Токуо J. Матн. Vol. 27, No. 2, 2004

On a Theorem of Kawamoto on Normal Bases of Rings of Integers

Humio ICHIMURA

Yokohama City University

(Communicated by T. Kawasaki)

1. Introduction

A finite Galois extension L/K over a number field K has a relative normal integral basis (NIB for short) when \mathcal{O}_L is free over the group ring $\mathcal{O}_K[\text{Gal}(L/K)]$. Here, \mathcal{O}_L (resp. \mathcal{O}_K) is the ring of integers of L (resp. K). It is well known by Noether that if L/K has a NIB, then L/K is tame (i.e., at most tamely ramified at all finite prime divisors). It is also well known by Hilbert and Speiser that when the base field K equals the rationals \mathbf{Q} , all tame abelian extensions L/\mathbf{Q} have a NIB. Recently, Greither et al. [3] proved that there exists no Hilbert-Speiser number field other than \mathbf{Q} . Namely, they proved that when $K \neq \mathbf{Q}$, there exist a prime number p and a tame cyclic extension L/K of degree p having no NIB.

On the other hand, Kawamoto [7, 8] obtained the following result. For a prime number p, let ζ_p be a fixed primitive p-th root of unity.

THEOREM 1 (Kawamoto). For a prime number p and a rational number $a \in \mathbf{Q}^{\times}$, the cyclic extension $\mathbf{Q}(\zeta_p, a^{1/p})/\mathbf{Q}(\zeta_p)$ has a NIB if it is tame.

In [2, Theorem 2.1], Gómez Ayala gave a necessary and sufficient condition for a tame Kummer extension of prime degree to have a NIB, and deduced Theorem 1 from this criterion. For a prime number p, we say that a number field F enjoys the property (H_p) when for any element $a \in F^{\times}$, the cyclic extension $F(\zeta_p, a^{1/p})/F(\zeta_p)$ has a NIB if it is tame. Theorem 1 says that the rationals **Q** satisfies the property (H_p) for all p. Analogous to the result of Greither et al., it is shown in [5, IV] that when $F \neq \mathbf{Q}$, there exists a prime number p for which F does not satisfy (H_p) . For a prime number p and a number field F with $\zeta_p \in F^{\times}$, we gave, in [5, V, Propositions 1, 2], a necessary and sufficient condition for (H_p) to be satisfied.

Received August 5, 2003; revised November 20, 2003

The author was partially supported by Grant-in-Aid for Scientific Research (C), (No. 16540033), the Ministry of Education, Culture, Sports, Science and Technology of Japan.

In this paper, we fix a prime number $p \ge 3$, and give some sufficient (resp. necessary) conditions for a number field F to satisfy (H_p) in the general case where F does not necessarily contain ζ_p . The conditions are obtained by using [2, Theorem 2.1], and similarly to [5, V, Propositions 1, 2], they are given in terms of the class number, the ideal class group of F and the group of units of $K = F(\zeta_p)$. Using these, we prove the following results when p = 3 and F is a quadratic field.

THEOREM 2. Let p = 3 and $F = \mathbf{Q}(\sqrt{d})$ be an imaginary quadratic field with d a square free negative integer. Then, F enjoys the property (H₃) if and only if d = -1, -2, -3, or -11.

Let $F = \mathbf{Q}(\sqrt{d})$ be a real quadratic field with d a square free positive integer, and let h_F be the class number of F and $\varepsilon = (t + u\sqrt{d})/2$ a fundamental unit of F. We write $t = t_F$ and $u = u_F$. We denote by λ (resp. μ) a prime number ≥ 5 with $\lambda \equiv 1 \mod 4$ (resp. $\mu \equiv 3 \mod 4$). When we write μ_1 and μ_2 (for example), we mean that μ_1 , μ_2 are different prime numbers ≥ 5 with $\mu_1 \equiv \mu_2 \equiv 3 \mod 4$.

THEOREM 3. Let p = 3 and $F = \mathbf{Q}(\sqrt{d})$ be a real quadratic field with d a square free positive integer. Then, F enjoys the property (H₃) if and only if F satisfies the following three conditions;

- i) *d* is of the form; $d = 2, 3, 6, \lambda, \mu, 2\mu, 3\mu, or \mu_1\mu_2$.
- ii) $h_F = 1$,
- iii) $3 \nmid u_F$, and further $3 \nmid t_F$ when $d \equiv -1 \mod 3$.

QUESTION. By Theorems 2 and 3, we have $h_F = 1$ for any quadratic field *F* satisfying (*H*₃). Does there exist a number field *F* with $h_F > 1$ satisfying (*H_p*) for some prime number $p \ge 3$?

This paper is organized as follows. In Section 2, we give a sufficient condition (resp. two necessary conditions) for a number field to satisfy (H_p) . In Section 3, we show the results in Section 2. We prove Theorems 2 and 3 in Section 5 after preparing many lemmas in Section 4.

2. Conditions for (H_p)

For a number field K, let E_K (resp. h_K) be the group of units (resp. class number) of K. For an integral ideal \mathfrak{A} of K, let $[E_K]_{\mathfrak{A}}$ be the subgroup of the multiplicative group $(\mathcal{O}_K/\mathfrak{A})^{\times}$ consisting of classes containing units of K. For an integer $a \in \mathcal{O}_K$, we simply write $\mathcal{O}_K/a = \mathcal{O}_K/a\mathcal{O}_K$ and $[E_K]_a = [E_K]_a\mathcal{O}_K$. Let $p \ge 3$ be a fixed prime number, F a number field, and $K = F(\zeta_p)$. Then, we can naturally regard $(\mathcal{O}_F/p)^{\times}$ as a subgroup of $(\mathcal{O}_K/p)^{\times}$. The following sufficient condition for (H_p) is an immediate consequence of [2, Theorem 2.1].

PROPOSITION 1. Let $p \ge 3$ be a prime number, F a number field, and $K = F(\zeta_p)$. Assume that (i) $h_F = 1$ and that (ii) $(\mathcal{O}_F/p)^{\times} \subseteq [E_K]_p$. Then, F satisfies the condition (H_p) .

We give a criterion which assures the condition $(\mathcal{O}_F/p)^{\times} \subseteq [E_K]_p$. For a prime number p, let $\pi_p = \zeta_p - 1$. When p is unramified in F, we can naturally regard $(\mathcal{O}_F/p)^{\times}$ as a subgroup of $(\mathcal{O}_K/\pi_p)^{\times}$.

PROPOSITION 2. Let p, F, K be as in Proposition 1. Assume that (a) p is unramified in F and that (b) $(\mathcal{O}_F/p)^{\times} \subseteq [E_K]_{\pi_p}$. Then, we have $(\mathcal{O}_F/p)^{\times} \subseteq [E_K]_p$.

COROLLARY 1. Let p, F, K be as in Proposition 1. Assume that $h_F = 1$ and that the conditions of Proposition 2 are satisfied. Then, F satisfies the condition (H_p) .

Let us give necessary conditions for (H_p) . For a number field F, let Cl_F be the ideal class group in the usual sense.

PROPOSITION 3. Let p, F, K be as in Proposition 1, and let $\ell = [K : F]$. Assume that F satisfies (H_p) . Then, all ideal classes of F capitulate in K. In particular, the exponent of Cl_F divides ℓ .

PROPOSITION 4. Let p, F, K be as in Proposition 1. Assume that F satisfies (H_p) . Then, for any integer u of F relatively prime to p, we have $u \equiv \varepsilon \mod \pi_p$ for some unit $\varepsilon \in E_K$.

The following is immediate from Corollary 1 and Proposition 4.

COROLLARY 2. Let p, F, K be as in Proposition 1. Assume that $h_F = 1$ and that p is unramified in F. Then, F satisfies (H_p) if and only if $(\mathcal{O}_F/p)^{\times} \subseteq [E_K]_{\pi_p}$.

REMARK 1. Let $p \ge 3$ be a prime number, $F = \mathbf{Q}$, and $K = \mathbf{Q}(\zeta_p)$. Then, the conditions of Proposition 2 are satisfied. Actually, for a rational integer $a \in \mathbf{Z}$ relatively prime to p, the cyclotomic unit $c_a = (\zeta_p^a - 1)/(\zeta_p - 1)$ satisfies the congruence $c_a \equiv a \mod \pi_p$. Hence, Theorem 1 of Kawamoto follows form Corollary 1. Further, by Proposition 2, we have $\mathbf{F}_p^{\times} = (\mathbf{Z}/p)^{\times} \subseteq [E_K]_p$, which we use in an argument in Section 4.

REMARK 2. Let F be a totally real number field and $K = F(\sqrt{-1})$. In [6, Corollary 4], a result corresponding to Proposition 1 is given for cyclic quartic extensions $K(a^{1/4})/K$ with $a \in F^{\times}$.

3. Proofs of Propositions

3.1. A theorem of Gómez Ayala. Let us first recall a theorem of Gómez Ayala [2, Theorem 2.1] mentioned in Sections 1 and 2. Let p be a prime number, and K a number field. Let \mathfrak{A} be an integral ideal of K which is p-th power free in the semi-group of integral ideals of K. Then, we can uniquely write

(1)
$$\mathfrak{A} = \prod_{i=1}^{p-1} \mathfrak{A}_i^{i}$$

for some square free integral ideals \mathfrak{A}_i of *K* relatively prime to each other. The associated ideals \mathfrak{B}_i of \mathfrak{A} are defined by

(2)
$$\mathfrak{B}_{j} = \prod_{i=1}^{p-1} \mathfrak{A}_{i}^{[ij/p]} \quad (0 \le j \le p-1) \,.$$

Here, for a real number x, [x] denotes the largest integer with $[x] \le x$. By the definition, we have $\mathfrak{B}_0 = \mathfrak{B}_1 = \mathcal{O}_K$.

THEOREM 4 (Gómez Ayala). Let p be a prime number and K a number field with $\zeta_p \in K^{\times}$. Then, a cyclic extension L/K of degree p is tame and has a NIB if and only if there exists an integer a of K relatively prime to p satisfying the following four conditions;

- i) $L = K(a^{1/p}),$
- ii) the integral ideal $a\mathcal{O}_K$ is p-th power free,
- iii) the associated ideals \mathfrak{B}_j of $a\mathcal{O}_K$ defined by (1) and (2) are principal, and finally,
- iv) letting $\alpha = a^{1/p}$, the congruence

$$A = \sum_{j=0}^{p-1} \frac{\alpha^j}{x_j} \equiv 0 \bmod p$$

holds for some generators x_i of the principal ideals \mathfrak{B}_i .

Further, when this is the case, the integer $\omega = A/p$ is a generator of a NIB of L/K; namely, $\mathcal{O}_L = \mathcal{O}_K[\operatorname{Gal}(L/K)] \cdot \omega$.

The following assertion is a special case of this theorem. (For this, see [5, I, Theorem 2].)

LEMMA 1. Let p, K be as in Theorem 4. Let a be an integer of K relatively prime to p such that the integral principal ideal $a\mathcal{O}_K$ is square free. Then, the cyclic extension $K(a^{1/p})/K$ has a NIB if and only if a satisfies the congruence $a \equiv \varepsilon^p \mod \pi_p^p$ for some unit $\varepsilon \in E_K$.

The following lemma is well known (cf. Washington [14, Exercises 9.2, 9.3]).

LEMMA 2. Let p, K be as in Theorem 4. For an element $a \in K^{\times}$ relatively prime to p, the cyclic extension $K(a^{1/p})/K$ is tame if and only if the congruence $a \equiv u^p \mod \pi_p^p$ holds for some integer $u \in \mathcal{O}_K$.

3.2. Proofs of Propositions 1 and 2

PROOF OF PROPOSITION 1. Let *a* be an element of F^{\times} such that $K(a^{1/p})/K$ is tame. Then, as $h_F = 1$, we may as well assume that *a* is an integer of *F* relatively prime to *p* and

that the integral ideal $a\mathcal{O}_F$ is *p*-th power free. Let \mathfrak{B}_j be the ideals of *F* associated to $a\mathcal{O}_F$ by (1) and (2). Since K/F is unramified outside *p*, the integral ideal $a\mathcal{O}_K$ of *K* is also *p*-th power free and the ideals $\mathfrak{B}'_i = \mathfrak{B}_j \mathcal{O}_K$ are associated to $a\mathcal{O}_K$.

As $K(a^{1/p})/K$ is tame, we have $a \equiv u^p \mod \pi_p^p$ for some $u \in \mathcal{O}_K$ by Lemma 2. Taking the norm from K to F, we see that $a \equiv v^p \mod \pi_p^p$ for some $v \in \mathcal{O}_F$. By the condition (ii) of Proposition 1, $v \equiv \varepsilon \mod p$ for some unit $\varepsilon \in E_K$. Hence, we obtain

(3)
$$a \equiv \varepsilon^p \mod \pi_p^p \quad \text{with } \varepsilon \in E_K.$$

As $h_F = 1$, we have $\mathfrak{B}_j = x_j \mathcal{O}_F$ for some $x_j \in \mathcal{O}_F$. By (ii), $x_j \equiv \eta_j \mod p$ for some unit $\eta_j \in E_K$. Letting $y_j = x_j \eta_j^{-1} \in \mathcal{O}_K$, we have $\mathfrak{B}'_j = y_j \mathcal{O}_K$ and $y_j \equiv 1 \mod p$. Now, letting $\alpha = a^{1/p}$, we see that

$$\sum_{j=0}^{p-1} \frac{\alpha^j}{y_j \varepsilon^j} \equiv \sum_j \left(\frac{\alpha}{\varepsilon}\right)^j \equiv 0 \bmod p.$$

Here, the second congruence holds by (3). Therefore, $K(a^{1/p})/K$ has a NIB by Theorem 4. \Box

PROOF OF PROPOSITION 2. Let \wp_1, \dots, \wp_r be the prime ideals of F over p, and f_i the degree of \wp_i . Let f be the least common multiple of f_1, \dots, f_r , and $q = p^f$. Then, for any $x \in \mathcal{O}_F$, we have $x^q \equiv x \mod \wp_i$. This implies $x^q \equiv x \mod p$ as p is unramified in F (the condition (a)). Let $x \in \mathcal{O}_F$ be an integer relatively prime to p. By (b), we have $x \equiv \varepsilon \mod \pi_p$ for some unit $\varepsilon \in E_K$. Then, it follows that $x^p \equiv \varepsilon^p \mod p$. Raising to the q/p-th power, we obtain $x \equiv x^q \equiv \varepsilon^q \mod p$. \Box

3.3. Proofs of Propositions 3 and 4

PROOF OF PROPOSITION 3. Let \wp be a prime ideal of F with $\wp \nmid p$, and e the order of the ideal class of F containing \wp . Then, $\wp^e = b_1 \mathcal{O}_F$ for some $b_1 \in \mathcal{O}_F$. By the Chebotarev density theorem, there exists a principal prime ideal $\mathfrak{L} = b_2 \mathcal{O}_F$ such that $b = b_1 b_2 \equiv$ $1 \mod \pi_p^p$. As $K(b^{1/p})/K$ is tame, it has a NIB by the assumption of Proposition 3. Hence, there exists an integer a of K relatively prime to p such that $K(a^{1/p}) = K(b^{1/p})$ and the principal ideal $a\mathcal{O}_K$ satisfies the conditions (ii) and (iii) of Theorem 4. Let \mathfrak{B}_j be the ideals of K associated to $a\mathcal{O}_K$ by (1) and (2). By the condition (iii), they are principal ideals. As $K(a^{1/p}) = K(b^{1/p})$, we have $a = b^s x^p$ for some $1 \le s \le p - 1$ and $x \in K^{\times}$. Writing es = pf + t with $0 \le t \le p - 1$, we obtain

$$a\mathcal{O}_K = (\wp \mathcal{O}_K)^t (\mathfrak{L} \mathcal{O}_K)^s (x \wp^f \mathcal{O}_K)^p.$$

By (ii), the integral ideal $a\mathcal{O}_K$ is *p*-th power free. Then, we must have $x\wp^f\mathcal{O}_K = \mathcal{O}_K$ in the above equality. Hence, we obtain

(4)
$$a\mathcal{O}_K = (\wp \mathcal{O}_K)^t (b_2 \mathcal{O}_K)^s.$$

From $x \wp^f \mathcal{O}_K = \mathcal{O}_K$, it follows that $\wp^{\ell f} = (N_{K/F}x^{-1})\mathcal{O}_F$ where $\ell = [K : F]$. Hence, we obtain $e|\ell f$. The condition t = 0 (namely, es = pf and $f \neq 0$) contradicts this divisibility as $p \nmid \ell s$. Thus, we obtain $1 \le t \le p-1$. When t = 1, it is clear from (4) that $\wp \mathcal{O}_K$ is principal. When $2 \le t \le p-1$, we can choose an integer j with $2 \le j \le p-1$ so that [jt/p] = 1. Then, from (2) and (4), we see that \mathfrak{B}_j equals $\wp \mathcal{O}_K$ times a principal ideal. Therefore, $\wp \mathcal{O}_K$ is a principal ideal as so is \mathfrak{B}_j . \Box

PROOF OF PROPOSITION 4. Let *u* be an integer of *F* relatively prime to *p*. By the Chebotarev density theorem, there exists a principal prime ideal $\mathfrak{L} = a\mathcal{O}_F$ of *F* such that $a \equiv u^p \mod \pi_p^p$. By the assumption, $K(a^{1/p})/K$ has a NIB as it is tame. Then, by Lemma 1, we have $a \equiv \varepsilon^p \mod \pi_p^p$ for some unit $\varepsilon \in E_K$. Hence, we obtain $u \equiv \varepsilon \mod \pi_p$. \Box

4. Lemmas

In this section, we prepare many lemmas which are necessary for proving Theorems 2 and 3. For a finite abelian group A and integers $n_i \in \mathbb{Z}$ $(1 \le i \le r)$, we write $A = (n_1, \dots, n_r)$ when A is isomorphic to the additive group $\mathbb{Z}/n_1 \oplus \dots \oplus \mathbb{Z}/n_r$. For a number field F and an integer $a \in \mathcal{O}_F$, we denote by $\langle a_1, \dots, a_s \rangle_a$ the subgroup of $(\mathcal{O}_F/a)^{\times}$ generated by the classes containing integers $a_1, \dots, a_s \in \mathcal{O}_F$ relatively prime to a. For an element α of a quadratic field, let $N\alpha$ denote the norm of α to \mathbb{Q} . First, we show the following:

LEMMA 3. Let $p \ge 3$ be a prime number. Let $F = \mathbf{Q}(\sqrt{d})$ be a real quadratic field with a square free positive integer d, and $\varepsilon = (t + u\sqrt{d})/2$ a fundamental unit of F. If p|dand $p \nmid u$, then we have $(\mathcal{O}_F/p)^{\times} \subseteq [E_K]_p$. Here, $K = F(\zeta_p)$.

PROOF. We have $(\mathcal{O}_F/p)^{\times} = (p-1, p)$ as p|d. We naturally have $\mathbf{F}_p^{\times} = (\mathbf{Z}/p)^{\times} \subseteq (\mathcal{O}_F/p)^{\times}$. We have seen in Remark 1 that \mathbf{F}_p^{\times} is contained in $[E_K]_p$. As $p \nmid u$, we see that $\varepsilon^4 \neq 1 \mod p$. On the other hand, we see that

$$\varepsilon^{4p} \equiv (t/2)^4 \equiv 1 \mod p$$

since p|d and $1 = N\varepsilon^2 \equiv (t/2)^4 \mod p$. Hence, the order of the class containing ε^4 is of order p. Therefore, we obtain $(\mathcal{O}_F/p)^{\times} \subseteq [E_K]_p$. \Box

Secondly, we recall a result of Hasse [4, Section 26] on unit index of imaginary abelian fields. Let K/\mathbb{Q} be an imaginary (2, 2)-extension with $\zeta_3 \in K^{\times}$, and Q_K the unit index of K. Let $K^+ = \mathbb{Q}(\sqrt{d_0})$ be the maximal real subfield of K, and $\mathbb{Q}(\sqrt{-d_1})$ the imaginary quadratic subfield different from $\mathbb{Q}(\sqrt{-3})$. Here, d_0 , d_1 are square free positive integers. Let ε_0 be the fundamental unit of K^+ with $\varepsilon_0 > 1$. The following lemma is an immediate consequence of the formulas (assertions) (8), (10), (11) and (12) in [4, Section 26].

LEMMA 4. Under the above setting, the following assertions on Q_K hold.

(I) When $d_1 = 1$, we have $Q_K = 2$, and a fundamental unit ε of K satisfies $\varepsilon^2 = \sqrt{-1} \cdot \varepsilon_0$.

(II) When $3|d_1$, we have $Q_K = 1$.

(III) When $d_1 > 1$ and $3 \nmid d_1$, we have $Q_K = 2$ if and only if there exists an integer γ_0 of K^+ such that $N\gamma_0 = \pm 3$. Further, when this is the case, we can choose a fundamental unit ε of K so that $\varepsilon^2 = -\varepsilon_0$.

In the following, we let p = 3 and let $F = \mathbf{Q}(\sqrt{d})$ be a quadratic field (real or imaginary) with $F \neq \mathbf{Q}(\sqrt{-3})$, and $K = F(\sqrt{-3})$. Here, *d* is a square free integer. Let $F^* = \mathbf{Q}(\sqrt{-3d})$ be the quadratic field associated to *F*.

LEMMA 5. Let $F = \mathbf{Q}(\sqrt{d})$ be an imaginary quadratic field with $d \neq -1, -3$. If the prime number 3 is unramified in F and $Q_K = 1$, then F does not satisfy (H₃).

PROOF. Let ε be a fundamental unit of the real quadratic field F^* . We have $\varepsilon \equiv \pm 1 \mod \pi_3$ as 3 is ramified in F^* . Then, as $Q_K = 1$, it follows that $[E_K]_{\pi_3} = \langle -1 \rangle_{\pi_3}$. Therefore, we obtain $(\mathcal{O}_F/3)^{\times} \not\subseteq [E_K]_{\pi_3}$, and hence *F* does not satisfy (H_3) by Proposition 4. \Box

LEMMA 6. Let $F = \mathbf{Q}(\sqrt{d})$ be a real quadratic field with a fundamental unit $\varepsilon = (t + u\sqrt{d})/2$. Assume that 3 is unramified in F and $Q_K = 1$. Then, the following assertions hold :

(I) When $d \equiv 1 \mod 3$, we have $(\mathcal{O}_F/3)^{\times} \subseteq [E_K]_{\pi_3}$ if and only if $3 \nmid u$.

(II) When $d \equiv -1 \mod 3$, we have $(\mathcal{O}_F/3)^{\times} \subseteq [E_K]_{\pi_3}$ if and only if $3 \nmid tu$.

Namely, the inclusion $(\mathcal{O}_F/3)^{\times} \subseteq [E_K]_{\pi_3}$ holds if and only if the condition (iii) of Theorem 3 is satisfied.

PROOF. We have $(\mathcal{O}_F/3)^{\times} = (\mathcal{O}_K/\pi_3)^{\times} = (2, 2)$ or (8) according to whether $d \equiv 1 \mod 3$ or $d \equiv -1 \mod 3$. As $Q_K = 1$, we have $[E_K]_{\pi_3} = \langle -1, \varepsilon \rangle_{\pi_3}$.

First, let $d \equiv 1 \mod 3$. If 3|u, then $(\mathcal{O}_F/3)^{\times} \not\subseteq [E_K]_{\pi_3}$ as $\varepsilon \equiv \pm 1 \mod 3$. Assume that $3 \nmid u$. Then, as $N\varepsilon = \pm 1$, it follows that 3|t and hence $\varepsilon \equiv \pm \sqrt{d} \mod \pi_3$. However, we see that $\sqrt{d} \not\equiv \pm 1 \mod \pi_3$ as 3 is unramified in F. Hence, we obtain $(\mathcal{O}_F/3)^{\times} \subseteq [E_K]_{\pi_3}$.

Next, let $d \equiv -1 \mod 3$. If 3|tu, we easily see that $\varepsilon^4 \equiv 1 \mod \pi_3$, and hence $(\mathcal{O}_F/3)^{\times} \not\subseteq [E_K]_{\pi_3}$. Assume that $3 \nmid tu$. Then, we may as well assume that $\varepsilon \equiv 1 + \sqrt{d} \mod \pi_3$. We see that $\varepsilon^4 \equiv d \equiv -1 \mod \pi_3$, and hence $(\mathcal{O}_F/3)^{\times} \subseteq [E_K]_{\pi_3}$. \Box

We recall some lemmas from Kubota [9]. An ideal \mathfrak{A} of *F* is called an ambiguous ideal when $\mathfrak{A}^s = \mathfrak{A}$, *s* being the nontrivial automorphism of *F*.

LEMMA 7 ([9, Hilfsatz 15]). Let $c \in Cl_F$ be an ideal class of F. If c capitulates in K, then $c^2 = 1$ and c contains an ambiguous ideal of F.

Let A_F be the group of ambiguous ideals of F, and \tilde{A}_F its lift to K. Let $k = \mathbb{Q}(\sqrt{-3})$ ($\subseteq K$). Let A_{F^*} , \tilde{A}_{F^*} and A_k , \tilde{A}_k be the corresponding objects for F^* and k, respectively. In the group of ideals of K, let A be the subgroup generated by \tilde{A}_F , \tilde{A}_{F^*} and \tilde{A}_k . Let B be the group of principal ideals $x\mathcal{O}_K$ of K such that $(x\mathcal{O}_K)^2 = y\mathcal{O}_K$ for some $y \in \mathbb{Q}^{\times}$. Clearly,

we have $B \subseteq A$. Let *t* be the number of prime numbers which ramify in *K*. Let E_K^* be the subgroup of E_K generated by all units of the intermediate fields *F*, F^* and *k* whose norm to **Q** are 1.

LEMMA 8 ([9, Hilfsatz 16]). Under the above setting, we have $[A : B] = 2^{t-3}[E_K : E_K^*]$.

We easily see that $\tilde{A}_F \tilde{A}_k = \tilde{A}_{F^*} \tilde{A}_k = A$ and $\tilde{A}_k \subseteq B$. Therefore, from the above lemma, we obtain the following assertion.

LEMMA 9. (I) If all ideal classes of F capitulate in K, then we have $2^{t-3}[E_K : E_K^*] = 1$.

(II) Assume that the exponent of Cl_F divides 2 and that each ideal class of F contains an ambiguous ideal. Then, all ideal classes of F capitulate in K if and only if $2^{t-3}[E_K : E_K^*] = 1$.

REMARK 3. It is known that any ideal class of F of order 2 contains an ambiguous ideal when F is imaginary or when F is real and $N\varepsilon = -1$, ε being a fundamental unit of F.

Finally, we prepare some lemmas to deal with the case where $d = 3\ell$ is a square free integer divisible by 3 and $\ell \neq 1$. Let $d = 3\ell$ be such an integer. Then, $(\mathcal{O}_F/3)^{\times} = (2, 3)$. Further, $(\mathcal{O}_K/3)^{\times} = (3, 3, 8)$ when $\ell \equiv 1 \mod 3$, and $(\mathcal{O}_K/3)^{\times} = (6, 6)$ when $\ell \equiv -1 \mod 3$. Let ε be a fundamental unit of K. Note that $\sqrt{-1} \notin K^{\times}$ as $\ell \neq 1$. Then, we have $E_K = \langle -1, \zeta_3, \varepsilon \rangle$, and we may as well assume that ε^2 is a real unit by Lemma 4.

LEMMA 10. Under the above setting, assume that the order of the class $\bar{\varepsilon} \in (\mathcal{O}_K/3)^{\times}$ is a power of 2. Let x be an integer of F with (x, 3) = 1 such that the class \bar{x} in $(\mathcal{O}_F/3)^{\times}$ is of order 3. Then, there exist no units δ , $\eta \in E_K$ such that

 $x \equiv \delta + \eta \mod 3$ and $\delta \equiv \eta \mod \pi_3$.

PROOF. We may as well assume that $\varepsilon \neq 1 \mod 3$ replacing ε with $-\varepsilon$ if necessary. Then, as the order of $\overline{\varepsilon}$ is a power of 2, we see that $[E_K]_3 = \langle \varepsilon, \zeta_3 \rangle_3 = (2^{\alpha}, 3)$ for some $\alpha \ge 1$ or $[E_K]_3 = \langle -1, \varepsilon, \zeta_3 \rangle_3 = (2, 2, 3)$. The second case can occur only when $\ell \equiv -1 \mod 3$. To show the assertion, let us assume, to the contrary, that x satisfies the above congruence. Then, we see from the above that

$$x \equiv \pm (\zeta_3^a + \zeta_3^b) \varepsilon^c \mod 3$$

for some $a, b, c \in \mathbb{Z}$. Here, the - sign is necessary only when $[E_K]_3 = (2, 2, 3)$. Note that $\zeta_3^a + \zeta_3^b \equiv -1, -\zeta_3, -\zeta_3^2 \mod 3$. Then, it follows from the above congruence that $x \equiv \zeta_3^r \mod 3$ for some r because of the assumptions on the orders of $\bar{\varepsilon}$ and \bar{x} . As $(\mathcal{O}_F/3)^{\times} = (2, 3)$, we may as well assume that $x = 1 + \sqrt{3\ell}$. Then, from $x \equiv \zeta_3^r \mod 3$, we obtain $\sqrt{3\ell} \equiv 0 \mod 3$ or $\sqrt{-\ell} \equiv \pm 1 \mod \pi_3$. However, we easily see that this is impossible. \Box

REMARK 4. Let $K^+ = \mathbf{Q}(\sqrt{d_0})$ be the maximal real subfield of K, and $\varepsilon_0 = (t + u\sqrt{d_0})/2$ a fundamental unit of K^+ . When the prime 3 is unramified in K^+ , the assumption on ε in Lemma 10 is satisfied. This is because of $\varepsilon_0^8 \equiv 1 \mod 3$ and Lemma 4. When 3 is ramified in K^+ and 3|u, the assumption is satisfied by Lemma 4 since $\varepsilon_0 \equiv \pm 1 \mod 3$.

LEMMA 11. Under the setting and the assumption of Lemma 10, let $a \in \mathcal{O}_K$ be an integer of K with $a \notin (K^{\times})^3$ and $a \equiv 1 \mod \pi_3^3$. Let $\alpha = a^{1/3} (\equiv 1 \mod \pi_3)$. Then, for an integer $x \in \mathcal{O}_F$ with (x, 3) = 1, the congruence

(5)
$$\delta_0 + \delta_1 \alpha + \frac{\delta_2 \alpha^2}{x} \equiv 0 \mod 3$$

holds for some units δ_0 , δ_1 , $\delta_2 \in E_K$ if and only if $x \equiv \pm 1 \mod 3$.

PROOF. As $\alpha \equiv 1 \mod \pi_3$, we have $1 + \alpha + \alpha^2 \equiv 0 \mod 3$. Hence, the "if" part holds with $\delta_0 = \delta_1 = 1$ and $\delta_2 = \pm 1$. Let us show the "only if" part. Let $x \in \mathcal{O}_F$ be an integer with (x, 3) = 1 satisfying the congruence (5). To show $x \equiv \pm 1 \mod 3$, let us assume, to the contrary, that $x \not\equiv \pm 1 \mod 3$. As $(\mathcal{O}_F/3)^{\times} = (2, 3)$, we may as well assume that the class $\bar{x} \in (\mathcal{O}_F/3)^{\times}$ is of order 3 replacing x with -x if necessary. It follows from (5) and $1 + \alpha + \alpha^2 \equiv 0 \mod 3$ that

$$(\delta_0 - \delta_2/x) + (\delta_1 - \delta_2/x)\alpha \equiv 0 \mod 3.$$

Replacing α with $\zeta_3 \alpha$, we have

$$(\delta_0 - \delta_2/x) + (\delta_1 - \delta_2/x)\zeta_3 \alpha \equiv 0 \mod 3$$

Subtracting the second congruence from the first one, we obtain

(6)
$$\delta_0/\delta_2 \equiv \delta_1/\delta_2 \equiv 1/x \mod \pi_3.$$

Then, it also follows that

$$\frac{\delta_0 - \delta_2/x}{\pi_3} + \frac{\delta_1 - \delta_2/x}{\pi_3} \alpha \equiv 0 \mod \pi_3.$$

As $\alpha \equiv 1 \mod \pi_3$, it follows from the last congruence that

(7)
$$1/x \equiv (-\delta_0/\delta_2) + (-\delta_1/\delta_2) \mod 3.$$

However, the congruences (6) and (7) can not simultaneously hold by Lemma 10. \Box

LEMMA 12. Under the setting and the assumption of Lemma 10, there exist infinitely many classes $\bar{a} \in F^{\times}/(F^{\times})^3$ for which the cyclic extension $K(a^{1/3})/K$ is tame but has no NIB. Namely, F does not satisfy (H₃).

PROOF. By the Chebotarev density theorem, there exist infinitely many couples $(\mathfrak{L}_1, \mathfrak{L}_2)$ of principal prime ideals $\mathfrak{L}_1 = b_1 \mathcal{O}_F$ and $\mathfrak{L}_2 = b_2 \mathcal{O}_F$ of F such that $b_1 \equiv b_2 \equiv 1 + \sqrt{3\ell} \mod \pi_3^3$. Put $b = b_1 b_2^2$ and $b' = b_2 b_1^2$. Then, $b \equiv b' \equiv 1 \mod \pi_3^3$ and the cyclic cubic extension $K(b^{1/3}) = K(b'^{1/3})$ over K is tame. Assume that this extension has a NIB.

Then, there exists an integer $a \in \mathcal{O}_K$ with $K(a^{1/3}) = K(b^{1/3})$ satisfying the conditions of Theorem 4. We have $a = b^s y^3$ for $s \in \{1, 2\}$ and some $y \in K^{\times}$. When s = 1, $\eta = y$ is a unit of K as the ideal $a\mathcal{O}_K$ is cubic power free, and $a = b\eta^3$. When s = 2, $\eta = b_2 y$ is a unit of K, and $a = b'\eta^3$. Therefore, replacing a with $a\eta^{-3}$, we may as well assume that $a \equiv 1 \mod \pi_3^3$ (as in Lemma 11). Let \mathfrak{B}_j be the ideals of K associated to $a\mathcal{O}_K$ by (1) and (2). By the definition, $\mathfrak{B}_0 = \mathfrak{B}_1 = \mathcal{O}_K$, and $\mathfrak{B}_2 = \mathfrak{L}_2 \mathcal{O}_K = b_2 \mathcal{O}_K$ or $\mathfrak{B}_2 = \mathfrak{L}_1 \mathcal{O}_K = b_1 \mathcal{O}_K$ according to whether s = 1 or 2. Therefore, by the condition (iv) of Theorem 4, letting $\alpha = a^{1/3}$ and $x = b_1$ or b_2 , the congruence (5) holds for some units δ_0 , δ_1 , $\delta_2 \in E_K$. However, this is impossible by Lemma 11 since the class $\bar{x} \in (\mathcal{O}_F/3)^{\times}$ is of order 3. \Box

LEMMA 13. Let $d = 3\ell > 0$ be a square free positive integer divisible by 3 with $\ell \neq 1$, $F = \mathbf{Q}(\sqrt{d})$, and $\varepsilon_0 = (t + u\sqrt{d})/2$ a fundamental unit of F. Under the above setting, assume that $h_F = 2$, $3 \nmid u$ and $Q_K = 1$. Then, there exist infinitely many classes $\bar{a} \in F^{\times}/(F^{\times})^3$ for which the cyclic extension $K(a^{1/3})/K$ is tame but has no NIB. Namely, F does not satisfy (H₃).

PROOF. As $Q_K = 1$, the prime ideal \wp_3 of F over 3 is not principal by Lemma 4 (III). Let \wp_ℓ be the product of distinct prime ideals of F dividing ℓ . As $\wp_3 \wp_\ell = \sqrt{d}\mathcal{O}_F$, the ideal class containing \wp_ℓ is of order 2. Let $Cl_F(\wp_3^3)$ be the ray class group of F defined modulo \wp_3^3 . As $3 \nmid u$ and $3 \mid d$, we see that the quotient group of $(\mathcal{O}_F / \wp_3^3)^{\times}$ modulo $[E_F]_{\wp_3^3}$ is a cyclic group of order 3. Hence, it follows that $Cl_F(\wp_3^3)$ is a cyclic group of order 6 as $h_F = 2$. Let \mathfrak{L}_1 and \mathfrak{L}_2 be prime ideals of F contained in one class $\in Cl_F(\wp_3^3)$ of order 6. Then, we have $\mathfrak{L}_1\mathfrak{L}_2^5 = c\mathcal{O}_F$ for some integer $c \in \mathcal{O}_F$ such that $c \equiv 1 \mod \pi_3^3$. In the usual class group Cl_F , the ideals $\mathfrak{L}_1, \mathfrak{L}_2$ and \wp_ℓ are contained in the same class as $h_F = 2$. Then, as $\wp_\ell \mathcal{O}_K = \sqrt{-\ell}\mathcal{O}_K$, we see that $\mathfrak{L}_i\mathcal{O}_K = x_i\mathcal{O}_K$ for some $x_i \in \mathcal{O}_K$ such that

$$c = x_1 x_2^5$$
 and $\frac{x_i}{\sqrt{-\ell}} \in E_K \cdot F^{\times}$.

As $3 \nmid u$ and $3 \mid d$, we have $(\mathcal{O}_F/3)^{\times} \subseteq [E_K]_3$ by Lemma 3. Therefore, we can write

(8)
$$x_i \equiv \varepsilon_i \sqrt{-\ell} \mod 3$$

for some unit $\varepsilon_i \in E_K$. Let $b = c/x_2^3 = x_1x_2^2$. Then, as $c \equiv 1 \mod \pi_3^3$, the cyclic extension $K(b^{1/3}) = K(c^{1/3})$ over K is tame. To show that it has no NIB, we assume, to the contrary, that it has a NIB. Then, there exists an integer $a \in \mathcal{O}_K$ with $K(a^{1/3}) = K(b^{1/3})$ satisfying the conditions of Theorem 4. We have $a = b^s y^3$ for $s \in \{1, 2\}$ and some $y \in K^{\times}$. Similary as in the proof of Lemma 12, the ideal \mathfrak{B}_2 associated to $a\mathcal{O}_K$ by (1) and (2) equals the principal ideal $x_2\mathcal{O}_K$ or $x_1\mathcal{O}_K$ according to whether s = 1 or 2. Let $\alpha = a^{1/3}$. Then, by the condition (iv) of Theorem 4 and (8), we see that the congruence

$$\delta_0 + \delta_1 \alpha + \frac{\delta_2 \alpha^2}{\sqrt{-\ell}} \equiv 0 \mod 3$$

holds for some units δ_0 , δ_1 , $\delta_2 \in E_K$. As $K(a^{1/3})/K$ is tame, we can take an integer $v \in \mathcal{O}_K$ such that $\alpha \equiv v \mod \pi_3$ by Lemma 2. Then, $1 + \alpha/v + (\alpha/v)^2 \equiv 0 \mod 3$. Hence, it follows from the above congruence that

$$\left(\delta_0 - \frac{\delta_2 v^2}{\sqrt{-\ell}}\right) + \left(\delta_1 - \frac{\delta_2 v}{\sqrt{-\ell}}\right) \alpha \equiv 0 \mod 3.$$

From this, we obtain

$$\sqrt{-\ell} \equiv \delta_2 v^2 / \delta_0 \equiv \delta_2 v / \delta_1 \mod \pi_3$$

similarly as in the proof of Lemma 11. As $Q_K = 1$ and 3|d, we have $[E_K]_{\pi_3} = \langle -1 \rangle_{\pi_3}$. Therefore, it follows that $\sqrt{-\ell} \equiv \pm \ell \equiv \pm 1 \mod \pi_3$ from the above congruence. However, we easily see that this is impossible. \Box

5. Proofs of Theorems 2 and 3

We use the same notation as in Section 4. In particular, $F = \mathbf{Q}(\sqrt{d})$ is a quadratic field with *d* a square free integer, and $K = F(\sqrt{-3})$. If *F* satisfies (*H*₃), then the exponent of Cl_F divides 2 and $2^{t-3}[E_K : E_K^*] = 1$ by Proposition 3 and Lemma 9 (I). In particular, $t \le 3$ and hence $h_F|4$ by genus theory. Hence, we see that $h_F = 1$, 2 or $Cl_F = (2, 2)$ if (*H*₃) is satisfied.

PROOF OF THEOREM 2. Let $F = \mathbf{Q}(\sqrt{d})$ be an imaginary quadratic field. When $d \neq -3$, let ε_0 be the fundamental unit of the associated real quadratic field $F^* = \mathbf{Q}(\sqrt{-3d})$ with $\varepsilon_0 > 1$, and let ε be a fundamental unit of $K = F(\sqrt{-3})$. We let $\varepsilon = \varepsilon_0$ if $Q_K = 1$, and we may choose ε as in Lemma 4 if $Q_K = 2$.

The case $h_F = 1$. By Stark [12], there are exactly nine imaginary quadratic fields $F = \mathbf{Q}(\sqrt{d})$ with $h_F = 1$;

$$d = -1, -2, -3, -7, -11, -19, -43, -67, -163.$$

When d = -3, *F* satisfies $(\mathcal{O}_F/3)^{\times} = \langle -1, \zeta_3 \rangle_3$, and hence it satisfies (H_3) by Proposition 1. For the other eight ones, we see from Lemma 4 (III) that $Q_K = 2$ by using the fact that 3 is ramified in F^* and h_{F^*} is odd. Further, (H_3) is satisfied if and only if $(\mathcal{O}_F/3)^{\times} \subseteq [E_K]_{\pi_3}$ by Corollary 2. Let d = -2, -11. Then, as $d \equiv 1 \mod 3$, we see that $(\mathcal{O}_F/3)^{\times} = (\mathcal{O}_K/\pi_3)^{\times} = (2, 2)$ and $\sqrt{d} \not\equiv \pm 1 \mod \pi_3$. Hence, it follows that $(\mathcal{O}_K/\pi_3)^{\times} = \langle -1, \sqrt{d} \rangle_{\pi_3}$. Using Lemma 4 (III), we see that

$$\varepsilon = \sqrt{-2} + \sqrt{-3}$$
 or $\sqrt{-11} + 2\sqrt{-3}$

according to whether d = -2 or -11. Hence, (H_3) is satisfied for these d. Let d be the remaining six ones. Then, as $d \equiv -1 \mod 3$, $(\mathcal{O}_F/3)^{\times} = (\mathcal{O}_K/\pi_3)^{\times} = (8)$. When d = -1, we see that the order of the class $\bar{\varepsilon} \in (\mathcal{O}_K/\pi_3)^{\times}$ equals 8, where ε is the fundamental unit of K given in Lemma 4 (I). Hence, (H_3) is satisfied for d = -1. For the other five ones, we

have $\varepsilon_0 \equiv \pm 1 \mod \pi_3$ as 3 is ramified in F^* . Then, it follows that $\varepsilon^4 = \varepsilon_0^2 \equiv 1 \mod \pi_3$ by Lemma 4 (III), and hence (H_3) is not satisfied for these d.

The case $h_F = 2$. By Stark [13] and Montgomery and Weinberger [11], there are exactly 18 imaginary quadratic fields $F = \mathbf{Q}(\sqrt{d})$ with $h_F = 2$. Using Lemmas 4 and 9 (II) (and Remark 3), we see by some hand calculation that among these, there are exactly 13 ones for which all ideal classes capitulate in K;

$$d = -5, -10, -22, -35, -58, -115, -187, -235$$

and

$$d = -3\ell$$
 with $\ell = 2, 5, 17, 41, 89$

For these 13 ones, we have $Q_K = 1$. Therefore, for the first 8 ones, (H_3) is not satisfied by Lemma 5. For the remaining 5 ones, (H_3) is not satisfied by Lemma 12 (and Remark 4).

The case $Cl_F = (2, 2)$. By Arno [1], there are exactly 54 imaginary quadratic fields $F = \mathbf{Q}(\sqrt{d})$ with $h_F = 4$. We see from genus theory that among them, there are exactly 15 ones for which $Cl_F = (2, 2)$ and $t \le 3$. For these 15 ones, we have 3|d, and hence (H_3) is not satisfied by Lemma 12 (and Remark 4). \Box

PROOF OF THEOREM 3. As in Section 1, let λ (resp. μ) denote a prime number ≥ 5 with $\lambda \equiv 1 \mod 4$ (resp. $\mu \equiv 3 \mod 4$). Let $F = \mathbf{Q}(\sqrt{d})$ be a real quadratic field, and $\varepsilon = (t + u\sqrt{d})/2$ a fundamental unit of F. We distinguish the cases according to whether $N\varepsilon = -1$ or 1 and $Q_K = 1$ or 2. Let $r (\leq t)$ be the number of prime numbers which ramify in F. We see that r = t - 1 or t, and that r = t if and only if 3 is ramified in F. For a prime number ν which ramify in F, let \wp_{ν} be the prime ideal of F over ν .

(I) The case $N\varepsilon = -1$ and $Q_K = 1$. In this case, we have $[E_K : E_K^*] = 2$. Then, by Proposition 3 and Lemma 9 (I), we have t = 2 and hence r = 1, 2 if (H₃) is satisfied.

First, let r = 1. Then, $F = \mathbf{Q}(\sqrt{2})$ or $\mathbf{Q}(\sqrt{\lambda})$. For these F, we actually have $N\varepsilon = -1$, and $Q_K = 1$ by Lemma 4 (II). As h_F is odd, it follows from Proposition 3 and Corollary 2 that F satisfies (H_3) if and only if $h_F = 1$ and $(\mathcal{O}_F/3)^{\times} \subseteq [E_K]_{\pi_3}$. Therefore, by Lemma 6, (H_3) is satisfied if and only if the conditions (ii) and (iii) of Theorem 3 are satisfied.

Next, let r = 2. Then, as t = 2, we have $F = \mathbf{Q}(\sqrt{3})$, $\mathbf{Q}(\sqrt{6})$ or $\mathbf{Q}(\sqrt{3\mu})$. However, for these F, we have $N\varepsilon = 1$.

(II) The case $N\varepsilon = -1$ and $Q_K = 2$. In this case, we have $[E_K : E_K^*] = 4$. Then, by Proposition 3 and Lemma 9 (I), we have t = r = 1 if (H_3) is satisfied. Hence, *F* is unramified outside 3. However, there does not exist such a real quadratic field.

(III) The case $N\varepsilon = 1$ and $Q_K = 1$. In this case, we have $[E_K : E_K^*] = 1$. Hence, t = 3 and r = 2, 3 if (H_3) is satisfied.

First, let r = 2. Then, as r < t, we have (A) $F = \mathbf{Q}(\sqrt{\mu})$, $\mathbf{Q}(\sqrt{2\mu})$ or $\mathbf{Q}(\sqrt{\mu_1\mu_2})$, or (B) $F = \mathbf{Q}(\sqrt{2\lambda})$ or $\mathbf{Q}(\sqrt{\lambda_1\lambda_2})$. For these F, we actually have $Q_K = 1$ by Lemma 4 (II). For F of type (A), $N\varepsilon = 1$ and h_F is odd. Hence, for F of type (A), we see that (H₃) is satisfied if and only if the conditions (ii) and (iii) of Theorem 3 are satisfied by Proposition 3, Corollary

2 and Lemma 6. Let us deal with *F* of type (B). For these *F*, the 2-rank of Cl_F is one. We see that $N\varepsilon = 1$ if and only if \wp_2 and \wp_{λ} (resp. \wp_{λ_1} and \wp_{λ_2}) are principal (cf. Exercise 1.2.4 in Mollin [10, page 13]). However, when these ideals are principal, the (unique) ideal class *c* of *F* of order 2 does not contain an ambiguous ideal. Hence, the class *c* does not capitulate in *K* by Lemma 7. Therefore, by Proposition 3, (*H*₃) is not satisfied for *F* of type (B).

Next, let r = 3. As t = r = 3, we have $F = \mathbf{Q}(\sqrt{6\mu})$, $\mathbf{Q}(\sqrt{6\lambda})$, $\mathbf{Q}(\sqrt{3\lambda})$ or $\mathbf{Q}(\sqrt{3\lambda\mu})$. For these F, $N\varepsilon = 1$. As the 2-rank of Cl_F is one, we must have $h_F = 2$ if (H_3) is satisfied. When 3|u, (H_3) is not satisfied by Lemma 12 (and Remark 4). When $3 \nmid u$ (and $h_F = 2$, $Q_K = 1$), (H_3) is not satisfied by Lemma 13.

(IV) The case $N\varepsilon = 1$ and $Q_K = 2$. In this case, we have $[E_K : E_K^*] = 2$. Hence, t = 2 and r = 1, 2 if (H_3) is satisfied. The case r = 1 can not occur as $N\varepsilon = 1$. Hence, we obtain t = r = 2, and hence $F = \mathbf{Q}(\sqrt{3})$, $\mathbf{Q}(\sqrt{6})$ or $\mathbf{Q}(\sqrt{3\mu})$. For these F, $N\varepsilon = 1$. As h_F is odd, the prime ideal \wp_3 is principal. Hence, $Q_K = 2$ by Lemma 4 (III). By Proposition 1 and Lemma 3, this type of F satisfies (H_3) if $h_F = 1$ and $3 \nmid u$. If $h_F > 1$, it does not satisfy (H_3) by Proposition 3. If 3|u, it does not satisfy (H_3) by Lemma 12 (and Remark 4).

Now, Theorem 3 follows from the above argument. \Box

ACKNOWLEDGEMENTS. The author thanks the referee for carefully reading the manuscript and in particular for pointing out that d = 3 was neglected in the statement and the proof of Theorem 3 of the old version.

References

- [1] S. ARNO, The imaginary quadratic fields of class number 4, Acta Arith. 60 (1992), 321-334.
- [2] E. GÓMEZ AYALA, Bases normales d'entiers dans les extensions de Kummer de degré premier, J. Théor. Nombres Bordeaux 6 (1994), 95–116.
- [3] C. GREITHER, D. REPLOGLE, K. RUBIN and A. SRIVASTAV, Swan modules and Hilbert-Speiser number fields, J. Number Theory 79 (1999), 167–173.
- [4] H. HASSE, Über die Klassenzahl Abelscher Zahlkörper, Akademie-Verlag, (1952).
- [5] H. ICHIMURA, Note on the ring of integers of a Kummer extension of prime degree, I, Comment. Math. Univ. Sancti Pauli 52 (2003), 59–67; IV, Proc. Japan Acad. 77A (2001), 92–94; V, Proc. Japan Acad. 78A (2002), 76–79.
- [6] H. ICHIMURA, On the ring of integers of a tame Kummer extension over a number field, J. Pure Applied Algebra 187 (2004), 169–182.
- [7] F. KAWAMOTO, On normal integral basis, Tokyo J. Math. 7 (1985), 221–231.
- [8] F. KAWAMOTO, Remark on "On normal integral basis", Tokyo J. Math. 8 (1985), 275.
- [9] T. KUBOTA, Über den bizyklischen biquadratischen Zahlkörper, Nagoya Math. J. 10 (1956), 65-85.
- [10] R. A. MOLLIN, *Quadratics*, CRC Press (1996).
- H. L. MONTGOMERY and P. T. WEINBERGER, Notes on small class numbers, Acta Arith. 24 (1973/74), 529–542.
- [12] H. M. STARK, A complete determination of complex quadratic fields of class number one, Michigan J. Math. 14 (1967), 1–27.
- [13] H. M. STARK, On complex quadratic fields of class number two, Math. Comp. 29 (1975), 289–302.
- [14] L. C. WASHINGTON, Introduction to Cyclotomic Fields (2nd edition), Springer (1996).

Present Address: DEPARTMENT OF MATHEMATICS, YOKOHAMA CITY UNIVERSITY, 22–2, SETO, KANAZAWA-KU, YOKOHAMA 236–0027, JAPAN. *e-mail:* ichimura@yokohama-cu.ac.jp