# On Abelian p-Extensions of Formal Power Series Fields

### Koji SEKIGUCHI

Kochi University of Technology (Communicated by K. Shinoda)

#### Introduction

Let p be a prime number. Then a field k is said to be p-quasifinite, if k is a perfect field of characteristic p and  $Gal(k_{sep}^{[p]}/k) \cong \mathbb{Z}_p$ . Here  $k_{sep}^{[p]}$  is the maximal separable p-extension of k and  $\mathbb{Z}_p$  is the ring of p-adic integers.

Suppose that k is a p-quasifinite field,  $n \ge 1$  and  $K = k((t_n)) \cdots ((t_1))$  is a formal power series field in n variables with coefficient field k. Then the nth Milnor K-group  $K_n^M K$  of K gives rise to a topological group by introducing the weak topology (see §4). Moreover we put  $\Gamma K = \operatorname{Gal}(K_{ab}^{[p]}/K)$ , where  $K_{ab}^{[p]}$  is the maximal abelian p-extension of K. Then the following results are obtained.

**Main Theorem.** Let k be a p-quasifinite field,  $n \ge 1$  and  $K = k((t_n)) \cdots ((t_1))$ . Then

(i) for any element  $F \in \Gamma k$  having the property  $\Gamma k = F^{\mathbf{Z}_p}$ , there exists a homomorphism

$$\rho_K : K_n^M K \longrightarrow \Gamma K$$

of topological groups which satisfies the following two conditions:

(1) Take any finite separable p-extension K'/K of fields. Then

$$\overline{N_{K'/K}K_n^MK'} \,=\, \rho_K^{-1}(\operatorname{Gal}(K_{ab}^{[p]}/K'\cap K_{ab}))\,.$$

Moreover,  $\rho_K$  induces an isomorphism:

$$K_n^M K / \overline{N_{K'/K} K_n^M K'} \cong \operatorname{Gal}(K' \cap K_{ab}/K)$$

of abelian groups. Here "overline" means the closure of  $K_n^M K$  with respect to the weak topology.

(2) Take any  $\alpha \in K_n^M K$ . Then

$$\rho_K(\alpha)\Big|_{k_{ab}^{[p]}} = F^{\ell(\alpha)}.$$

For the mapping  $\ell: K_n^M K \to \mathbb{Z}$ , see Lemma 15, (ii).

(ii) The mapping from the set of finite abelian p-extensions L over K to the set of open subgroups of  $K_n^M K$  defined by

$$L \longmapsto \overline{N_{L/K}K_n^ML}$$

is an inclusion-reversing bijection, and

$$K_n^M K / \overline{N_{L/K} K_n^M L} \cong \operatorname{Gal}(L/K)$$
.

(iii) For any finite abelian p-extension L over K, we obtain

$$L/K$$
 is unramified  $\iff U_K^{(0)} \subset \overline{N_{L/K}K_n^ML}$ .

Here  $U_K^{(0)} = \text{Ker } \ell$ .

COROLLARY. The first inequality:

$$(K_n^M K: N_{K'/K} K_n^M K') \geq [K' \cap K_{ab}: K]$$

holds for any finite separable p-extension K'/K of fields.

REMARK. (i) If the second inequality:

$$(K_n^M K: N_{K'/K} K_n^M K') \leq [K' \cap K_{ab}: K]$$

holds, then the Main Theorem gives rise to the fundamental theorem of class field theory for p-extensions.

(ii) The second inequality is already proved in the case when k is finite or n = 1. See [4] and [8].

The author wishes to express his thanks to Professor Shigeru Iitaka for his advices and warm encouragement.

1. Here we shall define two rings  $((A))^n$ ,  $[[A]]_n$  for a ring A and  $n \ge 1$ , and study the fundamental properties of these rings.

Let A be a ring and  $\Gamma$  a totally ordered abelian group. For  $x \in A^{\Gamma}$ , we put

$$s(x) = \{ \gamma \in \Gamma \mid x(\gamma) \neq 0 \}.$$

Here  $A^{\Gamma}$  denotes the set of mappings from  $\Gamma$  to A. Then the set

$$A((\Gamma)) = \{x \in A^{\Gamma} \mid s(x) \text{ is a well-ordered subset of } \Gamma\}$$

is a sub A-module of  $A^{\Gamma}$ . For  $x, y \in A((\Gamma))$ , we define  $xy \in A((\Gamma))$  by

$$\begin{array}{cccc} \Gamma & \longrightarrow & A \\ xy: & \Psi & & \Psi \\ \gamma & \longmapsto & \displaystyle \sum_{\alpha \in \Gamma} x(\alpha) y(\gamma - \alpha). \end{array}$$

Then  $A((\Gamma))$  turns out to be a ring with this product (see [1, Chapter 6, §3, Exercise 2]). Moreover we put

$$A[[\Gamma]] = \left\{ x \in A((\Gamma)) \mid x(\gamma) \neq 0 \Rightarrow \gamma \geqq 0 \right\},$$

$$\mathfrak{m} = \{ x \in A[[\Gamma]] \mid x(0) = 0 \},$$

then  $A[[\Gamma]]$  is a subring of  $A((\Gamma))$ , m is an ideal of  $A[[\Gamma]]$  and  $A[[\Gamma]] = A \oplus m$ .

For  $\alpha \in \Gamma$ , we define  $t_{\alpha} \in A((\Gamma))$  by  $t_{\alpha} : \gamma \longmapsto t_{\alpha}(\gamma) = \delta_{\alpha,\gamma}$ . Then  $(t_{\alpha}x)(\gamma) = x(\gamma - \alpha)$  for any  $x \in A((\Gamma))$ , and the mapping:

$$\begin{array}{ccc}
\Gamma & \longrightarrow & A((\Gamma))^{\times} \\
\Psi & & \Psi \\
\alpha & \longmapsto & t_{\alpha}
\end{array}$$

is an injective homomorphism of groups. In what follows, we denote by  $t_{\Gamma}$  the image of this mapping. The ring  $A((\Gamma))$  is complete with respect to the linear topology with fundamental system of neighborhoods  $\Sigma = \{t_{\alpha}\mathfrak{m} \mid \alpha \in \Gamma, \alpha \geq 0\}$  of 0.

For a ring A and a totally ordered abelian group  $\Gamma$ , we introduce the mapping

Here we put  $\min \emptyset = +\infty$ .

LEMMA 1. Suppose that A is an integral ring and  $\Gamma$  is a totally ordered abelian group. Then for any  $x, y \in A((\Gamma))$ , we have

$$\operatorname{ord}_{A[[\Gamma]]}(x) = +\infty \iff x = 0,$$

$$\operatorname{ord}_{A[[\Gamma]]}(xy) = \operatorname{ord}_{A[[\Gamma]]}(x) + \operatorname{ord}_{A[[\Gamma]]}(y),$$

$$\operatorname{ord}_{A[[\Gamma]]}(x+y) \ge \min\{\operatorname{ord}_{A[[\Gamma]]}(x), \operatorname{ord}_{A[[\Gamma]]}(y)\}.$$

Moreover

$$A[[\Gamma]] = \{x \in A((\Gamma)) \mid \operatorname{ord}_{A[[\Gamma]]}(x) \ge 0\},$$
  
$$\mathfrak{m} = \{x \in A((\Gamma)) \mid \operatorname{ord}_{A[[\Gamma]]}(x) > 0\}.$$

COROLLARY. 
$$A((\Gamma))^{\times} = t_{\Gamma} \times A[[\Gamma]]^{\times}$$
.

Next we introduce the notion of strong homomorphisms of *A*-modules as follows.

Let A be a ring and  $\Gamma_1$ ,  $\Gamma_2$  totally ordered abelian groups. Then a mapping  $\psi$ :  $A((\Gamma_1)) \to A((\Gamma_2))$  is said to be a *strong homomorphism* of A-modules, if the following three conditions are satisfied: For any well-ordered subset I of  $\Gamma_1$ ,

- $\{\alpha \in I \mid \gamma \in s(\psi(t_\alpha))\}\$  is a finite subset of  $\Gamma_1$  for any  $\gamma \in \Gamma_2$ ,
- $\bigcup_{\alpha \in I} s(\psi(t_{\alpha}))$  is a well-ordered subset of  $\Gamma_2$ ,

• 
$$\psi\left(\sum_{\alpha\in I}a_{\alpha}t_{\alpha}\right)=\sum_{\alpha\in I}a_{\alpha}\psi(t_{\alpha})$$
 for any  $(a_{\alpha})_{\alpha\in I}\in A^{I}$ .

Let  $\operatorname{st.Hom}_A(A((\Gamma_1)), A((\Gamma_2)))$  denote the set of strong homomorphisms of A-modules from  $A((\Gamma_1))$  to  $A((\Gamma_2))$ . Then the set  $\operatorname{st.Hom}_A(A((\Gamma_1)), A((\Gamma_2)))$  is a sub  $A((\Gamma_2))$ -module of  $\operatorname{Hom}_A(A((\Gamma_1)), A((\Gamma_2)))$ . Moreover we get

$$\psi \in \operatorname{st.Hom}_A(A((\Gamma_1)),A((\Gamma_2))), \bigoplus_{\alpha \in \Gamma_1} At_\alpha \subset \operatorname{Ker} \psi \implies \psi = 0.$$

EXAMPLE 1. Suppose that A is a ring and  $\Gamma$  is a totally ordered abelian group. Then for any  $\gamma \in \Gamma$ ,  $x \in A((\Gamma))$ , the mapping:

$$\begin{array}{ccc}
A((\Gamma)) & \longrightarrow & A \\
& & & & \\
\psi & & & & \\
y & \longmapsto & (xy)(y)
\end{array}$$

is a strong homomorphism of A-modules.

LEMMA 2. Let A be a ring and  $\Gamma_1$ ,  $\Gamma_2$  totally ordered abelian groups. Then, for any strong homomorphism  $\psi: A((\Gamma_1)) \to A((\Gamma_2))$  of A-modules,  $\psi$  is a ring homomorphism if and only if  $\psi(t_{\alpha+\beta}) = \psi(t_{\alpha})\psi(t_{\beta})$  for any  $\alpha, \beta \in \Gamma_1$  and  $\psi(1) = 1$ .

The proof is similar to the case of group rings.

A mapping  $\psi: A((\Gamma_1)) \to A((\Gamma_2))$  is said to be a strong homomorphism of A-rings, if  $\psi$  is a strong homomorphism of A-modules and is a ring homomorphism.

Moreover, for a ring A and totally ordered abelian groups  $\Gamma_1$ ,  $\Gamma_2$ , the definition of a mapping  $\psi: A[[\Gamma_1]] \to A[[\Gamma_2]]$  to be a strong homomorphism of A-modules or A-rings is similar to the case that  $\psi: A((\Gamma_1)) \to A((\Gamma_2))$ .

For  $n \ge 1$ , we define two functors  $(())^n$ ,  $[[]]_n$ : (Rings)  $\to$  (Rings) by putting  $((A))^n = A((\mathbf{Z}^n))$ ,  $[[A]]_n = A[[\mathbf{Z}^n]]$  for a ring A. Here  $\mathbf{Z}^n$  is a totally ordered abelian group with the lexicographical order. Especially if we write  $(()) = (())^1$ ,  $[[]] = [[]]_1$ , then

$$(())^n = (()) \circ (()) \circ \cdots \circ (())$$
 (nth composite)

for any  $n \ge 1$ .

LEMMA 3. For a ring A and  $n \ge 1$ , we put  $t_1 = t_{(1,0,\dots,0)}, \dots, t_n = t_{(0,\dots,0,1)} \in ((A))^n$ . Then

(i)  $t_i$  is transcendental over  $A((t_n)) \cdots ((t_{i+1}))$  for any  $i \in \{1, \dots, n\}$ , and

$$((A))^n = A((t_n)) \cdot \cdot \cdot \cdot ((t_1)),$$

$$[[A]]_n = A \oplus \bigoplus_{i=1}^n t_i A((t_n)) \cdots ((t_{i+1}))[[t_i]],$$

$$\mathfrak{m} = \bigoplus_{i=1}^n t_i A((t_n)) \cdots ((t_{i+1}))[[t_i]].$$

Moreover we obtain  $t_{\Gamma} = t_1^{\mathbf{Z}} \times \cdots \times t_n^{\mathbf{Z}}$ .

(ii) If we put  $D = \{x \in ((A))^n \mid x(\gamma) \neq 0 \Rightarrow \gamma < 0\}$ , then  $((A))^n = D \oplus [[A]]_n = D \oplus A \oplus \mathfrak{m},$ 

$$D = \bigoplus_{i=1}^{n} t_i^{-1} A((t_n)) \cdots ((t_{i+1})) [t_i^{-1}].$$

COROLLARY 1. Suppose that A is integral. Then

$$((A))^{n \times} = t_1^{\mathbf{Z}} \times \cdots \times t_n^{\mathbf{Z}} \times [[A]]_n^{\times},$$
$$[[A]]_n^{\times} = A^{\times} \times (1 + \mathfrak{m}),$$
$$1 + \mathfrak{m} = \prod_{i=1}^n (1 + t_i A((t_n)) \cdots ((t_{i+1}))[[t_i]]).$$

COROLLARY 2. Let A be a field. Then

- (i)  $((A))^n$  is also a field.
- (ii)  $[[A]]_n$  is a strictly complete valuation ring with quotient field  $((A))^n$ , residue field  $(A)^n$  and value group  $\mathbb{Z}^n$ .
  - (iii)  $\operatorname{ord}_{[A]_n}$  is an additive valuation of  $((A))^n$  corresponding to  $[[A]]_n$ .

LEMMA 4. Let A be an integral ring and  $n \ge 1$ .

- (i) If we write [[A]] = A[[t]], then the following three conditions for  $x \in [[A]]_n$  are equivalent:
- (a) There exists a strong homomorphism  $\psi : [[A]] \to [[A]]_n$  of A-rings such that  $\psi(t) = x$ .
- (b)  $\{i \in \mathbb{N} \mid \gamma \in s(x^i)\}\$ is a finite set for any  $\gamma \in \mathbb{Z}^n$ , and  $\bigcup_{i \in \mathbb{N}} s(x^i)$  is a well-ordered subset of  $\mathbb{Z}^n$ .
- (c)  $x \in \mathfrak{m}$ .
  - (ii) If  $x \in \mathfrak{m}$  and  $x \neq 0$ , then the mapping  $\psi$  in (a) is injective.

PROOF. (i) In general, the following claim is proved:

CLAIM 1. Put  $\Gamma = \mathbb{Z}^n$ . Let N be a well-ordered subset of  $\Gamma^+ = \{ \gamma \in \Gamma \mid \gamma > 0 \}$ . Then  $\{ i \in \mathbb{N} \mid \gamma \in i N \}$  is a finite set for any  $\gamma \in \Gamma$ , and  $\bigcup_{i \in \mathbb{N}} i N$  is a well-ordered subset of  $\Gamma$ .

If we put N = s(x) in Claim 1, then we can prove (c)  $\Rightarrow$  (b). The proof of (a)  $\Leftrightarrow$  (b)  $\Rightarrow$  (c) and (ii) are easy.

At the end of this section, we consider the principle of substitution and the change of variables in  $((A))^n$ , by the use of strong homomorphisms of A-rings.

LEMMA 5. Let A be an integral ring and  $n \ge 1$ . For  $u_1, \dots, u_n \in ((A))^n - \{0\}$ , we put

$$M = \begin{bmatrix} \operatorname{ord}_{[[A]]_n}(u_1) \\ \vdots \\ \operatorname{ord}_{[[A]]_n}(u_n) \end{bmatrix} \in M(n, \mathbf{Z}),$$

$$\ell(u_1, \dots, u_n) = \det \begin{bmatrix} \operatorname{ord}_{[[A]]_n}(u_1) \\ \vdots \\ \operatorname{ord}_{[[A]]_n}(u_n) \end{bmatrix} \in \mathbf{Z},$$

and take the elements  $t_1, \dots, t_n \in ((A))^n$  defined in Lemma 3. Then

- (i) the following three conditions for  $u_1, \dots, u_n \in ((A))^n$  are equivalent:
- (a) There exists a strong homomorphism  $\psi : ((A))^n \to ((A))^n$  of A-rings such that  $\psi(t_i) = u_i$  for any  $i \in \{1, \dots, n\}$ .
- (b)  $u_i$  is transcendental over  $A((u_n)) \cdots ((u_{i+1}))$  for any  $i \in \{1, \dots, n\}$ , and  $A((u_n)) \cdots ((u_1))$  is a subring of  $((A))^n$ .
- (c)  $u_1, \dots, u_n \in ((A))^{n \times}$  and M is an upper triangular matrix such that all the diagonal elements are positive.
  - (ii) Suppose that  $u_1, \dots, u_n$  satisfy the condition (a). Then

$$\psi$$
 is surjective  $\iff \ell(u_1, \dots, u_n) = 1$ .

Therefore the following three conditions for  $u_1, \dots, u_n \in ((A))^n$  are also equivalent:

- (a<sub>0</sub>) There exists a strong isomorphism  $\psi : ((A))^n \to ((A))^n$  of A-rings such that  $\psi(t_i) = u_i$  for any  $i \in \{1, \dots, n\}$ .
- (b<sub>0</sub>)  $u_i$  is transcendental over  $A((u_n)) \cdots ((u_{i+1}))$  for any  $i \in \{1, \dots, n\}$ , and  $A((u_n)) \cdots ((u_1)) = ((A))^n$ .
- (c<sub>0</sub>)  $u_1, \dots, u_n \in ((A))^{n \times}$  and M is an upper triangular matrix such that all the diagonal elements are 1.

PROOF. (i) Using Claim 1 described in the proof of Lemma 4, we can prove (c)  $\Rightarrow$  (a). The proof of (a)  $\Leftrightarrow$  (b)  $\Rightarrow$  (c) and (ii) are easy.

Suppose that  $u_1, \dots, u_n \in ((A))^n$  satisfy the condition (a) in Lemma 5, (i). Then we write

$$((A))_u^n = A((u_n)) \cdots ((u_1)) = \text{Im } \psi.$$

Note that  $((A))^n = ((A))_t^n$ .

**2**. Here we shall define an  $((A))^n$ -module  $\Omega^n A$  for a ring A and  $n \ge 1$ , and study the fundamental properties of this module.

For a ring A and an A-ring B, let  $\operatorname{Der}_A B$  denote the set of A-derivations of B and  $\Omega_{B/A}$  the B-module of regular differential forms of B over A. Moreover for  $n \geq 1$ , we put  $\Omega_{B/A}^n = \Omega_{B/A} \wedge \cdots \wedge \Omega_{B/A}$  (nth exterior power as B-modules). For a ring A and  $n \geq 1$ , we define a functor  $\Omega_A^n : (A\operatorname{-Rings}) \to (A\operatorname{-Mod}.)$  by putting  $\Omega_A^n B = \Omega_{B/A}^n$  for an A-ring B. We also write  $\Omega_A = \Omega_A^1$ . In the following, we consider the case that  $B = ((A))^n$ .

LEMMA 6. Suppose that A is a ring and  $n \ge 1$ .

(i) For any  $i \in \{1, \dots, n\}$ , there exists  $\partial_i \in \text{Der}_A((A))^n$  such that

$$(\partial_i x)(\gamma) = (\gamma_i + 1)x(\gamma + e_i) \quad (x \in ((A))^n, \ \gamma = (\gamma_1, \dots, \gamma_n) \in \mathbf{Z}^n).$$

Here  $e_i$  is the ith unit vector:  $e_i = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{Z}^n$ .

(ii)  $\partial_1, \dots, \partial_n \in \operatorname{Der}_A((A))^n$  are linearly independent over  $((A))^n$ . Moreover  $\operatorname{ord}_{[[A]]_n}(\partial_i x) \geq \operatorname{ord}_{[[A]]_n}(x) - e_i$  for any  $x \in ((A))^n$ . Thus  $\partial_i$  is continuous. If we put

$$\text{st.Der}_{A}((A))^{n} = \text{st.Hom}_{A}(((A))^{n}, ((A))^{n}) \cap \text{Der}_{A}((A))^{n},$$

then

$$st.Der_A((A))^n = \bigoplus_{i=1}^n ((A))^n \partial_i.$$

PROOF. (i) Noting that  $\partial_i = \frac{\partial}{\partial t_i}$ , we have  $\partial_i \in \operatorname{Der}_A((A))^n$   $(1 \le i \le n)$ .

(ii) The linear independence of  $\partial_1, \dots, \partial_n$  is easily proved from  $\partial_i t_j = \delta_{ij}$ . Since  $\partial_i (\sum_{\alpha \in I} a_\alpha t_\alpha) = \sum_{\alpha \in I} a_\alpha \partial_i (t_\alpha)$  holds for any well-ordered subset I of  $\mathbb{Z}^n$  and  $(a_\alpha)_{\alpha \in I} \in A^I$ , we obtain  $\partial_i \in \text{st.Der}_A((A))^n$ .

Since the  $((A))^n$ -module  $\Omega_{((A))^n/A}$  has the universal mapping property for A-derivations, there exists a homomorphism  $\varphi_i:\Omega_{((A))^n/A}\to((A))^n$  of  $((A))^n$ -modules such that  $\varphi_i\circ d_{((A))^n/A}=\partial_i$  for any  $i\in\{1,\cdots,n\}$ . Here we define a homomorphism

$$\begin{array}{cccc} \Omega_{(\!(A)\!)^n/A} & \longrightarrow & (\!(A)\!)^n \times \cdots \times (\!(A)\!)^n \\ \varphi : & & & & & & & \\ \omega & & \longmapsto & (\varphi_1(\omega), \cdots, \varphi_n(\omega)) \end{array}$$

of  $((A))^n$ -modules. In what follows we write  $d = d_{((A))^n/A}$ .

LEMMA 7. Let A be a ring and  $n \ge 1$ . Take the elements  $t_1, \dots, t_n$  defined in Lemma 3. Then  $\omega - \sum_{i=1}^n \varphi_i(\omega) dt_i \in \text{Ker } \varphi \text{ for any } \omega \in \Omega_{(\!(A)\!)^n/A}$ . Thus

$$\Omega_{((A))^n/A} = \operatorname{Ker} \varphi \oplus ((A))^n dt_1 \oplus \cdots \oplus ((A))^n dt_n.$$

EXAMPLE 2. For any  $f \in ((A))^n$ , we have

$$\varphi(df) = \left(\frac{\partial f}{\partial t_1}, \cdots, \frac{\partial f}{\partial t_n}\right).$$

Therefore

$$df - \sum_{i=1}^{n} \frac{\partial f}{\partial t_i} dt_i \in \operatorname{Ker} \varphi$$
.

For a ring A and  $n \ge 1$ , we consider the  $((A))^n$ -module

$$\Omega^n A = \Omega_A^n ((A))^n = \Omega_{((A))^n/A}^n.$$

For  $(\omega_1, \dots, \omega_n) \in \Omega_{(\!(A)\!)^n/A} \times \dots \times \Omega_{(\!(A)\!)^n/A}$ , we put

$$[\varphi_{j}(\omega_{i})] = \begin{bmatrix} \varphi_{1}(\omega_{1}) & \cdots & \varphi_{n}(\omega_{1}) \\ \vdots & & \vdots \\ \varphi_{1}(\omega_{n}) & \cdots & \varphi_{n}(\omega_{n}) \end{bmatrix} = \begin{bmatrix} \varphi(\omega_{1}) \\ \vdots \\ \varphi(\omega_{n}) \end{bmatrix} \in M(n, ((A))^{n})$$

and define the mapping

$$\begin{array}{cccc} \Omega_{(\!(A)\!)^n/A} \times \cdots \times \Omega_{(\!(A)\!)^n/A} & \longrightarrow & (\!(A)\!)^n \\ \varPhi : & & & & & & & & & & \\ (\omega_1, \cdots, \omega_n) & & \longmapsto & \det[\varphi_i(\omega_i)] \,. \end{array}$$

Since  $\Phi$  is  $((A))^n$ -multilinear and alternating, there exists a homomorphism

$$\varphi_A^n:\Omega^nA\longrightarrow ((A))^n$$

of  $(\!(A)\!)^n$ -modules such that  $\Phi = \varphi_A^n \circ c$ . Here  $c: \Omega_{(\!(A)\!)^n/A} \times \cdots \times \Omega_{(\!(A)\!)^n/A} \to \Omega^n A$  is the canonical mapping. Thus  $\varphi_A^n(\omega_1 \wedge \cdots \wedge \omega_n) = \Phi(\omega_1, \cdots, \omega_n)$ .

LEMMA 8. Let A be a ring and  $n \ge 1$ . Take the elements  $t_1, \dots, t_n$  defined in Lemma 3. Then  $\omega - \varphi_A^n(\omega)dt_1 \wedge \dots \wedge dt_n \in \text{Ker } \varphi_A^n$  for any  $\omega \in \Omega^n A$ . Thus

$$\Omega^n A = \Omega_A^n((A))^n = \Omega_{((A))^n/A}^n = \operatorname{Ker} \varphi_A^n \oplus ((A))^n dt_1 \wedge \cdots \wedge dt_n.$$

EXAMPLE 3. (i) For any  $f_1, \dots, f_n \in ((A))^n$ , we have

$$\varphi_A^n(df_1 \wedge \cdots \wedge df_n) = \det J(f/t)$$
.

Therefore

$$df_1 \wedge \cdots \wedge df_n - \det J(f/t)dt_1 \wedge \cdots \wedge dt_n \in \operatorname{Ker} \varphi_A^n$$

Here

$$J(f/t) = \begin{bmatrix} \frac{\partial f_1}{\partial t_1} & \cdots & \frac{\partial f_1}{\partial t_n} \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial t_1} & \cdots & \frac{\partial f_n}{\partial t_n} \end{bmatrix} \in M(n, ((A))^n)$$

is the Jacobian matrix.

(ii) For  $(m_1, \dots, m_n) \in \mathbf{Z}^n$ , we put  $\omega = t_1^{m_1} \dots t_n^{m_n} dt_1 \wedge \dots \wedge dt_n \in \Omega^n A$ . If there exists  $j \in \{1, \dots, n\}$  such that  $m_j + 1 \in A^{\times}$ , then there exist monomials  $f_1, \dots, f_n \in ((A))^n$  such that

$$\omega - df_1 \wedge \cdots \wedge df_n \in \operatorname{Ker} \varphi_A^n$$
.

For a ring A and  $n \ge 1$ , we introduce the mappings

$$\operatorname{ord}_{\Omega^n A} = \operatorname{ord}_{[A]_n} \circ \varphi_A^n : \Omega^n A \longrightarrow \mathbf{Z}^n \cup \{+\infty\}$$

and

Then  $\operatorname{ord}_{\Omega^n A}(\omega)$  is called the order of  $\omega \in \Omega^n A$  and  $\operatorname{res}_A^n(\omega)$  is called the residue of  $\omega \in \Omega^n A$ .

LEMMA 9. Let A be a ring and  $n \ge 1$ . Then

- (i) the mapping  $\operatorname{res}_A^n:\Omega^nA\to A$  is a homomorphism of A-modules.
- (ii) For any  $\omega \in \Omega^n A$ , we have

$$\operatorname{ord}_{\Omega^n A}(\omega) = +\infty \iff \omega \in \operatorname{Ker} \varphi_A^n,$$
$$\operatorname{ord}_{\Omega^n A}(\omega) \geqq (-1, \cdots, -1, 0) \implies \operatorname{res}_A^n(\omega) = 0.$$

(iii) For any  $f_1, \dots, f_n \in ((A))^n$ , we have

$$\operatorname{res}_A^n(df_1 \wedge \cdots \wedge df_n) = 0$$
.

PROOF. The statements (i) and (ii) are obvious.

(iii) Note first that (iii) is proved in the case that  $f_1, \dots, f_n$  are all monomials. Since the mapping:

is a strong homomorphism of A-modules for any fixed  $f_2, \dots, f_n \in ((A))^n$ , (iii) is valid for  $f_1 \in ((A))^n$ . Repeating this process, we obtain  $\operatorname{res}_A^n(df_1 \wedge \dots \wedge df_n) = 0$  for any  $f_1, \dots, f_n \in ((A))^n$ .

LEMMA 10. Let A be an integral ring and  $n \ge 1$ . For  $u_1, \dots, u_n \in ((A))^{n \times}$  and  $t_1, \dots, t_n$  defined in Lemma 3, we put

$$J^{L}(u/t) = \begin{bmatrix} \frac{t_1}{u_1} \frac{\partial u_1}{\partial t_1} & \cdots & \frac{t_n}{u_1} \frac{\partial u_1}{\partial t_n} \\ \vdots & & \vdots \\ \frac{t_1}{u_n} \frac{\partial u_n}{\partial t_1} & \cdots & \frac{t_n}{u_n} \frac{\partial u_n}{\partial t_n} \end{bmatrix} \in M(n, ((A))^n).$$

Then

(i)  $J^{L}(u/t) \in M(n, [[A]]_n)$  and

$$J^{L}(u/t)(0, \dots, 0) = ME_{n,A} \in M(n, A)$$
.

Here M is the matrix defined in Lemma 5 and  $E_{n,A}$  is the unit matrix in M(n, A).

(ii)  $\det J^L(u/t) \in [[A]]_n$  and

$$\det J^L(u/t)(0,\cdots,0) = \ell(u_1,\cdots,u_n) \cdot 1_A.$$

Here  $\ell(u_1, \dots, u_n)$  is the integer defined in Lemma 5 and  $1_A$  is the unity of A.

(iii) For any  $x \in ((A))^n$ , we obtain

$$\operatorname{res}_{A}^{n} \left( x \frac{du_{1}}{u_{1}} \wedge \cdots \wedge \frac{du_{n}}{u_{n}} \right) = (x \det J^{L}(u/t))(0, \cdots, 0).$$

PROOF. (i) Since  $\operatorname{ord}_{[[A]]_n}(\partial_j x) \geq \operatorname{ord}_{[[A]]_n}(x) - \operatorname{ord}_{[[A]]_n}(t_j)$  for any  $x \in ((A))^n$ , we have  $J^L(u/t) \in M(n, [[A]]_n)$  by putting  $x = u_i$   $(1 \leq i \leq n)$ . If we put  $\gamma = \operatorname{ord}_{[[A]]_n}(x) - e_j$ , then  $(\frac{t_j}{x} \frac{\partial x}{\partial t_j})(0, \dots, 0) = \frac{(\partial_j x)(\gamma)}{x(\gamma + e_j)} = (\gamma_j + 1) \cdot 1_A = (\operatorname{ord}_{[[A]]_n}(x))_j \cdot 1_A$ . Therefore  $J^L(u/t)(0, \dots, 0) = ME_{n,A}$ .

- (ii) This statement is proved easily from (i).
- (iii) By Example 3, (i), we get  $x \frac{du_1}{u_1} \wedge \cdots \wedge \frac{du_n}{u_n} x \det J^L(u/t) \frac{dt_1}{t_1} \wedge \cdots \wedge \frac{dt_n}{t_n} \in \operatorname{Ker} \varphi_A^n$ . Thus  $\operatorname{res}_A^n(x \frac{du_1}{u_1} \wedge \cdots \wedge \frac{du_n}{u_n}) = \operatorname{res}_A^n(x \det J^L(u/t) \frac{dt_1}{t_1} \wedge \cdots \wedge \frac{dt_n}{t_n}) = (x \det J^L(u/t))(0, \dots, 0)$ .

Next we shall study the properties with respect to the change of variables.

LEMMA 11. Let A be an integral ring and  $n \ge 1$ . Suppose that  $u_1, \dots, u_n \in ((A))^n$  satisfy the condition (a) in Lemma 5, (i).

(i) For any  $i \in \{1, \dots, n\}$ , there exists a unique  $\frac{\partial}{\partial u_i} \in \text{st.Der}_A((A))_u^n$  such that

$$\frac{\partial}{\partial u_i}(u_j^m) = mu_j^{m-1}\delta_{ij} \quad (m \in \mathbf{Z}, \ j = 1, 2, \dots, n).$$

(ii) 
$$\frac{\partial}{\partial u_1}, \dots, \frac{\partial}{\partial u_n}$$
 are linearly independent over  $((A))_u^n$  and

$$st.Der_A((A))_u^n = \bigoplus_{i=1}^n ((A))_u^n \frac{\partial}{\partial u_i}.$$

The proof is similar to that of Lemma 6.

Let A be an integral ring and  $n \ge 1$ . Suppose that  $u_1, \dots, u_n \in ((A))^n$  satisfy the condition (a) in Lemma 5, (i). Then there exists a homomorphism  $\varphi_i^u : \Omega_{((A))_u^n/A} \to ((A))_u^n$  of  $((A))_u^n$ -modules such that  $\varphi_i^u \circ d = \frac{\partial}{\partial u_i}$  for any  $i \in \{1, \dots, n\}$ . Here we define a homomorphism

$$\varphi^u = (\varphi_1^u, \dots, \varphi_n^u) : \Omega_{((A))_n^n/A} \longrightarrow ((A))_n^n \times \dots \times ((A))_n^n$$

of  $((A))_u^n$ -modules. Note that  $\varphi_i = \varphi_i^t$   $(1 \le i \le n)$  and  $\varphi = \varphi^t$ .

Next we put

$$\Omega_u^n A = \Omega_A^n ((A))_u^n = \Omega_{((A))_u^n/A}^n$$
.

Then we can define an alternating  $((A))_{u}^{n}$ -multilinear mapping

$$\Phi^u: \Omega_{(\!(A)\!)_u^n/A} \times \cdots \times \Omega_{(\!(A)\!)_u^n/A} \longrightarrow (\!(A)\!)_u^n$$

and a homomorphism

$$\varphi_{u}^{n}:\Omega_{u}^{n}A\longrightarrow ((A))_{u}^{n}$$

of  $((A))_u^n$ -modules by putting

$$\Phi^{u}(\omega_1, \dots, \omega_n) = \det[\varphi_i^{u}(\omega_i)],$$

$$\varphi_u^n(\omega_1 \wedge \cdots \wedge \omega_n) = \Phi^u(\omega_1, \cdots, \omega_n)$$

for  $\omega_1, \dots, \omega_n \in \Omega_{(\!(A)\!)^n_u/A}$ . Note that  $\Omega^n A = \Omega^n_t A$ ,  $\Phi = \Phi^t$  and  $\varphi^n_A = \varphi^n_t$ . Moreover we introduce the mappings

$$\operatorname{ord}_{\Omega_u^n A} = \operatorname{ord}_{[[A]]_n^u} \circ \varphi_u^n : \Omega_u^n A \longrightarrow \mathbf{Z}^n \cup \{+\infty\}$$

and

$$\begin{array}{cccc} \Omega_u^n A & \longrightarrow & A \\ \operatorname{res}_u^n : & \Psi & & \Psi \\ & \omega & \longmapsto & \varphi_u^n(\omega)(-1, \cdots, -1) \,. \end{array}$$

Note that  $res_A^n = res_t^n$ .

LEMMA 12. Suppose that A is an integral ring,  $n \ge 1$  and  $u_1, \dots, u_n \in ((A))^n$  satisfy the condition (a) in Lemma 5, (i). Let  $i : ((A))_u^n \hookrightarrow ((A))^n$  denote the natural inclusion mapping. Then

(i) for any  $\omega_0, \omega_1, \dots, \omega_n \in \Omega_{(\!(A)\!)_n^n/A}$  and  $\omega \in \Omega_u^n A$ , we obtain

$$(\varphi^{t} \circ \Omega_{A}i)(\omega_{0}) = \varphi^{u}(\omega_{0})J(u/t),$$

$$(\Phi^{t} \circ (\Omega_{A}i \times \cdots \times \Omega_{A}i))(\omega_{1}, \cdots, \omega_{n}) = \Phi^{u}(\omega_{1}, \cdots, \omega_{n}) \det J(u/t),$$

$$(\varphi^{n}_{t} \circ \Omega^{n}_{A}i)(\omega) = \varphi^{n}_{u}(\omega) \det J(u/t).$$

(ii) For any  $\omega \in \Omega_u^n A$ , we have

$$(\operatorname{ord}_{\Omega_{u}^{n}A} \circ \Omega_{A}^{n}i)(\omega) = \operatorname{ord}_{\Omega_{u}^{n}A}(\omega)M + \operatorname{ord}_{[A]_{n}}(\det J(u/t)).$$

Here M is the matrix defined in Lemma 5.

(iii) For any  $\omega \in \Omega_u^n A$ , we have

$$(\operatorname{res}_{t}^{n} \circ \Omega_{A}^{n} i)(\omega) = \ell(u_{1}, \dots, u_{n}) \operatorname{res}_{u}^{n}(\omega).$$

Here  $\ell(u_1, \dots, u_n)$  is the integer defined in Lemma 5.

PROOF. The statements (i) and (ii) are easy to verify.

(iii) For  $(m_1, \dots, m_n) \in \mathbb{Z}^n$ , we put  $\omega = u_1^{m_1} \dots u_n^{m_n} du_1 \wedge \dots \wedge du_n \in \Omega_u^n A$ . By Example 3, (i) and Lemma 10, (iii), we have

$$(m_1, \dots, m_n) = (-1, \dots, -1) \implies (\operatorname{res}_t^n \circ \Omega_A^n i)(\omega) = \ell(u_1, \dots, u_n) \cdot 1_A.$$

Moreover, by Example 3, (ii) and the fact that  $res^n$  is a natural transformation, we obtain

$$(m_1, \cdots, m_n) \neq (-1, \cdots, -1) \implies (\operatorname{res}_t^n \circ \Omega_A^n i)(\omega) = 0.$$

Next we put  $\omega = f du_1 \wedge \cdots \wedge du_n \in \Omega_u^n A$  for  $f \in ((A))_u^n$ . Then both the mappings:  $f \mapsto (\operatorname{res}_t^n \circ \Omega_A^n i)(\omega)$  and  $f \mapsto \ell(u_1, \cdots, u_n)\operatorname{res}_u^n(\omega)$  are strong homomorphisms of A-modules. Therefore  $(\operatorname{res}_t^n \circ \Omega_A^n i)(\omega) = \ell(u_1, \cdots, u_n)\operatorname{res}_u^n(\omega)$ . Since  $\Omega_u^n A = \operatorname{Ker} \varphi_u^n \oplus ((A))_u^n du_1 \wedge \cdots \wedge du_n$ , we get  $(\operatorname{res}_t^n \circ \Omega_A^n i)(\omega) = \ell(u_1, \cdots, u_n)\operatorname{res}_u^n(\omega)$  for any  $\omega \in \Omega_u^n A$ .  $\square$ 

COROLLARY. Suppose that  $u_1, \dots, u_n$  satisfy the condition (a<sub>0</sub>) in Lemma 5, (ii). Then

(i) for any  $\omega_0, \omega_1, \dots, \omega_n \in \Omega_{(\!(A)\!)^n/A}$  and  $\omega \in \Omega^n A$ , we obtain

$$\varphi^{t}(\omega_{0}) = \varphi^{u}(\omega_{0})J(u/t),$$

$$\Phi^{t}(\omega_{1}, \dots, \omega_{n}) = \Phi^{u}(\omega_{1}, \dots, \omega_{n}) \det J(u/t),$$

$$\varphi^{n}_{t}(\omega) = \varphi^{n}_{u}(\omega) \det J(u/t).$$

(ii) For any  $\omega \in \Omega^n A$ , we have

$$\operatorname{ord}_{\Omega_{\cdot}^{n}A}(\omega) = (\operatorname{ord}_{\Omega_{\cdot}^{n}A}(\omega) + (1, \dots, 1))M - (1, \dots, 1).$$

(iii) For any  $\omega \in \Omega^n A$ , we have

$$\operatorname{res}_{t}^{n}(\omega) = \operatorname{res}_{u}^{n}(\omega)$$
.

**3**. Here we shall define the Milnor K-group  $M_nB$  for a ring B and  $n \ge 0$ , and study the fundamental properties of this group.

For a ring B and  $n \ge 0$ , we define the nth Milnor K-group  $M_n B$  of B as follows:

• If n = 0, then we put

$$M_0B=\mathbf{Z}$$
.

• If  $n \ge 1$ , then we put

$$M_n B = B^{\times} \otimes \cdots \otimes B^{\times}/I_B$$
,

where  $I_B$  is the subgroup of the *n*th tensor product  $B^{\times} \otimes \cdots \otimes B^{\times}$  generated by the sets

$$\{a_1 \otimes \cdots \otimes a_i \otimes \cdots \otimes a_j \otimes \cdots \otimes a_n \mid a_i \in B^{\times}, a_i + a_j = 1 \text{ for some } i \neq j\}$$

and

$$\{a_1 \otimes \cdots \otimes a_i \otimes \cdots \otimes a_i \otimes \cdots \otimes a_n \mid a_i \in B^{\times}, a_i + a_i = 0 \text{ for some } i \neq j\}.$$

Then we obtain a functor  $M_n$ : (Rings)  $\longrightarrow$  (C.Groups) for any  $n \ge 0$ . For an inclusion mapping  $i: A \hookrightarrow B$  of rings, we also write  $M_{nA|B} = M_n i$ .

REMARK. (i) The group operation in  $M_n B$  will be written multiplicatively for  $n \ge 1$ , although  $M_0 B = \mathbf{Z}$ . Especially if n = 1, then  $I_B = 1$ . Therefore  $M_1 B = B^{\times}$ .

(ii)  $M_n B \cong K_n^M B$  for a field B. See [2, Chapter IX, (1)].

LEMMA 13. Suppose that B is a ring and  $n \ge 1$ . For  $a_1, \dots, a_n \in B^{\times}$ , we put

$${a_1, \cdots, a_n} = a_1 \otimes \cdots \otimes a_n \mod I_B \in M_n B$$
.

Then

- (M-1)  $\{a_1, \dots, a_n\}$   $(a_1, \dots, a_n \in B^{\times})$  generate  $M_n B$ ,
- (M-2)  $\{a_1, \dots, a_{i-1}, bc, a_{i+1}, \dots, a_n\}$ =  $\{a_1, \dots, a_{i-1}, b, a_{i+1}, \dots, a_n\}\{a_1, \dots, a_{i-1}, c, a_{i+1}, \dots, a_n\}$ ,

(M-3) if 
$$a_i + a_j = 0$$
 or 1 for some  $i \neq j$ , then  $\{a_1, \dots, a_n\} = 1$ .

COROLLARY. 
$$\{a_{\sigma(1)}, \dots, a_{\sigma(n)}\} = \{a_1, \dots, a_n\}^{\operatorname{sgn}(\sigma)}$$
 for any  $\sigma \in S_n$ .

Let B be an integral ring, t an indeterminate over B and  $n \ge 1$ . Then there exists a unique homomorphism  $\psi_t: M_{n-1}B((t)) \to M_nB((t))$  of groups such that  $\psi_t(\{u_2, \cdots, u_n\}) = \{t, u_2, \cdots, u_n\}$  for any  $u_2, \cdots, u_n \in B((t))^{\times}$ . For  $t \ge 1$ , let  $U_{M_nB((t))}^{(r)}$  denote the subgroup of  $M_nB((t))$  generated by  $\{u_1, \cdots, u_n\}$ , where  $u_1 \in 1 + t^rB[[t]], u_2, \cdots, u_n \in B((t))^{\times}$ . Then we have  $\psi_t(U_{M_{n-1}B((t))}^{(r)}) \subset U_{M_nB((t))}^{(r)}$ .

LEMMA 14. Suppose that B is an integral ring, t is an indeterminate over B and  $n \ge 1$ . Let  $\varphi_0 : B[[t]] \to B$  denote the ring homomorphism defined by  $\varphi_0(f) = f(0)$  for any  $f \in B[[t]]$ . Then

(i) there exists a unique homomorphism  $\partial_1:M_nB((t))\to M_nB$  of groups, which satisfies

$$\partial_1(\{u_1,\cdots,u_n\}) = \{\varphi_0(u_1t^{-\operatorname{ord}_{B[[t]]}(u_1)}),\cdots,\varphi_0(u_nt^{-\operatorname{ord}_{B[[t]]}(u_n)})\}$$

for any  $u_1, \dots, u_n \in B((t))^{\times}$ . Moreover we obtain  $\partial_1 \circ M_{nB|B((t))} = id_{M_nB}$ . Thus  $M_nB((t)) = Im M_{nB|B((t))} \times Ker \partial_1$ .

(ii) There exists a unique homomorphism  $\partial_2: M_n B((t)) \to M_{n-1} B$  of groups, which satisfies

$$\partial_2(\{t, u_2, \cdots, u_n\}) = \{\varphi_0(u_2), \cdots, \varphi_0(u_n)\}\$$

for any  $u_2, \dots, u_n \in B[[t]]^{\times}$  and  $\operatorname{Im} M_{nB[[t]]|B((t))} \subset \operatorname{Ker} \partial_2$ . Moreover we obtain  $\partial_2 \circ \psi_t \circ M_{n-1B|B((t))} = id_{M_{n-1}B}$ . Thus  $M_nB((t)) = \operatorname{Im}(\psi_t \circ M_{n-1B|B((t))}) \times \operatorname{Ker} \partial_2$ .

(iii) Ker 
$$\partial_1 = \text{Im}(\psi_t \circ M_{n-1B|B((t))}) \times U_{M_nB((t))}^{(1)}$$
 and Ker  $\partial_2 = \text{Im } M_{nB|B((t))} \times U_{M_nB((t))}^{(1)}$ .

The proof is similar to the case that B is a field. See also [2, Chapter IX, (2.1), (2.2), (2.3)].

REMARK. In what follows, we shall regard  $M_n B$  and  $M_{n-1} B$  as subgroups of  $M_n B((t))$  by the injections  $M_{nB|B((t))}$  and  $\psi_t \circ M_{n-1B|B((t))}$ , respectively:

$$M_{nB|B((t))}: M_nB \hookrightarrow M_nB((t))$$
,

$$\psi_t \circ M_{n-1B|B((t))} : M_{n-1}B \hookrightarrow M_nB((t))$$
.

Moreover we write

$$U_{M_n B((t))}^{(0)} = \text{Ker } \partial_2 = M_n B \times U_{M_n B((t))}^{(1)}$$

Then we have

$$M_n B((t)) = M_{n-1} B \times M_n B \times U^{(1)}_{M_n B((t))} = M_{n-1} B \times U^{(0)}_{M_n B((t))}$$

LEMMA 15. Suppose that A is an integral ring and  $n \ge 1$ . Then

(i) 
$$M_n((A))^n = \{t_1, \dots, t_n\}^{\mathbb{Z}} \times \prod_{i=1}^n U_{M_{n-i+1}((A))^{n-i+1}}^{(0)}$$

$$= \prod_{i=1}^{n} M_{n-i+1}((A))^{n-i} \times \{t_1, \dots, t_n\}^{\mathbf{Z}} \times \prod_{i=1}^{n} U_{M_{n-i+1}((A))^{n-i+1}}^{(1)},$$

where  $((A))^{n-i+1} = A((t_n)) \cdots ((t_i)) \ (1 \le i \le n)$ .

(ii) There exists a unique homomorphism  $\ell: M_n((A))^n \to \mathbb{Z}$  of groups, which satisfies

$$\ell(\{u_1,\cdots,u_n\})=\ell(u_1,\cdots,u_n)$$

for any  $u_1, \dots, u_n \in ((A))^{n \times}$ . Here  $\ell(u_1, \dots, u_n)$  is the integer defined in Lemma 5. Moreover we obtain  $M_n((A))^n = \{t_1, \dots, t_n\}^{\mathbf{Z}} \times \text{Ker } \ell$  and

$$\operatorname{Ker} \ell = \prod_{i=1}^{n} U_{M_{n-i+1}((A))^{n-i+1}}^{(0)}.$$

Therefore  $\ell = \partial_2^1 \circ \cdots \circ \partial_2^n : M_n((A))^n \to \mathbb{Z}$  for  $\partial_2^i : M_i((A))^i \to M_{i-1}((A))^{i-1}$   $(1 \leq i \leq n)$ .

PROOF. We can prove (i) easily from Lemma 14 and  $U_{M_{n-i+1}((A))^{n-i+1}}^{(0)}=M_{n-i+1}((A))^{n-i}\times U_{M_{n-i+1}((A))^{n-i+1}}^{(1)}.$ 

(ii) Since the mapping  $\ell: ((A))^{n\times} \times \cdots \times ((A))^{n\times} \to \mathbf{Z}$  is multilinear, we have a homomorphism  $\ell: ((A))^{n\times} \otimes \cdots \otimes ((A))^{n\times} \to \mathbf{Z}$  of groups. Then, by  $I_{((A))^n} \subset \operatorname{Ker} \ell$ , we obtain a homomorphism  $\ell: M_n((A))^n \to \mathbf{Z}$  of groups. If we introduce the mapping  $\psi: \mathbf{Z} \to M_n((A))^n$  defined by  $\psi(m) = \{t_1, \cdots, t_n\}^m$  for any  $m \in \mathbf{Z}$ , then  $\ell \circ \psi = id_{\mathbf{Z}}$ . Thus  $M_n((A))^n = \{t_1, \cdots, t_n\}^{\mathbf{Z}} \times \operatorname{Ker} \ell$ . Moreover, by the definition of  $U_{M_{n-i+1}((A))^{n-i+1}}^{(0)}$  and (i), we have  $\operatorname{Ker} \ell = \prod_{i=1}^n U_{M_{n-i+1}((A))^{n-i+1}}^{(0)}$ . This implies  $\ell = \partial_2^1 \circ \cdots \circ \partial_2^n$ .

For an integral ring A and  $n \ge 1$ , there exists a linear topology on  $M_n((A))^n$  with fundamental system of neighborhoods  $\Sigma = \{U_{M_n((A))^n}^{(r)} \mid r \ge 1\}$  of 0. This topology is said to be the valuation topology on  $M_n((A))^n$ . Then  $M_n((A))^n$  is a topological group with respect to the valuation topology.

**4**. Here we shall define a group pairing  $\operatorname{Res}_{\infty}^{((A))^n}: M_n((A))^n \times W_{\infty}((A))^n \to W_{\infty}A$  for an integral ring A and  $n \ge 1$ , and study the fundamental properties of this pairing.

In the following, we consider the ring of Witt vectors with respect to the prime number p. For a ring A, let  $W_{\infty}A$  denote the ring of Witt vectors of infinite length over A. Then the next results are easily obtained from Lemma 3, (ii).

LEMMA 16. Suppose that A is a ring and  $n \ge 1$ . Then

$$W_{\infty}((A))^n = W_{\infty}D \oplus W_{\infty}[[A]]_n = W_{\infty}D \oplus W_{\infty}A \oplus W_{\infty}\mathfrak{m}$$

$$W_{\infty}D = \bigoplus_{i=1}^{n} W_{\infty}(t_{i}^{-1}A((t_{n}))\cdots((t_{i+1}))[t_{i}^{-1}]).$$

Here, let

$$0^*: W_{\infty}((A))^n \longrightarrow W_{\infty}A$$

denote the projection with respect to the decomposition:  $W_{\infty}((A))^n = W_{\infty}D \oplus W_{\infty}A \oplus W_{\infty}\mathfrak{m}$ .

For an integral ring A and  $n \ge 1$ , we shall define a group pairing  $\operatorname{Res}_{\infty}^{((A))^n} : M_n((A))^n \times W_{\infty}((A))^n \to W_{\infty}A$  as follows.

First we consider the case that  $p \in A^{\times}$ . For  $u_1, \dots, u_n \in ((A))^{n \times}$  and  $b \in W_{\infty}((A))^n$ ,

$$c_i = \operatorname{res}_A^n \left( w_i(b) \frac{du_1}{u_1} \wedge \dots \wedge \frac{du_n}{u_n} \right) \in A \quad (i \ge 0)$$

and define the mapping

$$\Psi_1: \begin{array}{ccc} ((A))^{n\times} \times \cdots \times ((A))^{n\times} \times W_{\infty}((A))^n & \longrightarrow & W_{\infty}A \\ & & & & & & & & & & & & \\ (u_1, \cdots, u_n, b) & & \longmapsto & \theta_A^{-1}(c_0, c_1, \cdots) \,. \end{array}$$

Here  $w_i$   $(i \ge 0)$  are the Witt polynomials and

$$\begin{array}{cccc}
W_{\infty}A & \longrightarrow & A^{\mathbf{N}} \\
\theta_A : & \psi & & \psi \\
& a & \longmapsto & (w_0(a), w_1(a), \cdots).
\end{array}$$

Since  $\Psi_1$  is multilinear with respect to  $u_1, \dots, u_n \in ((A))^{n \times}$  for any fixed  $b \in W_{\infty}((A))^n$ , we obtain a mapping

$$\Psi_2: ((A))^{n \times} \otimes \cdots \otimes ((A))^{n \times} \times W_{\infty}((A))^n \longrightarrow W_{\infty}A$$

by putting  $\Psi_2(u_1 \otimes \cdots \otimes u_n, b) = \Psi_1(u_1, \cdots, u_n, b)$ . Since

$$\Psi_2(I_{((A))^n} \times W_{\infty}((A))^n) = 0$$

we can define a mapping

$$\operatorname{Res}_{\infty}^{((A))^n}: M_n((A))^n \times W_{\infty}((A))^n \longrightarrow W_{\infty}A$$

by  $\operatorname{Res}_{\infty}^{((A))^n}(\{u_1,\cdots,u_n\},b)=\Psi_1(u_1,\cdots,u_n,b)$ . Therefore we have

$$w_i(\operatorname{Res}_{\infty}^{((A))^n}(\{u_1,\dots,u_n\},b)) = \operatorname{res}_A^n(w_i(b)\frac{du_1}{u_1} \wedge \dots \wedge \frac{du_n}{u_n}) \in A \quad (i \geq 0).$$

LEMMA 17. Let A be an integral ring and  $n \ge 1$ . Assume that  $p \in A^{\times}$ .

- (i) For any  $\alpha, \alpha' \in M_n((A))^n$ ,  $b, b' \in W_{\infty}((A))^n$ ,  $c \in W_{\infty}A$ , and for any ring homomorphism  $\varphi: A \to B$ , we obtain
- (R-1)  $\operatorname{Res}_{\infty}^{((A))^{n}}(\alpha \alpha', b) = \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha, b) + \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha', b)$ (R-2)  $\operatorname{Res}_{\infty}^{((A))^{n}}(\alpha, b + b') = \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha, b) + \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha, b')$
- (R-3)  $\operatorname{Res}_{\infty}^{((A))^n}(\alpha, cb) = c \operatorname{Res}_{\infty}^{((A))^n}(\alpha, b)$
- (R-4)  $\operatorname{Res}_{\infty}^{((A))^n}(\alpha, Vb) = V \operatorname{Res}_{\infty}^{((A))^n}(\alpha, b)$
- (R-5)  $\operatorname{Res}_{\infty}^{((A))^n}: M_n((A))^n \times W_{\infty}((A))^n \longrightarrow W_{\infty}A$ is continuous with respect to the valuation topology on  $M_n((A))^n$
- $(R-6) W_{\infty}\varphi(\operatorname{Res}_{\infty}^{((A))^n}(\alpha,b)) = \operatorname{Res}_{\infty}^{((B))^n}(M_n((\varphi))^n(\alpha), W_{\infty}((\varphi))^n(b))$
- (R-7)  $b \in W_{\infty}[[A]]_n \Longrightarrow \operatorname{Res}_{\infty}^{((A))^n}(\alpha, b) = \ell(\alpha) \ 0^*(b).$

- (ii) For any  $u_1, \dots, u_n \in ((A))^{n \times}$  and  $b \in W_{\infty}((A))^n$ , we have
- (R-8)  $u_i \in A^{\times} \text{ for some } i \in \{1, \dots, n\} \implies \operatorname{Res}_{\infty}^{((A))^n}(\{u_1, \dots, u_n\}, b) = 0$

(R-9) 
$$u_1 \in \mathcal{H}$$
 for some  $t \in \{1, \dots, n\}$   $\longrightarrow \operatorname{Res}_{\infty}^{\infty}$   $(\{u_1, \dots, u_n\}, u_1, \dots, u_n\}, u_1, \dots, u_n\}$   $\longrightarrow \operatorname{Res}_{\infty}^{((A))^n}(\{u_1, \dots, u_n\}, b) = \ell(\{u_1, \dots, u_n\}) \ 0^*(b).$ 

The proof is similar to the case that n = 1.

LEMMA 18. Suppose that A is an integral ring,  $n \ge 1$  and  $u_1, \dots, u_n \in ((A))^n$  satisfy the condition (a) in Lemma 5, (i). If  $p \in A^{\times}$ , then the mapping

$$\operatorname{Res}_{\infty}^{((A))_{u}^{n}}: M_{n}((A))_{u}^{n} \times W_{\infty}((A))_{u}^{n} \longrightarrow W_{\infty}A$$

is defined. Let  $i: ((A))_u^n \hookrightarrow ((A))^n$  denote the natural inclusion mapping. Then for any  $\alpha \in M_n((A))_u^n$ ,  $b \in W_\infty((A))_u^n$ , we have

(R-10)  $\operatorname{Res}_{\infty}^{((A))_{i}^{n}}((M_{n}i)(\alpha), (W_{\infty}i)(b)) = \ell(u_{1}, \dots, u_{n})\operatorname{Res}_{\infty}^{((A))_{u}^{n}}(\alpha, b).$ Here  $\ell(u_{1}, \dots, u_{n})$  is the integer defined in Lemma 5.

The proof is induced from Lemma 12, (iii) and the definition of the mapping  $\operatorname{Res}_{\infty}^{((A))_u^n}$ .

COROLLARY. Suppose that  $u_1, \dots, u_n$  satisfy the condition  $(a_0)$  in Lemma 5, (ii). Then for any  $\alpha \in M_n((A))^n$ ,  $b \in W_{\infty}((A))^n$ , we obtain

$$\operatorname{Res}_{\infty}^{(\!(A)\!)_t^n}(\alpha,b) = \operatorname{Res}_{\infty}^{(\!(A)\!)_u^n}(\alpha,b)$$
.

Next we try to omit the condition  $p \in A^{\times}$ .

LEMMA 19. Let  $i: A \hookrightarrow B$  be an extension of integral rings and  $n \geq 1$ . If  $p \in B^{\times}$ , then for any  $\alpha \in M_n((A))^n$ ,  $b \in W_{\infty}((A))^n$ , we have

$$\operatorname{Res}_{\infty}^{((B))^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) \in W_{\infty}A.$$

PROOF. It suffices to prove this lemma in the case that  $\alpha = \{u_1, \dots, u_n\}$  for  $u_1, \dots, u_n \in ((A))^{n \times}$ . Put  $\alpha = \{t_1, \dots, t_{i-1}, u_i, \dots, u_n\}$   $(1 \le i \le n+1)$ , and prove the assertion by induction on i. For i = n+1, it is easy from (R-9). Assume that the assertion holds for i+1. If  $u_i, \dots, u_n \in A((t_n)) \dots ((t_{i+1}))$ , then  $\det J^L(u/t) = 0$ , and hence  $\operatorname{Res}_{\infty}^{((B))^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) = 0$ , by Lemma 16, (iii). Therefore we may assume  $u_i \notin A((t_n)) \dots ((t_{i+1}))$  by Corollary to Lemma 13. Moreover, by Corollary 1 to Lemma 3, we can also assume (1)  $u_i \in t_j^{\mathbb{Z}}$   $(1 \le j \le i)$  or  $(2) u_i \in [[A]]_n^{\times}$ . In the case (1), we can put  $u_i = t_j^m$   $(m \in \mathbb{Z})$ . If  $1 \le j \le i-1$ , then  $\alpha = \{t_1, \dots, t_{i-1}, -1, u_{i+1}, \dots, u_n\}^m$  by Lemma 13. This implies  $\operatorname{Res}_{\infty}^{((B))^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) = 0$  by (R-8). If j = i, then

$$\alpha = \{t_1, \dots, t_i, u_{i+1}, \dots, u_n\}^m.$$

Therefore  $\operatorname{Res}_{\infty}^{(B)^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) \in W_{\infty}A$  by the assumption of induction. In the case (2), if we put  $t_i' = u_i t_i$ , then

$$\operatorname{Res}_{\infty}^{(B)^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) = \operatorname{Res}_{\infty}^{(B)^n}(\{t_1, \dots, t_{i-1}, t_i', u_{i+1}, \dots, u_n\}, b)$$

$$-\operatorname{Res}_{\infty}^{((B))^n}(\{t_1,\dots,t_{i-1},t_i,u_{i+1},\dots,u_n\},b).$$

Since  $t_1, \dots, t_{i-1}, t_i', t_{i+1}, \dots, t_n$  satisfy the condition  $(a_0)$  in Lemma 5, (ii), we have  $\operatorname{Res}_{\infty}^{((B))^n}(M_n((i))^n(\alpha), W_{\infty}((i))^n(b)) \in W_{\infty}A$  by Corollary to Lemma 18 and the assumption of induction.

LEMMA 20. Let A be an integral ring and  $n \ge 1$ .

- (i) Even if  $p \notin A^{\times}$ , the mapping  $\operatorname{Res}_{\infty}^{((A))^n}: M_n((A))^n \times W_{\infty}((A))^n \to W_{\infty}A$  is defined and satisfies all the conditions (R-1),  $\cdots$ , (R-9) and (R-10).
- (ii) If A is of characteristic p, then for any  $\alpha \in M_n((A))^n$ ,  $b \in W_\infty((A))^n$ , we obtain (R-11)  $\operatorname{Res}_\infty^{((A))^n}(\alpha, Pb) = P\operatorname{Res}_\infty^{((A))^n}(\alpha, b)$ .

PROOF. (i) By Lemma 19, the assertion (i) is valid for an integral ring A of characteristic 0, especially for a polynomial ring A in countable variables with coefficient ring  $\mathbf{Z}$ . Therefore, by the similar method to the case that n = 1, we can define  $\operatorname{Res}_{\infty}^{((A))^n}$  by the use of (R-6).

(ii) This statement follows from (R-2), (R-4) and p = PV.

LEMMA 21. Let A be an integral ring and  $n \ge 1$ . Take any  $\alpha \in M_n((A))^n$ ,  $b \in W_\infty((A))^n$ , and write  $\alpha = \prod_{i=-1}^n \alpha(i)$ ,  $b = \sum_{i=-1}^n b(i)$  following Lemma 15, (i) and Lemma 16. Here

$$\alpha(-1) \in \prod_{i=1}^{n} M_{n-i+1}((A))^{n-i}, \ \alpha(0) \in \{t_1, \dots, t_n\}^{\mathbb{Z}}, \ \alpha(i) \in U_{M_{n-i+1}((A))^{n-i+1}}^{(1)},$$

$$b(-1) \in W_{\infty}\mathfrak{m}, \ b(0) \in W_{\infty}A, \ b(i) \in W_{\infty}(t_i^{-1}(\!(A)\!)^{n-i}[t_i^{-1}])\,,$$

and  $((A))^{n-i} = A((t_n)) \cdots ((t_{i+1}))$   $(1 \le i \le n)$ . If we put  $\ell = \ell(\alpha)$ , then  $\alpha(0) = \{t_1, \dots, t_n\}^{\ell}$  and

$$\operatorname{Res}_{\infty}^{(\!(A)\!)^n}(\alpha,b) = \ell b(0) + \sum_{i=1}^n \operatorname{Res}_{\infty}^{(\!(A)\!)^n}(\alpha(i),b(i)).$$

PROOF. By (R-7), we have  $\operatorname{Res}_{\infty}^{((A))^n}(\alpha, b(-1)) = 0$  for any  $\alpha \in M_n((A))^n$ . If  $u_1 = t_1$ ,  $\dots$ ,  $u_{i-1} = t_{i-1}$ ,  $u_i$ ,  $\dots$ ,  $u_n \in ((A))^{n-i}$   $(1 \le i \le n)$ , then  $\det J^L(u/t) = 0$ . Therefore  $\operatorname{Res}_{\infty}^{((A))^n}(\alpha(-1), b) = 0$  for any  $b \in W_{\infty}((A))^n$ , by Lemma 10, (iii). By (R-7), (R-9), we obtain

$$\operatorname{Res}_{\infty}^{((A))^{n}}(\alpha(0), b(0)) = \ell b(0),$$

$$j \neq 0 \implies \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha(0), b(j)) = 0,$$

$$i \neq 0 \implies \operatorname{Res}_{\infty}^{((A))^{n}}(\alpha(i), b(0)) = 0.$$

If  $u_1 = t_1, \dots, u_{i-1} = t_{i-1}, u_i \in 1 + t_i((A))^{n-i}[[t_i]], u_{i+1}, \dots, u_n \in ((A))^{n-i+1} (1 \le i \le n)$ , then  $\det J^L(u/t) \in t_i((A))^{n-i}[[t_i]]$ , and if b = b(j), then  $w_k(b) \in t_j^{-1}((A))^{n-j}[t_j^{-1}]$  for any  $k \ge 0$ . Therefore

$$i \neq j \implies \operatorname{Res}_{\infty}^{((A))^n}(\alpha(i), b(j)) = 0$$

for any 
$$i, j \in \{1, \dots, n\}$$
.

In what follows, we consider the case that A is a ring of characteristic p. Then we introduce a homomorphism

$$\wp: W_{\infty}A \longrightarrow W_{\infty}A$$

of modules defined by  $\wp(a) = Pa - a$  for any  $a \in W_{\infty}A$ . If we put

$$WA = W_{\infty}A/\wp(W_{\infty}A) \otimes \mathbf{Z}[\frac{1}{p}]/\mathbf{Z},$$

then we obtain a group pairing

$$\operatorname{Res}^{((A))^n}: M_n((A))^n \times W((A))^n \longrightarrow WA$$

by the method similar to that in the case when n = 1. See [6, Lemma 3.10] or [8, §3]. Here we induce the valuation topology on  $M_n((A))^n$ .

Let  $Ann^{((A))^n}$  denote the annihilator of the pairing  $Res^{((A))^n}$ . Then there exists a linear topology on  $M_n((A))^n$  with fundamental system of neighborhoods

$$\Sigma = \{ \operatorname{Ann}^{((A))^n}(Q) \mid Q \text{ is a finite subset of } W((A))^n \}$$

of 0. This topology is said to be the weak topology on  $M_n((A))^n$ . Then  $M_n((A))^n$  is a topological group with respect to the weak topology. Note that  $M_n((A))^n$  is not separable with this topology.

LEMMA 22. Suppose that A is an integral ring of characteristic p and  $n \ge 1$ . Then we obtain  $\wp(\mathfrak{m}) = \mathfrak{m}$ . Therefore

$$\wp(W_{\infty}\mathfrak{m}) = W_{\infty}\mathfrak{m}, \quad W\mathfrak{m} = 0$$

and

$$W((A))^n \cong WD \oplus WA \cong \bigoplus_{i=1}^n W(t_i^{-1}A((t_n))\cdots((t_{i+1}))[t_i^{-1}]) \oplus WA.$$

PROOF. By Lemma 4, we reduce to the case when n = 1.

LEMMA 23. For a ring A of characteristic p and indeterminate t over A, we put

$$A((t^*)) = \bigoplus_{m \in \mathbf{N}_p} At^{-m} \oplus \prod_{m \in \mathbf{N}_p} At^m,$$

where  $\mathbf{N}_p = \mathbf{N} - p\mathbf{N}$ . Moreover, we take any submodule  $A_0$  of A such that  $A = PA \oplus A_0$ .

(i) If we put  $A((t))_0 = \bigoplus_{m \in \mathbb{N}_p} At^{-m} \oplus \prod_{m \in \mathbb{N}_p} At^m \oplus \bigoplus_{n=1}^{\infty} A_0t^{-np} \oplus A_0 \oplus \prod_{n=1}^{\infty} A_0t^{np}$ , then we can write  $A((t))_0 = A((t^*)) \oplus A_0((t^p))$  and  $A((t)) = P(A((t))) \oplus A((t))_0$ .

(ii) 
$$t^{-1}A[t^{-1}] = \wp(t^{-1}A[t^{-1}]) \oplus \bigoplus_{m \in \mathbb{N}_n} At^{-m} \oplus \bigoplus_{n=1}^{\infty} A_0t^{-np}$$
.

PROOF. We can prove easily (i).

(ii) Put  $x = at^{-mp^e}$  for  $a \in A$ ,  $m \in \mathbb{N}_p$ ,  $e \ge 0$ , and prove  $x \in \wp(t^{-1}A[t^{-1}]) \oplus \bigoplus_{m \in \mathbb{N}_p} At^{-m} \oplus \bigoplus_{n=1}^{\infty} A_0t^{-np}$ , by induction on e. For e = 0, it is obvious. Let  $e \ge 1$ . If we put  $a = b^p + c$  ( $b \in A$ ,  $c \in A_0$ ), then  $x = (bt^{-mp^{e-1}})^p + ct^{-mp^e} = \wp(bt^{-mp^{e-1}}) + bt^{-mp^{e-1}} + ct^{-mp^e}$ . Thus  $x \in \wp(t^{-1}A[t^{-1}]) \oplus \bigoplus_{m \in \mathbb{N}_p} At^{-m} \oplus \bigoplus_{n=1}^{\infty} A_0t^{-np}$ .

COROLLARY. For a ring A of characteristic p and  $n \ge 1$ , we obtain

$$D = \wp(D) \oplus \bigoplus_{i=1}^{n} \bigoplus_{m \in \mathbb{N}_{p}} A((t_{n})) \cdots ((t_{i+1}))t_{i}^{-m}$$

$$\oplus \bigoplus_{i=1}^{n} \bigoplus_{m \in \mathbb{N}_{p}} \bigoplus_{e=1}^{\infty} \bigoplus_{f=i+1}^{n} A((t_{n})) \cdots ((t_{f+1}))((t_{f}^{*}))((t_{f-1}^{p})) \cdots ((t_{i+1}^{p}))t_{i}^{-mp^{e}}$$

$$\oplus \bigoplus_{i=1}^{n} \bigoplus_{m \in \mathbb{N}_{p}} \bigoplus_{e=1}^{\infty} A_{0}((t_{n}^{p})) \cdots ((t_{i+1}^{p}))t_{i}^{-mp^{e}}.$$

LEMMA 24. Let A be an integral ring of characteristic p and  $n \ge 1$ . Then

- (i) the mapping  $\operatorname{Res}^{((A))^n}: M_n((A))^n \times W((A))^n \to WA$  is continuous with respect to the weak topology on  $M_n((A))^n$ . Therefore  $\operatorname{Res}^{((A))^n}$  is a group pairing.
  - (ii) The weak topology is weaker than the valuation topology on  $M_n((A))^n$ .
  - (iii) If A is a field, PA = A and  $A \neq \wp(A)$ , then

$$\operatorname{Ann}^{((A))^n}(M_n((A))^n) = 0.$$

PROOF. The statements (i) and (ii) are easy to verify.

(iii) Take any  $\beta \in \operatorname{Ann}^{((A)^n}(M_n((A)^n))$ . Then, by Lemma 21 and Lemma 22, we have  $\beta \in WD$ . Here we assume  $\beta \neq 0$ . Since WD is a torsion p-group, we may assume  $p\beta = 0$ . Then we can write  $\beta = \phi_1(b)$ ,  $b \in W_\infty D$ ,  $b_0 \notin \wp(D)$ . Noting that  $A_0 = 0$ , the monomial appeared in  $b_0$  with order  $\operatorname{ord}_{[[A]]_n}(b_0)$  is contained in  $A((t_n)) \cdots ((t_{i+1}))t_i^{-m}$  or  $A((t_n)) \cdots ((t_{f+1}))((t_f^p))((t_{f-1}^p)) \cdots ((t_{i+1}^p))t_i^{-mp^e}$ , by Corollary to Lemma 23. Here we put  $\gamma = -\operatorname{ord}_{[[A]]_n}(b_0)$ ,  $\gamma = t_\gamma$ ,  $\gamma = 1 + a_0 \gamma$  for any  $\gamma = a_0 \gamma = a_0 \gamma$ , and define  $\gamma = a_0 \gamma = a_0 \gamma$ . Then we obtain  $\gamma = a_0 \gamma = a_0 \gamma = a_0 \gamma = a_0 \gamma$ . On the other hand, since we can write det  $\gamma = a_0 \gamma = a_0$ 

 $\gamma_s a_0 c_0$ , by Lemma 10, (iii). Therefore we obtain  $a_0 c_0 \in \wp(A)$ . Thus  $A = \wp(A)$ . This is a contradiction, and hence  $\beta = 0$ .

5. Here we shall define a mapping  $\rho_K : M_n K \to \Gamma K$  for a formal power series field K in n variables with p-quasifinite coefficient field, and prove the Main Theorem.

First, note that the group pairings

$$\langle , \rangle_{\infty}^{\Gamma K} : \Gamma K \times W_{\infty} K \longrightarrow W_{\infty} \mathbf{F}_{p}, \quad \langle , \rangle^{\Gamma K} : \Gamma K \times W K \longrightarrow \mathbf{Q}/\mathbf{Z}$$

are defined in [8,  $\S 2$ ] for any field K of characteristic p.

THEOREM 1. For a perfect field k and  $n \ge 1$ , we put  $K = ((k))^n$ . Then

K'/K is an unramified extension  $\iff K'/K$  is an extension of coefficient fields for any finite extension K'/K of fields.

The proof is induced from [11, Theorem 2].

COROLLARY. Suppose that k is a perfect field of characteristic  $p \ (p \neq 0)$ . If we put

$$K_{ur,ab}^{[p]} = k_{ab}^{[p]} K = K(\wp^{-1} W_{\infty} k),$$

then  $K_{ur,ab}^{\,[p]}$  is the maximal unramified abelian p-extension of K.

For a field k of characteristic p and  $n \ge 1$ , we put  $K = ((k))^n$ . Then  $M_n K = M_n((k))^n$  is a topological group by introducing the weak topology. Moreover, from the results in §4, we obtain the mappings

$$\operatorname{Res}_{\infty}^{K}: M_{n}K \times W_{\infty}K \longrightarrow W_{\infty}k, \quad \operatorname{Res}^{K}: M_{n}K \times WK \longrightarrow Wk.$$

Suppose that k is a field of characteristic p having the property  $k/\wp(k) \cong \mathbf{F}_p$ . Then there exists  $F \in \Gamma k$  such that  $\Gamma k = F^{\mathbf{Z}_p} \cong \mathbf{Z}_p$ , and the mapping

$$S_F: \begin{array}{ccc} W_{\infty}k & \longrightarrow & W_{\infty}\mathbf{F}_p \\ & & & & & & & & \\ b & \longmapsto & \langle F, b \rangle_{\infty}^{\Gamma k} \end{array}$$

is a surjective continuous homomorphism of  $\mathbb{Z}_p$ -modules and Ker  $S_F = \wp(W_{\infty}k)$ . Therefore we have  $W_{\infty}k \cong \wp(W_{\infty}k) \oplus W_{\infty}\mathbb{F}_p$ .

Next we define a mapping

$$\langle \; , \; \rangle_{\infty}^{M_n K} : M_n K \times W_{\infty} K \longrightarrow W_{\infty} \mathbf{F}_p$$

by putting

$$\langle \alpha, b \rangle_{\infty}^{M_n K} = S_F(\operatorname{Res}_{\infty}^K(\alpha, b))$$

for  $\alpha \in M_n K$ ,  $b \in W_{\infty} K$ . Then  $\langle , \rangle_{\infty}^{M_n K}$  is a group pairing with respect to the weak topology on  $M_n K$ . Similarly, from  $Wk \cong \mathbf{Z}[\frac{1}{n}]/\mathbf{Z} \subset \mathbf{Q}/\mathbf{Z}$ , we also obtain a group pairing

$$\langle , \rangle^{M_n K} : M_n K \times W K \longrightarrow \mathbf{Q}/\mathbf{Z}.$$

Using these pairings, we can define a mapping

$$\rho_K: M_nK \longrightarrow \Gamma K$$

by putting  $\langle \rho_K(\alpha), \beta \rangle^{\Gamma K} = \langle \alpha, \beta \rangle^{M_n K}$  for  $\alpha \in M_n K$ ,  $\beta \in W K$ . Moreover, for any abelian p-extension L over K, we put  $\rho_{L/K}(\alpha) = \rho_K(\alpha)|_L$  for  $\alpha \in M_n K$ . Then we obtain a mapping

$$\rho_{L/K}: M_nK \longrightarrow \operatorname{Gal}(L/K)$$
.

Note that both the mappings  $\rho_K$  and  $\rho_{L/K}$  are dependent on F.

LEMMA 25. For a perfect field k of characteristic p which satisfies  $k/\wp(k) \cong \mathbb{F}_p$  and  $n \ge 1$ , we put  $K = (k)^n$ .

(i) Let L, L' be abelian p-extensions over K,  $H' = \operatorname{Gal}(K_{ab}^{[p]}/L')$  and  $Q' = \operatorname{Ker} W_{K|L'}$ . If  $L' \subset L$ , then

$$\rho_{L/K}^{-1}(\text{Gal}(L/L')) = \rho_K^{-1}(H') = \text{Ann}^{M_n K}(Q')$$
.

Here Ann<sup> $M_nK$ </sup> denotes the annihilator of the pairing  $\langle , \rangle^{M_nK}$ .

- (ii) The mapping  $\rho_K: M_nK \to \Gamma K$  is a continuous homomorphism of groups.
- (ii') The weak topology on  $M_nK$  is the induced topology of Krull topology on  $\Gamma K$  with respect to the mapping  $\rho_K$ .
- (iii) For any subgroup A of  $M_nK$ , we have  $\operatorname{Ann}^{\Gamma K}(\rho_K(A)) = \operatorname{Ann}^{M_nK}(A)$ . Therefore we obtain  $\overline{\rho_K(A)} = \operatorname{Ann}^{\Gamma K}(\operatorname{Ann}^{M_nK}(A))$  and

$$\overline{A} = \rho_K^{-1}(\overline{\rho_K(A)}) = \operatorname{Ann}^{M_n K}(\operatorname{Ann}^{M_n K}(A)).$$

Here  $\mathrm{Ann}^{\Gamma K}$  denotes the annihilator of the pairing  $\langle \; , \; \rangle^{\Gamma K}$  and "overline" means the closure of topological spaces.

(iv) The mapping  $\rho_K: M_nK \to \Gamma K$  is dominant.

PROOF. The statement (i) is verified from the definitions of  $\rho_K$ ,  $\rho_{L/K}$  and  $H' = \operatorname{Ann}^{\Gamma K}(O')$ .

(ii) It is easy to prove that  $\rho_K$  is a homomorphism of groups. The continuity of  $\rho_K$  and (ii') are induced from

$$\{\rho_K^{-1}(H) \mid H \text{ is an open subgroup of } \Gamma K\} =$$

$$\{\operatorname{Ann}^{M_nK}(Q) \mid Q \text{ is a finite subgroup of } WK\}.$$

- (iii) We can prove this statement easily from the definition of  $\rho_K$  and (ii').
- (iv) If we put  $A = M_n K$  in (iii), then, by Lemma 24, (iii), we have

$$\overline{\rho_K(M_nK)} = \operatorname{Ann}^{\Gamma K}(\operatorname{Ann}^{M_nK}(M_nK)) = \operatorname{Ann}^{\Gamma K}(0) = \Gamma K.$$

COROLLARY. For any closed subgroup A of  $M_nK$ , there exists an abelian p-extension L over K such that  $A = \text{Ker } \rho_{L/K}$ . If A is open, then L is finite over K and is determined uniquely from A.

THEOREM 2. For a perfect field k of characteristic p which satisfies  $k/\wp(k) \cong \mathbf{F}_p$  and  $n \geq 1$ , we put  $K = ((k))^n$ . Take any element  $F \in \Gamma k$  having the property  $\Gamma k = F^{\mathbf{Z}_p}$ , and define the mappings  $\rho_K$  and  $\rho_{L/K}$ . Then

(i) for any  $\alpha \in M_n K$ , we have

$$\rho_K(\alpha)\Big|_{k_{ab}^{[p]}} = F^{\ell(\alpha)}.$$

(ii) The mapping from the set of finite abelian p-extensions L over K to the set of open subgroups of  $M_nK$  defined by

$$L \longmapsto \operatorname{Ker} \rho_{L/K} = \rho_K^{-1}(\operatorname{Gal}(K_{ab}^{[p]}/L))$$

is an inclusion-reversing bijection, and

$$M_n K/\operatorname{Ker} \rho_{L/K} \cong \operatorname{Gal}(L/K)$$
.

(iii) For any finite abelian p-extension L over K, we obtain

$$L/K$$
 is unramified  $\iff U_K^{(0)} \subset \operatorname{Ker} \rho_{L/K}$  .

Here 
$$U_K^{(0)} = \text{Ker } \ell = \prod_{i=1}^n U_{M_{n-i+1}((k))^{n-i+1}}^{(0)}$$
.

PROOF. (i) Put  $\ell = \ell(\alpha)$ . Take any element  $b \in W_{\infty}k$  which satisfies  $k_{ab}^{[p]} = k(\wp^{-1}b)$ . Then we have  $\langle \rho_K(\alpha), b \rangle_{\infty}^{\Gamma K} = \langle \alpha, b \rangle_{\infty}^{M_n K} = S_F(\operatorname{Res}_{\infty}^K(\alpha, b)) = S_F(\ell b) = \langle F, \ell b \rangle_{\infty}^{\Gamma k} = \langle F^{\ell}, b \rangle_{\infty}^{\Gamma k}$  by Lemma 21. Thus  $\rho_K(\alpha) \Big|_{k_{ab}^{[p]}} = F^{\ell}$ .

- (ii) By Lemma 25, (i), we have Ker  $\rho_{L/K} = \rho_K^{-1}(\operatorname{Gal}(K_{ab}^{[p]}/L))$ . By Corollary to Lemma 25, the mapping:  $L \mapsto \operatorname{Ker} \rho_{L/K}$  is bijective. Moreover, by Lemma 25, (iv), the homomorphism  $\rho_{L/K} : M_nK \to \operatorname{Gal}(L/K)$  is surjective.
  - (iii) By Lemma 15, Lemma 21, Lemma 22 and Lemma 24, (iii), we have

$$\operatorname{Ann}^{M_n K}(U_K^{(0)}) = Wk,$$

and hence  $\overline{\rho_K(U_K^{(0)})} = \mathrm{Ann}^{\Gamma K}(\mathrm{Ann}^{M_n K}(U_K^{(0)})) = \mathrm{Ann}^{\Gamma K}(Wk) = \mathrm{Gal}(K_{ab}^{[p]}/K_{ur,ab}^{[p]})$  by Lemma 25, (iii). Therefore we obtain

$$L/K$$
 is unramified  $\iff L \subset K_{ur,ab}^{[p]} \iff U_K^{(0)} \subset \operatorname{Ker} \rho_{L/K}$ 

by Corollary to Theorem 1.

516 KOJI SEKIGUCHI

COROLLARY.  $\Gamma K \cong \widehat{M_n K} = \text{proj. lim } M_n K/A$ , where A runs over all open subgroups of  $M_n K$ .

Next we consider the relationship between the pairings  $\langle \ , \ \rangle^{M_n K}$  and  $\langle \ , \ \rangle^{M_n K'}$ , where K'/K is a finite separable p-extension of fields.

LEMMA 26. For a perfect field k of characteristic p and  $n \ge 1$ , we put  $K = ((k))^n$ . Let K'/K be a finite separable extension of fields and k' the algebraic closure of k in K'.

(i) For any  $\alpha \in M_n K$ ,  $b \in W_\infty K$ , we have

$$\operatorname{Res}_{\infty}^{K'}(M_{nK|K'}\alpha, b) = e\operatorname{Res}_{\infty}^{K}(\alpha, b).$$

Here e = [K' : k'K].

(ii) For any  $\alpha \in M_n K$ ,  $b' \in W_\infty K'$ , we obtain

$$T_{W_{\infty}k'/W_{\infty}k}\operatorname{Res}_{\infty}^{K'}(M_{nK|K'}\alpha,b') = \operatorname{Res}_{\infty}^{K}(\alpha,T_{W_{\infty}K'/W_{\infty}K}b').$$

PROOF. (i) If we put  $K = k((t_n)) \cdots ((t_1))$ , then we can write  $k'K = k'((t_n)) \cdots ((t_1))$  by [11, Corollary (i) to Theorem 2]. Therefore, by (R-6), we obtain  $\operatorname{Res}_{\infty}^K(\alpha, b) = \operatorname{Res}_{\infty}^{k'K}(M_{nK|k'K}\alpha, b)$ . If we apply (R-10) for  $i: k'K \hookrightarrow K'$ , then we have

$$\operatorname{Res}_{\infty}^{K'}(M_{nK|K'}\alpha, b) = \ell(t_1, \dots, t_n)\operatorname{Res}_{\infty}^{k'K}(M_{nK|k'K}\alpha, b).$$

Moreover, by [11, Theorem 2, (ii)] and [11, Corollary (i) to Theorem 2], we get  $\ell(t_1, \dots, t_n) = e = [K' : k'K]$ . Thus  $\operatorname{Res}_{\infty}^{K'}(M_{nK|K'}\alpha, b) = e\operatorname{Res}_{\infty}^{K}(\alpha, b)$ .

(ii) It suffices to prove  $T_{k'/k} \operatorname{Res}_{\infty}^{K'}(M_{nK|K'}\alpha, b') = \operatorname{Res}_{\infty}^{K}(\alpha, T_{K'/K}b')$  in the case when the extension K'/K is Galois. Put  $G = \operatorname{Gal}(K'/K)$ , and decompose  $G = \bigcup_{i=1}^f \operatorname{Gal}(K'/k'K)\sigma_i$ . Then  $\operatorname{Gal}(k'/k) = \operatorname{Gal}(k'K/K) = \{\sigma_1, \dots, \sigma_f\}$  by [11, Theorem 2, (ii)]. If we put  $\alpha' = M_{nK|K'}\alpha$ ,  $b = T_{K'/K}b'$ , then we get  $\operatorname{Res}_{\infty}^{K}(\alpha, b) = \frac{1}{e}\operatorname{Res}_{\infty}^{K'}(\alpha', b) = \frac{1}{e}\operatorname{Res}_{\infty}^{K'}(\alpha', \sum_{\sigma \in G} \sigma b') = \frac{1}{e}\sum_{\sigma \in G} \sigma \operatorname{Res}_{\infty}^{K'}(\alpha', b') = \sum_{i=1}^f \sigma_i \operatorname{Res}_{\infty}^{K'}(\alpha', b') = T_{k'/k}\operatorname{Res}_{\infty}^{K'}(\alpha', b')$  by (i) and (R-6).

LEMMA 27. For a p-quasifinite field k and  $n \ge 1$ , we put  $K = ((k))^n$ .

(i) Let  $\sigma: K \to K'$  be an isomorphism of fields. Then for any  $\alpha \in M_nK$ ,  $\beta \in WK$ , we have

$$\langle \alpha, \beta \rangle^{M_n K} = \langle \sigma \alpha, \sigma \beta \rangle^{M_n K'}.$$

(ii) Let K'/K be a finite separable p-extension of fields. Then for any  $\alpha \in M_nK$ ,  $\beta' \in WK'$ , we obtain

$$\langle M_{nK|K'}\alpha, \beta' \rangle^{M_nK'} = \langle \alpha, T_{K'/K}\beta' \rangle^{M_nK},$$

and for any  $\alpha' \in M_n K'$ ,  $\beta \in WK$ , we obtain

$$\langle N_{K'/K}\alpha', \beta \rangle^{M_nK} = \langle \alpha', W_{K|K'}\beta \rangle^{M_nK'}.$$

PROOF. The statment (i) is proved easily from (R-6).

(ii)  $\langle M_{nK|K'}\alpha, \beta' \rangle^{M_nK'} = \langle \alpha, T_{K'/K}\beta' \rangle^{M_nK}$  is easy from Lemma 26, (ii). It suffices to prove  $\langle N_{K'/K}\alpha', \beta \rangle^{M_nK} = \langle \alpha', W_{K|K'}\beta \rangle^{M_nK'}$  in the case when the extension K'/K is Galois. Since  $T_{K'/K}$  is surjective, there exists  $\beta' \in WK'$  such that  $\beta = T_{K'/K}\beta'$ . Then  $T_G\beta' = W_{K|K'}\beta$ . On the other hand, if we put  $\alpha = N_{K'/K}\alpha'$ , then  $N_G\alpha' = M_{nK|K'}\alpha$ . Thus  $\langle \alpha, \beta \rangle^{M_nK} = \langle \alpha, T_{K'/K}\beta' \rangle^{M_nK} = \langle M_{nK|K'}\alpha, \beta' \rangle^{M_nK'} = \langle N_G\alpha', \beta' \rangle^{M_nK'} = \langle \alpha', T_G\beta' \rangle^{M_nK'} = \langle \alpha', W_{K|K'}\beta \rangle^{M_nK'}$ .

LEMMA 28. Suppose that k is a p-quasifinite field,  $n \ge 1$  and  $K = ((k))^n$ . Then for any finite separable p-extension K'/K of fields, we obtain

$$\operatorname{Ann}^{M_n K}(N_{K'/K} M_n K') = \operatorname{Ker} W_{K|K'}$$

and

$$\overline{N_{K'/K}M_nK'} = \operatorname{Ann}^{M_nK}(\operatorname{Ker} W_{K|K'}).$$

Here "overline" means the closure of  $M_nK$  with respect to the weak topology.

PROOF. Ann<sup> $M_nK$ </sup> ( $N_{K'/K}M_nK'$ ) = Ker  $W_{K|K'}$  is induced from Lemma 27, (ii) and Lemma 24, (iii).  $\overline{N_{K'/K}M_nK'}$  = Ann<sup> $M_nK$ </sup> (Ker  $W_{K|K'}$ ) is easy from the above equation and Lemma 25, (iii).

Then the proof of **Main Theorem** is complete from Lemma 25, Lemma 28 and Theorem 2.

## References

- [1] N. BOURBAKI, Commutative Algebra (Elements of mathematics), Springer (1989). [Translation of Algèbre commutative, Hermann (1964).]
- [2] I. FESENKO and S. VOSTOKOV, Local fields and their extensions, Transl. Math. Monographs 121 (1993), Amer. Math. Soc.
- [3] K. KANESAKA and K. SEKIGUCHI, Representation of Witt vectors by formal power series and its applications, Tokyo J. Math. 2 (1979), 349–370.
- [4] K. KATO, A generalization of local class field theory by using K-groups, I, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 26 (1979), 303–376; II, ibid., 27 (1980), 603–683.
- [5] Y. KAWADA and I. SATAKE, Class formations, II, J. Fac. Sci. Univ. Tokyo, I-7 (1955), 353-389.
- [6] Y. KAWADA and K. SEKIGUCHI, Local class field theory in characteristic p, Sophia Kokyuroku in Mathematics 30 (1989) (in Japanese).
- [7] J. MILNOR, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1970), 318–344.
- [8] K. SEKIGUCHI, Class field theory of p-extensions over a formal power series field with a p-quasifinite coefficient field, Tokyo J. Math. 6 (1983), 167–190.

518

## KOJI SEKIGUCHI

- [9] K. SEKIGUCHI, The Lubin-Tate theory for formal power series fields with finite coefficient fields, J. Number Theory **18** (1984), 360–370.
- [10] K. SEKIGUCHI, Linear topologies on a field and completions of valuation rings, Tokyo J. Math. **25** (2002), 63–73
- [11] K. SEKIGUCHI, On the structure of strictly complete valuation rings, Tokyo J. Math. 26 (2003), 393–402.

Present Address:
FACULTY OF FUNDAMENTAL EDUCATION,
KOCHI UNIVERSITY OF TECHNOLOGY,
TOSAYAMADA-CHO, KOCHI, 782–8502 JAPAN.