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Introduction

Let p be a prime number. Then a field £ is said to be p-quasifinite, if k is a perfect field

of characteristic p and Gal(kEé’I], /k) = Z,. Here kg’;,], is the maximal separable p-extension of
k and Z, is the ring of p-adic integers.

Suppose that k is a p-quasifinite field, n = 1 and K = k((#,)) - - - (1)) is a formal power
series field in n variables with coefficient field k. Then the nth Milnor K-group K ,{” K of K
gives rise to a topological group by introducing the weak topology (see §4). Moreover we

put 'K = Gal(Kig] /K), where K‘EII;] is the maximal abelian p-extension of K. Then the
following results are obtained.

Main Theorem. Let k be a p-quasifinite field,n 2 1 and K = k((ty)) - - - (t1)). Then
(i) for any element F € I'k having the property 'k = F%r there exists a homomor-
phism

ok : KMK — T'K

of topological groups which satisfies the following two conditions:
(1) Take any finite separable p-extension K'/K of fields. Then

Nk kKMK' = p'(Gal(KP /K’ 0 Kap)) -
Moreover, px induces an isomorphism:
KMK/Ngyk KMK' = Gal(K' N Kap/K)

of abelian groups. Here “overline” means the closure of K,’lw K with respect to the weak

topology.
(2) Take any o € K,]EWK. Then

Pk (@) |, = Ft@

ab
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For the mapping £ : K,{VIK — Z, see Lemma 15, (ii).
(i) The mapping from the set of finite abelian p-extensions L over K to the set of open
subgroups of K ,]l” K defined by
L > NyxKML
is an inclusion-reversing bijection, and
KMK/NikKML = Gal(L/K).
(iii) For any finite abelian p-extension L over K, we obtain
L/K is unramified < U[((O) C m
Here UI((O) = Ker /.
COROLLARY. The first inequality:
(KMK : Ng kKM K'Y 2 [K'0Kap 2 K]
holds for any finite separable p-extension K'/K of fields.
REMARK. (i) If the second inequality:
(KMK : Ngk KMK') < [K'0Kap 2 K]

holds, then the Main Theorem gives rise to the fundamental theorem of class field theory for
p-extensions.

(ii)) The second inequality is already proved in the case when £ is finite or n = 1. See
[4] and [8].

The author wishes to express his thanks to Professor Shigeru litaka for his advices and
warm encouragement.

1. Here we shall define two rings (A)", [[A]], for aring A and n 2 1, and study the
fundamental properties of these rings.
Let A be a ring and I” a totally ordered abelian group. For x € A!", we put

s(x)={y el |x(y)#0}.
Here AT denotes the set of mappings from I" to A. Then the set
A(IN) = {x € AT | s(x) is a well-ordered subset of I}
is a sub A-module of A”". For x, y € A(I")), we define xy € A(I")) by

I — A
Xy: w w

y — Y x@yy —a).

ael’
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Then A((I")) turns out to be a ring with this product (see [1, Chapter 6, §3, Exercise 2]).
Moreover we put

Al ={x € A(I") | x(y) #0=y = 0},

m={x € A[[I']] | x(0) =0},

then A[[I']] is a subring of A(({")), m is an ideal of A[[I"]] and A[[I']] = A & m.
Fora € I', we define t, € A(I") by ty : vy + to(¥) = 8a,y. Then (tux)(y) =
x(y — ) for any x € A((I")), and the mapping:

r — A()*
w w
o > ty

is an injective homomorphism of groups. In what follows, we denote by 71 the image of this
mapping. The ring A(I")) is complete with respect to the linear topology with fundamental
system of neighborhoods ¥ = {fom | @ € I', & = 0} of 0.

For a ring A and a totally ordered abelian group I", we introduce the mapping

A(I") —> TI'U{4oc}
OI'dA[[F]] . w w
X —  mins(x).

Here we put min @ = +o0.

LEMMA 1. Suppose that A is an integral ring and I is a totally ordered abelian group.
Then for any x, y € A(I")), we have

OI’dA[[F]](x) =400 << x =0,
ordapry(xy) = ordapry(x) 4+ orday (),

ordar ) (x + y) = min{ordary)(x), ordagry(y)}.
Moreover

Al = {x € A(I") | ordagry(x) = 0},

m={x € A(I") | orda[ry(x) > 0}.
COROLLARY. A(IN)* =1t x A[[T'1]*.

Next we introduce the notion of strong homomorphisms of A-modules as follows.

Let A be a ring and Iy, I totally ordered abelian groups. Then a mapping ¥ :
A1) — A(I») is said to be a strong homomorphism of A-modules, if the following
three conditions are satisfied: For any well-ordered subset I of 17,



496 KOJI SEKIGUCHI

e {wuel |y es(¥(ty))}isa finite subset of I'] forany y € I,
° Us(l//(ta)) is a well-ordered subset of I,

ael

. w(Zaata) = aq¥(ta) forany (ay)acs € Al
ael ael
Let st Homg (A(I1)), A(I%»))) denote the set of strong homomorphisms of A-modules
from A(I7)) to A(I%)). Then the set st Hom4 (A1), A(I%)) is a sub A((I»))-module of
Homa (A1), A(I72))). Moreover we get

¥ € stHomy (A1), A(12)). @D Ata C Keryp = ¢ =0.

aell

EXAMPLE 1. Suppose that A is a ring and I is a totally ordered abelian group. Then
forany y € I', x € A((I")), the mapping:

AN — A
W w
y > () ()

is a strong homomorphism of A-modules.

LEMMA 2. Let A be a ring and I'y, I totally ordered abelian groups. Then, for any
strong homomorphism  : A(I'1)) — A(1%)) of A-modules,  is a ring homomorphism if
and only if Y (te4 ) = Y (ta)¥ (1) forany o, B € I't and (1) = 1.

The proof is similar to the case of group rings.

A mapping ¥ : A(I1)) — A([%)) is said to be a strong homomorphism of A-rings, if
Y is a strong homomorphism of A-modules and is a ring homomorphism.

Moreover, for a ring A and totally ordered abelian groups I'1, I, the definition of a
mapping v : A[[I1]] = A[[I%]] to be a strong homomorphism of A-modules or A-rings is
similar to the case that ¢ : A(I)) = A(?)).

For n 2 1, we define two functors ()", [[ 1], : (Rings) — (Rings) by putting (A))" =
A(Z"), [[Alln, = A[[Z"]] for aring A. Here Z" is a totally ordered abelian group with the
lexicographical order. Especially if we write () = (( YL [[11=[[11:, then

()'=(Do(No---0() (nthcomposite)

forany n = 1.
LEMMA 3. Foraring Aandn 2 1, we putt) = 11,0,,0) "+ tn = 10,..,0,1) € (A)".
Then
(1) t; is transcendental over A((t,)) - - - (ti+1)) foranyi € {1, ---,n}, and

(A" = A(@) - (1),
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(ALl = A& Pt A - (s )],

i=1
m =P uA) - @)1
i=1
Moreover we obtain tr = tlz X - X th.
(i) Ifweput D ={x € (A)" | x(y) #0 =y < 0}, then
(A)'=DellAll,=DoA®m,

D =@ ) @l

i=1
COROLLARY 1. Suppose that A is integral. Then

(A =12 x - x E x [[A]l}

n >

[[All; = A" x (1+m),

L+m=[]A+6A@0) - @rE1D -
i=1
COROLLARY 2. Let A be a field. Then
(1) (A" is also a field.
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(ii) [[Alln is a strictly complete valuation ring with quotient field (A)", residue field

A and value group 1.
(iii) ordjjay, is an additive valuation of (A))"* corresponding to [[All,.

LEMMA 4. Let A be an integral ring andn 2 1.

(1) Ifwe write [[A]] = A[[t]], then the following three conditions for x € [[A]l, are

equivalent:

(a) There exists a strong homomorphism r : [[A]] — [[A]l. of A-rings
such that ¥ (t) = x.

(b) {i e N|y €s(x')}isafinite set for any y € Z",
and | J;cns(x") is a well-ordered subset of 7"

(c) xem

(i) Ifx € mand x # 0, then the mapping  in (a) is injective.

PROOF. (i) In general, the following claim is proved:

CLAIM 1. Put I’ = Z". Let N be a well-ordered subset of T = {y e I' | y > 0}.
Then {i € N | y € iN}is afinite set forany y € I', and | J; xi N is a well-ordered subset of

I.

If we put N = s(x) in Claim 1, then we can prove (c) = (b). The proof of (a) < (b) =

(c) and (ii) are easy.

g
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At the end of this section, we consider the principle of substitution and the change of
variables in ((A))", by the use of strong homomorphisms of A-rings.

LEMMA 5. Let A be anintegral ring andn 2 1. Foruy, - -, u, € (A)" — {0}, we put

ordyjay), (u1)
M= : eMn,Z),
ordiiay, (un)

ordiaj, (u1)
L(uy, -+, uy) = det : eZ,
ordjay, (un)

and take the elements ty, - - -, t, € (A)" defined in Lemma 3. Then
(i) the following three conditions foruy, - - -, u, € (A)" are equivalent:

(a) There exists a strong homomorphism { : (A)" — (A)" of A-rings

such that (t;) = u; foranyi € {1,---,n}.
(b) u; is transcendental over A(uy,)) - - - (ui+1)) foranyi € {1, ---,n},

and A(uy)) - - - (u1)) is a subring of (A)".
©) up,--,uy € (A)"* and M is an upper triangular matrix

such that all the diagonal elements are positive.

(i) Suppose that uy, - - -, uy satisfy the condition (a). Then

Y is surjective <= L(uy,---,u,) =1.

Therefore the following three conditions foruy, -- -, u, € (A)" are also equivalent:
(ag) There exists a strong isomorphism ¥ : (A)" — (A)" of A-rings
such that (t;) = u; foranyi € {1,---,n}.

(bo) u; is transcendental over A(uy)) - - - (ui+1)) foranyi € {1, ---,n},
and A(up)) - - - (u1)) = (A)".
(co) uy,--,uy € (A)"* and M is an upper triangular matrix

such that all the diagonal elements are 1.

PROOF. (i) Using Claim 1 described in the proof of Lemma 4, we can prove (c) =
(a). The proof of (a) < (b) = (c) and (ii) are easy. O

Suppose that uy,---,u, € (A)" satisfy the condition (a) in Lemma 5, (i). Then we
write

(AN, = A(up) -+ (u1) =Im .
Note that (A)" = (A)".

2. Here we shall define an ((A))"-module 2" A for aring A and n = 1, and study the
fundamental properties of this module.
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For a ring A and an A-ring B, let Derq B denote the set of A-derivations of B and
£2p,4 the B-module of regular differential forms of B over A. Moreover for n = 1, we put
.QB"/A = /A A -+ A £2pya (nth exterior power as B-modules). For aring A and n > 1, we
define a functor £2/} : (A-Rings) — (A-Mod.) by putting 2/} B = .QB"/A for an A-ring B. We
also write 24 = .Ql\. In the following, we consider the case that B = ((A))".

LEMMA 6. Suppose that A is a ring andn = 1.
(i) Foranyi € {l,---,n}, there exists 0; € Derg(A)" such that

@ix)(y) =i+ Dx(y +e) e y=01- . el").

Here e; is the ith unit vector: ¢; = (0,---,0,1,0,---,0) € Z".
(i) 9y, -+, 9, € Derg(A)" are linearly independent over (A)". Moreover
ordayy, (9;x) = ordjjay, (x) — e; for any x € (A)". Thus 9; is continuous. If we put

st.Dera (A)" = stHoma ((A)", (A)") NDers (A)",

then

st.Ders (A)" = EHA)"a: .
i=1

ad
PROOF. (i) Noting that 9; = 3 we have 9; € Dera(A)" (1 £i < n).

1

(ii) The linear independence of 9y, ---, 9, is easily proved from 9;f; = §;;. Since
0i (Y ger data) = D _4eq dadi(ty) holds for any well-ordered subset / of Z" and (ag)acr €
A, we obtain 9; € st.Der4 (A)". O

Since the (A)"-module £2( 4y, 4 has the universal mapping property for A-derivations,
there exists a homomorphism ¢; : 2¢a)r/a — (A)" of (A)"-modules such that ¢; o
d(ayr/a = 0; forany i € {1, ---, n}. Here we define a homomorphism

Qayrja —> (A" x - x (A))"
7 w w
® > (p1(@), -, gn(w))
of (A))""-modules. In what follows we write d = day /4.
LEMMA 7. Let Abearingandn 2 1. Take the elementsty, - - - , t, defined in Lemma 3.
Then w — Y !_,¢i(w)dt; € Ker ¢ for any € 2ayn/a. Thus
2qayrja =Ker o @ (A)"dty @ - @ (A)"dty .

EXAMPLE 2. Forany f € (A)", we have

_(of af
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Therefore
n
af
df—;:a—tidt,- eKerg.
=

For aring A and n 2 1, we consider the (A))"-module

Q2"A = Q25(A)" = 2y 4 -

For (0)1, ey a),,) € .Q((A))n/A X e X .Q((A))n/A, we put

p1(w1) - gu(wy) (1)

[pj(wi)] = : : = : € M(n, (A)")

p1(wn) - oulwy) @ (wn)

and define the mapping
Rqayr/a X - X Raya —> Ay"
b : w w
(w1, -, wp) > det[p;(@i)].

Since @ is (A))"-multilinear and alternating, there exists a homomorphism
o 2"A — (A)"

of ((A)”"-modules such that @ = ¢’} o c. Here ¢ : Qqayn/a % -+ X Qqayrja — 2" Ais the
canonical mapping. Thus (pﬁ(u)] A Awp) =P(wr, -+, wy).

LEMMA 8. Let Abearingandn = 1. Take the elementsty, - - -, t, defined in Lemma 3.
Then w — @'y (w)dty A --- Adt, € Ker ¢!y for any w € 2" A. Thus

R"A = 24(A)" = .Q((A))n/';\ =Ker ¢y & (A)"dty A--- Adty .
EXAMPLE 3. (i) Forany f1, -+, fu € (A)", we have

Ohdfi A Ndfy) =det J(f/1).

Therefore
dfi A--- Adfy, —detJ(f/D)dty A --- Adt, € Ker ¢} .
Here
ot oty
J(f/t) = : : € M(n, (A)")
ot dat,

is the Jacobian matrix.
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(i) For (my,---,my) € Z", we put w = ti"‘ coetptdty Ao Adt, € 27 A. Tf there
exists j € {1,.--,n} suchthatm; +1 € A, then there exist monomials fi, - - -, f, € (A)"
such that

w—dfi A ANdfy € Ker ¢ .

For aring A and n 2 1, we introduce the mappings

ordpn 4 = ordjay), © (p;l\ :R2"A — 7" U {+00}

and
N"A — A
res’) : w w

Then ordgen 4 (w) is called the order of @ € £2" A and res'; (w) is called the residue of w €
NR"A.

LEMMA 9. Let A bearingandn = 1. Then
(i) the mapping resy : 2" A — A is a homomorphism of A-modules.
(ii) Forany w € 2" A, we have

ordong(w) = 400 < w € Ker ¢y ,

ordgra(w) 2 (—1,--+,—1,0) = resy(w) =0.
(iii) Forany f1,---, fn € (A)", we have
resi (dfi A--- ANdfy,) =0.

PROOEF. The statements (i) and (ii) are obvious.

(iii)) Note first that (iii) is proved in the case that fi, - - -, f, are all monomials. Since
the mapping:
y" — A
w w

S > res (dfi Ao Adfy)

is a strong homomorphism of A-modules for any fixed f2,---, fu € (A)", (iii) is valid for
f1 € ((A)". Repeating this process, we obtain resy (dfi A---Adf,) = O0forany fi,---, f, €
A" 0
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LEMMA 10. Let A be an integral ring and n = 1. For uy,---,u, € (A)"* and
t1, -+, t, defined in Lemma 3, we put
1 ouq t, duq
up o up o
JE/t) = : : € M(n, (A)").
t ouy, ty Ouy
un 011wy 0ty

Then
i) JEu/t) e M(n, [[All) and

JEW/0)(0,---,0) = ME, o € M(n, A).

Here M is the matrix defined in Lemma 5 and E, 4 is the unit matrix in M (n, A).
(i) detJE(u/t) € [[A]l, and

det JEu/0)(0,--+,0) =y, -, up) - 14.

Here £(uy, - -+, uy) is the integer defined in Lemma 5 and 1 4 is the unity of A.
(iii) Forany x € (A)", we obtain

d d
res’, <xﬂ A A ””) = (xdet JEu/0))(0, -+, 0).
u u,
PROOF. (i) Since ordjjay,(d;x) = ordjjay, (x) — ordjjay, (tj) forany x € (A)", we
have JE(u/t) € M(n,[[A]]l,) by putting x = u; (1 < i < n). If we put y = orday, (x) —
ej, then (435)(0,---,0) = )(c(]yXJ)r():; = (yj+1)-1a = (ordjay, (x)); - 1a. Therefore
JE@/0)(0, -+, 0) = MEp,a.
(i) This statement is proved easily from (i).
(iii)) By Example 3, (i), Wegetx%/\- . -/\du—':"—x detJL(u/t)”i—?/\- . -/\”% € Ker ¢}.
Thusres';\(xdu—“lm- : -A%n) = res’} (x detJL(u/r)‘i—le- : -/\%) = (xdet JEu/1))(0, - - -, 0).
O

Next we shall study the properties with respect to the change of variables.

LEMMA 11. Let A be an integral ring and n = 1. Suppose that uy,---,u, € (A)"
satisfy the condition (a) in Lemma 5, (i).
0
(i) Foranyi € {1,---,n}, there exists a unique F € st.Dera (A))}, such that
Ui
0 m m—1 .
B_W(uj):muj Sij melZ, j=1,2,---,n).
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d
@) —, -, are linearly independent over (A))) and
ouy duy,

n
d
stDera (A, = DAY -
i=1 !
The proof is similar to that of Lemma 6.

Let A be an integral ring and n = 1. Suppose that uy, - - -, u, € (A)" satisfy the con-
dition (a) in Lemma 5, (i). Then there exists a homomorphism ¢}’ : 2ayn/a — (A))y of

9
(A));;-modules such that ¢’ o d = ™"
1

foranyi € {1, ---,n}. Here we define a homomor-
phism
" = (@), o) Reayna —> (A)y x -+ x (A)y,

of (A)}-modules. Note that g; = ¢! (1 <i <n)andg = ¢'.
Next we put

2uA = QLA = L ay/a -
Then we can define an alternating ((A))!!-multilinear mapping
P 2qapy/a X X Lqayya —> (A,
and a homomorphism
¢l A — (A,
of (A)”-modules by putting

(pu(wl7 ) a)n) = det[ﬁl)’; ((1),)] )

Ph(i A Awy) = P (w1, -+, wy)

forwi, -+, wy € ‘Q((A))Z/A’ Note that 2"A = ,Qt”A, @ = @' and (p;l‘ = (pt".
Moreover we introduce the mappings

ord_er;A = Ord[[A]]Z o (p;l : .QZA — 7" U {+o0}

and
/A — A
res; : W w

Note that res’y = res].
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LEMMA 12. Suppose that A is an integral ring,n = 1 and uy, -+ -, u, € (A)" satisfy
the condition (a) in Lemma 5, (1). Let i : (A)! — ((A)" denote the natural inclusion
mapping. Then

(i) forany wo, w1, -+, w, € ‘Q((A))Z/A and € §2]) A, we obtain
(9" 0 R24i)(wo) = ¢" (w0)J (u/1),
(¢t ] (‘QAi X - X QAi))(wlv M) wn) = ®u(w17 M) wn) det‘](u/t) 3

(@) 0 £2741)(w) = ¢, (w) det J (u/t) .
(i) Forany w € §2]'A, we have
(OrdgtnA o ng)(a)) = OrdggA(w)M + ordpaq, (det J (u/1)) .

Here M is the matrix defined in Lemma 5.
(iii) Forany w € 2]'A, we have

(res) o 24i)(w) = L(uy, -+, up)res, (w) .
Here £(uy, - -+, uy) is the integer defined in Lemma 5.

PROOF. The statements (i) and (ii) are easy to verify.

(iii) For (my, -+, my) € Z", we put w = u|"" -+ -up"duy A -+ Adu, € 2I'A. By
Example 3, (i) and Lemma 10, (iii), we have

(mls e 7mn) = (_17 ) _1) - (res;l © in)(w) = Z(ulv Tt un) : lA'
Moreover, by Example 3, (ii) and the fact that res” is a natural transformation, we obtain

(my,---,my) #(=1,---,=1) = (resy o 2%i)(w) = 0.
Next we put @ = fduy A --- Adu, € 2]JA for f € (A). Then both the mappings:
f = (res} o 2%i)(w) and f +> L(uy, -, up)res) (w) are strong homomorphisms of A-
modules. Therefore (res} o §£24i)(w) = €(uy, -, uy)res, (w). Since 2/A = Ker ¢ @
(Aypduy A -+~ Aduy,, we get (res} o 2'4i)(w) = £(uy, - - -, up)res) (w) forany w € 2/}A. O

COROLLARY. Suppose thatuy, - - -, uy satisfy the condition (ap) in Lemma 5, (ii). Then

(i) forany wo, w1, -, wy € LAy a and w € 2" A, we obtain
@' (o) = ¢"(w0)J (u/1),
¢t(w11 o '10)11) = Qu(wls o 1wn)det‘](u/t) 5

¢; (@) = ¢, (0) det J (u/1).
(i) Forany w € 2" A, we have
ordgrs(w) = (ordorna(w) + (1, -+, ))M —(1,---, 1).
(iili) Forany w € 2" A, we have

res; (w) = res), (w) .
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3. Here we shall define the Milnor K -group M, B for a ring B and n 2 0, and study
the fundamental properties of this group.
For aring B and n = 0, we define the nth Milnor K -group M, B of B as follows:

e Ifn =0, then we put
MyB =17.
e If n = 1, then we put
M,B=B*® --® B*/Ip,
where I is the subgroup of the nth tensor product B* ® - - - ® B> generated by the sets
{a1® - ®ai® - ®a;j® - Qay|aj € B*,a; +aj =1forsomei # j}
and
{a1® - ®ai® - ®a;j® - ®ay|a; € B*,a; +aj =0forsomei # j}.
Then we obtain a functor M,, : (Rings) —> (C.Groups) for any n = 0. For an inclusion
mapping i : A < B of rings, we also write M, o|p = M.

REMARK. (i) The group operation in M, B will be written multiplicatively forn = 1,
although MoB = Z. Especially if n = 1, then Igp = 1. Therefore M| B = B*.
(i) M,B= K,f”B for a field B. See [2, Chapter IX, (1)].

LEMMA 13. Suppose that B is a ring andn 2 1. Foray, ---,a, € B*, we put
{ar, --,an}=a1 ®---®a, mod Ip € M,B.

Then
M-1) {ay,---,a,} (a1, ---,a, € B*) generate M, B,
M-2) Aay,---,ai-1,bc,aiq1, -, an}
={ai, --,ai-1,b,ai41, -, apH{ar, -+, ai—1, ¢, aiy1, -+, an},
M-3)  ifa; +a; =0or1 forsomei # j,then{ay,---,a,} = 1.
COROLLARY. {ag(1y, -+, dom)} = {ai, -+ -, a1 forany o € S,.

Let B be an integral ring, ¢ an indeterminate over B and n = 1. Then there exists a
unique homomorphism v; : M,,_1 B(t)) — M, B((t)) of groups such that y; ({uz, - - -, u,}) =
{t,uz, -, u,}forany uz, --,u, € B(t)*. Forr 2 1, let U](VZB((I)) denote the subgroup of
M, B((t)) generated by {uy, ---,u,}, where uy € 1+ ¢" B[[t]], up, -+, u, € B(#)*. Then

(r) Q)
we have ¥, (U, _]B((t))) C UM,,B((z))'

n

LEMMA 14. Suppose that B is an integral ring, t is an indeterminate over B and n =
1. Let ¢o : B[[t]] — B denote the ring homomorphism defined by ¢o(f) = f(0) for any
f € Bl[t]]. Then
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(i) there exists a unique homomorphism 01 : M, B(t) — M,B of groups, which
satisfies
A ({ur, - un}) = {@ouyr ™0 BUMWDY o0 (s, 10BN ()Y

foranyuy, -, u, € B(t)*. Moreover we obtain 3 o M, g|p(r) = idm,p. Thus M, B(t)) =
Im MnB\B((t)) x Ker 9.

(ii) There exists a unique homomorphism 9, : M, B(t)) — My,_1B of groups, which
satisfies

82({t7 Uz, -+, un}) = {(PO(MZ)a ) (pO(un)}

foranyus,---,u, € B[[t]]* and Im M, g[8y C Ker 02. Moreover we obtain 9, o s o
M, _1BB(r) = idm,_,B. Thus M, B(t)) = Im(y; o M,,_1B|B(r)) *x Ker 02.

1 1
(ii1) Ker 9y = Im(y; o My,_1B|B(1))) X UI(W:B((”) and Ker 0, = Im M, g|p(1) X UI(W,,)B((I))'

The proof is similar to the case that B is a field. See also [2, Chapter IX, (2.1), (2.2),
(2.3)].

REMARK. In what follows, we shall regard M, B and M,,_1 B as subgroups of M, B((t))
by the injections M, g|p(+) and V¥, o M,,_1B|B(r), respectively:

Mgy : MnB — M, B(1)),

Yo Mu_1B1B(t) : Mn—1B — M, B(1) .

Moreover we write

0) _ _ (1)
UMnB((t)) =Kerdr, = M, B x UMnB((t)) .
Then we have
_ (€Y _ 0)
M,B(t) =M,_1B x M,B x UM,,B((t)) =M,_1B x UM,,B((t))'

LEMMA 15. Suppose that A is an integral ring andn 2> 1. Then

n
. 0
ORRACYEESURTENALES | (e
i=1

n n
_ _ n—i oz o)
= [ [M—irr )" x {11, 1) x HUMIH.H«A»"_,-H :
1=

i=1

where (A)" "1 = A(#,) -~ () 1 S i ).
(ii) There exists a unique homomorphism € : M, (A)" — Z of groups, which satisfies

E({”h "'7”"}) ZE(uh "'7”}1)
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foranyuy,---,u, € (A)"™. Here L(uy, -, uy,) is the integer defined in Lemma 5. More-
over we obtain M, (A)" = {1, - - -, tn}Z x Ker £ and

n
_ ©
Ker € = HUMn_m«A»"—H' :
i=

Therefore € = 3} o -+ 035 : My(A)" — Zfor 35 : Mi(A)' — M;—1(A)'~' (1 =i <n).

. . )
PROOF. We can prove (i) easily from Lemma 14 and U My a1 (A=t
My—i+1(A)"™!

) _
My g (Ayr=itl”

(ii) Since the mapping £ : (A)"* x --- x (A)"* — Z is multilinear, we have a
homomorphism ¢ : (A)"* ® --- ® (A)"* — Z of groups. Then, by Iay» C Ker ¢,
we obtain a homomorphism ¢ : M,(A)" — Z of groups. If we introduce the mapping

Vi Z — My, ((A)" defined by ¥ (m) = {t1, - --, 1,}" forany m € Z, then £ o = idz. Thus

M,(A) ={t1, -, tn}Z x Ker £. Moreover, by the definition of UI(V([)),-H((A))”—"‘*" and (i), we
0 S

have Ker ¢ = H?ZIU/(VI:,,-H((A))'H'“' This implies £ = 821 o---00j. |

For an integral ring A and n = 1, there exists a linear topology on M, (A)" with funda-
mental system of neighborhoods ¥ = {U ](V;j Ay | r = 1} of 0. This topology is said to be
the valuation topology on M, ((A))". Then M, (A)" is a topological group with respect to the

valuation topology.

4. Here we shall define a group pairing Resgg\»n M,y (A)" X Woo(A)" — WA for
an integral ring A and n 2 1, and study the fundamental properties of this pairing.

In the following, we consider the ring of Witt vectors with respect to the prime number
p. For aring A, let W A denote the ring of Witt vectors of infinite length over A. Then the
next results are easily obtained from Lemma 3, (ii).

LEMMA 16. Suppose that A is a ring andn 2 1. Then

Woo (A)" = Woo D ® Weol[Alln = Woo D ® W A @ Woom,

WooD = @ Woo(tl._lA(([n)) S ((ti+l))[ti_l]) .

i=1
Here, let
0% : Woo(A)" —> WA

denote the projection with respect to the decomposition: Woo (A)" = Woeo DO W AB Woom.

For an integral ring A and n = 1, we shall define a group pairing Resg? " M,(A)" x
Woo (A)" — Weo A as follows.
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First we consider the case that p € A*. Foruy,---,u, € (A)"* and b € W (A)",
we put

d d
ci=res’/f\(wi(b)ﬂ/\~~/\ un)GA (i=0)
ui

Up
and define the mapping

(A" x - X (A" X W (A)"  —> We A
"2 w w
(Ui, un, b) — 0y (corcr, )

Here w; (i = 0) are the Witt polynomials and

WA —> AN
Oy : w w
a > (wo(a)s w](a)s"')'
Since ¥ is multilinear with respect to uy, - - -, u, € (A)"* for any fixed b € W (A))", we

obtain a mapping
Y (A)"® - @ (A" x W (A)" —> WooA
by putting ¥ (11 ® - - - Q@ uy, b) = ¥1(uy, - -+, uy, b). Since
U (Iayr X Weo(A)") =0,
we can define a mapping
Res{" 1 M, (A)" x Woo(A)" —> WeoA
"

by Resss 7 ({u1, - -+, un}, b) = ¥1(uy, - - -, up, b). Therefore we have
n d d
wiRes{ ({ur, - un). b)) = resh i) b A A Ty €A (120).
uj

n

LEMMA 17. Let A be an integral ring and n 2 1. Assume that p € A™.
(1) Foranya,o € M,(A)",b,b' € Woo(A)", c € WA, and for any ring homo-
morphism ¢ : A — B, we obtain
R-1)  Res'" (@, b) = Res'?" (@, b) + Res™" (o', b)
R-2) Res™ (@, b+ b) = Res'?" (@, b) + Res'?" (a, 1)
R-3)  Res'?" (a, cb) = cResY" (a, b)
R-4)  Res? (@, Vb) = VRes'?" (a, b)
(R-5)  Res{" : M, (A)" x Wao(A)" —> WooA
is continuous with respect to the valuation topology on M,,(A))"
(R6)  WoopRes' (e, b)) = Res " (M, ()" (@), Weo ()" (b))
(R-7) b e WollAlln = Res?Y" (a, b) = £(a) 0* ().
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(i) Foranyuy,---,u, € (A)"* and b € W (A)", we have
(R-8) u; € A* for somei € {1,---,n} = Res’ ({u1, -, un),b) =0
R-9)  up, - up et x . xtt
= Res’” ({1, -+ un}, b) = €({ur, -+ uy}) 0% (b).
The proof is similar to the case thatn = 1.

LEMMA 18. Suppose that A is an integral ring,n = 1 anduy, -+ -, u, € (A)" satisfy
the condition (a) in Lemma 5, (). If p € A, then the mapping

A n
Resao " 1 My(A)l X Wao(A))) —> WooA

is defined. Let i : (A)) — (A)" denote the natural inclusion mapping. Then for any
a e M,(A)}, b e Woo(A)), we have
(A)

(R-10)  ResSo”" (Myi)(@), (W) () = £(u1, -~ -, tn)Ress
Here £(uy, - - -, uy) is the integer defined in Lemma 5.

“(a, b).

The proof is induced from Lemma 12, (iii) and the definition of the mapping Resgg\ Y,

COROLLARY. Suppose thatuy, - - -, u, satisfy the condition (ap) in Lemma 5, (ii). Then
forany a € M, (A)", b € W (A)", we obtain

Ay? (A)

ResY" (. b) = Res (a, b) .

Next we try to omit the condition p € A*.

LEMMA 19. Leti : A < B be an extension of integral rings andn = 1. If p € B,
then for any @ € M,,(A)", b € Woo (A)", we have

Res)" (M, (1) (), Woo (i) (b)) € WeaoA.

PROOF. It suffices to prove this lemma in the case that « = {uy, - - -, u,} foruy, - - -, u,
€ (A)"™. Puta = {11, -, ti—1,ui, -, uy} (1 <i < n+ 1), and prove the assertion by
induction on i. Fori = n + 1, it is easy from (R-9). Assume that the assertion holds fori + 1.
If i, ity € A(ta) -~ (ti+1), then det JE(u/t) = 0, and hence Res'®" (M, (i) (),
Woo (i) (b)) = 0, by Lemma 16, (iii). Therefore we may assume u; ¢ A(t,)) - - - (ti+1))
by Corollary to Lemma 13. Moreover, by Corollary 1 to Lemma 3, we can also assume (1)
u; € th (I £j<ior2u € [[A]ll). In the case (1), we can put u; = t;" (m € 7).
If1<j<i—1,thena = {t, -+, ti—1,—1,ujt1, -, u,}™ by Lemma 13. This implies
Res " (M, (i) (@), Woo (i) (b)) = 0 by (R-8). If j = i, then

a:{tlv"'vtisui+ls"'sul’l}’n‘

Therefore Resgég )" (M, (1) (), Wo ()" (b)) € Wy A by the assumption of induction. In
the case (2), if we put ¢/ = u;#;, then

Res BV (M, (i) (@), Woo ()" (b)) = Res & ({t1, - -, ti1, 1 i1, -+, un), b)
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—Res{®"({t1, -+ ticr tisuigr, - un}, b)
Since 1, ---,t_1, tl./,tH_l, -+, t, satisfy the condition (ap) in Lemma 5, (ii), we have
Resgéi )" M, (0I)" (@), Weo ()" (b)) € WxA by Corollary to Lemma 18 and the assump-
tion of induction. O

LEMMA 20. Let A be an integral ring and n 2 1.
() Evenifp ¢ A, the mapping Res’Y" : My, (A)" x Wao(A)" — WaoA is defined
and satisfies all the conditions (R-1), - - -, (R-9) and (R-10).
(i) If A is of characteristic p, then for any o € M,,(A)", b € W (A)", we obtain
R-11)  Res@"(a, Pb) = PRes'?" (a, D).
PROOF. (i) By Lemma 19, the assertion (i) is valid for an integral ring A of charac-

teristic 0, especially for a polynomial ring A in countable variables with coefficient ring Z.
Therefore, by the similar method to the case that n = 1, we can define Resgg‘ " by the use of
(R-6).
(ii) This statement follows from (R-2), (R-4) and p = PV. O
LEMMA 21. Let A be an integral ring and n = 1. Take any o € M,(A)",

b € Woo(A)", and write o = [[/__,a(i), b = Y_!__,b(i) following Lemma 15, (i) and

i= i=

Lemma 16. Here

n
a(=1) € [ Mu-isa ()", @(O) € {t1. - )% @@ € Uy i

i=1
b(=1) € Woom, b(0) € Woo A, (i) € Woo(t (A)" 111 ]),
and (A)"™ = A(ta)) - (tit1) (1 =i < n). If we put € = £(a), then a(0) = {t1, -+, 1, }*
and
Res{™" (o, b) = tb(0) + Y "Res{" (@(@), b(i)) .
i=1

PROOF. By (R-7), we have Res'" (&, b(—1)) = 0 for any & € M, (A)". Ifu; = 11,
ce Ui = tioq, Uiy s Uy € (A (1 £ i < n), then det JE(u/t) = 0. Therefore

Res@" (w(=1),b) = 0 for any b € Wao(A)", by Lemma 10, (iii). By (R-7), (R-9), we
obtain

Resg{?»" («(0), b(0)) = £b(0),
j#0 = Res'®" (@(0),b(j) =0,

i #0 = Res™" (a(i), b(0)) =0.
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Wui =11, i1 = ti—1, i € L+ 6(AY 611, i1, - - un € (A~ (1 < i < n),
then det /- (u/1) € 1;(A)"[[51). and if b = b(j). then wy(B) € 17 (A)"~T[1;"] for any
k = 0. Therefore

i #j = Res@W"(a(i),b(j)) =0
foranyi, j € {1, --,n}. .

In what follows, we consider the case that A is a ring of characteristic p. Then we
introduce a homomorphism

£ WeoA — W A

of modules defined by ¢ (a) = Pa — a forany a € Wy, A. If we put
1
WA =WooA/p (WooA) ® Z[;]/Z,

then we obtain a group pairing
Res™" : M, (A)" x W(A)" — WA

by the method similar to that in the case when n = 1. See [6, Lemma 3.10] or [8, §3]. Here
we induce the valuation topology on M, (A))".

Let Ann” denote the annihilator of the pairing Res(4)". Then there exists a linear
topology on M, ((A))" with fundamental system of neighborhoods

> = {Am™" (Q) | O is a finite subset of W ((A))"}

of 0. This topology is said to be the weak topology on M, ((A))". Then M, (A)" is a topo-
logical group with respect to the weak topology. Note that M, (A))" is not separable with this

topology.

LEMMA 22. Suppose that A is an integral ring of characteristic p and n = 1. Then
we obtain g (m) = m. Therefore

O Weem) = Woem, Wm=20
and
n
W(AY' =WD @ WA=@ W6 A - (i)' D @ WA.
i=1
PROOF. By Lemma 4, we reduce to the case whenn = 1. a
LEMMA 23. Foraring A of characteristic p and indeterminate t over A, we put

Ay = Parme [T am,

meN, meN,
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where N, = N — pN. Moreover, we take any submodule Ao of A such that A = PA @ Ay.

1) If we put A(t)o = @meNpAt’m &) ]_[meNp A" @ @2, Aot @ Ag D
[To=i Aot"", then we can write A(t)o = A(#*) @ Ao(#7)) and A(1)) = P(A(1)) ® A(*)o.

(i) AT = AT © Do, At © D12y Aot

PROOF. We can prove easily (i).

(i) Putx = at™™" fora € A,m € Ny, e = 0, and prove x € p(t~'A[t7']) @
@meNpAt_’" ® @Zozl Aot~ by induction on e. For e = 0, it is obvious. Lete = 1. If
weputa = b? + ¢ (b € A, ¢ € Ap), then x = (bt*ml’efl)l’ + et = g,)(bt*ml’efl) +
b= 4 e Thus x € p (Al ] @ Dren, At ™" ® Bp2y Aot ™. m

COROLLARY. For a ring A of characteristic p andn 2 1, we obtain

D=pD)o@P P A - Cir); ™"

i=1 meN,

QDD D A((tn)).“((tf“))((t.?))((t;—l))"'((fil:d))tiimpe

i=1 meNp e=1 f=i+1

o@ P Py @y

i=1 meN, e=1

LEMMA 24. Let A be an integral ring of characteristic p andn 2 1. Then
(i) the mapping Res)" - M, (A)" x W(A)" — WA is continuous with respect to
the weak topology on M,,(A)". Therefore Res)" js g group pairing.
(i) The weak topology is weaker than the valuation topology on M,,(A))".
(i) IfAisafield, PA = Aand A # o (A), then
Ann" (M, (A)") = 0.

PROOF. The statements (i) and (ii) are easy to verify.

(iii) Take any B € Ann‘"(M,(A)"). Then, by Lemma 21 and Lemma 22, we
have 8 € WD. Here we assume 8 # 0. Since WD is a torsion p-group, we may assume
pB = 0. Then we can write § = ¢1(b), b € WD, by ¢ g (D). Noting that Ay = 0,
the monomial appeared in by with order ord(ayj, (bo) is contained in A((#,)) - - - ((t,-+1))tl._'"
or A1) - - - (1p+1) (1) ((t;q)) -+ (@] ;™ , by Corollary to Lemma 23. Here we put
y = —ordjay, (bo), x =t,,uy =1+ aox forany ap € A, u; =t; (j # f), and define o =
{ui,---,u,}. Then we obtain ¢1(Resgf‘))n (a, b)) = Res™" (&, p1 (b)) = ResD" (a, B) =
0, that is, Resgg\»n (o, b) € Ker ¢1 = pp (WxA) + pWx A. On the other hand, since we can

write det JE (u/t) = f’jr“a%); and by = cox ™' + - (co # 0), we also have Res'Y" («, b)o =
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ysaoco, by Lemma 10, (iii). Therefore we obtain agco €  (A). Thus A = p (A). Thisis a
contradiction, and hence 8 = 0. O

5. Here we shall define a mapping px : M, K — I'K for a formal power series field
K in n variables with p-quasifinite coefficient field, and prove the Main Theorem.
First, note that the group pairings

(K TK x WooK — WooF,, (V'K :TK x WK — Q/Z
are defined in [8, §2] for any field K of characteristic p.
THEOREM 1. For a perfect field k andn 2 1, we put K = (k))". Then
K'/K is an unramified extension <= K'/K is an extension of coefficient fields

for any finite extension K'/K of fields.
The proof is induced from [11, Theorem 2].
COROLLARY. Suppose that k is a perfect field of characteristic p (p # 0). If we put

K=kl K — K (o~ ' Waok)

ur,ab

then K u[rlj ib is the maximal unramified abelian p-extension of K.

For a field k of characteristic p and n = 1, we put K = ((k)"". Then M,,K = M, (k)" is
a topological group by introducing the weak topology. Moreover, from the results in §4, we
obtain the mappings

ResX : M, K x Woo K —> Wook, Resk : MK x WK — Wk.

Suppose that k is a field of characteristic p having the property k/gp (k) = F,. Then
there exists F € I'k such that 'k = FZ» = Z,, and the mapping

Wock —>  WuF,
SF: w w
b +— (F,b)Lk

is a surjective continuous homomorphism of Z ,-modules and Ker Sr = o (Wxok). Therefore
we have Wook = 0 (Weok) @ WooF).
Next we define a mapping

(, VMK MK X WooK — WooF),
by putting

(o, b)Y K — 51 (ResK (a, b))
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foro € MyK,b € Woo K. Then (, )Qﬁ”K is a group pairing with respect to the weak topology
on M, K. Similarly, from Wk = Z[%]/Z C Q/Z, we also obtain a group pairing

(VMK MK x WK — Q/Z.
Using these pairings, we can define a mapping
px - MK — I'K

by putting (pg (@), B)I' K = (a, BYM"K fora € M, K, B € WK. Moreover, for any abelian
p-extension L over K, weput pz /g (o) = pg (o) |1 fora € M, K. Then we obtain a mapping

pL/k : My K — Gal(L/K).
Note that both the mappings px and p;/x are dependent on F.

LEMMA 25. For a perfect field k of characteristic p which satisfies k /g (k) = F ), and
n 21, weput K = (k)".
(1) Let L, L' be abelian p-extensions over K, H' = Gal(KCEZ]/L’) and Q' =
Ker Wk 1. If L’ C L, then

PZ/IK(Gal(L/L’)) — IOI;I(H/) _ AnnM”K(Q/) .

Here Ann™"X denotes the annihilator of the pairing ( , YMnK.

(i) The mapping px : M, K — I'K is a continuous homomorphism of groups.

(ii")  The weak topology on My, K is the induced topology of Krull topology on I' K with
respect to the mapping pg.

(iii)  For any subgroup A of M, K, we have Ann''K (px(A)) = AnnMnK (A). Therefore
we obtain pg (A) = Ann’ ¥ (Ann™"X (A)) and

A = pg! (px (A) = Ann™" K (Ann*" K (4)) .
Here Ann' X denotes the annihilator of the pairing ( , Y% and “overline” means the closure

of topological spaces.
(iv) The mapping px : M, K — I'K is dominant.

PROOF. The statement (i) is verified from the definitions of pg, pr/x and H =
Ann’ K (0.

(i) Itis easy to prove that px is a homomorphism of groups. The continuity of px and
(ii’) are induced from

{p,?l(H) | H is an open subgroup of 'K} =

(Ann*" X (Q) | O is a finite subgroup of WK} .

(iii) We can prove this statement easily from the definition of px and (ii’).
@iv) If we put A = M, K in (iii), then, by Lemma 24, (iii), we have
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ok (M, K) = Ann' ¥ (Ann™" X (M, K)) = Ann' ¥ (0) = 'K .
O

COROLLARY. For any closed subgroup A of M, K, there exists an abelian p-extension
L over K such that A = Ker pp/k. If A is open, then L is finite over K and is determined
uniquely from A.

THEOREM 2. For a perfect field k of characteristic p which satisfies k /g (k) = F , and
n 21, weput K = (k)". Take any element F € T'k having the property 'k = F%r, and
define the mappings px and pr k. Then
(1) foranya € M, K, we have

Pk (o) W = F'@,

(i) The mapping from the set of finite abelian p-extensions L over K to the set of open

subgroups of M, K defined by
L —> Ker prjx = p' (Gal(K/L))
is an inclusion-reversing bijection, and
M, K /Ker pr )k = Gal(L/K).
(iii)  For any finite abelian p-extension L over K, we obtain
L/K is unramified <= U[((O) C Ker pr/k .

0) (O]
Here Uy’ = Ker £ = []i_, UM,,_,-H((k))"*i“'

PROOF. (i) Put £ = {(x). Take any element b € Wyk which satisfies k‘[f;] =
k(~'b). Then we have (pk(a), B)LK = (o, b)MrX = Sp(ResK (@, b)) = Sp(th) =
(F, eb) L} = (F', b)LX by Lemma 21. Thus pg () | 101 = F*.

ab

(i) By Lemma 25, (i), we have Ker pr/x = px' (Gal(K'?!/L)). By Corollary to

Lemma 25, the mapping: L + Ker pr /g is bijective. Moreover, by Lemma 25, (iv), the

homomorphism pr/x : M, K — Gal(L/K) is surjective.
(iii)) By Lemma 15, Lemma 21, Lemma 22 and Lemma 24, (iii), we have

A" KU = Wk,

and hence pK(UI({O)) = AnnFK(AnnM"K(UI({O))) = Ann' K(Wk) = Gal(Ki’b’]/Ku[rf’a]b) by
Lemma 25, (iii). Therefore we obtain

[p]

L/K is unramified <= L C Kur,ab = UI({O) C Ker pr/k

by Corollary to Theorem 1. |
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COROLLARY. 'K = 117,17( = proj. im M,,K /A, where A runs over all open sub-
groups of M, K.

Next we consider the relationship between the pairings ( , YK and (, MK ', where

K’/K is a finite separable p-extension of fields.

LEMMA 26. For a perfect field k of characteristic p and n 2 1, we put K = (k))".
Let K'/K be a finite separable extension of fields and k" the algebraic closure of k in K'.
(i) Foranya € MK, b € W K, we have

Resg(Mnk\K/Ol, b) = eResfo(a, b).

Here e = [K' : K'K].
(i) Foranyo € M,K,b' € WooK', we obtain

Tw .okt WookReSS, (My i ket ') = Res (o, Tw krywaok D) -

PROOF. (i) If we put K = k((t,)) - - - (1)), then we can write k' K = k'(t,)) - - - (£1))
by [11, Corollary (i) to Theorem 2]. Therefore, by (R-6), we obtain ResX («, b) = Resk X
(M, kg, b). If we apply (R-10) fori : K’K < K’, then we have

Resclfo/(MnK“(/as b) = E(tl s Ty tn)Reslé;K(MnKlk/Kav b) .
Moreover, by [11, Theorem 2, (ii)] and [11, Corollary (i) to Theorem 2], we get
€11, 1y) = e = [K': K'K]. Thus ResX (M, g g, b) = eResK (a, b).

(ii)) It suffices to prove Tk//kResfo/(M,,KWa, b)) = Resfo(oz, TK//Kb’) in the
case when the extension K’/K is Galois. Put G = Gal(K'/K), and decompose
G = U;.’pzlGal(K’/k/K)a,-. Then Gal(k'/k) = Gal(KK/K) = {o1,---,07} by [11,
Theorem 2, (ii)]. If we put & = M,gxe, b = Tg//xb', then we get Res& (o, b) =
IResK (@', b) = IResK (/. Y, cg0b) = 15 cgoResK (o, b)) = Y/ oiResK (o', b))
= Ty xResk (@', b') by (i) and (R-6). o

LEMMA 27. For a p-quasifinite field k andn 2 1, we put K = (k))".

(1) Leto : K — K’ be an isomorphism of fields. Then for any o € M, K, B € WK,
we have

(@, B K = (5o, ap)MnK"

(i) Let K'/K be a finite separable p-extension of fields. Then for any a € M,K,
B’ € WK', we obtain

(Myux ke, BYM K = (a, T i /)M K
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and for any o' € M, K', B € WK, we obtain

(Ngr xa', BYME = (o, Wi g )M K.

PROOF. The statment (i) is proved easily from (R-6).

(i) (M,kxa, ,8/)M"K/ = (a, TK//K,B’)M"K is easy from Lemma 26, (ii). It suffices
to prove (Ng//xa’', BYMK — (o WK|K/,B)M"K/ in the case when the extension K'/K is
Galois. Since Tk g is surjective, there exists 8 € WK’ such that 8 = Tk/,xp’. Then
TGB = Wk k'B. On the other hand, if we put @ = Ng//xo', then Ngo' = M,k ga. Thus
(o, B = (@, Tgrk BV K = Mk e, B K" = (NGo/, YK = (o, TG /)M K

= (Ol/, WK|K/,3)M”K/. O

LEMMA 28. Suppose that k is a p-quasifinite field, n 2 1 and K = (k)". Then for
any finite separable p-extension K'/K of fields, we obtain

A K (N1 x My K') = Ker Wi g/
and
W = AnnM"K(Ker Wk k') -
Here “overline” means the closure of M, K with respect to the weak topology.

PROOF. AnnM"K(NK//KMnK/) = Ker Wg g/ is induced from Lemma 27, (ii) and

Lemma 24, (iii). Nx//x MyK' = Ann""X (Ker Wk /) is easy from the above equation and
Lemma 25, (iii). O

Then the proof of Main Theorem is complete from Lemma 25, Lemma 28 and Theo-
rem 2.
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