\alpha}{1+\alpha} & \text { if } \quad \frac{\sqrt{5}-1}{2}<\alpha<1 \\ 1 & \text { if } \quad \alpha=1\end{cases}
$$

and α^{*} is the unique positive root of $\alpha^{2}+\sqrt{5} \alpha-\frac{\sqrt{5}-1}{2}=0$.

5. Some properties of the α-mediant convergents

The aim of this section is to describe relations between the α-mediant convergents and the regular mediant convergents. At first, we give a coding method which translates the α continued fraction expansion of x to the regular continued fraction expansion of x (if $0 \leq$
$x \leq \alpha$) or $1+x$ (if $\alpha-1 \leq x<0$).
We suppose that

$$
x=\frac{\varepsilon_{\alpha, 1} \mid}{\mid c_{\alpha, 1}}+\frac{\varepsilon_{\alpha, 2} \mid}{\mid c_{\alpha, 2}}+\frac{\varepsilon_{\alpha, 3} \mid}{\mid c_{\alpha, 3}}+\cdots \quad \text { for } \quad x \in \mathbf{I}_{\alpha}
$$

and

$$
x=\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{3}}+\cdots \quad \text { if } \quad 0 \leq x \leq \alpha
$$

or

$$
1+x=\frac{1 \mid}{\mid a_{1}}+\frac{1 \mid}{\mid a_{2}}+\frac{1 \mid}{\mid a_{3}}+\cdots \quad \text { if } \quad \alpha-1 \leq x<0
$$

We put $l_{n}=l_{n}(x):=\sharp\left\{1 \leq k \leq n: \varepsilon_{\alpha, k}(x)=-1\right\}$. Note that $l_{1}=1$ and $a_{1}=1$ if $x<0$ (equivalently $\varepsilon_{\alpha, 1}=-1$).

Lemma 4.

(i) $a_{n+l_{n}}=c_{\alpha, n}$ and $l_{n+1}=l_{n}$ if $\left(\varepsilon_{\alpha, n}, \varepsilon_{\alpha, n+1}\right)=(1,1)$
(ii) $a_{n+l_{n}}=c_{\alpha, n}-1, a_{n+l_{n}+1}=1$ and $l_{n+1}=l_{n}+1$ if $\left(\varepsilon_{\alpha, n}, \varepsilon_{\alpha, n+1}\right)=(1,-1)$
(iii) $a_{n+l_{n}}=c_{\alpha, n}-1$ and $l_{n+1}=l_{n}$ if $\left(\varepsilon_{\alpha, n}, \varepsilon_{\alpha, n+1}\right)=(-1,1)$
(iv) $a_{n+l_{n}}=c_{\alpha, n}-2, a_{n+l_{n}+1}=1$ and $l_{n+1}=l_{n}+1$ if $\left(\varepsilon_{\alpha, n}, \varepsilon_{\alpha, n+1}\right)=(-1,-1)$

Proof. The assertions follow from a discussion in §3, [6].
This lemma implies that we can determine $a_{1}, \cdots, a_{n+l_{n}}$ when $\left(\varepsilon_{\alpha, 1}, c_{\alpha, 1}\right), \cdots$, $\left(\varepsilon_{\alpha, n}, c_{\alpha, n}\right)$ are given and, moreover, $a_{n+l_{n}+1}=1$ if $\varepsilon_{\alpha, n+1}=-1$. Now we see that the following repetition of a rational number occurs in the sequence of the α-mediant convergents and such a rational number is a regular principal convergent.

Proposition 6. Suppose that $x \in \mathbf{I}_{\alpha}$ and $\varepsilon_{\alpha, n+1}(x)=-1$, then we have

$$
\frac{u_{\alpha, n, 1}(x)}{v_{\alpha, n, 1}(x)}=\frac{u_{\alpha, n-1, c_{\alpha, n}-1}(x)}{v_{\alpha, n-1, c_{\alpha, n}-1}(x)}=\frac{p_{n+l_{n}}(x)}{q_{n+l_{n}}(x)} .
$$

PROOF. We note that if $c_{\alpha, n}=1$, then $\varepsilon_{\alpha, n+1}=1$. In other words, $\varepsilon_{\alpha, n+1}=-1$ implies $c_{\alpha, n} \geq 2$. From the definition (1.2), we see

$$
\begin{aligned}
\frac{u_{\alpha, n, 1}}{v_{\alpha, n, 1}} & =\frac{1 \cdot p_{\alpha, n}-p_{\alpha, n-1}}{1 \cdot q_{\alpha, n}-q_{\alpha, n-1}} \\
& =\frac{c_{\alpha, n} p_{\alpha, n-1}+\varepsilon_{\alpha, n} p_{\alpha, n-2}-p_{\alpha, n-1}}{c_{\alpha, n} q_{\alpha, n-1}+\varepsilon_{\alpha, n} q_{\alpha, n-2}-q_{\alpha, n-1}} \\
& =\frac{\left(c_{\alpha, n}-1\right) p_{\alpha, n-1}+\varepsilon_{\alpha, n} p_{\alpha, n-2}}{\left(c_{\alpha, n}-1\right) q_{\alpha, n-1}+\varepsilon_{\alpha, n} q_{\alpha, n-2}}
\end{aligned}
$$

$$
=\frac{u_{\alpha, n-1, c_{\alpha, n}-1}}{v_{\alpha, n-1, c_{\alpha, n}-1}} .
$$

Hence, we have the first equality of the assertion.
Next, we consider the second equality. We only show it in the case of $0 \leq x \leq \alpha$. For $\alpha-1 \leq x<0$, the proof is essentially the same since $\frac{p_{n}(1+x)}{q_{n}(1+x)}=\frac{p_{n}(x)}{q_{n}(x)}+1$. By using Lemma 4, we have

$$
\frac{p_{\alpha, n}}{q_{\alpha, n}}= \begin{cases}\frac{p_{n+l_{n}}}{q_{n+l_{n}}} & \text { if } \quad \varepsilon_{\alpha, n+1}=1 \tag{5.1}\\ \frac{p_{n+l_{n}+1}}{q_{n+l_{n}+1}} & \text { if } \\ \varepsilon_{\alpha, n+1}=-1\end{cases}
$$

In particular, if $\varepsilon_{\alpha, n+1}=-1$, then $a_{n+l_{n}+1}=1$ and

$$
\left\{\begin{array}{l}
p_{n+l_{n}+1}=p_{n+l_{n}}+p_{n+l_{n}-1} \tag{5.2}\\
q_{n+l_{n}+1}=q_{n+l_{n}}+q_{n+l_{n}-1}
\end{array}\right.
$$

On the other hand, by (5.1),

$$
\begin{equation*}
\frac{p_{\alpha, n-1}}{q_{\alpha, n-1}}=\frac{p_{n-1+l_{n}}}{q_{n-1+l_{n}}} \tag{5.3}
\end{equation*}
$$

since $l_{n}=l_{n-1}$ if $\varepsilon_{\alpha, n}=1$ and $l_{n}=l_{n-1}+1$ if $\varepsilon_{\alpha, n}=-1$, respectively. Hence, from (5.1), (5.3) and (5.2), we have

$$
\frac{u_{\alpha, n, 1}}{v_{\alpha, n, 1}}=\frac{p_{\alpha, n}-p_{\alpha, n-1}}{q_{\alpha, n}-q_{\alpha, n-1}}=\frac{p_{n+l_{n}+1}-p_{n+l_{n}-1}}{q_{n+l_{n}+1}-q_{n+l_{n}-1}}=\frac{p_{n+l_{n}}}{q_{n+l_{n}}} .
$$

Next theorem explains how the α-mediant convergents of level n correspond to the regular mediant and the regular principal convergents.

Theorem 5. Suppose that $x \in \mathbf{I}_{\alpha}$. The set of the α-mediant convergents of level n coincides with the following:
(i) the set of the regular mediant convergents of level $n+l_{n}(x)+1$ and the $\left(n+l_{n}(x)\right)$ th regular principal convergents if $\left(\varepsilon_{\alpha, n+1}, \varepsilon_{\alpha, n+2}\right)=(-1,1)$
(ii) the set of the regular mediant convergents of level $n+l_{n}(x)+1$, the $\left(n+l_{n}(x)-\right.$ 1)th regular principal convergents and the $\left(n+l_{n}(x)+2\right)$ th regular principal convergents if $\left(\varepsilon_{\alpha, n+1}, \varepsilon_{\alpha, n+2}\right)=(-1,-1)$
(iii) the set of the regular mediant convergents of level $n+l_{n}(x)$ if $\left(\varepsilon_{\alpha, n+1}, \varepsilon_{\alpha, n+2}\right)=$ $(1,1)$
(iv) the set of the regular mediant convergents of level $n+l_{n}(x)$ and the $\left(n+l_{n}(x)+1\right)$ th regular principal convergents if $\left(\varepsilon_{\alpha, n+1}, \varepsilon_{\alpha, n+2}\right)=(1,-1)$

Proof. (i) We assume $x \geq 0$. If $\varepsilon_{\alpha, n+1}=-1$ and $\varepsilon_{\alpha, n+2}=1$, then from (5.1), (5.3) and (5.2), we have

$$
\begin{aligned}
u_{\alpha, n, t} & =t \cdot p_{\alpha, n}-p_{\alpha, n-1} \\
& =t \cdot p_{n+l_{n}+1}-p_{n+l_{n}-1} \\
& =t\left(p_{n+l_{n}}+p_{n+l_{n}-1}\right)-p_{n+l_{n}-1} \\
& =u_{n+l_{n}+1, t-1}
\end{aligned}
$$

and

$$
v_{\alpha, n, t}=v_{n+l_{n}+1, t-1}
$$

for $2 \leq t<c_{\alpha, n+1}=a_{n+l_{n}+2}+1$. In the case $x<0$, we use $\frac{p_{m}(1+x)}{q_{m}(1+x)}=\frac{p_{m}(x)}{q_{m}(x)}+1$ and get the same conclusion. Thus

$$
\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}=\frac{u_{n+l_{n}+1, t-1}}{v_{n+l_{n}+1, t-1}} \quad \text { for } \quad 2 \leq t<a_{n+l_{n}+2}+1
$$

For $t=1$, by Proposition 6,

$$
\frac{u_{\alpha, n, 1}}{v_{\alpha, n, 1}}=\frac{p_{n+l_{n}}}{q_{n+l_{n}}}
$$

Consequently, we have

$$
\left\{\frac{u_{\alpha, n, t}}{v_{\alpha, n, t}}: 1 \leq t<c_{\alpha, n+1}\right\}=\left\{\frac{p_{n+l_{n}}}{q_{n+l_{n}}}\right\} \cup\left\{\frac{u_{n+l_{n}+1, t-1}}{v_{n+l_{n}+1, t-1}}: 2 \leq t<a_{n+l_{n}+2}+1\right\} .
$$

This completes the proof of the assertion (i). (ii), (iii) and (iv) follow in the same way.
As a corollary of Theorem 5, we claim that the set of the α-principal and the α-mediant convergents coincides with the set of the regular principal and the regular mediant convergents.

Corollary 5. For any $\alpha, \frac{1}{2} \leq \alpha<1$ and $x \in \mathbf{I}_{\alpha}$,

$$
\begin{aligned}
&\left\{\frac{p_{\alpha, n}(x)}{q_{\alpha, n}(x)}: n \geq 1\right\} \cup\left\{\frac{u_{\alpha, n, t}(x)}{v_{\alpha, n, t}(x)}: 1 \leq t<c_{\alpha, n+1}, n \geq 0\right\} \\
&=\left\{\frac{p_{n}(x)}{q_{n}(x)}: n \geq 1\right\} \cup\left\{\frac{u_{n, t}(x)}{v_{n, t}(x)}: 1 \leq t<a_{n+1}, n \geq 0\right\}
\end{aligned}
$$

Proof. The only regular principal convergents which are not α-principal convergents are $\frac{p_{n+l_{n}}}{q_{n+l_{n}}}$ with $\varepsilon_{\alpha, n+1}=-1$. However, these are α-mediant convergents, see Proposition 6 . Since $a_{n+l_{n}+1}=1$, there is no regular mediant convergent of level $n+l_{n}$ when $\varepsilon_{\alpha, n+1}=-1$.

Other mediant convergents are α-mediant convergents because of Theorem 5. Indeed, the α-mediant convergents of level n include the regular mediant convergents of level $n+l_{n}+1$ if $\varepsilon_{\alpha, n+1}=-1$. In this case, $l_{n+1}=l_{n}+1$. Then the next mediant convergent level is $(n+1)+l_{n+1}$. The same holds for the case $\varepsilon_{\alpha, n+1}=1$ (then $l_{n+1}=l_{n}$). This completes the proof of this corollary.

Finally we construct a map F_{α} which we call the α-Farey map of the second type. By this map F_{α}, we can also get the sequence of the α-mediant convergents without $\frac{u_{\alpha, n-1, c_{\alpha, n}-1}}{v_{\alpha, n-1, c_{\alpha, n}-1}}$ associated to $\varepsilon_{\alpha, n+1}=-1$, that is, without the repetition which was stated in Proposition 6 .

We put $\mathcal{J}_{\alpha}=[\alpha-1,1]$ for $\frac{1}{2} \leq \alpha \leq 1$ and define a new map F_{α} of \mathcal{J}_{α} by

$$
F_{\alpha}(x)=\left\{\begin{array}{ll}
V_{-}^{-1}(x)=-\frac{x}{1+x} & \text { if } \\
V_{+}^{-1}(x)=\frac{x}{1-x} & \text { if }
\end{array} \quad x \in\left[0, \frac{1}{2}\right)=: \mathcal{J}_{\alpha, 2}, \mathcal{J}_{\alpha, 1}, ~ \begin{array}{ll}
\\
\left(V_{+} U\right)^{-1}(x)=\frac{1-2 x}{x} & \text { if } \\
\quad x \in\left[\frac{1}{2}, \frac{1}{1+\alpha}\right]=: \mathcal{J}_{\alpha, 3} \\
U^{-1}(x)=\frac{1-x}{x} & \text { if }
\end{array} \quad x \in\left(\frac{1}{1+\alpha}, 1\right]=: \mathcal{J}_{\alpha, 4} .\right.
$$

Similarly as in §2, we put

$$
\mathcal{M}_{n}(x):=\left\{\begin{array}{lll}
V_{-} & \text {if } & \left(F_{\alpha}\right)^{n-1}(x) \in \mathcal{J}_{\alpha, 1} \\
V_{+} & \text {if } & \left(F_{\alpha}\right)^{n-1}(x) \in \mathcal{J}_{\alpha, 2} \\
V_{+} U & \text { if } & \left(F_{\alpha}\right)^{n-1}(x) \in \mathcal{J}_{\alpha, 3} \\
U & \text { if } & \left(F_{\alpha}\right)^{n-1}(x) \in \mathcal{J}_{\alpha, 4}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
k_{0}^{*}(x):=0 \\
k_{n}^{*}(x):=\min \left\{k>k_{n-1}(x):\left(F_{\alpha}\right)^{k-1}(x) \in \mathcal{J}_{\alpha, 3} \cup \mathcal{J}_{\alpha, 4}\right\}, n \geq 1
\end{array}\right.
$$

This means that we abbreviate $V_{+} U V_{-}$to $\left(V_{+} U\right) V_{-}$and get a new sequence $\mathcal{M}_{1}(x)$, $\mathcal{M}_{2}(x), \cdots$ from $M_{1}(x), M_{2}(x), \cdots$. Then it is easy to see the following.

THEOREM 6. For $x \in \mathbf{I}_{\alpha}$,

$$
\mathcal{M}_{1}(x) \mathcal{M}_{2}(x) \cdots \mathcal{M}_{l}(x)
$$

$$
= \begin{cases}\left(\begin{array}{ll}
p_{\alpha, n-1} & p_{\alpha, n} \\
q_{\alpha, n-1} & q_{\alpha, n}
\end{array}\right) & \text { if } l=k_{n}^{*}(x), n \geq 1 \\
\left(\begin{array}{ll}
u_{\alpha, n, t} & p_{\alpha, n} \\
v_{\alpha, n, t} & q_{\alpha, n}
\end{array}\right) & \text { if } \quad l=k_{n}^{*}(x)+t, n \geq 0 \\
\quad \text { with } \begin{cases}1 \leq t<c_{\alpha, n+1} & \text { if } \\
1 \leq t<c_{\alpha, n+1}-1 & \text { if } \\
1 \leq \alpha, n+1 & =1\end{cases} \end{cases}
$$

Thus we see that $\frac{u_{\alpha, n-1, c_{\alpha, n}-1}}{v_{\alpha, n-1, c_{\alpha, n}-1}}$ is removed whenever $\varepsilon_{\alpha, n+1}=-1$ by this abbreviation.
The author will discuss the α-Farey map of the second type from the ergodic theoretic point of view in [7].

References

[1] K. Dajani and C. Kraaikamp, The mother of all continued fractions, Colloq. Math. 84/85 (2000), part 1, 109-123.
[2] S. Isola, On the spectrum of Farey and Gauss maps, Nonlinearity 15 (2002), 1521-1539.
[3] Sh. ITO, Algorithms with mediant convergents and their metrical theory, Osaka J. Math. 26 (1989), 557-578.
[4] C. Kraaikamp, A new class of continued fraction expansions, Acta Arith. 57 (1991), 1-39.
[5] H. NAKADA, Metrical theory for a class of continued fraction transformations and their natural extension, Tokyo J. Math. 4 (1981), 399-426.
[6] H. NAKADA and R. NATSUI, Some metric properties of α-continued fractions, J. Number Theory. 97 (2002), 287-300.
[7] R. NATSUI, On the isomorphism problem of α-Farey maps, preprint.
[8] K. Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, 2. Cambridge University Press (1983).
[9] F. SCHWEIGER, Ergodic theory of fibred systems and metric number theory, Oxford Science Publications. The Clarendon Press, Oxford University Press (1995).

Present Address:
Department of Mathematics, Keio University,
Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.

