On a Theorem of Kawamoto on Normal Bases of Rings of Integers

Humio ICHIMURA

Yokohama City University
(Communicated by T. Kawasaki)

1. Introduction

A finite Galois extension L / K over a number field K has a relative normal integral basis (NIB for short) when \mathcal{O}_{L} is free over the group ring $\mathcal{O}_{K}[\operatorname{Gal}(L / K)]$. Here, \mathcal{O}_{L} (resp. \mathcal{O}_{K}) is the ring of integers of L (resp. K). It is well known by Noether that if L / K has a NIB, then L / K is tame (i.e., at most tamely ramified at all finite prime divisors). It is also well known by Hilbert and Speiser that when the base field K equals the rationals \mathbf{Q}, all tame abelian extensions L / \mathbf{Q} have a NIB. Recently, Greither et al. [3] proved that there exists no Hilbert-Speiser number field other than \mathbf{Q}. Namely, they proved that when $K \neq \mathbf{Q}$, there exist a prime number p and a tame cyclic extension L / K of degree p having no NIB.

On the other hand, Kawamoto [7, 8] obtained the following result. For a prime number p, let ζ_{p} be a fixed primitive p-th root of unity.

THEOREM 1 (Kawamoto). For a prime number p and a rational number $a \in \mathbf{Q}^{\times}$, the cyclic extension $\mathbf{Q}\left(\zeta_{p}, a^{1 / p}\right) / \mathbf{Q}\left(\zeta_{p}\right)$ has a NIB if it is tame.

In [2, Theorem 2.1], Gómez Ayala gave a necessary and sufficient condition for a tame Kummer extension of prime degree to have a NIB, and deduced Theorem 1 from this criterion. For a prime number p, we say that a number field F enjoys the property $\left(H_{p}\right)$ when for any element $a \in F^{\times}$, the cyclic extension $F\left(\zeta_{p}, a^{1 / p}\right) / F\left(\zeta_{p}\right)$ has a NIB if it is tame. Theorem 1 says that the rationals \mathbf{Q} satisfies the property $\left(H_{p}\right)$ for all p. Analogous to the result of Greither et al., it is shown in [5, IV] that when $F \neq \mathbf{Q}$, there exists a prime number p for which F does not satisfy $\left(H_{p}\right)$. For a prime number p and a number field F with $\zeta_{p} \in F^{\times}$, we gave, in [5, V, Propositions 1, 2], a necessary and sufficient condition for $\left(H_{p}\right)$ to be satisfied.

[^0]In this paper, we fix a prime number $p \geq 3$, and give some sufficient (resp. necessary) conditions for a number field F to satisfy $\left(H_{p}\right)$ in the general case where F does not necessarily contain ζ_{p}. The conditions are obtained by using [2, Theorem 2.1], and similarly to [5, V, Propositions 1, 2], they are given in terms of the class number, the ideal class group of F and the group of units of $K=F\left(\zeta_{p}\right)$. Using these, we prove the following results when $p=3$ and F is a quadratic field.

THEOREM 2. Let $p=3$ and $F=\mathbf{Q}(\sqrt{d})$ be an imaginary quadratic field with d a square free negative integer. Then, F enjoys the property $\left(H_{3}\right)$ if and only ifd $=-1,-2,-3$, or -11 .

Let $F=\mathbf{Q}(\sqrt{d})$ be a real quadratic field with d a square free positive integer, and let h_{F} be the class number of F and $\varepsilon=(t+u \sqrt{d}) / 2$ a fundamental unit of F. We write $t=t_{F}$ and $u=u_{F}$. We denote by λ (resp. μ) a prime number ≥ 5 with $\lambda \equiv 1 \bmod 4$ (resp. $\mu \equiv 3 \bmod 4$). When we write μ_{1} and μ_{2} (for example), we mean that μ_{1}, μ_{2} are different prime numbers ≥ 5 with $\mu_{1} \equiv \mu_{2} \equiv 3 \bmod 4$.

THEOREM 3. Let $p=3$ and $F=\mathbf{Q}(\sqrt{d})$ be a real quadratic field with d a square free positive integer. Then, F enjoys the property $\left(H_{3}\right)$ if and only if F satisfies the following three conditions;
i) d is of the form; $d=2,3,6, \lambda, \mu, 2 \mu, 3 \mu$, or $\mu_{1} \mu_{2}$.
ii) $h_{F}=1$,
iii) $3 \nmid u_{F}$, and further $3 \nmid t_{F}$ when $d \equiv-1 \bmod 3$.

Question. By Theorems 2 and 3, we have $h_{F}=1$ for any quadratic field F satisfying $\left(H_{3}\right)$. Does there exist a number field F with $h_{F}>1$ satisfying $\left(H_{p}\right)$ for some prime number $p \geq 3$?

This paper is organized as follows. In Section 2, we give a sufficient condition (resp. two necessary conditions) for a number field to satisfy $\left(H_{p}\right)$. In Section 3, we show the results in Section 2. We prove Theorems 2 and 3 in Section 5 after preparing many lemmas in Section 4.

2. Conditions for $\left(H_{p}\right)$

For a number field K, let E_{K} (resp. h_{K}) be the group of units (resp. class number) of K. For an integral ideal \mathfrak{A} of K, let [$\left.E_{K}\right]_{\mathfrak{A}}$ be the subgroup of the multiplicative group $\left(\mathcal{O}_{K} / \mathfrak{A}\right)^{\times}$consisting of classes containing units of K. For an integer $a \in \mathcal{O}_{K}$, we simply write $\mathcal{O}_{K} / a=\mathcal{O}_{K} / a \mathcal{O}_{K}$ and $\left[E_{K}\right]_{a}=\left[E_{K}\right]_{a \mathcal{O}_{K}}$. Let $p \geq 3$ be a fixed prime number, F a number field, and $K=F\left(\zeta_{p}\right)$. Then, we can naturally regard $\left(\mathcal{O}_{F} / p\right)^{\times}$as a subgroup of $\left(\mathcal{O}_{K} / p\right)^{\times}$. The following sufficient condition for $\left(H_{p}\right)$ is an immediate consequence of [2, Theorem 2.1].

PROPOSITION 1. Let $p \geq 3$ be a prime number, F a number field, and $K=F\left(\zeta_{p}\right)$. Assume that (i) $h_{F}=1$ and that (ii) $\left(\mathcal{O}_{F} / p\right)^{\times} \subseteq\left[E_{K}\right]_{p}$. Then, F satisfies the condition (H_{p}).

We give a criterion which assures the condition $\left(\mathcal{O}_{F} / p\right)^{\times} \subseteq\left[E_{K}\right]_{p}$. For a prime number p, let $\pi_{p}=\zeta_{p}-1$. When p is unramified in F, we can naturally regard $\left(\mathcal{O}_{F} / p\right)^{\times}$as a subgroup of $\left(\mathcal{O}_{K} / \pi_{p}\right)^{\times}$.

Proposition 2. Let p, F, K be as in Proposition 1. Assume that (a) p is unramified in F and that $(\mathrm{b})\left(\mathcal{O}_{F} / p\right)^{\times} \subseteq\left[E_{K}\right]_{\pi_{p}}$. Then, we have $\left(\mathcal{O}_{F} / p\right)^{\times} \subseteq\left[E_{K}\right]_{p}$.

Corollary 1. Let p, F, K be as in Proposition 1. Assume that $h_{F}=1$ and that the conditions of Proposition 2 are satisfied. Then, F satisfies the condition $\left(H_{p}\right)$.

Let us give necessary conditions for $\left(H_{p}\right)$. For a number field F, let $C l_{F}$ be the ideal class group in the usual sense.

Proposition 3. Let p, F, K be as in Proposition 1, and let $\ell=[K: F]$. Assume that F satisfies $\left(H_{p}\right)$. Then, all ideal classes of F capitulate in K. In particular, the exponent of Cl_{F} divides ℓ.

Proposition 4. Let p, F, K be as in Proposition 1. Assume that F satisfies $\left(H_{p}\right)$. Then, for any integer u of F relatively prime to p, we have $u \equiv \varepsilon \bmod \pi_{p}$ for some unit $\varepsilon \in E_{K}$.

The following is immediate from Corollary 1 and Proposition 4.
Corollary 2. Let p, F, K be as in Proposition 1. Assume that $h_{F}=1$ and that p is unramified in F. Then, F satisfies $\left(H_{p}\right)$ if and only if $\left(\mathcal{O}_{F} / p\right)^{\times} \subseteq\left[E_{K}\right]_{\pi_{p}}$.

REMARK 1. Let $p \geq 3$ be a prime number, $F=\mathbf{Q}$, and $K=\mathbf{Q}\left(\zeta_{p}\right)$. Then, the conditions of Proposition 2 are satisfied. Actually, for a rational integer $a \in \mathbf{Z}$ relatively prime to p, the cyclotomic unit $c_{a}=\left(\zeta_{p}^{a}-1\right) /\left(\zeta_{p}-1\right)$ satisfies the congruence $c_{a} \equiv a \bmod \pi_{p}$. Hence, Theorem 1 of Kawamoto follows form Corollary 1. Further, by Proposition 2, we have $\mathbf{F}_{p}^{\times}=(\mathbf{Z} / p)^{\times} \subseteq\left[E_{K}\right]_{p}$, which we use in an argument in Section 4.

REmARK 2. Let F be a totally real number field and $K=F(\sqrt{-1})$. In [6, Corollary 4], a result corresponding to Proposition 1 is given for cyclic quartic extensions $K\left(a^{1 / 4}\right) / K$ with $a \in F^{\times}$.

3. Proofs of Propositions

3.1. A theorem of Gómez Ayala. Let us first recall a theorem of Gómez Ayala [2, Theorem 2.1] mentioned in Sections 1 and 2. Let p be a prime number, and K a number field. Let \mathfrak{A} be an integral ideal of K which is p-th power free in the semi-group of integral ideals of K. Then, we can uniquely write

$$
\mathfrak{A}=\prod_{i=1}^{p-1} \mathfrak{A}_{i}{ }^{i}
$$

for some square free integral ideals \mathfrak{A}_{i} of K relatively prime to each other. The associated ideals \mathfrak{B}_{j} of \mathfrak{A} are defined by

$$
\begin{equation*}
\mathfrak{B}_{j}=\prod_{i=1}^{p-1} \mathfrak{A}_{i}{ }^{[i j / p]} \quad(0 \leq j \leq p-1) . \tag{2}
\end{equation*}
$$

Here, for a real number $x,[x]$ denotes the largest integer with $[x] \leq x$. By the definition, we have $\mathfrak{B}_{0}=\mathfrak{B}_{1}=\mathcal{O}_{K}$.

TheOrem 4 (Gómez Ayala). Let p be a prime number and K a number field with $\zeta_{p} \in K^{\times}$. Then, a cyclic extension L / K of degree p is tame and has a NIB if and only if there exists an integer a of K relatively prime to p satisfying the following four conditions;
i) $L=K\left(a^{1 / p}\right)$,
ii) the integral ideal $a \mathcal{O}_{K}$ is p-th power free,
iii) the associated ideals \mathfrak{B}_{j} of $a \mathcal{O}_{K}$ defined by (1) and (2) are principal, and finally,
iv) letting $\alpha=a^{1 / p}$, the congruence

$$
A=\sum_{j=0}^{p-1} \frac{\alpha^{j}}{x_{j}} \equiv 0 \bmod p
$$

holds for some generators x_{j} of the principal ideals \mathfrak{B}_{j}.
Further, when this is the case, the integer $\omega=A / p$ is a generator of a NIB of L / K; namely, $\mathcal{O}_{L}=\mathcal{O}_{K}[\operatorname{Gal}(L / K)] \cdot \omega$.

The following assertion is a special case of this theorem. (For this, see [5, I, Theorem 2].)

Lemma 1. Let p, K be as in Theorem 4. Let a be an integer of K relatively prime to p such that the integral principal ideal $a \mathcal{O}_{K}$ is square free. Then, the cyclic extension $K\left(a^{1 / p}\right) / K$ has a NIB if and only if a satisfies the congruence $a \equiv \varepsilon^{p} \bmod \pi_{p}^{p}$ for some unit $\varepsilon \in E_{K}$.

The following lemma is well known (cf. Washington [14, Exercises 9.2, 9.3]).
Lemma 2. Let p, K be as in Theorem 4. For an element $a \in K^{\times}$relatively prime to p, the cyclic extension $K\left(a^{1 / p}\right) / K$ is tame if and only if the congruence $a \equiv u^{p} \bmod \pi_{p}^{p}$ holds for some integer $u \in \mathcal{O}_{K}$.

3.2. Proofs of Propositions 1 and 2

Proof of Proposition 1. Let a be an element of F^{\times}such that $K\left(a^{1 / p}\right) / K$ is tame. Then, as $h_{F}=1$, we may as well assume that a is an integer of F relatively prime to p and
that the integral ideal $a \mathcal{O}_{F}$ is p-th power free. Let \mathfrak{B}_{j} be the ideals of F associated to $a \mathcal{O}_{F}$ by (1) and (2). Since K / F is unramified outside p, the integral ideal $a \mathcal{O}_{K}$ of K is also p-th power free and the ideals $\mathfrak{B}_{j}^{\prime}=\mathfrak{B}_{j} \mathcal{O}_{K}$ are associated to $a \mathcal{O}_{K}$.

As $K\left(a^{1 / p}\right) / K$ is tame, we have $a \equiv u^{p} \bmod \pi_{p}^{p}$ for some $u \in \mathcal{O}_{K}$ by Lemma 2. Taking the norm from K to F, we see that $a \equiv v^{p} \bmod \pi_{p}^{p}$ for some $v \in \mathcal{O}_{F}$. By the condition (ii) of Proposition $1, v \equiv \varepsilon \bmod p$ for some unit $\varepsilon \in E_{K}$. Hence, we obtain

$$
\begin{equation*}
a \equiv \varepsilon^{p} \bmod \pi_{p}^{p} \quad \text { with } \varepsilon \in E_{K} \tag{3}
\end{equation*}
$$

As $h_{F}=1$, we have $\mathfrak{B}_{j}=x_{j} \mathcal{O}_{F}$ for some $x_{j} \in \mathcal{O}_{F}$. By (ii), $x_{j} \equiv \eta_{j} \bmod p$ for some unit $\eta_{j} \in E_{K}$. Letting $y_{j}=x_{j} \eta_{j}^{-1} \in \mathcal{O}_{K}$, we have $\mathfrak{B}_{j}^{\prime}=y_{j} \mathcal{O}_{K}$ and $y_{j} \equiv 1 \bmod p$. Now, letting $\alpha=a^{1 / p}$, we see that

$$
\sum_{j=0}^{p-1} \frac{\alpha^{j}}{y_{j} \varepsilon^{j}} \equiv \sum_{j}\left(\frac{\alpha}{\varepsilon}\right)^{j} \equiv 0 \bmod p
$$

Here, the second congruence holds by (3). Therefore, $K\left(a^{1 / p}\right) / K$ has a NIB by Theorem 4.

Proof of Proposition 2. Let \wp_{1}, \cdots, \wp_{r} be the prime ideals of F over p, and f_{i} the degree of \wp_{i}. Let f be the least common multiple of f_{1}, \cdots, f_{r}, and $q=p^{f}$. Then, for any $x \in \mathcal{O}_{F}$, we have $x^{q} \equiv x \bmod \wp_{i}$. This implies $x^{q} \equiv x \bmod p$ as p is unramified in F (the condition (a)). Let $x \in \mathcal{O}_{F}$ be an integer relatively prime to p. By (b), we have $x \equiv \varepsilon \bmod \pi_{p}$ for some unit $\varepsilon \in E_{K}$. Then, it follows that $x^{p} \equiv \varepsilon^{p} \bmod p$. Raising to the q / p-th power, we obtain $x \equiv x^{q} \equiv \varepsilon^{q} \bmod p$.

3.3. Proofs of Propositions 3 and 4

Proof of Proposition 3. Let \wp be a prime ideal of F with $\wp \nmid p$, and e the order of the ideal class of F containing \wp. Then, $\wp^{e}=b_{1} \mathcal{O}_{F}$ for some $b_{1} \in \mathcal{O}_{F}$. By the Chebotarev density theorem, there exists a principal prime ideal $\mathfrak{L}=b_{2} \mathcal{O}_{F}$ such that $b=b_{1} b_{2} \equiv$ $1 \bmod \pi_{p}^{p}$. As $K\left(b^{1 / p}\right) / K$ is tame, it has a NIB by the assumption of Proposition 3. Hence, there exists an integer a of K relatively prime to p such that $K\left(a^{1 / p}\right)=K\left(b^{1 / p}\right)$ and the principal ideal $a \mathcal{O}_{K}$ satisfies the conditions (ii) and (iii) of Theorem 4. Let \mathfrak{B}_{j} be the ideals of K associated to $a \mathcal{O}_{K}$ by (1) and (2). By the condition (iii), they are principal ideals. As $K\left(a^{1 / p}\right)=K\left(b^{1 / p}\right)$, we have $a=b^{s} x^{p}$ for some $1 \leq s \leq p-1$ and $x \in K^{\times}$. Writing $e s=p f+t$ with $0 \leq t \leq p-1$, we obtain

$$
a \mathcal{O}_{K}=\left(\wp \mathcal{O}_{K}\right)^{t}\left(\mathfrak{L} \mathcal{O}_{K}\right)^{s}\left(x \wp \wp^{f} \mathcal{O}_{K}\right)^{p}
$$

By (ii), the integral ideal $a \mathcal{O}_{K}$ is p-th power free. Then, we must have $x \wp^{f} \mathcal{O}_{K}=\mathcal{O}_{K}$ in the above equality. Hence, we obtain

$$
\begin{equation*}
a \mathcal{O}_{K}=\left(\wp \mathcal{O}_{K}\right)^{t}\left(b_{2} \mathcal{O}_{K}\right)^{s} \tag{4}
\end{equation*}
$$

From $x \wp^{f} \mathcal{O}_{K}=\mathcal{O}_{K}$, it follows that $\wp^{\ell f}=\left(N_{K / F} x^{-1}\right) \mathcal{O}_{F}$ where $\ell=[K: F]$. Hence, we obtain $e \mid \ell f$. The condition $t=0$ (namely, $e s=p f$ and $f \neq 0$) contradicts this divisibility as $p \nmid \ell s$. Thus, we obtain $1 \leq t \leq p-1$. When $t=1$, it is clear from (4) that $\wp \mathcal{O}_{K}$ is principal. When $2 \leq t \leq p-1$, we can choose an integer j with $2 \leq j \leq p-1$ so that $[j t / p]=1$. Then, from (2) and (4), we see that \mathfrak{B}_{j} equals $\wp \mathcal{O}_{K}$ times a principal ideal. Therefore, $\wp \mathcal{O}_{K}$ is a principal ideal as so is \mathfrak{B}_{j}.

Proof of Proposition 4. Let u be an integer of F relatively prime to p. By the Chebotarev density theorem, there exists a principal prime ideal $\mathfrak{L}=a \mathcal{O}_{F}$ of F such that $a \equiv u^{p} \bmod \pi_{p}^{p}$. By the assumption, $K\left(a^{1 / p}\right) / K$ has a NIB as it is tame. Then, by Lemma 1 , we have $a \equiv \varepsilon^{p} \bmod \pi_{p}^{p}$ for some unit $\varepsilon \in E_{K}$. Hence, we obtain $u \equiv \varepsilon \bmod \pi_{p}$.

4. Lemmas

In this section, we prepare many lemmas which are necessary for proving Theorems 2 and 3. For a finite abelian group A and integers $n_{i} \in \mathbf{Z}(1 \leq i \leq r)$, we write $A=$ $\left(n_{1}, \cdots, n_{r}\right)$ when A is isomorphic to the additive group $\mathbf{Z} / n_{1} \oplus \cdots \oplus \mathbf{Z} / n_{r}$. For a number field F and an integer $a \in \mathcal{O}_{F}$, we denote by $\left\langle a_{1}, \cdots, a_{s}\right\rangle_{a}$ the subgroup of $\left(\mathcal{O}_{F} / a\right)^{\times}$generated by the classes containing integers $a_{1}, \cdots, a_{s} \in \mathcal{O}_{F}$ relatively prime to a. For an element α of a quadratic field, let $N \alpha$ denote the norm of α to \mathbf{Q}. First, we show the following:

LEMMA 3. Let $p \geq 3$ be a prime number. Let $F=\mathbf{Q}(\sqrt{d})$ be a real quadratic field with a square free positive integer d, and $\varepsilon=(t+u \sqrt{d}) / 2$ a fundamental unit of F. If $p \mid d$ and $p \nmid u$, then we have $\left(\mathcal{O}_{F} / p\right)^{\times} \subseteq\left[E_{K}\right]_{p}$. Here, $K=F\left(\zeta_{p}\right)$.

Proof. We have $\left(\mathcal{O}_{F} / p\right)^{\times}=(p-1, p)$ as $p \mid d$. We naturally have $\mathbf{F}_{p}^{\times}=(\mathbf{Z} / p)^{\times} \subseteq$ $\left(\mathcal{O}_{F} / p\right)^{\times}$. We have seen in Remark 1 that \mathbf{F}_{p}^{\times}is contained in $\left[E_{K}\right]_{p}$. As $p \nmid u$, we see that $\varepsilon^{4} \not \equiv 1 \bmod p$. On the other hand, we see that

$$
\varepsilon^{4 p} \equiv(t / 2)^{4} \equiv 1 \bmod p
$$

since $p \mid d$ and $1=N \varepsilon^{2} \equiv(t / 2)^{4} \bmod p$. Hence, the order of the class containing ε^{4} is of order p. Therefore, we obtain $\left(\mathcal{O}_{F} / p\right)^{\times} \subseteq\left[E_{K}\right]_{p}$.

Secondly, we recall a result of Hasse [4, Section 26] on unit index of imaginary abelian fields. Let K / \mathbf{Q} be an imaginary $(2,2)$-extension with $\zeta_{3} \in K^{\times}$, and Q_{K} the unit index of K. Let $K^{+}=\mathbf{Q}\left(\sqrt{d_{0}}\right)$ be the maximal real subfield of K, and $\mathbf{Q}\left(\sqrt{-d_{1}}\right)$ the imaginary quadratic subfield different from $\mathbf{Q}(\sqrt{-3})$. Here, d_{0}, d_{1} are square free positive integers. Let ε_{0} be the fundamental unit of K^{+}with $\varepsilon_{0}>1$. The following lemma is an immediate consequence of the formulas (assertions) (8), (10), (11) and (12) in [4, Section 26].

Lemma 4. Under the above setting, the following assertions on Q_{K} hold.
(I) When $d_{1}=1$, we have $Q_{K}=2$, and a fundamental unit ε of K satisfies $\varepsilon^{2}=$ $\sqrt{-1} \cdot \varepsilon_{0}$.
(II) When $3 \mid d_{1}$, we have $Q_{K}=1$.
(III) When $d_{1}>1$ and $3 \nmid d_{1}$, we have $Q_{K}=2$ if and only if there exists an integer γ_{0} of K^{+}such that $N \gamma_{0}= \pm 3$. Further, when this is the case, we can choose a fundamental unit ε of K so that $\varepsilon^{2}=-\varepsilon_{0}$.

In the following, we let $p=3$ and let $F=\mathbf{Q}(\sqrt{d})$ be a quadratic field (real or imaginary) with $F \neq \mathbf{Q}(\sqrt{-3})$, and $K=F(\sqrt{-3})$. Here, d is a square free integer. Let $F^{*}=\mathbf{Q}(\sqrt{-3 d})$ be the quadratic field associated to F.

LEMMA 5. Let $F=\mathbf{Q}(\sqrt{d})$ be an imaginary quadratic field with $d \neq-1$, -3 . If the prime number 3 is unramified in F and $Q_{K}=1$, then F does not satisfy $\left(H_{3}\right)$.

Proof. Let ε be a fundamental unit of the real quadratic field F^{*}. We have $\varepsilon \equiv$ $\pm 1 \bmod \pi_{3}$ as 3 is ramified in F^{*}. Then, as $Q_{K}=1$, it follows that $\left[E_{K}\right]_{\pi_{3}}=\langle-1\rangle_{\pi_{3}}$. Therefore, we obtain $\left(\mathcal{O}_{F} / 3\right)^{\times} \nsubseteq\left[E_{K}\right]_{\pi_{3}}$, and hence F does not satisfy $\left(H_{3}\right)$ by Proposition 4.

LEMMA 6. Let $F=\mathbf{Q}(\sqrt{d})$ be a real quadratic field with a fundamental unit $\varepsilon=$ $(t+u \sqrt{d}) / 2$. Assume that 3 is unramified in F and $Q_{K}=1$. Then, the following assertions hold :
(I) When $d \equiv 1 \bmod 3$, we have $\left(\mathcal{O}_{F} / 3\right)^{\times} \subseteq\left[E_{K}\right]_{\pi_{3}}$ if and only if $3 \nmid u$.
(II) When $d \equiv-1 \bmod 3$, we have $\left(\mathcal{O}_{F} / 3\right)^{\times} \subseteq\left[E_{K}\right]_{\pi_{3}}$ if and only if $3 \nmid t u$.

Namely, the inclusion $\left(\mathcal{O}_{F} / 3\right)^{\times} \subseteq\left[E_{K}\right]_{\pi_{3}}$ holds if and only if the condition (iii) of Theorem 3 is satisfied.

Proof. We have $\left(\mathcal{O}_{F} / 3\right)^{\times}=\left(\mathcal{O}_{K} / \pi_{3}\right)^{\times}=(2,2)$ or (8) according to whether $d \equiv$ $1 \bmod 3$ or $d \equiv-1 \bmod 3$. As $Q_{K}=1$, we have $\left[E_{K}\right]_{\pi_{3}}=\langle-1, \varepsilon\rangle_{\pi_{3}}$.

First, let $d \equiv 1 \bmod 3$. If $3 \mid u$, then $\left(\mathcal{O}_{F} / 3\right)^{\times} \nsubseteq\left[E_{K}\right]_{\pi_{3}}$ as $\varepsilon \equiv \pm 1 \bmod 3$. Assume that $3 \nmid u$. Then, as $N \varepsilon= \pm 1$, it follows that $3 \mid t$ and hence $\varepsilon \equiv \pm \sqrt{d} \bmod \pi_{3}$. However, we see that $\sqrt{d} \not \equiv \pm 1 \bmod \pi_{3}$ as 3 is unramified in F. Hence, we obtain $\left(\mathcal{O}_{F} / 3\right)^{\times} \subseteq\left[E_{K}\right]_{\pi_{3}}$.

Next, let $d \equiv-1 \bmod 3$. If $3 \mid t u$, we easily see that $\varepsilon^{4} \equiv 1 \bmod \pi_{3}$, and hence $\left(\mathcal{O}_{F} / 3\right)^{\times} \nsubseteq\left[E_{K}\right]_{\pi_{3}}$. Assume that $3 \nmid t u$. Then, we may as well assume that $\varepsilon \equiv 1+$ $\sqrt{d} \bmod \pi_{3}$. We see that $\varepsilon^{4} \equiv d \equiv-1 \bmod \pi_{3}$, and hence $\left(\mathcal{O}_{F} / 3\right)^{\times} \subseteq\left[E_{K}\right]_{\pi_{3}}$.

We recall some lemmas from Kubota [9]. An ideal \mathfrak{A} of F is called an ambiguous ideal when $\mathfrak{A}^{s}=\mathfrak{A}, s$ being the nontrivial automorphism of F.

Lemma 7 ([9, Hilfsatz 15]). Let $c \in C l_{F}$ be an ideal class of F. If c capitulates in K, then $c^{2}=1$ and c contains an ambiguous ideal of F.

Let A_{F} be the group of ambiguous ideals of F, and \tilde{A}_{F} its lift to K. Let $k=\mathbf{Q}(\sqrt{-3})(\subseteq$ $K)$. Let $A_{F^{*}}, \tilde{A}_{F^{*}}$ and A_{k}, \tilde{A}_{k} be the corresponding objects for F^{*} and k, respectively. In the group of ideals of K, let A be the subgroup generated by $\tilde{A}_{F}, \tilde{A}_{F^{*}}$ and \tilde{A}_{k}. Let B be the group of principal ideals $x \mathcal{O}_{K}$ of K such that $\left(x \mathcal{O}_{K}\right)^{2}=y \mathcal{O}_{K}$ for some $y \in \mathbf{Q}^{\times}$. Clearly,
we have $B \subseteq A$. Let t be the number of prime numbers which ramify in K. Let E_{K}^{*} be the subgroup of E_{K} generated by all units of the intermediate fields F, F^{*} and k whose norm to Q are 1.

Lemma 8 ([9, Hilfsatz 16]). Under the above setting, we have $[A: B]=2^{t-3}\left[E_{K}\right.$: $\left.E_{K}^{*}\right]$.

We easily see that $\tilde{A}_{F} \tilde{A}_{k}=\tilde{A}_{F^{*}} \tilde{A}_{k}=A$ and $\tilde{A}_{k} \subseteq B$. Therefore, from the above lemma, we obtain the following assertion.

Lemma 9. (I) If all ideal classes of F capitulate in K, then we have $2^{t-3}\left[E_{K}\right.$: $\left.E_{K}^{*}\right]=1$.
(II) Assume that the exponent of $C l_{F}$ divides 2 and that each ideal class of F contains an ambiguous ideal. Then, all ideal classes of F capitulate in K if and only if $2^{t-3}\left[E_{K}\right.$: $\left.E_{K}^{*}\right]=1$.

REMARK 3. It is known that any ideal class of F of order 2 contains an ambiguous ideal when F is imaginary or when F is real and $N \varepsilon=-1, \varepsilon$ being a fundamental unit of F.

Finally, we prepare some lemmas to deal with the case where $d=3 \ell$ is a square free integer divisible by 3 and $\ell \neq 1$. Let $d=3 \ell$ be such an integer. Then, $\left(\mathcal{O}_{F} / 3\right)^{\times}=(2,3)$. Further, $\left(\mathcal{O}_{K} / 3\right)^{\times}=(3,3,8)$ when $\ell \equiv 1 \bmod 3$, and $\left(\mathcal{O}_{K} / 3\right)^{\times}=(6,6)$ when $\ell \equiv$ $-1 \bmod 3$. Let ε be a fundamental unit of K. Note that $\sqrt{-1} \notin K^{\times}$as $\ell \neq 1$. Then, we have $E_{K}=\left\langle-1, \zeta_{3}, \varepsilon\right\rangle$, and we may as well assume that ε^{2} is a real unit by Lemma 4.

LEMMA 10. Under the above setting, assume that the order of the class $\bar{\varepsilon} \in\left(\mathcal{O}_{K} / 3\right)^{\times}$ is a power of 2 . Let x be an integer of F with $(x, 3)=1$ such that the class \bar{x} in $\left(\mathcal{O}_{F} / 3\right)^{\times}$is of order 3. Then, there exist no units $\delta, \eta \in E_{K}$ such that

$$
x \equiv \delta+\eta \bmod 3 \quad \text { and } \quad \delta \equiv \eta \bmod \pi_{3}
$$

Proof. We may as well assume that $\varepsilon \not \equiv 1 \bmod 3 \operatorname{replacing} \varepsilon$ with $-\varepsilon$ if necessary. Then, as the order of $\bar{\varepsilon}$ is a power of 2 , we see that $\left[E_{K}\right]_{3}=\left\langle\varepsilon, \zeta_{3}\right\rangle_{3}=\left(2^{\alpha}, 3\right)$ for some $\alpha \geq 1$ or $\left[E_{K}\right]_{3}=\left\langle-1, \varepsilon, \zeta_{3}\right\rangle_{3}=(2,2,3)$. The second case can occur only when $\ell \equiv-1 \bmod 3$. To show the assertion, let us assume, to the contrary, that x satisfies the above congruence. Then, we see from the above that

$$
x \equiv \pm\left(\zeta_{3}^{a}+\zeta_{3}^{b}\right) \varepsilon^{c} \bmod 3
$$

for some $a, b, c \in \mathbf{Z}$. Here, the $-\operatorname{sign}$ is necessary only when $\left[E_{K}\right]_{3}=(2,2,3)$. Note that $\zeta_{3}^{a}+\zeta_{3}^{b} \equiv-1,-\zeta_{3},-\zeta_{3}^{2} \bmod 3$. Then, it follows from the above congruence that $x \equiv \zeta_{3}^{r} \bmod 3$ for some r because of the assumptions on the orders of $\bar{\varepsilon}$ and \bar{x}. As $\left(\mathcal{O}_{F} / 3\right)^{\times}=$ $(2,3)$, we may as well assume that $x=1+\sqrt{3 \ell}$. Then, from $x \equiv \zeta_{3}^{r} \bmod 3$, we obtain $\sqrt{3 \ell} \equiv 0 \bmod 3$ or $\sqrt{-\ell} \equiv \pm 1 \bmod \pi_{3}$. However, we easily see that this is impossible.

REMARK 4. Let $K^{+}=\mathbf{Q}\left(\sqrt{d_{0}}\right)$ be the maximal real subfield of K, and $\varepsilon_{0}=(t+$ $\left.u \sqrt{d_{0}}\right) / 2$ a fundamental unit of K^{+}. When the prime 3 is unramified in K^{+}, the assumption on ε in Lemma 10 is satisfied. This is because of $\varepsilon_{0}^{8} \equiv 1 \bmod 3$ and Lemma 4. When 3 is ramified in K^{+}and $3 \mid u$, the assumption is satisfied by Lemma 4 since $\varepsilon_{0} \equiv \pm 1 \bmod 3$.

LEMMA 11. Under the setting and the assumption of Lemma 10 , let $a \in \mathcal{O}_{K}$ be an integer of K with $a \notin\left(K^{\times}\right)^{3}$ and $a \equiv 1 \bmod \pi_{3}^{3}$. Let $\alpha=a^{1 / 3}\left(\equiv 1 \bmod \pi_{3}\right)$. Then, for an integer $x \in \mathcal{O}_{F}$ with $(x, 3)=1$, the congruence

$$
\begin{equation*}
\delta_{0}+\delta_{1} \alpha+\frac{\delta_{2} \alpha^{2}}{x} \equiv 0 \bmod 3 \tag{5}
\end{equation*}
$$

holds for some units $\delta_{0}, \delta_{1}, \delta_{2} \in E_{K}$ if and only if $x \equiv \pm 1 \bmod 3$.
Proof. As $\alpha \equiv 1 \bmod \pi_{3}$, we have $1+\alpha+\alpha^{2} \equiv 0 \bmod 3$. Hence, the"if" part holds with $\delta_{0}=\delta_{1}=1$ and $\delta_{2}= \pm 1$. Let us show the "only if" part. Let $x \in \mathcal{O}_{F}$ be an integer with $(x, 3)=1$ satisfying the congruence (5). To show $x \equiv \pm 1 \bmod 3$, let us assume, to the contrary, that $x \not \equiv \pm 1 \bmod 3$. As $\left(\mathcal{O}_{F} / 3\right)^{\times}=(2,3)$, we may as well assume that the class $\bar{x} \in\left(\mathcal{O}_{F} / 3\right)^{\times}$is of order 3 replacing x with $-x$ if necessary. It follows from (5) and $1+\alpha+\alpha^{2} \equiv 0 \bmod 3$ that

$$
\left(\delta_{0}-\delta_{2} / x\right)+\left(\delta_{1}-\delta_{2} / x\right) \alpha \equiv 0 \bmod 3
$$

Replacing α with $\zeta_{3} \alpha$, we have

$$
\left(\delta_{0}-\delta_{2} / x\right)+\left(\delta_{1}-\delta_{2} / x\right) \zeta_{3} \alpha \equiv 0 \bmod 3
$$

Subtracting the second congruence from the first one, we obtain

$$
\begin{equation*}
\delta_{0} / \delta_{2} \equiv \delta_{1} / \delta_{2} \equiv 1 / x \bmod \pi_{3} \tag{6}
\end{equation*}
$$

Then, it also follows that

$$
\frac{\delta_{0}-\delta_{2} / x}{\pi_{3}}+\frac{\delta_{1}-\delta_{2} / x}{\pi_{3}} \alpha \equiv 0 \bmod \pi_{3}
$$

As $\alpha \equiv 1 \bmod \pi_{3}$, it follows from the last congruence that

$$
\begin{equation*}
1 / x \equiv\left(-\delta_{0} / \delta_{2}\right)+\left(-\delta_{1} / \delta_{2}\right) \bmod 3 \tag{7}
\end{equation*}
$$

However, the congruences (6) and (7) can not simultaneously hold by Lemma 10.
Lemma 12. Under the setting and the assumption of Lemma 10, there exist infinitely many classes $\bar{a} \in F^{\times} /\left(F^{\times}\right)^{3}$ for which the cyclic extension $K\left(a^{1 / 3}\right) / K$ is tame but has no NIB. Namely, F does not satisfy $\left(H_{3}\right)$.

Proof. By the Chebotarev density theorem, there exist infinitely many couples $\left(\mathfrak{L}_{1}, \mathfrak{L}_{2}\right)$ of principal prime ideals $\mathfrak{L}_{1}=b_{1} \mathcal{O}_{F}$ and $\mathfrak{L}_{2}=b_{2} \mathcal{O}_{F}$ of F such that $b_{1} \equiv b_{2} \equiv$ $1+\sqrt{3 \ell} \bmod \pi_{3}^{3}$. Put $b=b_{1} b_{2}^{2}$ and $b^{\prime}=b_{2} b_{1}^{2}$. Then, $b \equiv b^{\prime} \equiv 1 \bmod \pi_{3}^{3}$ and the cyclic cubic extension $K\left(b^{1 / 3}\right)=K\left(b^{1 / 3}\right)$ over K is tame. Assume that this extension has a NIB.

Then, there exists an integer $a \in \mathcal{O}_{K}$ with $K\left(a^{1 / 3}\right)=K\left(b^{1 / 3}\right)$ satisfying the conditions of Theorem 4. We have $a=b^{s} y^{3}$ for $s \in\{1,2\}$ and some $y \in K^{\times}$. When $s=1, \eta=y$ is a unit of K as the ideal $a \mathcal{O}_{K}$ is cubic power free, and $a=b \eta^{3}$. When $s=2, \eta=b_{2} y$ is a unit of K, and $a=b^{\prime} \eta^{3}$. Therefore, replacing a with $a \eta^{-3}$, we may as well assume that $a \equiv 1 \bmod \pi_{3}^{3}$ (as in Lemma 11). Let \mathfrak{B}_{j} be the ideals of K associated to $a \mathcal{O}_{K}$ by (1) and (2). By the definition, $\mathfrak{B}_{0}=\mathfrak{B}_{1}=\mathcal{O}_{K}$, and $\mathfrak{B}_{2}=\mathfrak{L}_{2} \mathcal{O}_{K}=b_{2} \mathcal{O}_{K}$ or $\mathfrak{B}_{2}=\mathfrak{L}_{1} \mathcal{O}_{K}=b_{1} \mathcal{O}_{K}$ according to whether $s=1$ or 2 . Therefore, by the condition (iv) of Theorem 4, letting $\alpha=a^{1 / 3}$ and $x=b_{1}$ or b_{2}, the congruence (5) holds for some units $\delta_{0}, \delta_{1}, \delta_{2} \in E_{K}$. However, this is impossible by Lemma 11 since the class $\bar{x} \in\left(\mathcal{O}_{F} / 3\right)^{\times}$is of order 3 .

LEmma 13. Let $d=3 \ell>0$ be a square free positive integer divisible by 3 with $\ell \neq 1, F=\mathbf{Q}(\sqrt{d})$, and $\varepsilon_{0}=(t+u \sqrt{d}) / 2$ a fundamental unit of F. Under the above setting, assume that $h_{F}=2,3 \nmid u$ and $Q_{K}=1$. Then, there exist infinitely many classes $\bar{a} \in F^{\times} /\left(F^{\times}\right)^{3}$ for which the cyclic extension $K\left(a^{1 / 3}\right) / K$ is tame but has no NIB. Namely, F does not satisfy $\left(H_{3}\right)$.

Proof. As $Q_{K}=1$, the prime ideal \wp_{3} of F over 3 is not principal by Lemma 4 (III). Let $\wp \ell$ be the product of distinct prime ideals of F dividing ℓ. As $\wp 3 \wp \ell=\sqrt{d} \mathcal{O}_{F}$, the ideal class containing $\wp \ell$ is of order 2. Let $C l_{F}\left(\wp_{3}^{3}\right)$ be the ray class group of F defined modulo \wp_{3}^{3}. As $3 \nmid u$ and $3 \mid d$, we see that the quotient group of $\left(\mathcal{O}_{F} / \wp_{3}^{3}\right)^{\times}$modulo $\left[E_{F}\right]_{\wp_{3}^{3}}$ is a cyclic group of order 3. Hence, it follows that $C l_{F}\left(\wp_{3}^{3}\right)$ is a cyclic group of order 6 as $h_{F}=2$. Let \mathfrak{L}_{1} and \mathfrak{L}_{2} be prime ideals of F contained in one class $\in C l_{F}\left(\wp \rho_{3}^{3}\right)$ of order 6 . Then, we have $\mathfrak{L}_{1} \mathfrak{L}_{2}^{5}=c \mathcal{O}_{F}$ for some integer $c \in \mathcal{O}_{F}$ such that $c \equiv 1 \bmod \pi_{3}^{3}$. In the usual class group $C l_{F}$, the ideals $\mathfrak{L}_{1}, \mathfrak{L}_{2}$ and $\wp \ell$ are contained in the same class as $h_{F}=2$. Then, as $\wp_{\ell} \mathcal{O}_{K}=\sqrt{-\ell} \mathcal{O}_{K}$, we see that $\mathfrak{L}_{i} \mathcal{O}_{K}=x_{i} \mathcal{O}_{K}$ for some $x_{i} \in \mathcal{O}_{K}$ such that

$$
c=x_{1} x_{2}^{5} \quad \text { and } \quad \frac{x_{i}}{\sqrt{-\ell}} \in E_{K} \cdot F^{\times} .
$$

As $3 \nmid u$ and $3 \mid d$, we have $\left(\mathcal{O}_{F} / 3\right)^{\times} \subseteq\left[E_{K}\right]_{3}$ by Lemma 3. Therefore, we can write

$$
\begin{equation*}
x_{i} \equiv \varepsilon_{i} \sqrt{-\ell} \bmod 3 \tag{8}
\end{equation*}
$$

for some unit $\varepsilon_{i} \in E_{K}$. Let $b=c / x_{2}^{3}=x_{1} x_{2}^{2}$. Then, as $c \equiv 1 \bmod \pi_{3}^{3}$, the cyclic extension $K\left(b^{1 / 3}\right)=K\left(c^{1 / 3}\right)$ over K is tame. To show that it has no NIB, we assume, to the contrary, that it has a NIB. Then, there exists an integer $a \in \mathcal{O}_{K}$ with $K\left(a^{1 / 3}\right)=K\left(b^{1 / 3}\right)$ satisfying the conditions of Theorem 4. We have $a=b^{s} y^{3}$ for $s \in\{1,2\}$ and some $y \in K^{\times}$. Similary as in the proof of Lemma 12, the ideal \mathfrak{B}_{2} associated to $a \mathcal{O}_{K}$ by (1) and (2) equals the principal ideal $x_{2} \mathcal{O}_{K}$ or $x_{1} \mathcal{O}_{K}$ according to whether $s=1$ or 2 . Let $\alpha=a^{1 / 3}$. Then, by the condition (iv) of Theorem 4 and (8), we see that the congruence

$$
\delta_{0}+\delta_{1} \alpha+\frac{\delta_{2} \alpha^{2}}{\sqrt{-\ell}} \equiv 0 \bmod 3
$$

holds for some units $\delta_{0}, \delta_{1}, \delta_{2} \in E_{K}$. As $K\left(a^{1 / 3}\right) / K$ is tame, we can take an integer $v \in \mathcal{O}_{K}$ such that $\alpha \equiv v \bmod \pi_{3}$ by Lemma 2. Then, $1+\alpha / v+(\alpha / v)^{2} \equiv 0 \bmod 3$. Hence, it follows from the above congruence that

$$
\left(\delta_{0}-\frac{\delta_{2} v^{2}}{\sqrt{-\ell}}\right)+\left(\delta_{1}-\frac{\delta_{2} v}{\sqrt{-\ell}}\right) \alpha \equiv 0 \bmod 3
$$

From this, we obtain

$$
\sqrt{-\ell} \equiv \delta_{2} v^{2} / \delta_{0} \equiv \delta_{2} v / \delta_{1} \bmod \pi_{3}
$$

similarly as in the proof of Lemma 11. As $Q_{K}=1$ and $3 \mid d$, we have $\left[E_{K}\right]_{\pi_{3}}=\langle-1\rangle_{\pi_{3}}$. Therefore, it follows that $\sqrt{-\ell} \equiv \pm \ell \equiv \pm 1 \bmod \pi_{3}$ from the above congruence. However, we easily see that this is impossible.

5. Proofs of Theorems 2 and 3

We use the same notation as in Section 4. In particular, $F=\mathbf{Q}(\sqrt{d})$ is a quadratic field with d a square free integer, and $K=F(\sqrt{-3})$. If F satisfies $\left(H_{3}\right)$, then the exponent of $C l_{F}$ divides 2 and $2^{t-3}\left[E_{K}: E_{K}^{*}\right]=1$ by Proposition 3 and Lemma 9 (I). In particular, $t \leq 3$ and hence $h_{F} \mid 4$ by genus theory. Hence, we see that $h_{F}=1,2$ or $C l_{F}=(2,2)$ if $\left(H_{3}\right)$ is satisfied.

PROOF OF THEOREM 2. Let $F=\mathbf{Q}(\sqrt{d})$ be an imaginary quadratic field. When $d \neq-3$, let ε_{0} be the fundamental unit of the associated real quadratic field $F^{*}=\mathbf{Q}(\sqrt{-3 d})$ with $\varepsilon_{0}>1$, and let ε be a fundamental unit of $K=F(\sqrt{-3})$. We let $\varepsilon=\varepsilon_{0}$ if $Q_{K}=1$, and we may choose ε as in Lemma 4 if $Q_{K}=2$.

The case $h_{F}=1$. By Stark [12], there are exactly nine imaginary quadratic fields $F=\mathbf{Q}(\sqrt{d})$ with $h_{F}=1$;

$$
d=-1,-2,-3,-7,-11,-19,-43,-67,-163
$$

When $d=-3, F$ satisfies $\left(\mathcal{O}_{F} / 3\right)^{\times}=\left\langle-1, \zeta_{3}\right\rangle_{3}$, and hence it satisfies $\left(H_{3}\right)$ by Proposition 1. For the other eight ones, we see from Lemma 4 (III) that $Q_{K}=2$ by using the fact that 3 is ramified in F^{*} and $h_{F^{*}}$ is odd. Further, $\left(H_{3}\right)$ is satisfied if and only if $\left(\mathcal{O}_{F} / 3\right)^{\times} \subseteq\left[E_{K}\right]_{\pi_{3}}$ by Corollary 2. Let $d=-2,-11$. Then, as $d \equiv 1 \bmod 3$, we see that $\left(\mathcal{O}_{F} / 3\right)^{\times}=\left(\mathcal{O}_{K} / \pi_{3}\right)^{\times}=$ $(2,2)$ and $\sqrt{d} \not \equiv \pm 1 \bmod \pi_{3}$. Hence, it follows that $\left(\mathcal{O}_{K} / \pi_{3}\right)^{\times}=\langle-1, \sqrt{d}\rangle_{\pi_{3}}$. Using Lemma 4 (III), we see that

$$
\varepsilon=\sqrt{-2}+\sqrt{-3} \text { or } \sqrt{-11}+2 \sqrt{-3}
$$

according to whether $d=-2$ or -11 . Hence, $\left(H_{3}\right)$ is satisfied for these d. Let d be the remaining six ones. Then, as $d \equiv-1 \bmod 3,\left(\mathcal{O}_{F} / 3\right)^{\times}=\left(\mathcal{O}_{K} / \pi_{3}\right)^{\times}=(8)$. When $d=-1$, we see that the order of the class $\bar{\varepsilon} \in\left(\mathcal{O}_{K} / \pi_{3}\right)^{\times}$equals 8 , where ε is the fundamental unit of K given in Lemma $4(\mathrm{I})$. Hence, $\left(H_{3}\right)$ is satisfied for $d=-1$. For the other five ones, we
have $\varepsilon_{0} \equiv \pm 1 \bmod \pi_{3}$ as 3 is ramified in F^{*}. Then, it follows that $\varepsilon^{4}=\varepsilon_{0}^{2} \equiv 1 \bmod \pi_{3}$ by Lemma 4 (III), and hence (H_{3}) is not satisfied for these d.

The case $h_{F}=2$. By Stark [13] and Montgomery and Weinberger [11], there are exactly 18 imaginary quadratic fields $F=\mathbf{Q}(\sqrt{d})$ with $h_{F}=2$. Using Lemmas 4 and 9 (II) (and Remark 3), we see by some hand calculation that among these, there are exactly 13 ones for which all ideal classes capitulate in K;

$$
d=-5,-10,-22,-35,-58,-115,-187,-235
$$

and

$$
d=-3 \ell \quad \text { with } \ell=2,5,17,41,89 .
$$

For these 13 ones, we have $Q_{K}=1$. Therefore, for the first 8 ones, $\left(H_{3}\right)$ is not satisfied by Lemma 5. For the remaining 5 ones, $\left(H_{3}\right)$ is not satisfied by Lemma 12 (and Remark 4).

The case $C l_{F}=(2,2)$. By Arno [1], there are exactly 54 imaginary quadratic fields $F=\mathbf{Q}(\sqrt{d})$ with $h_{F}=4$. We see from genus theory that among them, there are exactly 15 ones for which $C l_{F}=(2,2)$ and $t \leq 3$. For these 15 ones, we have $3 \mid d$, and hence $\left(H_{3}\right)$ is not satisfied by Lemma 12 (and Remark 4).

Proof of Theorem 3. As in Section 1, let λ (resp. μ) denote a prime number ≥ 5 with $\lambda \equiv 1 \bmod 4($ resp. $\mu \equiv 3 \bmod 4)$. Let $F=\mathbf{Q}(\sqrt{d})$ be a real quadratic field, and $\varepsilon=(t+u \sqrt{d}) / 2$ a fundamental unit of F. We distinguish the cases according to whether $N \varepsilon=-1$ or 1 and $Q_{K}=1$ or 2 . Let $r(\leq t)$ be the number of prime numbers which ramify in F. We see that $r=t-1$ or t, and that $r=t$ if and only if 3 is ramified in F. For a prime number v which ramify in F, let \wp_{v} be the prime ideal of F over v.
(I) The case $N \varepsilon=-1$ and $Q_{K}=1$. In this case, we have $\left[E_{K}: E_{K}^{*}\right]=2$. Then, by Proposition 3 and Lemma 9 (I), we have $t=2$ and hence $r=1,2$ if (H_{3}) is satisfied.

First, let $r=1$. Then, $F=\mathbf{Q}(\sqrt{2})$ or $\mathbf{Q}(\sqrt{\lambda})$. For these F, we actually have $N \varepsilon=-1$, and $Q_{K}=1$ by Lemma 4 (II). As h_{F} is odd, it follows from Proposition 3 and Corollary 2 that F satisfies $\left(H_{3}\right)$ if and only if $h_{F}=1$ and $\left(\mathcal{O}_{F} / 3\right)^{\times} \subseteq\left[E_{K}\right]_{\pi_{3}}$. Therefore, by Lemma 6, $\left(H_{3}\right)$ is satisfied if and only if the conditions (ii) and (iii) of Theorem 3 are satisfied.

Next, let $r=2$. Then, as $t=2$, we have $F=\mathbf{Q}(\sqrt{3}), \mathbf{Q}(\sqrt{6})$ or $\mathbf{Q}(\sqrt{3 \mu})$. However, for these F, we have $N \varepsilon=1$.
(II) The case $N \varepsilon=-1$ and $Q_{K}=2$. In this case, we have $\left[E_{K}: E_{K}^{*}\right]=4$. Then, by Proposition 3 and Lemma 9 (I), we have $t=r=1$ if $\left(H_{3}\right)$ is satisfied. Hence, F is unramified outside 3. However, there does not exist such a real quadratic field.
(III) The case $N \varepsilon=1$ and $Q_{K}=1$. In this case, we have $\left[E_{K}: E_{K}^{*}\right]=1$. Hence, $t=3$ and $r=2,3$ if $\left(H_{3}\right)$ is satisfied.

First, let $r=2$. Then, as $r<t$, we have (A) $F=\mathbf{Q}(\sqrt{\mu}), \mathbf{Q}(\sqrt{2 \mu})$ or $\mathbf{Q}\left(\sqrt{\mu_{1} \mu_{2}}\right)$, or (B) $F=\mathbf{Q}(\sqrt{2 \lambda})$ or $\mathbf{Q}\left(\sqrt{\lambda_{1} \lambda_{2}}\right)$. For these F, we actually have $Q_{K}=1$ by Lemma 4 (II). For F of type (A), $N \varepsilon=1$ and h_{F} is odd. Hence, for F of type (A), we see that $\left(H_{3}\right)$ is satisfied if and only if the conditions (ii) and (iii) of Theorem 3 are satisfied by Proposition 3, Corollary

2 and Lemma 6. Let us deal with F of type (B). For these F, the 2-rank of $C l_{F}$ is one. We see that $N \varepsilon=1$ if and only if \wp_{2} and \wp_{λ} (resp. $\wp_{\lambda_{1}}$ and $\wp_{\lambda_{2}}$) are principal (cf. Exercise 1.2.4 in Mollin [10, page 13]). However, when these ideals are principal, the (unique) ideal class c of F of order 2 does not contain an ambiguous ideal. Hence, the class c does not capitulate in K by Lemma 7. Therefore, by Proposition 3, $\left(H_{3}\right)$ is not satisfied for F of type (B).

Next, let $r=3$. As $t=r=3$, we have $F=\mathbf{Q}(\sqrt{6 \mu}), \mathbf{Q}(\sqrt{6 \lambda}), \mathbf{Q}(\sqrt{3 \lambda})$ or $\mathbf{Q}(\sqrt{3 \lambda \mu})$. For these $F, N \varepsilon=1$. As the 2-rank of $C l_{F}$ is one, we must have $h_{F}=2$ if $\left(H_{3}\right)$ is satisfied. When $3 \mid u,\left(H_{3}\right)$ is not satisfied by Lemma 12 (and Remark 4). When $3 \nmid u$ (and $h_{F}=2$, $\left.Q_{K}=1\right),\left(H_{3}\right)$ is not satisfied by Lemma 13.
(IV) The case $N \varepsilon=1$ and $Q_{K}=2$. In this case, we have $\left[E_{K}: E_{K}^{*}\right]=2$. Hence, $t=2$ and $r=1,2$ if $\left(H_{3}\right)$ is satisfied. The case $r=1$ can not occur as $N \varepsilon=1$. Hence, we obtain $t=r=2$, and hence $F=\mathbf{Q}(\sqrt{3}), \mathbf{Q}(\sqrt{6})$ or $\mathbf{Q}(\sqrt{3 \mu})$. For these $F, N \varepsilon=1$. As h_{F} is odd, the prime ideal \wp_{3} is principal. Hence, $Q_{K}=2$ by Lemma 4 (III). By Proposition 1 and Lemma 3, this type of F satisfies $\left(H_{3}\right)$ if $h_{F}=1$ and $3 \nmid u$. If $h_{F}>1$, it does not satisfy $\left(H_{3}\right)$ by Proposition 3. If $3 \mid u$, it does not satisfy $\left(H_{3}\right)$ by Lemma 12 (and Remark 4).

Now, Theorem 3 follows from the above argument.
ACKNOWLEDGEMENTS. The author thanks the referee for carefully reading the manuscript and in particular for pointing out that $d=3$ was neglected in the statement and the proof of Theorem 3 of the old version.

References

[1] S. ARNO, The imaginary quadratic fields of class number 4, Acta Arith. $\mathbf{6 0}$ (1992), 321-334.
[2] E. Gómez Ayala, Bases normales d'entiers dans les extensions de Kummer de degré premier, J. Théor. Nombres Bordeaux 6 (1994), 95-116.
[3] C. Greither, D. Replogle, K. Rubin and A. Srivastav, Swan modules and Hilbert-Speiser number fields, J. Number Theory 79 (1999), 167-173.
[4] H. HASSE, Über die Klassenzahl Abelscher Zahlkörper, Akademie-Verlag, (1952).
[5] H. IChimURa, Note on the ring of integers of a Kummer extension of prime degree, I, Comment. Math. Univ. Sancti Pauli 52 (2003), 59-67; IV, Proc. Japan Acad. 77A (2001), 92-94; V, Proc. Japan Acad. 78A (2002), 76-79.
[6] H. Ichimura, On the ring of integers of a tame Kummer extension over a number field, J. Pure Applied Algebra 187 (2004), 169-182.
[7] F. Kawamoto, On normal integral basis, Tokyo J. Math. 7 (1985), 221-231.
[8] F. Kawamoto, Remark on "On normal integral basis", Tokyo J. Math. 8 (1985), 275.
[9] T. Kubota, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65-85.
[10] R. A. Mollin, Quadratics, CRC Press (1996).
[11] H. L. Montgomery and P. T. Weinberger, Notes on small class numbers, Acta Arith. 24 (1973/74), 529-542.
[12] H. M. Stark, A complete determination of complex quadratic fields of class number one, Michigan J. Math. 14 (1967), 1-27.
[13] H. M. Stark, On complex quadratic fields of class number two, Math. Comp. 29 (1975), 289-302.
[14] L. C. WAShington, Introduction to Cyclotomic Fields (2nd edition), Springer (1996).

Present Address:
Department of Mathematics, Yokohama City University,
22-2, Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
e-mail: ichimura@yokohama-cu.ac.jp

[^0]: Received August 5, 2003; revised November 20, 2003
 The author was partially supported by Grant-in-Aid for Scientific Research (C), (No. 16540033), the Ministry of Education, Culture, Sports, Science and Technology of Japan.

