On Abelian p-Extensions of Formal Power Series Fields ### Koji SEKIGUCHI Kochi University of Technology (Communicated by K. Shinoda) #### Introduction Let p be a prime number. Then a field k is said to be p-quasifinite, if k is a perfect field of characteristic p and $Gal(k_{sep}^{[p]}/k) \cong \mathbb{Z}_p$. Here $k_{sep}^{[p]}$ is the maximal separable p-extension of k and \mathbb{Z}_p is the ring of p-adic integers. Suppose that k is a p-quasifinite field, $n \ge 1$ and $K = k((t_n)) \cdots ((t_1))$ is a formal power series field in n variables with coefficient field k. Then the nth Milnor K-group $K_n^M K$ of K gives rise to a topological group by introducing the weak topology (see §4). Moreover we put $\Gamma K = \operatorname{Gal}(K_{ab}^{[p]}/K)$, where $K_{ab}^{[p]}$ is the maximal abelian p-extension of K. Then the following results are obtained. **Main Theorem.** Let k be a p-quasifinite field, $n \ge 1$ and $K = k((t_n)) \cdots ((t_1))$. Then (i) for any element $F \in \Gamma k$ having the property $\Gamma k = F^{\mathbf{Z}_p}$, there exists a homomorphism $$\rho_K : K_n^M K \longrightarrow \Gamma K$$ of topological groups which satisfies the following two conditions: (1) Take any finite separable p-extension K'/K of fields. Then $$\overline{N_{K'/K}K_n^MK'} \,=\, \rho_K^{-1}(\operatorname{Gal}(K_{ab}^{[p]}/K'\cap K_{ab}))\,.$$ Moreover, ρ_K induces an isomorphism: $$K_n^M K / \overline{N_{K'/K} K_n^M K'} \cong \operatorname{Gal}(K' \cap K_{ab}/K)$$ of abelian groups. Here "overline" means the closure of $K_n^M K$ with respect to the weak topology. (2) Take any $\alpha \in K_n^M K$. Then $$\rho_K(\alpha)\Big|_{k_{ab}^{[p]}} = F^{\ell(\alpha)}.$$ For the mapping $\ell: K_n^M K \to \mathbb{Z}$, see Lemma 15, (ii). (ii) The mapping from the set of finite abelian p-extensions L over K to the set of open subgroups of $K_n^M K$ defined by $$L \longmapsto \overline{N_{L/K}K_n^ML}$$ is an inclusion-reversing bijection, and $$K_n^M K / \overline{N_{L/K} K_n^M L} \cong \operatorname{Gal}(L/K)$$. (iii) For any finite abelian p-extension L over K, we obtain $$L/K$$ is unramified $\iff U_K^{(0)} \subset \overline{N_{L/K}K_n^ML}$. Here $U_K^{(0)} = \text{Ker } \ell$. COROLLARY. The first inequality: $$(K_n^M K: N_{K'/K} K_n^M K') \geq [K' \cap K_{ab}: K]$$ holds for any finite separable p-extension K'/K of fields. REMARK. (i) If the second inequality: $$(K_n^M K: N_{K'/K} K_n^M K') \leq [K' \cap K_{ab}: K]$$ holds, then the Main Theorem gives rise to the fundamental theorem of class field theory for p-extensions. (ii) The second inequality is already proved in the case when k is finite or n = 1. See [4] and [8]. The author wishes to express his thanks to Professor Shigeru Iitaka for his advices and warm encouragement. 1. Here we shall define two rings $((A))^n$, $[[A]]_n$ for a ring A and $n \ge 1$, and study the fundamental properties of these rings. Let A be a ring and Γ a totally ordered abelian group. For $x \in A^{\Gamma}$, we put $$s(x) = \{ \gamma \in \Gamma \mid x(\gamma) \neq 0 \}.$$ Here A^{Γ} denotes the set of mappings from Γ to A. Then the set $$A((\Gamma)) = \{x \in A^{\Gamma} \mid s(x) \text{ is a well-ordered subset of } \Gamma\}$$ is a sub A-module of A^{Γ} . For $x, y \in A((\Gamma))$, we define $xy \in A((\Gamma))$ by $$\begin{array}{cccc} \Gamma & \longrightarrow & A \\ xy: & \Psi & & \Psi \\ \gamma & \longmapsto & \displaystyle \sum_{\alpha \in \Gamma} x(\alpha) y(\gamma - \alpha). \end{array}$$ Then $A((\Gamma))$ turns out to be a ring with this product (see [1, Chapter 6, §3, Exercise 2]). Moreover we put $$A[[\Gamma]] = \left\{ x \in A((\Gamma)) \mid x(\gamma) \neq 0 \Rightarrow \gamma \geqq 0 \right\},$$ $$\mathfrak{m} = \{ x \in A[[\Gamma]] \mid x(0) = 0 \},$$ then $A[[\Gamma]]$ is a subring of $A((\Gamma))$, m is an ideal of $A[[\Gamma]]$ and $A[[\Gamma]] = A \oplus m$. For $\alpha \in \Gamma$, we define $t_{\alpha} \in A((\Gamma))$ by $t_{\alpha} : \gamma \longmapsto t_{\alpha}(\gamma) = \delta_{\alpha,\gamma}$. Then $(t_{\alpha}x)(\gamma) = x(\gamma - \alpha)$ for any $x \in A((\Gamma))$, and the mapping: $$\begin{array}{ccc} \Gamma & \longrightarrow & A((\Gamma))^{\times} \\ \Psi & & \Psi \\ \alpha & \longmapsto & t_{\alpha} \end{array}$$ is an injective homomorphism of groups. In what follows, we denote by t_{Γ} the image of this mapping. The ring $A((\Gamma))$ is complete with respect to the linear topology with fundamental system of neighborhoods $\Sigma = \{t_{\alpha}\mathfrak{m} \mid \alpha \in \Gamma, \alpha \geq 0\}$ of 0. For a ring A and a totally ordered abelian group Γ , we introduce the mapping Here we put $\min \emptyset = +\infty$. LEMMA 1. Suppose that A is an integral ring and Γ is a totally ordered abelian group. Then for any $x, y \in A((\Gamma))$, we have $$\operatorname{ord}_{A[[\Gamma]]}(x) = +\infty \iff x = 0,$$ $$\operatorname{ord}_{A[[\Gamma]]}(xy) = \operatorname{ord}_{A[[\Gamma]]}(x) + \operatorname{ord}_{A[[\Gamma]]}(y),$$ $$\operatorname{ord}_{A[[\Gamma]]}(x+y) \ge \min\{\operatorname{ord}_{A[[\Gamma]]}(x), \operatorname{ord}_{A[[\Gamma]]}(y)\}.$$ Moreover $$A[[\Gamma]] = \{x \in A((\Gamma)) \mid \operatorname{ord}_{A[[\Gamma]]}(x) \ge 0\},$$ $$\mathfrak{m} = \{x \in A((\Gamma)) \mid \operatorname{ord}_{A[[\Gamma]]}(x) > 0\}.$$ COROLLARY. $$A((\Gamma))^{\times} = t_{\Gamma} \times A[[\Gamma]]^{\times}$$. Next we introduce the notion of strong homomorphisms of *A*-modules as follows. Let A be a ring and Γ_1 , Γ_2 totally ordered abelian groups. Then a mapping ψ : $A((\Gamma_1)) \to A((\Gamma_2))$ is said to be a *strong homomorphism* of A-modules, if the following three conditions are satisfied: For any well-ordered subset I of Γ_1 , - $\{\alpha \in I \mid \gamma \in s(\psi(t_\alpha))\}\$ is a finite subset of Γ_1 for any $\gamma \in \Gamma_2$, - $\bigcup_{\alpha \in I} s(\psi(t_{\alpha}))$ is a well-ordered subset of Γ_2 , • $$\psi\left(\sum_{\alpha\in I}a_{\alpha}t_{\alpha}\right)=\sum_{\alpha\in I}a_{\alpha}\psi(t_{\alpha})$$ for any $(a_{\alpha})_{\alpha\in I}\in A^{I}$. Let $\operatorname{st.Hom}_A(A((\Gamma_1)), A((\Gamma_2)))$ denote the set of strong homomorphisms of A-modules from $A((\Gamma_1))$ to $A((\Gamma_2))$. Then the set $\operatorname{st.Hom}_A(A((\Gamma_1)), A((\Gamma_2)))$ is a sub $A((\Gamma_2))$ -module of $\operatorname{Hom}_A(A((\Gamma_1)), A((\Gamma_2)))$. Moreover we get $$\psi \in \operatorname{st.Hom}_A(A((\Gamma_1)),A((\Gamma_2))), \bigoplus_{\alpha \in \Gamma_1} At_\alpha \subset \operatorname{Ker} \psi \implies \psi = 0.$$ EXAMPLE 1. Suppose that A is a ring and Γ is a totally ordered abelian group. Then for any $\gamma \in \Gamma$, $x \in A((\Gamma))$, the mapping: $$\begin{array}{ccc} A((\Gamma)) & \longrightarrow & A \\ & & & & \\ \psi & & & & \\ y & \longmapsto & (xy)(y) \end{array}$$ is a strong homomorphism of A-modules. LEMMA 2. Let A be a ring and Γ_1 , Γ_2 totally ordered abelian groups. Then, for any strong homomorphism $\psi: A((\Gamma_1)) \to A((\Gamma_2))$ of A-modules, ψ is a ring homomorphism if and only if $\psi(t_{\alpha+\beta}) = \psi(t_{\alpha})\psi(t_{\beta})$ for any $\alpha, \beta \in \Gamma_1$ and $\psi(1) = 1$. The proof is similar to the case of group rings. A mapping $\psi: A((\Gamma_1)) \to A((\Gamma_2))$ is said to be a strong homomorphism of A-rings, if ψ is a strong homomorphism of A-modules and is a ring homomorphism. Moreover, for a ring A and totally ordered abelian groups Γ_1 , Γ_2 , the definition of a mapping $\psi: A[[\Gamma_1]] \to A[[\Gamma_2]]$ to be a strong homomorphism of A-modules or A-rings is similar to the case that $\psi: A((\Gamma_1)) \to A((\Gamma_2))$. For $n \ge 1$, we define two functors $(())^n$, $[[]]_n$: (Rings) \to (Rings) by putting $((A))^n = A((\mathbf{Z}^n))$, $[[A]]_n = A[[\mathbf{Z}^n]]$ for a ring A. Here \mathbf{Z}^n is a totally ordered abelian group with the lexicographical order. Especially if we write $(()) = (())^1$, $[[]] = [[]]_1$, then $$(())^n = (()) \circ (()) \circ \cdots \circ (())$$ (nth composite) for any $n \ge 1$. LEMMA 3. For a ring A and $n \ge 1$, we put $t_1 = t_{(1,0,\dots,0)}, \dots, t_n = t_{(0,\dots,0,1)} \in ((A))^n$. Then (i) t_i is transcendental over $A((t_n)) \cdots ((t_{i+1}))$ for any $i \in \{1, \dots, n\}$, and $$((A))^n = A((t_n)) \cdot \cdot \cdot \cdot ((t_1)),$$ $$[[A]]_n = A \oplus \bigoplus_{i=1}^n t_i A((t_n)) \cdots ((t_{i+1}))[[t_i]],$$ $$\mathfrak{m} = \bigoplus_{i=1}^n t_i A((t_n)) \cdots ((t_{i+1}))[[t_i]].$$ Moreover we obtain $t_{\Gamma} = t_1^{\mathbf{Z}} \times \cdots \times t_n^{\mathbf{Z}}$. (ii) If we put $D = \{x \in ((A))^n \mid x(\gamma) \neq 0 \Rightarrow \gamma < 0\}$, then $((A))^n = D \oplus [[A]]_n = D \oplus A \oplus \mathfrak{m},$ $$D = \bigoplus_{i=1}^{n} t_i^{-1} A((t_n)) \cdots ((t_{i+1})) [t_i^{-1}].$$ COROLLARY 1. Suppose that A is integral. Then $$((A))^{n \times} = t_1^{\mathbf{Z}} \times \cdots \times t_n^{\mathbf{Z}} \times [[A]]_n^{\times},$$ $$[[A]]_n^{\times} = A^{\times} \times (1 + \mathfrak{m}),$$ $$1 + \mathfrak{m} = \prod_{i=1}^n (1 + t_i A((t_n)) \cdots ((t_{i+1}))[[t_i]]).$$ COROLLARY 2. Let A be a field. Then - (i) $((A))^n$ is also a field. - (ii) $[[A]]_n$ is a strictly complete valuation ring with quotient field $((A))^n$, residue field $(A)^n$ and value group \mathbb{Z}^n . - (iii) $\operatorname{ord}_{[A]_n}$ is an additive valuation of $((A))^n$ corresponding to $[[A]]_n$. LEMMA 4. Let A be an integral ring and $n \ge 1$. - (i) If we write [[A]] = A[[t]], then the following three conditions for $x \in [[A]]_n$ are equivalent: - (a) There exists a strong homomorphism $\psi : [[A]] \to [[A]]_n$ of A-rings such that $\psi(t) = x$. - (b) $\{i \in \mathbb{N} \mid \gamma \in s(x^i)\}\$ is a finite set for any $\gamma \in \mathbb{Z}^n$, and $\bigcup_{i \in \mathbb{N}} s(x^i)$ is a
well-ordered subset of \mathbb{Z}^n . - (c) $x \in \mathfrak{m}$. - (ii) If $x \in \mathfrak{m}$ and $x \neq 0$, then the mapping ψ in (a) is injective. PROOF. (i) In general, the following claim is proved: CLAIM 1. Put $\Gamma = \mathbb{Z}^n$. Let N be a well-ordered subset of $\Gamma^+ = \{ \gamma \in \Gamma \mid \gamma > 0 \}$. Then $\{ i \in \mathbb{N} \mid \gamma \in i N \}$ is a finite set for any $\gamma \in \Gamma$, and $\bigcup_{i \in \mathbb{N}} i N$ is a well-ordered subset of Γ . If we put N = s(x) in Claim 1, then we can prove (c) \Rightarrow (b). The proof of (a) \Leftrightarrow (b) \Rightarrow (c) and (ii) are easy. At the end of this section, we consider the principle of substitution and the change of variables in $((A))^n$, by the use of strong homomorphisms of A-rings. LEMMA 5. Let A be an integral ring and $n \ge 1$. For $u_1, \dots, u_n \in ((A))^n - \{0\}$, we put $$M = \begin{bmatrix} \operatorname{ord}_{[[A]]_n}(u_1) \\ \vdots \\ \operatorname{ord}_{[[A]]_n}(u_n) \end{bmatrix} \in M(n, \mathbf{Z}),$$ $$\ell(u_1, \dots, u_n) = \det \begin{bmatrix} \operatorname{ord}_{[[A]]_n}(u_1) \\ \vdots \\ \operatorname{ord}_{[[A]]_n}(u_n) \end{bmatrix} \in \mathbf{Z},$$ and take the elements $t_1, \dots, t_n \in ((A))^n$ defined in Lemma 3. Then - (i) the following three conditions for $u_1, \dots, u_n \in ((A))^n$ are equivalent: - (a) There exists a strong homomorphism $\psi : ((A))^n \to ((A))^n$ of A-rings such that $\psi(t_i) = u_i$ for any $i \in \{1, \dots, n\}$. - (b) u_i is transcendental over $A((u_n)) \cdots ((u_{i+1}))$ for any $i \in \{1, \dots, n\}$, and $A((u_n)) \cdots ((u_1))$ is a subring of $((A))^n$. - (c) $u_1, \dots, u_n \in ((A))^{n \times}$ and M is an upper triangular matrix such that all the diagonal elements are positive. - (ii) Suppose that u_1, \dots, u_n satisfy the condition (a). Then $$\psi$$ is surjective $\iff \ell(u_1, \dots, u_n) = 1$. Therefore the following three conditions for $u_1, \dots, u_n \in ((A))^n$ are also equivalent: - (a₀) There exists a strong isomorphism $\psi : ((A))^n \to ((A))^n$ of A-rings such that $\psi(t_i) = u_i$ for any $i \in \{1, \dots, n\}$. - (b₀) u_i is transcendental over $A((u_n)) \cdots ((u_{i+1}))$ for any $i \in \{1, \dots, n\}$, and $A((u_n)) \cdots ((u_1)) = ((A))^n$. - (c₀) $u_1, \dots, u_n \in ((A))^{n \times}$ and M is an upper triangular matrix such that all the diagonal elements are 1. PROOF. (i) Using Claim 1 described in the proof of Lemma 4, we can prove (c) \Rightarrow (a). The proof of (a) \Leftrightarrow (b) \Rightarrow (c) and (ii) are easy. Suppose that $u_1, \dots, u_n \in ((A))^n$ satisfy the condition (a) in Lemma 5, (i). Then we write $$((A))_u^n = A((u_n)) \cdots ((u_1)) = \text{Im } \psi.$$ Note that $((A))^n = ((A))_t^n$. **2**. Here we shall define an $((A))^n$ -module $\Omega^n A$ for a ring A and $n \ge 1$, and study the fundamental properties of this module. For a ring A and an A-ring B, let $\operatorname{Der}_A B$ denote the set of A-derivations of B and $\Omega_{B/A}$ the B-module of regular differential forms of B over A. Moreover for $n \geq 1$, we put $\Omega_{B/A}^n = \Omega_{B/A} \wedge \cdots \wedge \Omega_{B/A}$ (nth exterior power as B-modules). For a ring A and $n \geq 1$, we define a functor $\Omega_A^n : (A\operatorname{-Rings}) \to (A\operatorname{-Mod}.)$ by putting $\Omega_A^n B = \Omega_{B/A}^n$ for an A-ring B. We also write $\Omega_A = \Omega_A^1$. In the following, we consider the case that $B = ((A))^n$. LEMMA 6. Suppose that A is a ring and $n \ge 1$. (i) For any $i \in \{1, \dots, n\}$, there exists $\partial_i \in \text{Der}_A((A))^n$ such that $$(\partial_i x)(\gamma) = (\gamma_i + 1)x(\gamma + e_i) \quad (x \in ((A))^n, \ \gamma = (\gamma_1, \dots, \gamma_n) \in \mathbf{Z}^n).$$ Here e_i is the ith unit vector: $e_i = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{Z}^n$. (ii) $\partial_1, \dots, \partial_n \in \operatorname{Der}_A((A))^n$ are linearly independent over $((A))^n$. Moreover $\operatorname{ord}_{[[A]]_n}(\partial_i x) \geq \operatorname{ord}_{[[A]]_n}(x) - e_i$ for any $x \in ((A))^n$. Thus ∂_i is continuous. If we put $$\text{st.Der}_{A}((A))^{n} = \text{st.Hom}_{A}(((A))^{n}, ((A))^{n}) \cap \text{Der}_{A}((A))^{n},$$ then $$st.Der_A((A))^n = \bigoplus_{i=1}^n ((A))^n \partial_i.$$ PROOF. (i) Noting that $\partial_i = \frac{\partial}{\partial t_i}$, we have $\partial_i \in \operatorname{Der}_A((A))^n$ $(1 \le i \le n)$. (ii) The linear independence of $\partial_1, \dots, \partial_n$ is easily proved from $\partial_i t_j = \delta_{ij}$. Since $\partial_i (\sum_{\alpha \in I} a_\alpha t_\alpha) = \sum_{\alpha \in I} a_\alpha \partial_i (t_\alpha)$ holds for any well-ordered subset I of \mathbb{Z}^n and $(a_\alpha)_{\alpha \in I} \in A^I$, we obtain $\partial_i \in \text{st.Der}_A((A))^n$. Since the $((A))^n$ -module $\Omega_{((A))^n/A}$ has the universal mapping property for A-derivations, there exists a homomorphism $\varphi_i:\Omega_{((A))^n/A}\to((A))^n$ of $((A))^n$ -modules such that $\varphi_i\circ d_{((A))^n/A}=\partial_i$ for any $i\in\{1,\cdots,n\}$. Here we define a homomorphism $$\begin{array}{cccc} \Omega_{(\!(A)\!)^n/A} & \longrightarrow & (\!(A)\!)^n \times \cdots \times (\!(A)\!)^n \\ \varphi : & & & & & & & \\ \omega & & \longmapsto & (\varphi_1(\omega), \cdots, \varphi_n(\omega)) \end{array}$$ of $((A))^n$ -modules. In what follows we write $d = d_{((A))^n/A}$. LEMMA 7. Let A be a ring and $n \ge 1$. Take the elements t_1, \dots, t_n defined in Lemma 3. Then $\omega - \sum_{i=1}^n \varphi_i(\omega) dt_i \in \text{Ker } \varphi \text{ for any } \omega \in \Omega_{(\!(A)\!)^n/A}$. Thus $$\Omega_{((A))^n/A} = \operatorname{Ker} \varphi \oplus ((A))^n dt_1 \oplus \cdots \oplus ((A))^n dt_n.$$ EXAMPLE 2. For any $f \in ((A))^n$, we have $$\varphi(df) = \left(\frac{\partial f}{\partial t_1}, \cdots, \frac{\partial f}{\partial t_n}\right).$$ Therefore $$df - \sum_{i=1}^{n} \frac{\partial f}{\partial t_i} dt_i \in \operatorname{Ker} \varphi$$. For a ring A and $n \ge 1$, we consider the $((A))^n$ -module $$\Omega^n A = \Omega_A^n ((A))^n = \Omega_{((A))^n/A}^n.$$ For $(\omega_1, \dots, \omega_n) \in \Omega_{(\!(A)\!)^n/A} \times \dots \times \Omega_{(\!(A)\!)^n/A}$, we put $$[\varphi_{j}(\omega_{i})] = \begin{bmatrix} \varphi_{1}(\omega_{1}) & \cdots & \varphi_{n}(\omega_{1}) \\ \vdots & & \vdots \\ \varphi_{1}(\omega_{n}) & \cdots & \varphi_{n}(\omega_{n}) \end{bmatrix} = \begin{bmatrix} \varphi(\omega_{1}) \\ \vdots \\ \varphi(\omega_{n}) \end{bmatrix} \in M(n, ((A))^{n})$$ and define the mapping $$\begin{array}{cccc} \Omega_{(\!(A)\!)^n/A} \times \cdots \times \Omega_{(\!(A)\!)^n/A} & \longrightarrow & (\!(A)\!)^n \\ \varPhi : & & & & & & & & & & \\ (\omega_1, \cdots, \omega_n) & & \longmapsto & \det[\varphi_i(\omega_i)] \,. \end{array}$$ Since Φ is $((A))^n$ -multilinear and alternating, there exists a homomorphism $$\varphi_A^n:\Omega^nA\longrightarrow ((A))^n$$ of $(\!(A)\!)^n$ -modules such that $\Phi = \varphi_A^n \circ c$. Here $c: \Omega_{(\!(A)\!)^n/A} \times \cdots \times \Omega_{(\!(A)\!)^n/A} \to \Omega^n A$ is the canonical mapping. Thus $\varphi_A^n(\omega_1 \wedge \cdots \wedge \omega_n) = \Phi(\omega_1, \cdots, \omega_n)$. LEMMA 8. Let A be a ring and $n \ge 1$. Take the elements t_1, \dots, t_n defined in Lemma 3. Then $\omega - \varphi_A^n(\omega)dt_1 \wedge \dots \wedge dt_n \in \text{Ker } \varphi_A^n$ for any $\omega \in \Omega^n A$. Thus $$\Omega^n A = \Omega_A^n((A))^n = \Omega_{((A))^n/A}^n = \operatorname{Ker} \varphi_A^n \oplus ((A))^n dt_1 \wedge \cdots \wedge dt_n.$$ EXAMPLE 3. (i) For any $f_1, \dots, f_n \in ((A))^n$, we have $$\varphi_A^n(df_1 \wedge \cdots \wedge df_n) = \det J(f/t)$$. Therefore $$df_1 \wedge \cdots \wedge df_n - \det J(f/t)dt_1 \wedge \cdots \wedge dt_n \in \operatorname{Ker} \varphi_A^n$$ Here $$J(f/t) = \begin{bmatrix} \frac{\partial f_1}{\partial t_1} & \cdots & \frac{\partial f_1}{\partial t_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial t_1} & \cdots & \frac{\partial f_n}{\partial t_n} \end{bmatrix} \in M(n, ((A))^n)$$ is the Jacobian matrix. (ii) For $(m_1, \dots, m_n) \in \mathbf{Z}^n$, we put $\omega = t_1^{m_1} \dots t_n^{m_n} dt_1 \wedge \dots \wedge dt_n \in \Omega^n A$. If there exists $j \in \{1, \dots, n\}$ such that $m_j + 1 \in A^{\times}$, then there exist monomials $f_1, \dots, f_n \in ((A))^n$ such that $$\omega - df_1 \wedge \cdots \wedge df_n \in \operatorname{Ker} \varphi_A^n$$. For a ring A and $n \ge 1$, we introduce the mappings $$\operatorname{ord}_{\Omega^n A} = \operatorname{ord}_{[A]_n} \circ \varphi_A^n : \Omega^n A \longrightarrow \mathbf{Z}^n \cup \{+\infty\}$$ and Then $\operatorname{ord}_{\Omega^n A}(\omega)$ is called the order of $\omega \in \Omega^n A$ and $\operatorname{res}_A^n(\omega)$ is called the residue of $\omega \in \Omega^n A$. LEMMA 9. Let A be a ring and $n \ge 1$. Then - (i) the mapping $\operatorname{res}_A^n:\Omega^nA\to A$ is a homomorphism of A-modules. - (ii) For any $\omega \in \Omega^n A$, we have $$\operatorname{ord}_{\Omega^n A}(\omega) = +\infty \iff \omega \in \operatorname{Ker} \varphi_A^n,$$ $$\operatorname{ord}_{\Omega^n A}(\omega) \geqq (-1, \cdots, -1, 0) \implies \operatorname{res}_A^n(\omega) = 0.$$ (iii) For any $f_1, \dots, f_n \in ((A))^n$, we have $$\operatorname{res}_A^n(df_1 \wedge \cdots \wedge df_n) = 0$$. PROOF. The statements (i) and (ii) are obvious. (iii) Note first that (iii) is proved in the case that f_1, \dots, f_n are all monomials. Since the mapping: is a strong homomorphism of A-modules for any fixed $f_2, \dots, f_n \in ((A))^n$, (iii) is valid for $f_1 \in ((A))^n$. Repeating this process, we obtain $\operatorname{res}_A^n(df_1 \wedge \dots \wedge df_n) = 0$ for any $f_1, \dots, f_n \in ((A))^n$. LEMMA 10. Let A be an integral ring and $n \ge 1$. For $u_1, \dots, u_n \in ((A))^{n \times}$ and $t_1,
\dots, t_n$ defined in Lemma 3, we put $$J^{L}(u/t) = \begin{bmatrix} \frac{t_1}{u_1} \frac{\partial u_1}{\partial t_1} & \cdots & \frac{t_n}{u_1} \frac{\partial u_1}{\partial t_n} \\ \vdots & & \vdots \\ \frac{t_1}{u_n} \frac{\partial u_n}{\partial t_1} & \cdots & \frac{t_n}{u_n} \frac{\partial u_n}{\partial t_n} \end{bmatrix} \in M(n, ((A))^n).$$ Then (i) $J^{L}(u/t) \in M(n, [[A]]_n)$ and $$J^{L}(u/t)(0, \dots, 0) = ME_{n,A} \in M(n, A)$$. Here M is the matrix defined in Lemma 5 and $E_{n,A}$ is the unit matrix in M(n, A). (ii) $\det J^L(u/t) \in [[A]]_n$ and $$\det J^L(u/t)(0,\cdots,0) = \ell(u_1,\cdots,u_n) \cdot 1_A.$$ Here $\ell(u_1, \dots, u_n)$ is the integer defined in Lemma 5 and 1_A is the unity of A. (iii) For any $x \in ((A))^n$, we obtain $$\operatorname{res}_{A}^{n} \left(x \frac{du_{1}}{u_{1}} \wedge \cdots \wedge \frac{du_{n}}{u_{n}} \right) = (x \det J^{L}(u/t))(0, \cdots, 0).$$ PROOF. (i) Since $\operatorname{ord}_{[[A]]_n}(\partial_j x) \geq \operatorname{ord}_{[[A]]_n}(x) - \operatorname{ord}_{[[A]]_n}(t_j)$ for any $x \in ((A))^n$, we have $J^L(u/t) \in M(n, [[A]]_n)$ by putting $x = u_i$ $(1 \leq i \leq n)$. If we put $\gamma = \operatorname{ord}_{[[A]]_n}(x) - e_j$, then $(\frac{t_j}{x} \frac{\partial x}{\partial t_j})(0, \dots, 0) = \frac{(\partial_j x)(\gamma)}{x(\gamma + e_j)} = (\gamma_j + 1) \cdot 1_A = (\operatorname{ord}_{[[A]]_n}(x))_j \cdot 1_A$. Therefore $J^L(u/t)(0, \dots, 0) = ME_{n,A}$. - (ii) This statement is proved easily from (i). - (iii) By Example 3, (i), we get $x \frac{du_1}{u_1} \wedge \cdots \wedge \frac{du_n}{u_n} x \det J^L(u/t) \frac{dt_1}{t_1} \wedge \cdots \wedge \frac{dt_n}{t_n} \in \operatorname{Ker} \varphi_A^n$. Thus $\operatorname{res}_A^n(x \frac{du_1}{u_1} \wedge \cdots \wedge \frac{du_n}{u_n}) = \operatorname{res}_A^n(x \det J^L(u/t) \frac{dt_1}{t_1} \wedge \cdots \wedge \frac{dt_n}{t_n}) = (x \det J^L(u/t))(0, \dots, 0)$. Next we shall study the properties with respect to the change of variables. LEMMA 11. Let A be an integral ring and $n \ge 1$. Suppose that $u_1, \dots, u_n \in ((A))^n$ satisfy the condition (a) in Lemma 5, (i). (i) For any $i \in \{1, \dots, n\}$, there exists a unique $\frac{\partial}{\partial u_i} \in \text{st.Der}_A((A))_u^n$ such that $$\frac{\partial}{\partial u_i}(u_j^m) = mu_j^{m-1}\delta_{ij} \quad (m \in \mathbf{Z}, \ j = 1, 2, \dots, n).$$ (ii) $$\frac{\partial}{\partial u_1}, \dots, \frac{\partial}{\partial u_n}$$ are linearly independent over $((A))_u^n$ and $$st.Der_A((A))_u^n = \bigoplus_{i=1}^n ((A))_u^n \frac{\partial}{\partial u_i}.$$ The proof is similar to that of Lemma 6. Let A be an integral ring and $n \ge 1$. Suppose that $u_1, \dots, u_n \in ((A))^n$ satisfy the condition (a) in Lemma 5, (i). Then there exists a homomorphism $\varphi_i^u : \Omega_{((A))_u^n/A} \to ((A))_u^n$ of $((A))_u^n$ -modules such that $\varphi_i^u \circ d = \frac{\partial}{\partial u_i}$ for any $i \in \{1, \dots, n\}$. Here we define a homomorphism $$\varphi^u = (\varphi_1^u, \dots, \varphi_n^u) : \Omega_{((A))_n^n/A} \longrightarrow ((A))_n^n \times \dots \times ((A))_n^n$$ of $((A))_u^n$ -modules. Note that $\varphi_i = \varphi_i^t$ $(1 \le i \le n)$ and $\varphi = \varphi^t$. Next we put $$\Omega_u^n A = \Omega_A^n ((A))_u^n = \Omega_{((A))_u^n/A}^n$$. Then we can define an alternating $((A))_{u}^{n}$ -multilinear mapping $$\Phi^u: \Omega_{(\!(A)\!)_u^n/A} \times \cdots \times \Omega_{(\!(A)\!)_u^n/A} \longrightarrow (\!(A)\!)_u^n$$ and a homomorphism $$\varphi_{u}^{n}:\Omega_{u}^{n}A\longrightarrow ((A))_{u}^{n}$$ of $((A))_u^n$ -modules by putting $$\Phi^{u}(\omega_1, \dots, \omega_n) = \det[\varphi_i^{u}(\omega_i)],$$ $$\varphi_u^n(\omega_1 \wedge \cdots \wedge \omega_n) = \Phi^u(\omega_1, \cdots, \omega_n)$$ for $\omega_1, \dots, \omega_n \in \Omega_{(\!(A)\!)^n_u/A}$. Note that $\Omega^n A = \Omega^n_t A$, $\Phi = \Phi^t$ and $\varphi^n_A = \varphi^n_t$. Moreover we introduce the mappings $$\operatorname{ord}_{\Omega_u^n A} = \operatorname{ord}_{[[A]]_n^u} \circ \varphi_u^n : \Omega_u^n A \longrightarrow \mathbf{Z}^n \cup \{+\infty\}$$ and $$\begin{array}{cccc} \Omega_u^n A & \longrightarrow & A \\ \operatorname{res}_u^n : & \Psi & & \Psi \\ & \omega & \longmapsto & \varphi_u^n(\omega)(-1, \cdots, -1) \,. \end{array}$$ Note that $res_A^n = res_t^n$. LEMMA 12. Suppose that A is an integral ring, $n \ge 1$ and $u_1, \dots, u_n \in ((A))^n$ satisfy the condition (a) in Lemma 5, (i). Let $i : ((A))_u^n \hookrightarrow ((A))^n$ denote the natural inclusion mapping. Then (i) for any $\omega_0, \omega_1, \dots, \omega_n \in \Omega_{(\!(A)\!)_n^n/A}$ and $\omega \in \Omega_u^n A$, we obtain $$(\varphi^{t} \circ \Omega_{A}i)(\omega_{0}) = \varphi^{u}(\omega_{0})J(u/t),$$ $$(\Phi^{t} \circ (\Omega_{A}i \times \cdots \times \Omega_{A}i))(\omega_{1}, \cdots, \omega_{n}) = \Phi^{u}(\omega_{1}, \cdots, \omega_{n}) \det J(u/t),$$ $$(\varphi^{n}_{t} \circ \Omega^{n}_{A}i)(\omega) = \varphi^{n}_{u}(\omega) \det J(u/t).$$ (ii) For any $\omega \in \Omega_u^n A$, we have $$(\operatorname{ord}_{\Omega_{u}^{n}A} \circ \Omega_{A}^{n}i)(\omega) = \operatorname{ord}_{\Omega_{u}^{n}A}(\omega)M + \operatorname{ord}_{[A]_{n}}(\det J(u/t)).$$ Here M is the matrix defined in Lemma 5. (iii) For any $\omega \in \Omega_u^n A$, we have $$(\operatorname{res}_{t}^{n} \circ \Omega_{A}^{n} i)(\omega) = \ell(u_{1}, \dots, u_{n}) \operatorname{res}_{u}^{n}(\omega).$$ Here $\ell(u_1, \dots, u_n)$ is the integer defined in Lemma 5. PROOF. The statements (i) and (ii) are easy to verify. (iii) For $(m_1, \dots, m_n) \in \mathbb{Z}^n$, we put $\omega = u_1^{m_1} \dots u_n^{m_n} du_1 \wedge \dots \wedge du_n \in \Omega_u^n A$. By Example 3, (i) and Lemma 10, (iii), we have $$(m_1, \dots, m_n) = (-1, \dots, -1) \implies (\operatorname{res}_t^n \circ \Omega_A^n i)(\omega) = \ell(u_1, \dots, u_n) \cdot 1_A.$$ Moreover, by Example 3, (ii) and the fact that res^n is a natural transformation, we obtain $$(m_1, \cdots, m_n) \neq (-1, \cdots, -1) \implies (\operatorname{res}_t^n \circ \Omega_A^n i)(\omega) = 0.$$ Next we put $\omega = f du_1 \wedge \cdots \wedge du_n \in \Omega_u^n A$ for $f \in ((A))_u^n$. Then both the mappings: $f \mapsto (\operatorname{res}_t^n \circ \Omega_A^n i)(\omega)$ and $f \mapsto \ell(u_1, \cdots, u_n)\operatorname{res}_u^n(\omega)$ are strong homomorphisms of A-modules. Therefore $(\operatorname{res}_t^n \circ \Omega_A^n i)(\omega) = \ell(u_1, \cdots, u_n)\operatorname{res}_u^n(\omega)$. Since $\Omega_u^n A = \operatorname{Ker} \varphi_u^n \oplus ((A))_u^n du_1 \wedge \cdots \wedge du_n$, we get $(\operatorname{res}_t^n \circ \Omega_A^n i)(\omega) = \ell(u_1, \cdots, u_n)\operatorname{res}_u^n(\omega)$ for any $\omega \in \Omega_u^n A$. \square COROLLARY. Suppose that u_1, \dots, u_n satisfy the condition (a₀) in Lemma 5, (ii). Then (i) for any $\omega_0, \omega_1, \dots, \omega_n \in \Omega_{(\!(A)\!)^n/A}$ and $\omega \in \Omega^n A$, we obtain $$\varphi^{t}(\omega_{0}) = \varphi^{u}(\omega_{0})J(u/t),$$ $$\Phi^{t}(\omega_{1}, \dots, \omega_{n}) = \Phi^{u}(\omega_{1}, \dots, \omega_{n}) \det J(u/t),$$ $$\varphi^{n}_{t}(\omega) = \varphi^{n}_{u}(\omega) \det J(u/t).$$ (ii) For any $\omega \in \Omega^n A$, we have $$\operatorname{ord}_{\Omega_{\cdot}^{n}A}(\omega) = (\operatorname{ord}_{\Omega_{\cdot}^{n}A}(\omega) + (1, \dots, 1))M - (1, \dots, 1).$$ (iii) For any $\omega \in \Omega^n A$, we have $$\operatorname{res}_{t}^{n}(\omega) = \operatorname{res}_{u}^{n}(\omega)$$. **3**. Here we shall define the Milnor K-group M_nB for a ring B and $n \ge 0$, and study the fundamental properties of this group. For a ring B and $n \ge 0$, we define the nth Milnor K-group $M_n B$ of B as follows: • If n = 0, then we put $$M_0B=\mathbf{Z}$$. • If $n \ge 1$, then we put $$M_n B = B^{\times} \otimes \cdots \otimes B^{\times}/I_B$$, where I_B is the subgroup of the *n*th tensor product $B^{\times} \otimes \cdots \otimes B^{\times}$ generated by the sets $$\{a_1 \otimes \cdots \otimes a_i \otimes \cdots \otimes a_j \otimes \cdots \otimes a_n \mid a_i \in B^{\times}, a_i + a_j = 1 \text{ for some } i \neq j\}$$ and $$\{a_1 \otimes \cdots \otimes a_i \otimes \cdots \otimes a_i \otimes \cdots \otimes a_n \mid a_i \in B^{\times}, a_i + a_i = 0 \text{ for some } i \neq j\}.$$ Then we obtain a functor M_n : (Rings) \longrightarrow (C.Groups) for any $n \ge 0$. For an inclusion mapping $i: A \hookrightarrow B$ of rings, we also write $M_{nA|B} = M_n i$. REMARK. (i) The group operation in $M_n B$ will be written multiplicatively for $n \ge 1$, although $M_0 B = \mathbf{Z}$. Especially if n = 1, then $I_B = 1$. Therefore $M_1 B = B^{\times}$. (ii) $M_n B \cong K_n^M B$ for a field B. See [2, Chapter IX, (1)]. LEMMA 13. Suppose that B is a ring and $n \ge 1$. For $a_1, \dots, a_n \in B^{\times}$, we put $${a_1, \cdots, a_n} = a_1 \otimes \cdots \otimes a_n \mod I_B \in M_n B$$. Then - (M-1) $\{a_1, \dots, a_n\}$ $(a_1, \dots, a_n \in B^{\times})$ generate $M_n B$, - (M-2) $\{a_1, \dots, a_{i-1}, bc, a_{i+1}, \dots, a_n\}$ = $\{a_1, \dots, a_{i-1}, b, a_{i+1}, \dots, a_n\}\{a_1, \dots, a_{i-1}, c, a_{i+1}, \dots, a_n\}$, (M-3) if $$a_i + a_j = 0$$ or 1 for some $i \neq j$, then $\{a_1, \dots, a_n\} = 1$. COROLLARY. $$\{a_{\sigma(1)}, \dots, a_{\sigma(n)}\} = \{a_1, \dots, a_n\}^{\operatorname{sgn}(\sigma)}$$ for any $\sigma \in S_n$. Let B be an integral ring, t an indeterminate over B and $n \ge 1$. Then there exists a unique homomorphism $\psi_t: M_{n-1}B((t)) \to M_nB((t))$ of groups such that $\psi_t(\{u_2, \cdots, u_n\}) = \{t, u_2, \cdots, u_n\}$ for any $u_2, \cdots, u_n \in B((t))^{\times}$. For $t \ge 1$, let $U_{M_nB((t))}^{(r)}$ denote the subgroup of $M_nB((t))$ generated by $\{u_1, \cdots, u_n\}$, where $u_1 \in 1 + t^rB[[t]], u_2, \cdots, u_n \in B((t))^{\times}$. Then we have $\psi_t(U_{M_{n-1}B((t))}^{(r)}) \subset U_{M_nB((t))}^{(r)}$. LEMMA 14. Suppose that B is an integral ring,
t is an indeterminate over B and $n \ge 1$. Let $\varphi_0 : B[[t]] \to B$ denote the ring homomorphism defined by $\varphi_0(f) = f(0)$ for any $f \in B[[t]]$. Then (i) there exists a unique homomorphism $\partial_1:M_nB((t))\to M_nB$ of groups, which satisfies $$\partial_1(\{u_1,\cdots,u_n\}) = \{\varphi_0(u_1t^{-\operatorname{ord}_{B[[t]]}(u_1)}),\cdots,\varphi_0(u_nt^{-\operatorname{ord}_{B[[t]]}(u_n)})\}$$ for any $u_1, \dots, u_n \in B((t))^{\times}$. Moreover we obtain $\partial_1 \circ M_{nB|B((t))} = id_{M_nB}$. Thus $M_nB((t)) = Im M_{nB|B((t))} \times Ker \partial_1$. (ii) There exists a unique homomorphism $\partial_2: M_n B((t)) \to M_{n-1} B$ of groups, which satisfies $$\partial_2(\{t, u_2, \cdots, u_n\}) = \{\varphi_0(u_2), \cdots, \varphi_0(u_n)\}\$$ for any $u_2, \dots, u_n \in B[[t]]^{\times}$ and $\operatorname{Im} M_{nB[[t]]|B((t))} \subset \operatorname{Ker} \partial_2$. Moreover we obtain $\partial_2 \circ \psi_t \circ M_{n-1B|B((t))} = id_{M_{n-1}B}$. Thus $M_nB((t)) = \operatorname{Im}(\psi_t \circ M_{n-1B|B((t))}) \times \operatorname{Ker} \partial_2$. (iii) Ker $$\partial_1 = \text{Im}(\psi_t \circ M_{n-1B|B((t))}) \times U_{M_nB((t))}^{(1)}$$ and Ker $\partial_2 = \text{Im } M_{nB|B((t))} \times U_{M_nB((t))}^{(1)}$. The proof is similar to the case that B is a field. See also [2, Chapter IX, (2.1), (2.2), (2.3)]. REMARK. In what follows, we shall regard $M_n B$ and $M_{n-1} B$ as subgroups of $M_n B((t))$ by the injections $M_{nB|B((t))}$ and $\psi_t \circ M_{n-1B|B((t))}$, respectively: $$M_{nB|B((t))}: M_nB \hookrightarrow M_nB((t))$$, $$\psi_t \circ M_{n-1B|B((t))} : M_{n-1}B \hookrightarrow M_nB((t))$$. Moreover we write $$U_{M_n B((t))}^{(0)} = \text{Ker } \partial_2 = M_n B \times U_{M_n B((t))}^{(1)}$$ Then we have $$M_n B((t)) = M_{n-1} B \times M_n B \times U^{(1)}_{M_n B((t))} = M_{n-1} B \times U^{(0)}_{M_n B((t))}$$ LEMMA 15. Suppose that A is an integral ring and $n \ge 1$. Then (i) $$M_n((A))^n = \{t_1, \dots, t_n\}^{\mathbb{Z}} \times \prod_{i=1}^n U_{M_{n-i+1}((A))^{n-i+1}}^{(0)}$$ $$= \prod_{i=1}^{n} M_{n-i+1}((A))^{n-i} \times \{t_1, \dots, t_n\}^{\mathbf{Z}} \times \prod_{i=1}^{n} U_{M_{n-i+1}((A))^{n-i+1}}^{(1)},$$ where $((A))^{n-i+1} = A((t_n)) \cdots ((t_i)) \ (1 \le i \le n)$. (ii) There exists a unique homomorphism $\ell: M_n((A))^n \to \mathbb{Z}$ of groups, which satisfies $$\ell(\{u_1,\cdots,u_n\})=\ell(u_1,\cdots,u_n)$$ for any $u_1, \dots, u_n \in ((A))^{n \times}$. Here $\ell(u_1, \dots, u_n)$ is the integer defined in Lemma 5. Moreover we obtain $M_n((A))^n = \{t_1, \dots, t_n\}^{\mathbf{Z}} \times \text{Ker } \ell$ and $$\operatorname{Ker} \ell = \prod_{i=1}^{n} U_{M_{n-i+1}((A))^{n-i+1}}^{(0)}.$$ Therefore $\ell = \partial_2^1 \circ \cdots \circ \partial_2^n : M_n((A))^n \to \mathbb{Z}$ for $\partial_2^i : M_i((A))^i \to M_{i-1}((A))^{i-1}$ $(1 \leq i \leq n)$. PROOF. We can prove (i) easily from Lemma 14 and $U_{M_{n-i+1}((A))^{n-i+1}}^{(0)}=M_{n-i+1}((A))^{n-i}\times U_{M_{n-i+1}((A))^{n-i+1}}^{(1)}.$ (ii) Since the mapping $\ell: ((A))^{n\times} \times \cdots \times ((A))^{n\times} \to \mathbf{Z}$ is multilinear, we have a homomorphism $\ell: ((A))^{n\times} \otimes \cdots \otimes ((A))^{n\times} \to \mathbf{Z}$ of groups. Then, by $I_{((A))^n} \subset \operatorname{Ker} \ell$, we obtain a homomorphism $\ell: M_n((A))^n \to \mathbf{Z}$ of groups. If we introduce the mapping $\psi: \mathbf{Z} \to M_n((A))^n$ defined by $\psi(m) = \{t_1, \cdots, t_n\}^m$ for any $m \in \mathbf{Z}$, then $\ell \circ \psi = id_{\mathbf{Z}}$. Thus $M_n((A))^n = \{t_1, \cdots, t_n\}^{\mathbf{Z}} \times \operatorname{Ker} \ell$. Moreover, by the definition of $U_{M_{n-i+1}((A))^{n-i+1}}^{(0)}$ and (i), we have $\operatorname{Ker} \ell = \prod_{i=1}^n U_{M_{n-i+1}((A))^{n-i+1}}^{(0)}$. This implies $\ell = \partial_2^1 \circ \cdots \circ \partial_2^n$. For an integral ring A and $n \ge 1$, there exists a linear topology on $M_n((A))^n$ with fundamental system of neighborhoods $\Sigma = \{U_{M_n((A))^n}^{(r)} \mid r \ge 1\}$ of 0. This topology is said to be the valuation topology on $M_n((A))^n$. Then $M_n((A))^n$ is a topological group with respect to the valuation topology. **4**. Here we shall define a group pairing $\operatorname{Res}_{\infty}^{((A))^n}: M_n((A))^n \times W_{\infty}((A))^n \to W_{\infty}A$ for an integral ring A and $n \ge 1$, and study the fundamental properties of this pairing. In the following, we consider the ring of Witt vectors with respect to the prime number p. For a ring A, let $W_{\infty}A$ denote the ring of Witt vectors of infinite length over A. Then the next results are easily obtained from Lemma 3, (ii). LEMMA 16. Suppose that A is a ring and $n \ge 1$. Then $$W_{\infty}((A))^n = W_{\infty}D \oplus W_{\infty}[[A]]_n = W_{\infty}D \oplus W_{\infty}A \oplus W_{\infty}\mathfrak{m}$$ $$W_{\infty}D = \bigoplus_{i=1}^{n} W_{\infty}(t_{i}^{-1}A((t_{n}))\cdots((t_{i+1}))[t_{i}^{-1}]).$$ Here, let $$0^*: W_{\infty}((A))^n \longrightarrow W_{\infty}A$$ denote the projection with respect to the decomposition: $W_{\infty}((A))^n = W_{\infty}D \oplus W_{\infty}A \oplus W_{\infty}\mathfrak{m}$. For an integral ring A and $n \ge 1$, we shall define a group pairing $\operatorname{Res}_{\infty}^{((A))^n} : M_n((A))^n \times W_{\infty}((A))^n \to W_{\infty}A$ as follows. First we consider the case that $p \in A^{\times}$. For $u_1, \dots, u_n \in ((A))^{n \times}$ and $b \in W_{\infty}((A))^n$, $$c_i = \operatorname{res}_A^n \left(w_i(b) \frac{du_1}{u_1} \wedge \dots \wedge \frac{du_n}{u_n} \right) \in A \quad (i \ge 0)$$ and define the mapping $$\Psi_1: \begin{array}{ccc} ((A))^{n\times} \times \cdots \times ((A))^{n\times} \times W_{\infty}((A))^n & \longrightarrow & W_{\infty}A \\ & & & & & & & & & & & & \\ (u_1, \cdots, u_n, b) & & \longmapsto & \theta_A^{-1}(c_0, c_1, \cdots) \,. \end{array}$$ Here w_i $(i \ge 0)$ are the Witt polynomials and $$\begin{array}{cccc} W_{\infty}A & \longrightarrow & A^{\mathbf{N}} \\ \theta_A : & \psi & & \psi \\ & a & \longmapsto & (w_0(a), w_1(a), \cdots). \end{array}$$ Since Ψ_1 is multilinear with respect to $u_1, \dots, u_n \in ((A))^{n \times}$ for any fixed $b \in W_{\infty}((A))^n$, we obtain a mapping $$\Psi_2: ((A))^{n \times} \otimes \cdots \otimes ((A))^{n \times} \times W_{\infty}((A))^n \longrightarrow W_{\infty}A$$ by putting $\Psi_2(u_1 \otimes \cdots \otimes u_n, b) = \Psi_1(u_1, \cdots, u_n, b)$. Since $$\Psi_2(I_{((A))^n} \times W_{\infty}((A))^n) = 0$$ we can define a mapping $$\operatorname{Res}_{\infty}^{((A))^n}: M_n((A))^n \times W_{\infty}((A))^n \longrightarrow W_{\infty}A$$ by $\operatorname{Res}_{\infty}^{((A))^n}(\{u_1,\cdots,u_n\},b)=\Psi_1(u_1,\cdots,u_n,b)$. Therefore we have $$w_i(\operatorname{Res}_{\infty}^{((A))^n}(\{u_1,\dots,u_n\},b)) = \operatorname{res}_A^n(w_i(b)\frac{du_1}{u_1} \wedge \dots \wedge \frac{du_n}{u_n}) \in A \quad (i \geq 0).$$ LEMMA 17. Let A be an integral ring and $n \ge 1$. Assume that $p \in A^{\times}$. - (i) For any $\alpha, \alpha' \in M_n((A))^n$, $b, b' \in W_{\infty}((A))^n$, $c \in W_{\infty}A$, and for any ring homomorphism $\varphi: A \to B$, we obtain - (R-1) $\operatorname{Res}_{\infty}^{((A))^{n}}(\alpha \alpha', b) = \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha, b) + \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha', b)$ (R-2) $\operatorname{Res}_{\infty}^{((A))^{n}}(\alpha, b + b') = \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha, b) + \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha, b')$ - (R-3) $\operatorname{Res}_{\infty}^{((A))^n}(\alpha, cb) = c \operatorname{Res}_{\infty}^{((A))^n}(\alpha, b)$ - (R-4) $\operatorname{Res}_{\infty}^{((A))^n}(\alpha, Vb) = V \operatorname{Res}_{\infty}^{((A))^n}(\alpha, b)$ - (R-5) $\operatorname{Res}_{\infty}^{((A))^n}: M_n((A))^n \times W_{\infty}((A))^n \longrightarrow W_{\infty}A$ is continuous with respect to the valuation topology on $M_n((A))^n$ - $(R-6) W_{\infty}\varphi(\operatorname{Res}_{\infty}^{((A))^n}(\alpha,b)) = \operatorname{Res}_{\infty}^{((B))^n}(M_n((\varphi))^n(\alpha), W_{\infty}((\varphi))^n(b))$ - (R-7) $b \in W_{\infty}[[A]]_n \Longrightarrow \operatorname{Res}_{\infty}^{((A))^n}(\alpha, b) = \ell(\alpha) \ 0^*(b).$ - (ii) For any $u_1, \dots, u_n \in ((A))^{n \times}$ and $b \in W_{\infty}((A))^n$, we have - (R-8) $u_i \in A^{\times} \text{ for some } i \in \{1, \dots, n\} \implies \operatorname{Res}_{\infty}^{((A))^n}(\{u_1, \dots, u_n\}, b) = 0$ (R-9) $$u_1 \in \mathcal{H}$$ for some $t \in \{1, \dots, n\}$ $\longrightarrow \operatorname{Res}_{\infty}^{\infty}$ $(\{u_1, \dots, u_n\}, u_1, \dots, u_n\}, u_1, \dots, u_n\}$ $\longrightarrow \operatorname{Res}_{\infty}^{((A))^n}(\{u_1, \dots, u_n\}, b) = \ell(\{u_1, \dots, u_n\}) \ 0^*(b).$ The proof is similar to the case that n = 1. LEMMA 18. Suppose that A is an integral ring, $n \ge 1$ and $u_1, \dots, u_n \in ((A))^n$ satisfy the condition (a) in Lemma 5, (i). If $p \in A^{\times}$, then the mapping $$\operatorname{Res}_{\infty}^{((A))_{u}^{n}}: M_{n}((A))_{u}^{n} \times W_{\infty}((A))_{u}^{n} \longrightarrow W_{\infty}A$$ is defined. Let $i: ((A))_u^n \hookrightarrow ((A))^n$ denote the natural inclusion mapping. Then for any $\alpha \in M_n((A))_u^n$, $b \in W_\infty((A))_u^n$, we have (R-10) $\operatorname{Res}_{\infty}^{((A))_{i}^{n}}((M_{n}i)(\alpha), (W_{\infty}i)(b)) = \ell(u_{1}, \dots, u_{n})\operatorname{Res}_{\infty}^{((A))_{u}^{n}}(\alpha, b).$ Here $\ell(u_{1}, \dots, u_{n})$ is the integer defined in Lemma 5. The proof is induced from Lemma 12, (iii) and the definition of the mapping $\operatorname{Res}_{\infty}^{((A))_u^n}$. COROLLARY. Suppose that u_1, \dots, u_n satisfy the condition (a_0) in Lemma 5, (ii). Then for any $\alpha \in M_n((A))^n$, $b \in W_{\infty}((A))^n$, we obtain $$\operatorname{Res}_{\infty}^{(\!(A)\!)_t^n}(\alpha,b) = \operatorname{Res}_{\infty}^{(\!(A)\!)_u^n}(\alpha,b)$$. Next we try to omit the condition $p \in A^{\times}$. LEMMA
19. Let $i: A \hookrightarrow B$ be an extension of integral rings and $n \geq 1$. If $p \in B^{\times}$, then for any $\alpha \in M_n((A))^n$, $b \in W_{\infty}((A))^n$, we have $$\operatorname{Res}_{\infty}^{((B))^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) \in W_{\infty}A.$$ PROOF. It suffices to prove this lemma in the case that $\alpha = \{u_1, \dots, u_n\}$ for $u_1, \dots, u_n \in ((A))^{n \times}$. Put $\alpha = \{t_1, \dots, t_{i-1}, u_i, \dots, u_n\}$ $(1 \le i \le n+1)$, and prove the assertion by induction on i. For i = n+1, it is easy from (R-9). Assume that the assertion holds for i+1. If $u_i, \dots, u_n \in A((t_n)) \dots ((t_{i+1}))$, then $\det J^L(u/t) = 0$, and hence $\operatorname{Res}_{\infty}^{((B))^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) = 0$, by Lemma 16, (iii). Therefore we may assume $u_i \notin A((t_n)) \dots ((t_{i+1}))$ by Corollary to Lemma 13. Moreover, by Corollary 1 to Lemma 3, we can also assume (1) $u_i \in t_j^{\mathbb{Z}}$ $(1 \le j \le i)$ or $(2) u_i \in [[A]]_n^{\times}$. In the case (1), we can put $u_i = t_j^m$ $(m \in \mathbb{Z})$. If $1 \le j \le i-1$, then $\alpha = \{t_1, \dots, t_{i-1}, -1, u_{i+1}, \dots, u_n\}^m$ by Lemma 13. This implies $\operatorname{Res}_{\infty}^{((B))^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) = 0$ by (R-8). If j = i, then $$\alpha = \{t_1, \dots, t_i, u_{i+1}, \dots, u_n\}^m.$$ Therefore $\operatorname{Res}_{\infty}^{(B)^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) \in W_{\infty}A$ by the assumption of induction. In the case (2), if we put $t_i' = u_i t_i$, then $$\operatorname{Res}_{\infty}^{(B)^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) = \operatorname{Res}_{\infty}^{(B)^n}(\{t_1, \dots, t_{i-1}, t_i', u_{i+1}, \dots, u_n\}, b)$$ $$-\operatorname{Res}_{\infty}^{((B))^n}(\{t_1,\dots,t_{i-1},t_i,u_{i+1},\dots,u_n\},b).$$ Since $t_1, \dots, t_{i-1}, t_i', t_{i+1}, \dots, t_n$ satisfy the condition (a_0) in Lemma 5, (ii), we have $\operatorname{Res}_{\infty}^{((B))^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) \in W_{\infty}A$ by Corollary to Lemma 18 and the assumption of induction. LEMMA 20. Let A be an integral ring and $n \ge 1$. - (i) Even if $p \notin A^{\times}$, the mapping $\operatorname{Res}_{\infty}^{((A))^n}: M_n((A))^n \times W_{\infty}((A))^n \to W_{\infty}A$ is defined and satisfies all the conditions (R-1), \cdots , (R-9) and (R-10). - (ii) If A is of characteristic p, then for any $\alpha \in M_n((A))^n$, $b \in W_\infty((A))^n$, we obtain (R-11) $\operatorname{Res}_\infty^{((A))^n}(\alpha, Pb) = P\operatorname{Res}_\infty^{((A))^n}(\alpha, b)$. PROOF. (i) By Lemma 19, the assertion (i) is valid for an integral ring A of characteristic 0, especially for a polynomial ring A in countable variables with coefficient ring \mathbf{Z} . Therefore, by the similar method to the case that n = 1, we can define $\operatorname{Res}_{\infty}^{((A))^n}$ by the use of (R-6). (ii) This statement follows from (R-2), (R-4) and p = PV. LEMMA 21. Let A be an integral ring and $n \ge 1$. Take any $\alpha \in M_n((A))^n$, $b \in W_\infty((A))^n$, and write $\alpha = \prod_{i=-1}^n \alpha(i)$, $b = \sum_{i=-1}^n b(i)$ following Lemma 15, (i) and Lemma 16. Here $$\alpha(-1) \in \prod_{i=1}^{n} M_{n-i+1}((A))^{n-i}, \ \alpha(0) \in \{t_1, \dots, t_n\}^{\mathbb{Z}}, \ \alpha(i) \in U_{M_{n-i+1}((A))^{n-i+1}}^{(1)},$$ $$b(-1) \in W_{\infty}\mathfrak{m}, \ b(0) \in W_{\infty}A, \ b(i) \in W_{\infty}(t_i^{-1}(\!(A)\!)^{n-i}[t_i^{-1}])\,,$$ and $((A))^{n-i} = A((t_n)) \cdots ((t_{i+1}))$ $(1 \le i \le n)$. If we put $\ell = \ell(\alpha)$, then $\alpha(0) = \{t_1, \dots, t_n\}^{\ell}$ and $$\operatorname{Res}_{\infty}^{(\!(A)\!)^n}(\alpha,b) = \ell b(0) + \sum_{i=1}^n \operatorname{Res}_{\infty}^{(\!(A)\!)^n}(\alpha(i),b(i)).$$ PROOF. By (R-7), we have $\operatorname{Res}_{\infty}^{((A))^n}(\alpha, b(-1)) = 0$ for any $\alpha \in M_n((A))^n$. If $u_1 = t_1$, \dots , $u_{i-1} = t_{i-1}$, u_i , \dots , $u_n \in ((A))^{n-i}$ $(1 \le i \le n)$, then $\det J^L(u/t) = 0$. Therefore $\operatorname{Res}_{\infty}^{((A))^n}(\alpha(-1), b) = 0$ for any $b \in W_{\infty}((A))^n$, by Lemma 10, (iii). By (R-7), (R-9), we obtain $$\operatorname{Res}_{\infty}^{((A))^{n}}(\alpha(0), b(0)) = \ell b(0),$$ $$j \neq 0 \implies \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha(0), b(j)) = 0,$$ $$i \neq 0 \implies \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha(i), b(0)) = 0.$$ If $u_1 = t_1, \dots, u_{i-1} = t_{i-1}, u_i \in 1 + t_i((A))^{n-i}[[t_i]], u_{i+1}, \dots, u_n \in ((A))^{n-i+1} (1 \le i \le n)$, then $\det J^L(u/t) \in t_i((A))^{n-i}[[t_i]]$, and if b = b(j), then $w_k(b) \in t_j^{-1}((A))^{n-j}[t_j^{-1}]$ for any $k \ge 0$. Therefore $$i \neq j \implies \operatorname{Res}_{\infty}^{((A))^n}(\alpha(i), b(j)) = 0$$ for any $$i, j \in \{1, \dots, n\}$$. In what follows, we consider the case that A is a ring of characteristic p. Then we introduce a homomorphism $$\wp: W_{\infty}A \longrightarrow W_{\infty}A$$ of modules defined by $\wp(a) = Pa - a$ for any $a \in W_{\infty}A$. If we put $$WA = W_{\infty}A/\wp(W_{\infty}A) \otimes \mathbf{Z}[\frac{1}{p}]/\mathbf{Z},$$ then we obtain a group pairing $$\operatorname{Res}^{((A))^n}: M_n((A))^n \times W((A))^n \longrightarrow WA$$ by the method similar to that in the case when n = 1. See [6, Lemma 3.10] or [8, §3]. Here we induce the valuation topology on $M_n((A))^n$. Let $Ann^{((A))^n}$ denote the annihilator of the pairing $Res^{((A))^n}$. Then there exists a linear topology on $M_n((A))^n$ with fundamental system of neighborhoods $$\Sigma = \{ \operatorname{Ann}^{((A))^n}(Q) \mid Q \text{ is a finite subset of } W((A))^n \}$$ of 0. This topology is said to be the weak topology on $M_n((A))^n$. Then $M_n((A))^n$ is a topological group with respect to the weak topology. Note that $M_n((A))^n$ is not separable with this topology. LEMMA 22. Suppose that A is an integral ring of characteristic p and $n \ge 1$. Then we obtain $\wp(\mathfrak{m}) = \mathfrak{m}$. Therefore $$\wp(W_{\infty}\mathfrak{m}) = W_{\infty}\mathfrak{m}, \quad W\mathfrak{m} = 0$$ and $$W((A))^n \cong WD \oplus WA \cong \bigoplus_{i=1}^n W(t_i^{-1}A((t_n))\cdots((t_{i+1}))[t_i^{-1}]) \oplus WA.$$ PROOF. By Lemma 4, we reduce to the case when n = 1. LEMMA 23. For a ring A of characteristic p and indeterminate t over A, we put $$A((t^*)) = \bigoplus_{m \in \mathbf{N}_p} At^{-m} \oplus \prod_{m \in \mathbf{N}_p} At^m,$$ where $\mathbf{N}_p = \mathbf{N} - p\mathbf{N}$. Moreover, we take any submodule A_0 of A such that $A = PA \oplus A_0$. (i) If we put $A((t))_0 = \bigoplus_{m \in \mathbb{N}_p} At^{-m} \oplus \prod_{m \in \mathbb{N}_p} At^m \oplus \bigoplus_{n=1}^{\infty} A_0t^{-np} \oplus A_0 \oplus \prod_{n=1}^{\infty} A_0t^{np}$, then we can write $A((t))_0 = A((t^*)) \oplus A_0((t^p))$ and $A((t)) = P(A((t))) \oplus A((t))_0$. (ii) $$t^{-1}A[t^{-1}] = \wp(t^{-1}A[t^{-1}]) \oplus \bigoplus_{m \in \mathbb{N}_n} At^{-m} \oplus \bigoplus_{n=1}^{\infty} A_0t^{-np}$$. PROOF. We can prove easily (i). (ii) Put $x = at^{-mp^e}$ for $a \in A$, $m \in \mathbb{N}_p$, $e \ge 0$, and prove $x \in \wp(t^{-1}A[t^{-1}]) \oplus \bigoplus_{m \in \mathbb{N}_p} At^{-m} \oplus \bigoplus_{n=1}^{\infty} A_0t^{-np}$, by induction on e. For e = 0, it is obvious. Let $e \ge 1$. If we put $a = b^p + c$ ($b \in A$, $c \in A_0$), then $x = (bt^{-mp^{e-1}})^p + ct^{-mp^e} = \wp(bt^{-mp^{e-1}}) + bt^{-mp^{e-1}} + ct^{-mp^e}$. Thus $x \in \wp(t^{-1}A[t^{-1}]) \oplus \bigoplus_{m \in \mathbb{N}_p} At^{-m} \oplus \bigoplus_{n=1}^{\infty} A_0t^{-np}$. COROLLARY. For a ring A of characteristic p and $n \ge 1$, we obtain $$D = \wp(D) \oplus \bigoplus_{i=1}^{n} \bigoplus_{m \in \mathbb{N}_{p}} A((t_{n})) \cdots ((t_{i+1}))t_{i}^{-m}$$ $$\oplus \bigoplus_{i=1}^{n} \bigoplus_{m \in \mathbb{N}_{p}} \bigoplus_{e=1}^{\infty} \bigoplus_{f=i+1}^{n} A((t_{n})) \cdots ((t_{f+1}))((t_{f}^{*}))((t_{f-1}^{p})) \cdots ((t_{i+1}^{p}))t_{i}^{-mp^{e}}$$ $$\oplus \bigoplus_{i=1}^{n} \bigoplus_{m \in \mathbb{N}_{p}} \bigoplus_{e=1}^{\infty} A_{0}((t_{n}^{p})) \cdots ((t_{i+1}^{p}))t_{i}^{-mp^{e}}.$$ LEMMA 24. Let A be an integral ring of characteristic p and $n \ge 1$. Then - (i) the mapping $\operatorname{Res}^{((A))^n}: M_n((A))^n \times W((A))^n \to WA$ is continuous with respect to the weak topology on $M_n((A))^n$. Therefore $\operatorname{Res}^{((A))^n}$ is a group pairing. - (ii) The weak topology is weaker than the valuation topology on $M_n((A))^n$. - (iii) If A is a field, PA = A and $A \neq \wp(A)$, then $$\operatorname{Ann}^{((A))^n}(M_n((A))^n) = 0.$$ PROOF. The statements (i) and (ii) are easy to verify. (iii) Take any $\beta \in \operatorname{Ann}^{((A)^n}(M_n((A)^n))$. Then, by Lemma 21 and Lemma 22, we have $\beta \in WD$. Here we assume $\beta \neq 0$. Since WD is a torsion p-group, we may assume $p\beta = 0$. Then we can write $\beta = \phi_1(b)$, $b \in W_\infty D$, $b_0 \notin \wp(D)$. Noting that $A_0 = 0$, the monomial appeared in b_0 with order $\operatorname{ord}_{[[A]]_n}(b_0)$ is contained in $A((t_n)) \cdots ((t_{i+1}))t_i^{-m}$ or $A((t_n)) \cdots ((t_{f+1}))((t_f^p))((t_{f-1}^p)) \cdots ((t_{i+1}^p))t_i^{-mp^e}$, by Corollary to Lemma 23. Here we put $\gamma = -\operatorname{ord}_{[[A]]_n}(b_0)$, $\gamma = t_\gamma$, $\gamma = 1 + a_0 \gamma$ for any $\gamma = a_0 \gamma = a_0 \gamma$, and define $\gamma = a_0 \gamma = a_0 \gamma$. Then we obtain $\gamma = a_0 \gamma = a_0 \gamma = a_0 \gamma = a_0 \gamma$. On the other hand, since we can write det $\gamma = a_0 \gamma a_0$ $\gamma_s a_0 c_0$, by Lemma 10, (iii). Therefore we obtain $a_0 c_0 \in \wp(A)$. Thus $A = \wp(A)$. This is a contradiction, and hence $\beta = 0$. 5. Here we shall define a mapping $\rho_K : M_n K \to \Gamma K$ for a formal power series field K in n variables with p-quasifinite coefficient field, and prove the Main Theorem. First, note that the group pairings $$\langle , \rangle_{\infty}^{\Gamma K} : \Gamma K
\times W_{\infty} K \longrightarrow W_{\infty} \mathbf{F}_{p}, \quad \langle , \rangle^{\Gamma K} : \Gamma K \times W K \longrightarrow \mathbf{Q}/\mathbf{Z}$$ are defined in [8, $\S 2$] for any field K of characteristic p. THEOREM 1. For a perfect field k and $n \ge 1$, we put $K = ((k))^n$. Then K'/K is an unramified extension $\iff K'/K$ is an extension of coefficient fields for any finite extension K'/K of fields. The proof is induced from [11, Theorem 2]. COROLLARY. Suppose that k is a perfect field of characteristic $p \ (p \neq 0)$. If we put $$K_{ur,ab}^{[p]} = k_{ab}^{[p]} K = K(\wp^{-1} W_{\infty} k),$$ then $K_{ur,ab}^{\,[p]}$ is the maximal unramified abelian p-extension of K. For a field k of characteristic p and $n \ge 1$, we put $K = ((k))^n$. Then $M_n K = M_n((k))^n$ is a topological group by introducing the weak topology. Moreover, from the results in §4, we obtain the mappings $$\operatorname{Res}_{\infty}^{K}: M_{n}K \times W_{\infty}K \longrightarrow W_{\infty}k, \quad \operatorname{Res}^{K}: M_{n}K \times WK \longrightarrow Wk.$$ Suppose that k is a field of characteristic p having the property $k/\wp(k) \cong \mathbf{F}_p$. Then there exists $F \in \Gamma k$ such that $\Gamma k = F^{\mathbf{Z}_p} \cong \mathbf{Z}_p$, and the mapping $$S_F: \begin{array}{ccc} W_{\infty}k & \longrightarrow & W_{\infty}\mathbf{F}_p \\ & & & & & & & & \\ b & \longmapsto & \langle F, b \rangle_{\infty}^{\Gamma k} \end{array}$$ is a surjective continuous homomorphism of \mathbb{Z}_p -modules and Ker $S_F = \wp(W_{\infty}k)$. Therefore we have $W_{\infty}k \cong \wp(W_{\infty}k) \oplus W_{\infty}\mathbb{F}_p$. Next we define a mapping $$\langle \; , \; \rangle_{\infty}^{M_n K} : M_n K \times W_{\infty} K \longrightarrow W_{\infty} \mathbf{F}_p$$ by putting $$\langle \alpha, b \rangle_{\infty}^{M_n K} = S_F(\operatorname{Res}_{\infty}^K(\alpha, b))$$ for $\alpha \in M_n K$, $b \in W_{\infty} K$. Then $\langle , \rangle_{\infty}^{M_n K}$ is a group pairing with respect to the weak topology on $M_n K$. Similarly, from $Wk \cong \mathbf{Z}[\frac{1}{n}]/\mathbf{Z} \subset \mathbf{Q}/\mathbf{Z}$, we also obtain a group pairing $$\langle , \rangle^{M_n K} : M_n K \times W K \longrightarrow \mathbf{Q}/\mathbf{Z}.$$ Using these pairings, we can define a mapping $$\rho_K: M_nK \longrightarrow \Gamma K$$ by putting $\langle \rho_K(\alpha), \beta \rangle^{\Gamma K} = \langle \alpha, \beta \rangle^{M_n K}$ for $\alpha \in M_n K$, $\beta \in W K$. Moreover, for any abelian p-extension L over K, we put $\rho_{L/K}(\alpha) = \rho_K(\alpha)|_L$ for $\alpha \in M_n K$. Then we obtain a mapping $$\rho_{L/K}: M_nK \longrightarrow \operatorname{Gal}(L/K)$$. Note that both the mappings ρ_K and $\rho_{L/K}$ are dependent on F. LEMMA 25. For a perfect field k of characteristic p which satisfies $k/\wp(k) \cong \mathbb{F}_p$ and $n \ge 1$, we put $K = (k)^n$. (i) Let L, L' be abelian p-extensions over K, $H' = \operatorname{Gal}(K_{ab}^{[p]}/L')$ and $Q' = \operatorname{Ker} W_{K|L'}$. If $L' \subset L$, then $$\rho_{L/K}^{-1}(\text{Gal}(L/L')) = \rho_K^{-1}(H') = \text{Ann}^{M_n K}(Q')$$. Here Ann^{M_nK} denotes the annihilator of the pairing \langle , \rangle^{M_nK} . - (ii) The mapping $\rho_K: M_nK \to \Gamma K$ is a continuous homomorphism of groups. - (ii') The weak topology on M_nK is the induced topology of Krull topology on ΓK with respect to the mapping ρ_K . - (iii) For any subgroup A of M_nK , we have $\operatorname{Ann}^{\Gamma K}(\rho_K(A)) = \operatorname{Ann}^{M_nK}(A)$. Therefore we obtain $\overline{\rho_K(A)} = \operatorname{Ann}^{\Gamma K}(\operatorname{Ann}^{M_nK}(A))$ and $$\overline{A} = \rho_K^{-1}(\overline{\rho_K(A)}) = \operatorname{Ann}^{M_n K}(\operatorname{Ann}^{M_n K}(A)).$$ Here $\mathrm{Ann}^{\Gamma K}$ denotes the annihilator of the pairing $\langle \; , \; \rangle^{\Gamma K}$ and "overline" means the closure of topological spaces. (iv) The mapping $\rho_K: M_nK \to \Gamma K$ is dominant. PROOF. The statement (i) is verified from the definitions of ρ_K , $\rho_{L/K}$ and $H' = \operatorname{Ann}^{\Gamma K}(O')$. (ii) It is easy to prove that ρ_K is a homomorphism of groups. The continuity of ρ_K and (ii') are induced from $$\{\rho_K^{-1}(H) \mid H \text{ is an open subgroup of } \Gamma K\} =$$ $$\{\operatorname{Ann}^{M_nK}(Q) \mid Q \text{ is a finite subgroup of } WK\}.$$ - (iii) We can prove this statement easily from the definition of ρ_K and (ii'). - (iv) If we put $A = M_n K$ in (iii), then, by Lemma 24, (iii), we have $$\overline{\rho_K(M_nK)} = \operatorname{Ann}^{\Gamma K}(\operatorname{Ann}^{M_nK}(M_nK)) = \operatorname{Ann}^{\Gamma K}(0) = \Gamma K.$$ COROLLARY. For any closed subgroup A of M_nK , there exists an abelian p-extension L over K such that $A = \text{Ker } \rho_{L/K}$. If A is open, then L is finite over K and is determined uniquely from A. THEOREM 2. For a perfect field k of characteristic p which satisfies $k/\wp(k) \cong \mathbf{F}_p$ and $n \geq 1$, we put $K = ((k))^n$. Take any element $F \in \Gamma k$ having the property $\Gamma k = F^{\mathbf{Z}_p}$, and define the mappings ρ_K and $\rho_{L/K}$. Then (i) for any $\alpha \in M_n K$, we have $$\rho_K(\alpha)\Big|_{k_{ab}^{[p]}} = F^{\ell(\alpha)}.$$ (ii) The mapping from the set of finite abelian p-extensions L over K to the set of open subgroups of M_nK defined by $$L \longmapsto \operatorname{Ker} \rho_{L/K} = \rho_K^{-1}(\operatorname{Gal}(K_{ab}^{[p]}/L))$$ is an inclusion-reversing bijection, and $$M_n K/\operatorname{Ker} \rho_{L/K} \cong \operatorname{Gal}(L/K)$$. (iii) For any finite abelian p-extension L over K, we obtain $$L/K$$ is unramified $\iff U_K^{(0)} \subset \operatorname{Ker} \rho_{L/K}$. Here $$U_K^{(0)} = \text{Ker } \ell = \prod_{i=1}^n U_{M_{n-i+1}((k))^{n-i+1}}^{(0)}$$. PROOF. (i) Put $\ell = \ell(\alpha)$. Take any element $b \in W_{\infty}k$ which satisfies $k_{ab}^{[p]} = k(\wp^{-1}b)$. Then we have $\langle \rho_K(\alpha), b \rangle_{\infty}^{\Gamma K} = \langle \alpha, b \rangle_{\infty}^{M_n K} = S_F(\operatorname{Res}_{\infty}^K(\alpha, b)) = S_F(\ell b) = \langle F, \ell b \rangle_{\infty}^{\Gamma k} = \langle F^{\ell}, b \rangle_{\infty}^{\Gamma k}$ by Lemma 21. Thus $\rho_K(\alpha) \Big|_{k_{ab}^{[p]}} = F^{\ell}$. - (ii) By Lemma 25, (i), we have Ker $\rho_{L/K} = \rho_K^{-1}(\operatorname{Gal}(K_{ab}^{[p]}/L))$. By Corollary to Lemma 25, the mapping: $L \mapsto \operatorname{Ker} \rho_{L/K}$ is bijective. Moreover, by Lemma 25, (iv), the homomorphism $\rho_{L/K} : M_nK \to \operatorname{Gal}(L/K)$ is surjective. - (iii) By Lemma 15, Lemma 21, Lemma 22 and Lemma 24, (iii), we have $$\operatorname{Ann}^{M_n K}(U_K^{(0)}) = Wk,$$ and hence $\overline{\rho_K(U_K^{(0)})} = \mathrm{Ann}^{\Gamma K}(\mathrm{Ann}^{M_n K}(U_K^{(0)})) = \mathrm{Ann}^{\Gamma K}(Wk) = \mathrm{Gal}(K_{ab}^{[p]}/K_{ur,ab}^{[p]})$ by Lemma 25, (iii). Therefore we obtain $$L/K$$ is unramified $\iff L \subset K_{ur,ab}^{[p]} \iff U_K^{(0)} \subset \operatorname{Ker} \rho_{L/K}$ by Corollary to Theorem 1. 516 KOJI SEKIGUCHI COROLLARY. $\Gamma K \cong \widehat{M_n K} = \text{proj. lim } M_n K/A$, where A runs over all open subgroups of $M_n K$. Next we consider the relationship between the pairings $\langle \ , \ \rangle^{M_n K}$ and $\langle \ , \ \rangle^{M_n K'}$, where K'/K is a finite separable p-extension of fields. LEMMA 26. For a perfect field k of characteristic p and $n \ge 1$, we put $K = ((k))^n$. Let K'/K be a finite separable extension of fields and k' the algebraic closure of k in K'. (i) For any $\alpha \in M_n K$, $b \in W_\infty K$, we have $$\operatorname{Res}_{\infty}^{K'}(M_{nK|K'}\alpha, b) = e\operatorname{Res}_{\infty}^{K}(\alpha, b).$$ Here e = [K' : k'K]. (ii) For any $\alpha \in M_n K$, $b' \in W_\infty K'$, we obtain $$T_{W_{\infty}k'/W_{\infty}k}\operatorname{Res}_{\infty}^{K'}(M_{nK|K'}\alpha,b') = \operatorname{Res}_{\infty}^{K}(\alpha,T_{W_{\infty}K'/W_{\infty}K}b').$$ PROOF. (i) If we put $K = k((t_n)) \cdots ((t_1))$, then we can write $k'K = k'((t_n)) \cdots ((t_1))$ by [11, Corollary (i) to Theorem 2]. Therefore, by (R-6), we obtain $\operatorname{Res}_{\infty}^K(\alpha, b) = \operatorname{Res}_{\infty}^{k'K}(M_{nK|k'K}\alpha, b)$. If we apply (R-10) for $i: k'K \hookrightarrow K'$, then we have $$\operatorname{Res}_{\infty}^{K'}(M_{nK|K'}\alpha, b) = \ell(t_1, \dots, t_n)\operatorname{Res}_{\infty}^{k'K}(M_{nK|k'K}\alpha, b).$$ Moreover, by [11, Theorem 2, (ii)] and [11, Corollary (i) to Theorem 2], we get $\ell(t_1, \dots, t_n) = e = [K' : k'K]$. Thus $\operatorname{Res}_{\infty}^{K'}(M_{nK|K'}\alpha, b) = e\operatorname{Res}_{\infty}^{K}(\alpha, b)$. (ii) It suffices to prove $T_{k'/k} \operatorname{Res}_{\infty}^{K'}(M_{nK|K'}\alpha, b') = \operatorname{Res}_{\infty}^{K}(\alpha, T_{K'/K}b')$ in the case when the extension K'/K is Galois. Put $G = \operatorname{Gal}(K'/K)$, and decompose $G = \bigcup_{i=1}^f \operatorname{Gal}(K'/k'K)\sigma_i$. Then $\operatorname{Gal}(k'/k) = \operatorname{Gal}(k'K/K) = \{\sigma_1, \dots, \sigma_f\}$ by [11, Theorem 2, (ii)]. If we put $\alpha' = M_{nK|K'}\alpha$, $b = T_{K'/K}b'$, then we get $\operatorname{Res}_{\infty}^{K}(\alpha, b) = \frac{1}{e}\operatorname{Res}_{\infty}^{K'}(\alpha', b) = \frac{1}{e}\operatorname{Res}_{\infty}^{K'}(\alpha', \sum_{\sigma \in G} \sigma b') = \frac{1}{e}\sum_{\sigma \in G} \sigma \operatorname{Res}_{\infty}^{K'}(\alpha', b') = \sum_{i=1}^f \sigma_i \operatorname{Res}_{\infty}^{K'}(\alpha', b') = T_{k'/k}\operatorname{Res}_{\infty}^{K'}(\alpha', b')$ by (i) and (R-6). LEMMA 27. For a p-quasifinite field k and $n \ge 1$, we put $K = ((k))^n$. (i) Let $\sigma: K \to K'$ be an isomorphism of fields. Then for any $\alpha \in M_nK$, $\beta \in WK$, we have $$\langle \alpha, \beta \rangle^{M_n K} = \langle \sigma \alpha, \sigma \beta \rangle^{M_n K'}.$$ (ii) Let K'/K be a finite separable p-extension of
fields. Then for any $\alpha \in M_nK$, $\beta' \in WK'$, we obtain $$\langle M_{nK|K'}\alpha, \beta' \rangle^{M_nK'} = \langle \alpha, T_{K'/K}\beta' \rangle^{M_nK},$$ and for any $\alpha' \in M_n K'$, $\beta \in WK$, we obtain $$\langle N_{K'/K}\alpha', \beta \rangle^{M_nK} = \langle \alpha', W_{K|K'}\beta \rangle^{M_nK'}.$$ PROOF. The statment (i) is proved easily from (R-6). (ii) $\langle M_{nK|K'}\alpha, \beta' \rangle^{M_nK'} = \langle \alpha, T_{K'/K}\beta' \rangle^{M_nK}$ is easy from Lemma 26, (ii). It suffices to prove $\langle N_{K'/K}\alpha', \beta \rangle^{M_nK} = \langle \alpha', W_{K|K'}\beta \rangle^{M_nK'}$ in the case when the extension K'/K is Galois. Since $T_{K'/K}$ is surjective, there exists $\beta' \in WK'$ such that $\beta = T_{K'/K}\beta'$. Then $T_G\beta' = W_{K|K'}\beta$. On the other hand, if we put $\alpha = N_{K'/K}\alpha'$, then $N_G\alpha' = M_{nK|K'}\alpha$. Thus $\langle \alpha, \beta \rangle^{M_nK} = \langle \alpha, T_{K'/K}\beta' \rangle^{M_nK} = \langle M_{nK|K'}\alpha, \beta' \rangle^{M_nK'} = \langle N_G\alpha', \beta' \rangle^{M_nK'} = \langle \alpha', T_G\beta' \rangle^{M_nK'} = \langle \alpha', W_{K|K'}\beta \rangle^{M_nK'}$. LEMMA 28. Suppose that k is a p-quasifinite field, $n \ge 1$ and $K = ((k))^n$. Then for any finite separable p-extension K'/K of fields, we obtain $$\operatorname{Ann}^{M_n K}(N_{K'/K} M_n K') = \operatorname{Ker} W_{K|K'}$$ and $$\overline{N_{K'/K}M_nK'} = \operatorname{Ann}^{M_nK}(\operatorname{Ker} W_{K|K'}).$$ Here "overline" means the closure of M_nK with respect to the weak topology. PROOF. Ann^{M_nK} ($N_{K'/K}M_nK'$) = Ker $W_{K|K'}$ is induced from Lemma 27, (ii) and Lemma 24, (iii). $\overline{N_{K'/K}M_nK'}$ = Ann^{M_nK} (Ker $W_{K|K'}$) is easy from the above equation and Lemma 25, (iii). Then the proof of **Main Theorem** is complete from Lemma 25, Lemma 28 and Theorem 2. ## References - [1] N. BOURBAKI, Commutative Algebra (Elements of mathematics), Springer (1989). [Translation of Algèbre commutative, Hermann (1964).] - [2] I. FESENKO and S. VOSTOKOV, Local fields and their extensions, Transl. Math. Monographs 121 (1993), Amer. Math. Soc. - [3] K. KANESAKA and K. SEKIGUCHI, Representation of Witt vectors by formal power series and its applications, Tokyo J. Math. 2 (1979), 349–370. - [4] K. KATO, A generalization of local class field theory by using K-groups, I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26 (1979), 303–376; II, ibid., 27 (1980), 603–683. - [5] Y. KAWADA and I. SATAKE, Class formations, II, J. Fac. Sci. Univ. Tokyo, I-7 (1955), 353-389. - [6] Y. KAWADA and K. SEKIGUCHI, Local class field theory in characteristic p, Sophia Kokyuroku in Mathematics 30 (1989) (in Japanese). - [7] J. MILNOR, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318–344. - [8] K. SEKIGUCHI, Class field theory of p-extensions over a formal power series field with a p-quasifinite coefficient field, Tokyo J. Math. 6 (1983), 167–190. 518 ## KOJI SEKIGUCHI - [9] K. SEKIGUCHI, The Lubin-Tate theory for formal power series fields with finite coefficient fields, J. Number Theory **18** (1984), 360–370. - [10] K. SEKIGUCHI, Linear topologies on a field and completions of valuation rings, Tokyo J. Math. **25** (2002), 63–73 - [11] K. SEKIGUCHI, On the structure of strictly complete valuation rings, Tokyo J. Math. 26 (2003), 393–402. Present Address: FACULTY OF FUNDAMENTAL EDUCATION, KOCHI UNIVERSITY OF TECHNOLOGY, TOSAYAMADA-CHO, KOCHI, 782–8502 JAPAN.