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Abstract. In asymmetric space of non-compact type, we have recently defined the notion of a complex equifo-
cal submanifold. In this paper, we introduce the notion of an infinite dimensional anti-Kaehlerian isoparametric sub-
manifold. We show that the investigation of complete real analytic complex equifocal submanifolds is reduced to
that of infinite dimensional anti-Kaehlerian isoparametric submanifolds. Also, we show that an infinite dimensional
anti-Kaehlerian isoparametric submanifold is multi-foliated by complex spheres (or complex affine subspaces) and
that the main part of the focal set of the submanifold at each point consists of some complex hyperplanes in the
normal space.

1. Introduction

In 1995, C. L. Terng and G. Thorbergsson [49] defined the notion of an equifocal sub-
manifold in a symmetric space as a submanifold with globally flat and abelian normal bundle
such that the focal radii for each parallel normal vector field are constant. This notion is a
general one of isoparametric submanifolds in the Euclidean space and isoparametric hyper-
surfaces in a sphere or a hyperbolic space. They showed that the investigation of equifocal
submanifolds in a symmetric space of compact type is reduced to that of isoparametric sub-
manifolds in a (separable) Hilbert space through a Riemannian submersion of a Hilbert space
onto the symmetric space. Here isoparametric submanifolds in the Hilbert space are proper
Fredholm submanifolds with globally flat normal bundle such that, for each parallel normal
vector field v, the spectrum of the shape operator of direction v is constant. The following
problem is one of open problems in [49].

Is there the similar argument for equifocal submanifolds in a symmetric space of non-
compact type?

Recently we tackled this problem. Concretely we defined the notion of a real isopara-
metric submanifold in a pseudo-Hilbert space and showed that the investigation of equifocal
submanifolds in a symmetric space of non-compact type is reduced to that of real isoparamet-
ric submanifolds in a pseudo-Hilbert space. However, the following example indicates that
the equifocality is a rather weak (non-rigid) condition for submanifolds in a symmetric space
of non-compact type.
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EXAMPLE 1. Let 21 be the set of all submanifolds in the m-dimensional hyperbolic
space H™(c) of constant curvature ¢ (< 0) such that, for each unit normal vector v of M,

all the absolute values of principal curvatures of direction v are smaller than */2_7 Then, for
an arbitrary M € 9 and a sufficiently small positive constant ¢, the e-tube t.(M) of M has
the only focal radius ¢ at each point. Hence #,(M) is equifocal. Thus the equifocality in a
symmetric space of non-compact type is a rather weak condition than that in a symmetric
space of compact type.

In the case where the ambient symmetric space is of non-compact type, we considered
that the notion of the focal radius should be defined in the complex number field and recently
defined the notion of a complex focal radius in [25]. We [25] recently defined the notion
of a complex equifocal submanifold as a submanifold with globally flat and abelian normal
bundle such that complex focal radii for each parallel normal vector field are constant. Note
that the e-tube 7. (M) is not complex equifocal for almost all M € 97 and a sufficiently small
positive number &, where 91 is the class of submanifolds in H”(c) as in Example 1. It is
shown that isoparametric submanifolds with flat section in the sense of Heintze-Liu-Olmos
[16] are complex equifocal and that the converse also holds under certain condition (see The-
orem 15). Also, we [25] recently defined the notion of a complex isoparametric submanifold
in the pseudo-Hilbert space as a Fredholm submanifold with globally flat normal bundle such
that complex principal curvatures for each parallel normal vector field are constant. Here we
note that the inverse numbers of the complex principal curvatures give complex focal radii of
the submanifold and hence complex isoparametric submanifolds are interpreted as complex
equifocal submanifolds in the pseudo-Hilbert space. Further, we [25] defined the notion of a
proper complex isoparametric submanifold in the space and the notion of the complex reflec-
tion group associated with the submanifold. We [25] showed that the investigation of curva-
ture adapted and complex equifocal submanifolds in a symmetric space of non-compact type
is reduced to that of complex isoparametric submanifolds in a pseudo-Hilbert space through a
pseudo-Riemannian submersion of the pseudo-Hilbert space onto the symmetric space. Here
a curvature adapted submanifold is a submanifold such that for each normal vector v, R(-, v)v
preserves the tangent space of the submanifold and A, and R(-, v)v are commutative, where
A is the shape tensor of the submanifold and R is the curvature tensor of the symmetric space.
(Non-real) complex focal radii are imaginary notions because the focal points corresponding
to them do not exist. So we need to catch the geometrical essence of complex focal radii.
For its purpose, we should define the complexifications of the ambient symmetric space and
the ambient pseudo-Hilbert space and the extrinsic complexification of a submanifold. Let
G/K be a symmetric space of non-compact type, where, without loss of generality, G can
be assumed to be a connected semi-simple Lie group and have its complexification, and K
can be assumed to be a maximal compact subgroup of G. Since G admits a faithful linear
representation, we can define the complexification G€ (resp. K€) of G (resp. K) and the com-
pact dual G* (C G€) of G. In the sequel, we assume that the compact dual G* is simply
connected. Hence, since G¢ = G*¢ and G*¢ is regarded as the tangent bundle of G*, G€ is
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simply connected. Therefore, (G¢, K€) is a symmetric pair and G¢/K € is a simply connected
(pseudo-Riemannian) symmetric space. Also, G¢/ K€ is an anti-Kaehlerian manifold in a nat-
ural manner. We call this anti-Kaehlerian manifold G¢/K*€ the anti-Kaehlerian symmetric
space associated with G/K. We regard G¢/K¢ as the complexification of G/K. Also, we
consider the infinite dimensional anti-Kaehlerian space (V¢, Re( , )€) as the complexification
of a pseudo-Hilbert space (V, ( , )). Further we define the extrinsic complexifications of sub-
manifolds in G/K as anti-Kaehlerian submanifolds in G¢/ K€, where we need to assume that
the submanifolds are complete and real analytic. Let M be a complete real analytic subman-
ifold in G/K and M* be its extrinsic complexification. Note that M€ is an anti-Kaehlerian
submanifold in G¢/K €. For an anti-Kaehlerian submanifold in a general anti-Kaehlerian man-
ifold, we define complex focal radii as the notion one-to-one corresponding to the focal points
of the submanifold. We show that complex focal radii of M coincide with those of M€ along
M (C M€). Thus we can catch the geometrical essence of complex focal radii of M as focal
points of M€. By using the complex focal radii, we introduce the notion of an anti-Kaehlerian
equifocal submanifold in an anti-Kaehlerian symmetric space. Also, we introduce the notion
of an anti-Kaehlerian isoparametric (and proper anti-Kaehlerian isoparametric) submanifold
in the infinite dimensional anti-Kaehlerian space. We show that a complete real analytic sub-
manifold M is complex equifocal in G/K if and only if M€ is anti-Kaehlerian equifocal in
G¢/K€ (see Theorem 5). In general, the submanifold theories in Riemannian manifolds with
negative curvature and pseudo-Riemannian manifolds seem to be closely connected with the
anti-Kaehlerian submanifold theory. Let 7€ : G¢ — G°/K€ be the natural projection and
#¢ : HO([0, 1], g°) — G be the parallel transport map for G. See §6 about the definition of
¢€. The complex Lie group G¢ becomes an anti-Kaehlerian manifold with respect to the bi-
invariant pseudo-Riemannian metric inducing the metric of G¢/K® and the natural complex
structure. Also, the space H O([O, 1], g¢) becomes an infinite dimensional anti-Kaehlerian
space with respect to the non-degenerate inner product defined from the Ad(G¢)-invariant
non-degenerate inner product of g€ inducing the bi-invariant pseudo-Riemannian metric of
G°©. It is shown that ¢¢ is an anti-Kaehlerian submersion. The main theorem of this paper is
as follows.

THEOREM 1. Let M be a complete real analytic submanifold with globally flat and
abelian normal bundle in a symmetric space G/K of non-compact type. Then the following
statements (1) and (ii) hold:

(i) M is complex equifocal if and only if each component of (1€ o $¢)~1(M®) is anti-
Kaehlerian isoparametric in HO([O, 11, g%). In detail, for each unit normal vector v of M,
complex focal radii along the geodesic y, coincide with the inverse numbers of complex prin-
cipal curvatures of the horizontal lift (1,v)"-direction, where t is the natural immersion of
G/K into G¢/K".

(i) Assume that M is curvature adapted. Then M is complex equifocal in G/K and for
each w € (T+M)® and each o € A with ozc(g;1 w) # 0, :I:otc(g;1 w) is not eigenvalues of
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A%l gupe if and only if each component of (€ o ¢~ (M) is proper anti-Kaehlerian isopara-
metric in HO([0, 1], %), where g is a representative element of the base point of w and Ay is
the positive root system with respect to a maximal abelian subspace (equipped with some lex-
icographical ordering) whose complexification contains g, Yw and p¢ is the complexification
of the root space for a € Ay. Further, each component of (1€ o ¢©) ™1 (M) then extends to a
complete proper anti-Kaehlerian isoparametric submanifold.

REMARK 1. (i) All isoparametric submanifolds in a Euclidean space are catched as
the level sets of an isoparametric map (which is a polynomial map) and hence they are real
analytic submanifolds. Also, all isoparametric hypersurfaces in a sphere or a hyperbolic space
are catched as the level sets of an isoparametric function (which is a polynomial function) and
hence they are real analytic. Also, all known examples of equifocal submanifolds and all
examples of complex equifocal submanifolds given in this paper are real analytic. Thus the
assumption that submanifolds are real analytic seems to be admissible.

(i) According to this theorem, the investigation of complete real analytic complex
equifocal submanifolds in a symmetric space of non-compact type is replaced by that of
anti-Kaehlerian isoparametric submanifolds in an infinite dimensional anti-Kaehlerian space.
Anti-Kaehlerian isoparametric submanifolds in the anti-Kaehlerian space seems be easier to
treat than complete real analytic complex equifocal submanifolds in the symmetric space be-
cause the complex focal radii of the complex equifocal submanifold are imaginary but those
of the anti-Kaehlerian isoparametric submanifold correspond to its focal points and further
the ambient space is a linear space.

(iii) In the statement (ii) of this theorem, the condition for the eigenvalues of A, im-
plies that M has no imaginary focal point on the ideal boundary of G/K. Hence, it is con-
jectured that each component of (7€ o ¢°)*1 (M°®) is a proper anti-Kaehlerian isoparametric
submanifold for each (not necessarily curvature adapted) complex equifocal submanifold M
having no imaginary focal point on the ideal boundary of G/K.

(iv) When M is immersed by f and hence M€ is immersed by the complexification f€
of f, (¢ 0 )~ (M*®) means a submanifold M¢ = {(x,u) € M€ x H°([0, 1], g% | f¢(x) =
(€ 0 ¢¢)(u)} immersed by fe:(x,u) e M¢ < ue HO([0, 11, g°).

For proper anti-Kaehlerian isoparametric submanifolds, we prove the following result.

THEOREM 2. Let (M, (, ), J) be a proper anti-Kaehlerian isoparametric subman-
ifold in the infinite dimensional anti-Kaehlerian space (V, (, ), JN), {Aili € I} (resp.
{vi|i € I}) be the set of all complex principal curvatures (resp. the set of all complex cur-
vature normals) of (M, { , ), J) and E; (i € I) be the complex curvature distribution for X;.
Then the following statements (i) and (ii) hold:

(i) The focal set of (M, x) coincides with the sum Uie, 2 ()~ of the complex
hyperplanes \; @Y G eD.
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(i) E; (i € 1) is totally geodesic on M. If A;j # 0, then the leaves of E; are open
~Ai (Vi)

potions of complex spheres of radius e (this quantity is constant over M) and the mean
1 1

curvature vector of leaves of E; is equal to v;. Also, if A; = 0, then the leaves of E; are open
potions of complex affine subspaces.

REMARK 2. According to the fact (i), a complex reflection group associated with each
proper anti-Kaehlerian isoparametric submanifold (M, (, ), J) is defined as the group gen-
erated by the reflections (of angle 7) of the normal space TXLM with respect to the complex
hyperplane A;(x)~'(1) (i € I). We conjecture that this group is discrete if M is properly
immersed.

For a complete real analytic complex equifocal submanifold M, the focal set of (M€, x)
coincides with that of ((€ o ¢) "1 (M), u) (u € (7€ 0 ¢)~!(x)) because 7€ o ¢ is an
anti-Kaehlerian submersion. Hence we shall call the above complex reflection group associ-
ated with the proper anti-Kaehlerian isoparametric submanifold (7€ o ¢) ~1(M°®) the complex
reflection group associated with M. Here we state a plan of research of complex equifocal
submanifolds for the future.

A plan of research for the future. We plan to research complex equifocal submani-
folds in terms of the associated complex reflectioin group. For example, we plan to investigate
if a splitting theorem of Ewert-type (see [9]) holds for complex equifocal submanifolds and
the associated complex reflection groups.

It is very worth to find systematic constructions of homogeneous complex (or anti-
Kaehlerian) equifocal submanifolds and homogeneous complex (or anti-Kaehlerian) isopara-
metric ones. We can find the following systematic constructions of those homogeneous sub-
manifolds.

THEOREM 3. Let G/K be a symmetric space of non-compact type and H be the group
of all fixed points of an involution o (# idg) of G or a closed subgroup of G whose action on
G /K is of cohomogeneity one. Then the following statements (1)—(vi) hold:

(1) All principal orbits of the H-action on G /K are complex equifocal.
(i) All principal orbits of the H x K-action on G are complex equifocal, where we
give G the bi-invariant pseudo-Riemannian metric inducing the Riemannian metric of G/K.

(iii) Al principal orbits of the P(G, H x K)-action on HO([O, 1], g) are complex
isoparametric.

(iv) All principal orbits of the H¢-action on G¢/K€ are anti-Kaehlerian equifocal,
where H® = exp g,.

(v) All principal orbits of the H® x K ®-action on G€ are anti-Kaehlerian equifocal.

(vi) All principal orbits of the P(G€, H® x K©)-action on H°([0, 1], g%) are anti-
Kaehlerian isoparametric.
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We introduce the notions of complex hyperpolar actions on a symmetric space of non-
compact type, a semi-simple Lie group equipped with a bi-invariant pseudo-Riemannian met-
ric and a pseudo-Hilbert space, and that of an anti-Kaehlerian hyperpolar action on an infi-
nite dimensional anti-Kaehlerian space (see §10). Principal orbits of a complex hyperpolar
action on a symmetric space of non-compact type (resp. a pseudo-Hilbert space) are com-
plex equifocal (resp. complex isoparametric) (see Theorem 12) and principal orbits of an
anti-Kaehlerian hyperpolar action on an infinite dimensional anti-Kaehlerian space are anti-
Kaehlerian isoparametric (see Theorem 14). For these complex and anti-Kaehlerian hyperpo-
lar actions, we prove the following fact.

THEOREM 4. Let G/K be a symmetric space of non-compact type and H be a closed
subgroup of G. Then the following statements (1)—(iii) are equivalent:
(i) the H-action (on G/K) is complex hyperpolar,
(i) the P(G, H x K)-action (on H°([0, 1], @) is complex hyperpolar,
(ili) the P(G, H® x K®)-action (on HO([0, 11, g%)) is anti-Kaehlerian hyperpolar,
where P(G, H x K) :={g € H'([0, 11, G) | (4(0), g(1)) € H x K} and P(G®, H* x K®) :=
{g € H'([0,1],G%) [ (9(0), g(1)) € H® x K*}.

In §2, we recall basic notions and facts. In §3, we first introduce the notion of a com-
plex focal radius for an anti-Kaehlerian submanifold. Next we introduce the notion of the
associated anti-Kaehlerian symmetric space as a complexification of a symmetric space of
non-compact type and that of an anti-Kaehlerian equifocal submanifold in the anti-Kaehlerian
symmetric space. In §4, we define the extrinsic complexification of a complete real analytic
submanifold in a symmetric space of non-compact type. In §5, we introduce the notion of
an infinite dimensional anti-Kaehlerian space, and introduce the notions of an anti-Kaehlerian
isoparametric submanifold and a proper anti-Kaehlerian isoparametric one in the space. For
an anti-Kaehlerian isoparametric submanifold, we define the notions of its complex principal
curvatures, its complex curvature distributions and its complex curvature normals. In §6, we
define the notion of the parallel transport map for the complexification of a semi-simple Lie
group. In §7, we prove Theorem 1. In §§8 and 9, we prove Theorems 2 and 3, respectively.
In §10, we introduce the notions of a complex hyperpolar action and an anti-Kaehlerian hy-
perpolar one, and prove Theorem 4. In §11, we first show that isoparametric submanifolds
with flat section in the sense of Heintze-Liu-Olmos ([16]) are complex equifocal and that the
converse also holds under certain condition.

We would like to thank Professor Ernst Heintze for his valuable advice in discussion with
him among staying at Universitidt Augsburg with respect to the equivalence of the complex
equifocality and the isoparametricness with flat section in the sense of [16] (see Theorem 15).
Also, we would like to thank Professor Yoshihiro Ohnita for introducing [40—44].
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2. Complex equifocal submanifolds

In this section, we recall the notion of a complex equifocal submanifold introduced in
[25]. Let N = G /K be a symmetric space, (g, o) be its orthogonal symmetric Lie algebra and
p be the eigenspace for —1 of o. The subspace p is identified with the tangent space T.x N
of N at eK, where e is the identity element of G. Let M be an immersed submanifold in N
and T M be its normal bundle. If, for each x(= gK) € M, g;l Tle is an abelian subspace
in p, then M is said to have abelian normal bundle. Also, if the normal connection of M is
flat and has trivial holonomy, then M is said to have globally flat normal bundle. Let M be
an immersed submanifold with globally flat and abelian normal bundle in a symmetric space
N. Let v be a parallel unit normal vector field of M. Assume that the number (which may be
0 and oo) of distinct focal radii along y;, is independent of the choice of x € M, where y;_
is the maximal geodesic such that the velocity vector y; (0) of y;_ at 0 is equal to vy. Note
that the number is infinite in the case where N is of compact type. Further, assume that the

number is not equal to 0. Let {r; x |i = 1,2,---} (|rix| < |Fit1.x| or rix = —rit1.x > 0)
be the set of all focal radii along y;,_ and r; (i = 1,2---) be functions on M defined by
assigning r; x to each x € M. These functions r; (i = 1,2,---) are called focal radius

functions for v. The normal vector field r;v is called a focal normal vector field for v. If M
is compact and, for each parallel unit normal vector field v of M, the number of distinct focal
radii along y;_is independent of the choice of x € M and further each focal radius function
for v is constant on M (in the case where the number is not equal to 0), then M is called
an equifocal submanifold. Here we note that each focal radius function has automatically
constant multiplicity. This notion was introduced in [49]. We use the terminology without
assuming the compactness of M.

For a submanifold in a hyperbolic space H™ (c) of constant curvature c, there does not
exist the focal radius corresponding to a principal curvature whose absolute value is smaller
than or equal to /—c. This fact indicates that imaginary focal radius should be defined for
submanifolds in a complete Riemannian manifold of negative sectional curvature. In [25],
we defined the notion of complex focal radii as imaginary focal radii of submanifolds in a
symmetric space of non-compact type as follows. Let M be an immersed submanifold with
abelian normal bundle in a symmetric space N = G /K of non-compact type. Denote by A
the shape tensor of M. Letv € TXJ-M and X € Ty M (x = gK). Denote by y, the geodesic in
N with y,(0) = v. The Jacobi field Y along y, with Y(0) = X and Y'(0) = —A,X is given
by

Y(5) = (Py, |, © (DS — 5D 0 A))(X),

0,s

where Y'(0) = 61, Y, P}’v|[0,:] is the parallel translation along yy|[0,s1

DE? = g, o cos(v/—Tlad(sg; 'v)) o g !
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and

sin(v/—Tad(sg; 'v))  _,;
(o)
JTad(sg ')

(see [49] or [23] in detail). Here ad is the adjoint representation of the Lie algebra g of G.

Since M has abelian normal bundle, all focal radii (other than conjugate radii) of M are strong

focal radii in the sense of [26] (see the proof of Theorem A in [26]). Hence all focal radii
co

(other than conjugate radii) of M along y, are catched as real numbers so with Ker(D§7, —

soD% o Ay) # {0}. So, we call a complex number z with Ker(DS0, — ZOD%U 0 AS) £ {0} a

SQU
co si c
00 ZODzov o Aj

Si
st =9gx0

complex focal radius of M along y, and call dim Ker(D ) the multiplicity of

N
20V

-1 -1 sin(v=Tzpad(g; 'v)) ]
(g 0 cos(v/—1zoad(g; 'v)) 0 g 7 m (resp. (gs 0 i ° % )}TxM) from T, M

o

the complex focal radius zo, where D20, (resp. D7) implies the complexification of a map

to Tx N€. Also, for a complex focal radius zg of M along y,, we call zgv (€ TXJ- M c) a complex
focal normal vector of M at x. Further, assume that M has globally flat normal bundle. Let
v be a parallel unit normal vector field of M. Assume that the number (which may be 0 and
o00) of distinct complex focal radii along y;, is independent of the choice of x € M. Further

assume that the number is not equal to 0. Let {r; » |i = 1,2, ---} be the set of all complex
focal radii along y;_, where |rj x| < |rig1,x] or “|rix| = |rix1,x| & Rerjx > Reriz1,” or
“|r,~,x| = |r,~+1,x| & Reri,x = Rer,-_,_l,x & Imri,x = —Imr,-_,_l,x > 0”. Let ri (i = 1,2, . )

be complex valued functions on M defined by assigning r; » to each x € M. We call these
functions r; (i = 1,2, ---) complex focal radius functions for v. We call r;v a complex focal
normal vector field for v. If, for each parallel unit normal vector field v of M, the number of
distinct complex focal radii along y;_is independent of the choice of x € M, each complex
focal radius function for v is constant on M and it has constant multiplicity, then we call M a
complex equifocal submanifold.

REMARK 3. In 1998, H. Ewert [10] defined the notion of a strongly equifocal hyper-
surface in a symmetric space of non-compact type. Easily we can show that all strongly
equifocal hypersurfaces are complex equifocal. However, the converse does not hold.

In a pseudo-Riemannian symmetric space, we can define the notion of a complex equifo-
cal submanifold similarly. We will use the notion in a semi-simple Lie group equipped with a
bi-invariant pseudo-Riemannian metric.

3. Anti-Kaehlerian equifocal submanifolds

In this section, we first introduce the notions of an anti-Kaehlerian submanifold and its
complex focal radius. Let J be a parallel complex structure on an even dimensional pseudo-
Riemannian manifold (M, (, )) of half index. If (JX,JY) = —(X,Y) holds for every
X,Y e TM,then (M, (, ), J) iscalled an anti-Kaehlerian manifold. Let R be the curvature
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tensor of (M, ( , ), J). We have the following relations:

3.1) R(X,Y)J = JR(X,Y),
(3.2) R(JX,JY)=—R(X,Y),
(3.3) (R(X,JY)JY, X) = —(R(X, Y)Y, X),

where X,Y € TM. Let f be an isometric immersion of an anti-Kaehlerian manifold
(M, (, ),J) into an anti-Kaehlerian manifold (1\71, (, ), J~). IfJ o f« = f« o J, then we
call (M, (, ), J) an anti-Kaehlerian submanifold in (M, ( , ), J) immersed by f. Let A
(resp. V) be the shape tensor (resp. the normal connection) of (M, (, ), J). We have the
following relations:

(3.4) Aj X = Ay(UX) = J(AX),

where X € TM and v € T-M. Denote by exp* the normal exponential map of (M, ( , ), J).
Let v be a unit normal vector of (M, (, ), J) at x. If exp~(av 4+ bJv) is a focal point
of (M, x), then we call the complex number a + by/—1 a complex focal radius along the
geodesic yy.

Let N = G/K be a symmetric space of non-compact type and (g, o) be its orthogonal
symmetric Lie algebra, where G can be assumed to be a connected semi-simple Lie group and
have its complexification, K can be assumed to be a maximal compact subgroup of G and the
compact dual G* of G is assumed to be simply connected as stated in Introduction. Let g =
f + p be the Cartan decomposition. Note that f is the Lie algebra of K and p is identified with
the tangent space T,x N, where e is the identity element of G. Let ( , ) be the Ad(G)-invariant
non-degenerate inner product of g inducing the Riemannian metric of N. Let g¢, ¢, p€ and
(, )€ be the complexifications of g, f, p and { , ), respectively. Let h be a maximal abelian
subspace of pandp =h+ >, Ay Pa be the root space decomposition with respect to b, that
is, pa = {X € plad(@)*(X) = a(a)*X for all a € b}. Then we have p¢ = h + >, ., PS
and p¢ = {X € p¢lad(@)*(X) = a®(a)*X foralla € b} (@ € Ay), where h¢, pS and
o are the complexifications of b, p, and «, respectively. We denote {a® | € Ay} by A
and express pg, as pge. We call a¢ (e AS) a positive root for b (under some lexicographical
ordering of h¢) and call p¢ = h® + > . 2 Pac the root space decomposition with respect to
h¢. Let G€ (resp. K€) be the complexification of G (resp. K). The real part Re{ , )¢ of (, )¢
is an Ad(G®)-invariant non-degenerate inner product of g¢. The restriction Re( , )¢|pexpe is
an Ad(K ©)- invariant non-degenerate inner product of p¢ (= T,x<(G¢/K€)). Denote by ( , )’
the G®-invariant pseudo-Riemannian metric on G¢/ K¢ induced from Re( , )¢|pexpe. Define
an almost complex structure Jy of p¢ by Jo(X + /—1Y) = =Y + /—1X (X, Y € p). Itis
clear that Jy is Ad(K©)-invariant. Denote by J the GC-invariant almost complex structure on
G¢/K° induced from Jy. It is shown that (G¢/K€, (, Y, J ) is an anti-Kaehlerian manifold
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and a pseudo-Riemannian symmetric space. We call this anti-Kaehlerian manifold an anti-
Kaehlerian symmetric space associated with G /K and simply denote it by G¢/K€.

EXAMPLE 2. We consider the n-dimensional hyperbolic space

H'(=1) = {(x1, - xps) € R —xf 423+ 422, = —1)
(= 50°n, 1)/SO(n))

of constant curvature — 1, where er1+1 is the (n + 1)-dimensional Lorentzian space equipped

with the Lorentzian inner product ( , ); defined by <3371’ aix’)l ==8;G=1,---,n+1
and (%, %)1 =4 (i, j =2,---,n+ 1). The anti-Kaehlerian symmetric space associated
i J '

with H"(—1) is the complex quadric

{(z1. -+, Znt1) EC'fJrl | —z%—i—z%—i—m—i—zﬁH = -1}
=50n+1,C)/S0(n,C)),

where C'{H is the (n + 1)-dimensional anti-Kaehlerian space equipped with the non-

3 C
degenerate inner product Re( , ){.

Let M be an immersed anti-Kaehlerian submanifold with globally flat and abelian normal
bundle in the anti-Kaehlerian symmetric space G¢/K €. Let v be a parallel normal vector field
of M. Assume that the number (which may be 0 and oco) of distinct complex focal radii along
the geodesic ;5. is independent of the choice of x € M. Further assume that the number is
not equal to 0. Let {r; y |i = 1,2, ---} be the set of all complex focal radii along y; , where
[rix| < Irigrxlor “|rix| = Irig1x] & Rer;x > Rerjpy x” or “|ri x| = [rig1 x| & Rer;x =
Reriy1x & Imr;, = —Imrjy1, > 0”. Letr; i = 1,2, ---) be complex valued functions
on M defined by assigning 7; , to each x € M. We call this function 7; the i-th complex focal
radius function for V.

LEMMA 1. Assume that the multiplicity of the complex focal radius ri(x) (i =
1,2, ---)is independent of the choice of x € M, where the multiplicity of r; (x) implies that of
the focal point corresponding to r;(x). Then the functions r; (i = 1,2, ---) are holomorphic.

PROOF. Define a function Q, : C — C (x € M) by

i co _ ysi - N - ~
Qx(2) i=detlDipe 5 4 1mey 75, ~ Pikenytamo) 73, © ARea)Tet(ma) 757 -

Itis clear that Q is holomorphic. Complex focal radii along y;_ are catched as zero points of
QO (see the proof of Theorem 5), which is discrete by the holomorphicity of Q. Fix a number
ipand xg € M. Set Iy := {i | |ri (x0)| = |ri;,(x0)|}, i1 := min Iy and i := max Iy. Further, set
Iy := {i | ri(x0)| = |rij—1(x0)|} and I := {i | |ri(x0)| = |riy+1(x0)|}. Note that Iy, I; and

I, are finite. Take a simple closed curve C in the domain D := [z eC M <

lz] < MW} which surrounds r;, (xo) and does not surround r; (xo) (i € Ip \ {ip}).
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The functions r; (i = 1,2, ---) are continuous by the constancy of the multiplicities of 7;.
Hence we can take a neighborhood U of xg such that, for every x € U, r;,(x) positions inside
C,ri(x)’s (i € Ip\ {io}) position outside C and r; (x)’s (i € I} U I,) do not belong to D. Then
it is clear that other complex focal radii r; (x)’s (i ¢ Ip U I} U I, x € U) position outside C.
Let m, be the order of the zero point r;, (x) of Q. Then we have

1 ZQ}(Z)
meﬂ’x/—_l c 0x(2)

It follows from the continuity of r;, that m, is independent of the choice of x € U. Define a
complex function F, (z € C) on M by F,(x) := Q,(z) (x € M). Itis clear that this function
F. is a holomorphic function on M. Hence, it follows from the above integral representation
that r;, is holomorphic over U. Further, it follows from the arbitrariness of xo that r;; is
holomorphic (over M). g.e.d.

Fig(x) = dz (xeU).

If, for each parallel unit normal vector field v of M, the number of distinct complex focal
radii along y;_ is independent of the choice of x € M, each complex focal radius function
for U is constant on M and it has constant multiplicity, then we call M an anti-Kaehlerian
equifocal submanifold.

4. The extrinsic complexifications of complete real analytic submanifolds in non-
compact symmetric spaces

In this section, we introduce the new notion of the extrinsic complexifications of com-
plete real analytic submanifolds in symmetric spaces of non-compact type. First we recall
the complexifications of complete real analytic Riemannian manifolds. Let N be a com-
plete real analytic Riemannian manifold. The notion of the adapted complex structure on
a neighborhood U of the 0-section of the tangent bundle 7N is defined as the complex
structure (on U) such that, for each geodesic y : R — N, the restriction of its differen-
tial yx : TR = C — TN to y, ' (U) is holomorphic. We take U as largely as possible under
the condition that U N Ty N is a star-shaped neighborhood of 0, for each x € N, where 0, is
the zero vector of T, N. If N is of non-negative curvature, then we have U = T N. Also, if
all sectional curvatures of N are bigger than or equal to ¢ (¢ < 0), then U contains the ball
bundle 7" N :={X € TN | ||X|| < r} of radius r := 2\7_7. In detail, see [40 ~ 44]. Denote
by J4 the adapted complex structure on U. The complex manifold (U, J,) is interpreted as
the complexification of N. We denote (U, J4) by N€ and call it the complexification of N,
where we note that N€ is given no Riemannian metric. In particular, in case of N = R™ (the
Euclidean space), we have (U, J4) = C™. Also, in the case where N is a symmetric space
G/K of non-compact type, there exists the holomorphic diffeomorphism § of (U, J4) onto
an open subset of G¢/ K€ satistying the following commutative diagram:
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O-section

/

Ge/Ke

G/K — g 5(U)
eK

FIGURE 1.

i W) L Ge/Ke

i Ts

7 '(U) —> (U )

for an arbitrary geodesic y : R — N = G/K. Here i is the natural bijection of TR onto
C, yx is the differential of y and y€ is defined by y€(z) := go exp(zg(;kly(O))Kc, where g

is an element of G with y(0) = goK and g(;l)}(O) is regarded as an element of p under the
identification of T,x N and p (g = f + p : the Cartan decomposition of G/K). In this case,
the above value r means the half of the minimal conjugate radius of the compact dual G*/K
of G/K.

Now we shall define the extrinsic complexifications of complete real analytic submani-
folds in a symmetric space G/K of non-compact type. Let M be an immersed complete real
analytic submanifold in G/K. Denote by f its immersion. Let M€ be the complexification
of M (defined as above). We want to define the complexification f€ : M¢ — G¢/K€ of f,
where we shrink M€ to a neighborhood of the 0-section of T M if necessary. For its purpose,
we first define the complexification of a real analytic curve @ : R — G/K. Letg = f+p
be the Cartan decomposition associated with G/K and W : R — p be the curve in p with
(expW()K = a(t) (t € R), where we note that W is uniquely determined because G/K
is of non-compact type. Since « is real analytic, so is also W. Let W€ : D — p® (D
a neighborhood of R in C) be the holomorphic extension of W. We define the complexifi-
cation a® : D — G¢/K°€ of @ by a®(z) = (exp W¢(z))K€. By using this complexification
of a real analytic curve in G/K, we define the complexification f¢ : M® — G¢/K€ of f
by f4(X) := (f o yH(V/=1) (X € M®(C TM)), where y} is the geodesic in M with
)'/)’(” (0) = X. Here we shrink M€ to a neighborhood of the 0-section of 7 M if necessary in
order to assure that /—1 belongs to the domain of (f o y)’(v[ )¢ for each X € M€.

PROPOSITION 1. (i) Themap f€: M¢ — G/K€ is holomorphic.
(ii) The restriction of f€ to a neighborhood of the 0-section of T M is an immersion.
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PROOF. First we shall show the statement (i). According to Theorem 3.4 of [42], we
have only to show that, for each geodesic y : R — M, f€o y, : y*_l(Mc) (CTR=C) —
G*¢/K*€ is holomorphic. Denote by t the natural coordinate of R. From the definition of [,
we have

aT

N

3
(fCoy(s +v—=1t) = (fCo n)(r(—) ) = fCuy () = (f oyl V=1).

Let W : R — p be the real analytic curve in p with (f o y)(t) = expW(#)K (¢ € R).
Then we have (f o ytﬁ);[(s))(u) =expW(s +tu)K (u € R) and hence (f o ytA;(s))c(J—_l) =
exp(We(s + ~/—11))K€. Thus we obtain (€ o y,)(s + ~/—1t) = exp(WE(s + ~/—11))KC.
It is clear that the complex curve of the right-hand side is holomorphic. Therefore, so is also
f€ov4. Next we shall show the statement (ii). Denote by U M (resp. U (T M)) the unit tangent
bundle of M (resp. TM). Take Z € UM and n € Uz(TM). Let X : (—¢,&) — TM be a
real analytic curve with X (0) = 5, where ¢ is a sufficiently small positive number. Let a be a
positive number with aZ € M€. Set X,(s) := aX(s) and n, := X4(0) (€ Tuz(TM)). Also,
let W(s) : R — p (s € (—¢,¢)) be the curve in p with (f o y}/}’l(s))(t) = (expW(s))K
(t € R). Set W(s, 1) := W(s)(t) ((s,1) € (—&, &) x R) and WE(s, 2) := W(s)¢(2) ((s5,2) €
(—¢, &) x C). Itis clear that W (—e, ) x R — pis real analytic. Denote by 7€ the natural

projection of G¢ onto G¢/K¢. Easily we have (fi)«(74) = (( o exp)*)*(a%(o, 0)) and

fime) = (@€o exp)*(% W(s)c(a«/—1)|S:O). Since Wc(s, z) is real analytic with respect
to s, it is expanded as We(s, z) = Yoo skwi(z) (wr(z) € p¢) on (—¢, €). Then we have
W(s, t) = Z,fio skwy (r). Tt follows from the holomorphicity of we (s, z) with respect to z

that wy : C — p® is holomorphic. Easily we have gig (0,0) = (wi|r)'(0). Since wy is

holomorphic and w(R) C p, we have (w;|r)'(0) = ((wl)ﬁp|ﬁR)/(O) by the theorem of

Cauchy-Riemann, where (w1) J=Tp is the 4/ —1p-component of w;. Thus we have

“4.1) (fe)x(ma) = ((w o CXP)*)*(a(wl)ﬁHﬁR)/(O)) .
Also we have
4.2) fEMa) = (¢ 0 exp)s(wi (av/=1)).

Let B be the largest connected neighborhood of 0 € p© where 7€ o exp is a diffeomorphism.
Note that B is a tubular neighborhood of p (C p®) because G/K is of non-compact type. Set

&y :=supf{e > 0| (wl)\/_—1p|\/_—1(0,8] has no zero point & wo(v/'—1[0, €]) C B}.

Since f is an immersion and 1, # 0, we have ((wl)ﬁplﬁR)/(O) # 0 by (4.1). On the
other hand, it follows from w1 (0) € p that (wl)ﬂp(O) = 0. Also, we have wo(0) € p C B.
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Hence we have &, > 0. Set £z := minycy, (T M) &, and

U/:=( U {aZ|O§a<ez}>ﬂMc.

ZeUM

Assume aZ € U’. Then we have (wl)\/jp(a«/—l) # 0 and wo(a~/—1) € B. These facts

deduce (7€ o exp)«(wy(ar/—1)) # 0, where we note that wi(av/—1) € Tv‘,(())‘n,(a\/f—l)pc =
Ty ﬁ)pc. Hence, from (4.2), we obtain f£(1,) # 0. From the arbitrarinesses of , Z and

a, this fact implies that the restriction of f€to U’ is an immersion. g.e.d.

Let U’'(C M€) be a neighborhood of the 0-section of T M as in the proof of Proposition
1. Denote by M€ this neighborhood U’ newly. Give M€ the Riemannian metric induced
from that of G¢/K® by f€¢. Then M® becomes an anti-Kaehlerian submanifold in G¢/ K¢
immersed by f€. We call this anti-Kaehlerian submanifold M€ immersed by f€ the extrinsic
complexification of the submanifold M. We consider the case where M is (extrinsically)
homogeneous. Concretely we consider the case where M = H(goK) and f is the inclusion
map of M into G/K, where H is a closed subgroup of G. Let ¢ be a natural immersion of
G/K into G¢/K¢, thatis, ((¢K) = gK€ (¢ € G). Itis shown that ¢ is totally geodesic. Let
g4, be the complexification of the Lie algebra of H and set H® := exp g{,.

PROPOSITION 2. For a homogeneous submanifold M = H(goK), the image (M)
is an open subset of the orbit H(goK ©).

PROOF. Let X € M and hogoK be the base point of X (i.e., X € T gk M). Let
W : R — p be the real analytic curve in p with (f o y)y)(t) =expW(@#)K (t € R) and
WH : R — gy be a real analytic curve in gy with (f o y§) (1) = (exp WH (1)) goK . De-
note by 7 (resp. 7€) the natural projection of G onto G/K (resp. G¢ onto G¢/K€). Set
a1(z) == (exp We(2))K® and a3 (z) := (exp(WH)¢(2))go K€, where W€ (resp. (WH)®) is the
holomorphic extension of W (resp. W) to a neighborhood U of R in C. We may assume
/=1 € U because of X € MEC. Clearly «; (i = 1, 2) are holomorphic and o1 (t) = (1)
(t € R). Hence, it follows from the theorem of identity that & = «» on U. In partic-
ular, we have o;(v/—1) = a2(+/—1). On the other hand, we have f¢(X) = a1 (V/—=1)
and ar(v/—1) € HS(goK®). Hence we obtain f¢(X) € H%(goK€). Therefore, it fol-
lows from the arbitrariness of X that f¢(M€¢ C H€(goK®). Further, it follows from
dimM®¢ = dimH¢(goK€) (= 2dimM) that f€(M€) is an open subset of H(goK ©). g.e.d.

From this fact, we shall call H¢(goK®) the complete extrinsic complexification of the
homogeneous submanifold M = H(goK) and denote it by Me. Let M be a complete real
analytic submanifold in G/K and J be the complex structure on its extrinsic complexfication
M¢€. Let R (resp. Ié) be the curvature tensor of G/K (resp. G¢/K®) and A and R (resp. A

and Iél) be the shape tensor and the normal curvature tensor of M (resp. M€). Then we can
show the following relations.
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LEMMA 2. Letg; =10r0(i =1,2,3).
(i) Forany X,Y,Z € T(G/K), we have
R(TE1X, Jo20,Y) T, Z = Jotetes R(X, Y)Z.
(i) Forany X € TM and any v € T+M, we have
e

Jel v

20X = JOTe AL X,
(ili) Forany X,Y € TM and any v € T*+M, we have
RY(I51,X, J20,Y) TS0 = JOF5 REY(X, Y)v.

PROOF. First we show the relation of (i). Let gK be the base point of X, Y, Z. Since
¢ is totally geodesic, we have k\(L*X, LY)wZ = 14,R(X, Y)Z. This relation together with
(g*_l oJo Gi)eke = ~/—1idye (idpe : the identity transformation of p¢ = T,xc(G/K®))
deduces

RUJ\X, T2, Y) T30, Z
= —g V=1 g X VT g Y VT g 2
= —g/—T T E gL X, g Y], g 2]
= JEOTRTEa R X, L,Y)Z
= Jatets R(X,Y)Z,

where [, ] is the Lie bracket product of g¢. Next we show the relation of (ii). Since ¢

is totally geodesic, we have AL*UL*X = 1Ay X. This relation together with (3.4) deduces

Am[*vJ X = JE1Te2, A, X. Next we show the relation of (iii). Since ¢ is totally geodesic,
we have
(4.3) R X, 1 Y)v = . RE(X, Y.

From the Ricci equation, (3.4), (4.3) and the relation of (i), we have
(}/?\l(Jelt*X, JE20,Y) T30, J~€4t*w)
= (RUT X, J20,Y) T 00, Tuw) + ([Afe, . Aje, 156X, T20Y)
= (ﬁ(z*X, Y, JEtte ) 4+ ([A[*U, Ajgl+...+g4[*w]t*X, 1Y)
= (ﬁl(L*X, 1Y) tsv, 781+"'+84L*w)
= (Jartete, pLix v, JTuuw),
where &4 = 1 or 0 and w € T+ M. Thus we obtain the relation of (iii). q.e.d.

By using Lemmas 1 and 2, we prove the following result.
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THEOREM 5. Let M be a complete real analytic submanifold with globally flat and
abelian normal bundle in a symmetric space G /K of non-compact type. The submanifold
M is complex equifocal if and only if its extrinsic complexification M€ is anti-Kaehlerian
equifocal. In detail, for each unit normal vector v of M, the complex focal radii of M along
Yy coincide with those of M€ along vy, ,.

PROOF. Let p € G/K. Identify (T,(G/K))¢ with T,,»)(G¢/K®) by the one-to-one
correspondence X ++/—1Y < 1, X + .7L*Y (X,Y € Tp(G/K)). According to (i) of Lemma
2, the complexification R; of R, is identified with Iél( ) under this identification. Let x € M.

Identify (T M) (resp. (TXJ-M )€) with T, )M (resp. Tltr)Mc) under this identification. Ac-

cording to (ii) (resp. (iii)) of Lemma 2, the complexification A$ of A, (resp. the complex-
ification R)ch of R)J;) is identified with AL(X) (resp. I/Q\[l(x)) under these identifications. Since

M has abelian normal bundle and R li(G/K) is identified with R® as above, M* has abelian
normal bundle along ¢(M). Further, according to the theorem of identity, it follows from the
holomorphicities of R and the normal bundle of M¢ that M¢ has abelian normal bundle (over
the whole of M€), where we also use the fact that (M) is a half dimensional totally real sub-
manifold of M€. Since M has globally flat normal bundle and RL l.(m) 1s identified with Rt¢
as above, R vanishes along ((M). Further, according to the theorem of identity, it follows
from the holomorphicities of R' and the normal bundle of M€ that R+ vanishes (on the whole
of M€). Hence M€ has flat normal bundle. Further, since M€ is a tubular neighborhood of
the 0-section of the tangent bundle T M, we see that M€ has globally flat normal bundle. Let
20 = a+b/—1bea complex focal radius of M€ along ., (v € TgJ-KM). Then there exists the

~

Jacobi field Y along y,, ;7. , such that Y (0)(# 0) € TyxeM€, Y'(0) = —AuvbT,0Y (0)
and Y (1) = 0. The Jacobi field Y is described as

_ co _ si _ A -
Y(s) = PVatw-%—bJj*v‘[O’S] ((Ds(at*v+bft*v) S(Ds(at*v-i-bjt*v) © Adl*v+b11*v))y(0)) ’

where
Dl oibTow = 9% © cos(v/—lad(s(ag; ' tsv + bg; ' Trew))) 0 g !,
si sin(v/—Tad(s(ag; 'tv +bg;1fL*v))) o o]

*

D ~ = g [e] ~
s@uotbTuo) =TT T (s (ags e 4+ bgr T ev))

By noticing J~|Tch(Gc/Kc) = g4 0 /—lidpe 0 g;1 (idpe : the identity transformation of p©),

we have
Dgﬁm*wbﬁ*u) = g« 0 COS(v _1SZOad(g;1L*U)) © 9;1 ’
D . sin(«/—lszoad(gglt*v)) 1
statobTnw) — 9% © _ —1 © %
v —1szpad(gy " txv)

A A 1

Aaz*v+bl~t*v =90 Azgg*’lt*v © 9x
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Hence we have

Y(1) =P,

at*v+b7t*v

in(v/—1zpad(g; ! .
(g0 sin( zoad(g, " txv)) oA 1 og )y )
V=Tzpad(g; ' 1,v) W0Ge v

((g* o cos(«/—lz()ad(gglt*v)) o g*’l)Y(O)

=0.

Therefore, we can recognize that z is a complex focal radius of M€ along y,,, if and only if
Ker(g* o cos(\/—lzadc(g;]t*v)) o g;l

. — co—1 N
o sin(+/—1zad (g* LxV)) oA -1 o g_l # {0},
——1zadc(g*_ll*v) 2% Lk Ik

which is equivalent to Ker(D$9 — zD5! o AS) # {0}, that is, the fact that z is a complex

Gx

focal radius of M along y,, where D¢, and Dgf) are the operators stated in §2. Thus complex
focal radii of M€ along y,,, coincide with those of M along y,. Since ¢ is totally geodesic,
we see that a normal vector field v of M is parallel if and only if the normal vector field ¢,V
of M€ along ((M) is parallel. Thus we see that if M€ is anti-Kaehlerian equifocal, then M
is complex equifocal. Now we show the converse. Assume that M is complex equifocal.
Let w be a parallel normal vector field on M€. The normal vector field w is expressed as
w = 4,7 + T (V1, U : parallel normal vector fields of M) along (M) because of
VJ = 0. Since M is complex equifocal, for an arbitrary parallel normal vector field ¥ of M,
the complex focal radii of M€ along y,, 5, is independent of the choice of x € M. Hence,
from the definition of a complex focal radius, we see that so is also the complex focal radii of
M€ along Y7+ T1.7), - Thatis, the complex focal radius functions for w are constant along
t(M). Hence it follows from the holomorphicities of those complex focal radius functions (by
Lemma 1) that those complex focal radius functions are constant over the whole of M€, where
we also use the fact that ¢(M) is a half-dimensional totally real submanifold of M€. Thus M€
is anti-Kaehlerian equifocal. This completes the proof. g.e.d.

Here we propose the following problem.

PROBLEM 1. Is the submanifold M€ in Theorem 5 extended to a complete anti-
Kaehlerian equifocal submanifold?

For example, in the case where M is a homogeneous submanifold H (goK), the subman-
ifold M€ is extended to a complete anti-Kaehlerian equifocal submanifold H€(goK€).

At the end of this section, we explain the situation of the focal points of the complexifi-
cation of a complete totally umbilical hypersurface in the hyperbolic space.
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EXAMPLE 3. Let M be a complete totally umbilical hypersurface with principal cur-
vature A (> 0) in the (n 4+ 1)-dimensional hyperbolic space H n+1(¢) of constant curvature ¢
and v be a unit normal vector field of M. The set F of all the complex focal radii of M (and
hence M€) for v is given by

(arctanh?—}—jn\/—_l) ‘j :0,:&1,---} (A > +/—¢)
0 (A =+/—0)

[t i)

=

0 <A< +/—0).

Note that, when A = /—c, we should interpret as F = {oo} rather than F' = {J, where oo
is the point at infinity of the complex sphere § = C U {oo}. Hence the situation of the focal
points of M€ is as in Figures 2, 3 and 4.

Vou

Hn+1 (C)

) focal points
patch of M*©
Yvz

FIGURE 2.

Hn+1 (C)
patch 3 focal points

>( of M*©
Yvz

FIGURE 3.
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focal points
of M*©

M = a horosphere
Yo

This point is distant
from M very far

FIGURE 4.

5. Anti-Kaehlerian isoparametric submanifolds

In this section, we introduce some classes of submanifolds in the infinite dimensional
anti-Kaehlerian space. We first define the notion of an infinite dimensional anti-Kaehlerian
space. Let V be an infinite dimensional topological real vector space, J be a continuous
linear operator of V such that J? = —id and (, ) be a continuous non-degenerate sym-
metric bilinear form of V such that (7X, .7Y) = —(X,Y) holds for every X,Y € V. If
there exists an orthogonal time-space decomposition V. = V_ @ V4 (i.e, {, )|v_xv_ : neg-
ative definite, {( , )|v, xv, : positive definite) such that fVi = Vx, (V,(, )v,)is aHilbert
space and that the distance topology associated with ( , )y, coincides with the original topol-
ogy of V, then we call (V, (, ), 7) the infinite dimensional anti-Kaehlerian space, where
(W vy i=—my (, )+ JT"Z( , ) (wy, : the projection of V onto Vi). Let (M, (, ), J)
be an 2n-dimensional anti-Kaehlerian submanifold in an infinite dimensional anti-Kaehlerian
space (V, (, ), J ) and A (resp. i) the shape tensor (resp. the second fundamental form) of M.

Let H be the mean curvature vector of (M, (, ), J), thatis, H = ﬁ leil (ei, ei)h(e;, e;)
(e1,---, ey : an orthonormal base of M). If h(X,Y) = (X, Y)H — (JX, Y)fH for ev-
ery X,Y € TM, then we call (M, (, ), J) atotally anti-Kaehlerian umbilical submanifold.
Here we note that the above relation is rewritten as 2¢(X (10| y 1.0y = (x(1.0) y (1.0)y g (1.0),
where X110 .= x — V=1JX, YEO .=y — /Z1JY and HIO .= g — \/—_I,TH Totally
anti-Kaehlerian umbilical submanifolds will be characterized in §8.

Let M be a Hilbert manifold modelled on a separable Hilbert space (V, (, )y). Let
(', ) be a section of the (0, 2)-tensor bundle 7*M ® T*M such that (, ), is a continu-
ous non-degenerate symmetric bilinear form on 7, M for each x € M and J be a section
of the (1, 1)-tensor bundle 7*M ® TM such that J2 = —id, VJ = 0 (V : the Levi-
Civita connection of (, )), Jy is a continuous linear operator of 7y M for each x € M and
(JX,JY) = —(X,Y) forevery X,Y € TM. If, for each x € M, there exist distributions
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W4+ on some neighborhood U of x satisfying the following condition (AKH), then we call
(M, (, ), J) an anti-Kaehlerian Hilbert manifold.

(AKH) For each y € U, Wz, gives an orthogonal time-space decomposition of
(TyM, (, )y), (TyM, (, )y, Way) is isometric to (V, (, )v) and Jy Wiy = Wx,.

Let f be an isometric immersion of an anti-Kaehlerian Hilbert manifold (M, (, ), J) into
an anti-Kaehlerian space (V, (, ), J ). If Jo f« = f« o J holds, then we call M an anti-
Kaehlerian Hilbert submanifold in (V, ( , ), T ) immersed by f. If M is of finite codimen-
sion and, for each v € T M, the shape operator A, is a compact operator with respect
to f*(, )v., then we call M an anti-Kaehlerian Fredholm submanifold (rather than anti-
Kaehlerian Fredholm Hilbert submanifold). Let (M, (, ), J) be an anti-Kaehlerian Fred-
holm submanifold in an anti-Kaehlerian space (V, (, ), J ) and A be the shape tensor of
(M, (, ),J). Fix a unit normal vector v of (M, (, ), J). If there exists X(# 0) € TM
with Ay X = aX + bJ X, then we call the complex number a + bv/—1a J-eigenvalue of A,
(or a complex principal curvature of direction v) and call X a J-eigenvector for a + by/—1.
Here we note that this relation is rewritten as ASX1:0 = (a + b/=1)X1:0) where X(1.0)
is as above. Also, we call the space of all J-eigenvectors for a + b/—1 a J-eigenspace for
a + b~/—1. For J-eigenspaces of A, we have the following fact.

LEMMA 3. (i) J-eigenvectors for distinct J-eigenvalues are orthogonal to each
other.

(i) Each J-eigenspace of A, is J-invariant and non-degenerate (i.e., the restriction of
(', ) to the J-eigenspace is non-degenerate).

PROOF. From A, o J = J o Ay, it follows that each J-eigenspace is J-invariant. Let
ai +bi/—1 (i = 1,2)be distinct J-eigenvalues of A, and X; (i = 1, 2) be J-eigenvector for
a; + bij~/—1. From (A, X1, X2) = (X1, AyX»>) and the symmetricness of J, we have

(5.1 (a1 — a2)(X1, X2) + (b1 — b2)(J X1, X2) = 0.
From A, o J = J o A, and the symmetricness of J, we have
(ApJ X1, X2) = a1(J X1, X2) — bi(X1, X2)
and
(ApJ X1, X2) = (J X1, AvX2) = aa(J X1, X2) — D2(X1, X2).
Hence we have (b1 —b2) (X1, X2)— (a1 —a2)(J X1, X2) = 0. This together with (5.1) deduces

det( (X1, X2) (J X1, X2)

_ 2 )
(JX1,X2)  (X1.X2) >_(X1’X2) +(JX1,X2)"=0

because of (a1 — a2, b1 — by) # (0, 0). That is, we obtain (X, X2) = 0. Thus the statement
(i) is shown. According to the statement (i), each J-eigenspace is non-degenerate because of
the non-degeneracy of ( , ). q.e.d.



COMPLEX EQUIFOCAL SUBMANIFOLDS 221

We call the set of all J-eigenvalues of A, the J-spectrum of A, and denote it by
Spec; A,. For Spec; A,, we have the following fact.

PROPOSITION 3. The set Spec; Ay \ {0} is described as follows:

Spec; Ay \ {0} = {A; |i = 1,2, -}

[Ail > [Ait1] or “|Aj] = [Ai+1] & Red; > ReA;q”
or “|Ai]l = |Ai+1] & Rex; =ReAjy; & ImA; = —ImA;4; > 07

Also, the J-eigenspace for each J-eigenvalue of A, other than 0 is of finite dimension.

PROOF. Let a + bs/—1 € Spec;A, and X be a J-eigenvector for a + b+/—1. Let
X = X_ + X4+ (X4 € V4). Then we have

(AvX, AyX)y, = (aXy +bJX_,aXy +bIX_ ) — (aX_ +bJXy,aX_+bIX,)
=a* (X, X4) = b2(X_, X_) —a> (X, X_) + b* (X4, X4)

= @*+b)(X, X)y, .

Since A, is a compact operator with respectto ( , )y, , this relation deduces that Spec ; A, \ {0}
is described as in the statement and the J-eigenspace for each J-eigenvalue of A, other than
0 is of finite dimension. g.e.d.

We call the J-eigenvalue A; as in the statement of Proposition 3 the i-th complex princi-
pal curvature of direction v. Assume that (M, ( , ), J) has globally flat normal bundle. Fix
a parallel normal vector field ¥ of M. Assume that the number (which may be co) of distinct
complex principal curvatures of direction vy is independent of the choice of x € M. Then we
can define functions A; (i = 1,2, ---)on M by assigning the i-th complex principal curvature
of direction ¥y to each x € M. We call this function A; the i-th complex principal curvature
Sfunction of direction v. We consider the following condition:

(AKI) For each parallel normal vector field v, the number of distinct complex principal
curvatures of direction vy is independent of the choice of x € M, each complex principal
curvature function of direction v is constant on M and it has constant multiplicity.

If (M, (, ), J) satisfies this condition (AKI), then we call (M, ( , ), J) an anti-Kaehlerian
isoparametric submanifold. Let {e;}7°, be an orthonormal system of (7xM, (, )y). If
{ei}?2, U {Je;i}2, is an orthonormal base of T, M, then we call {e;}:°, a J-orthonormal
base. If there exists a J-orthonormal base consisting of J-eigenvectors of A,, then A, is said
to be diagonalized with respect to the J-orthonormal base. If (M, { , ), J) is anti-Kaehlerian
isoparametric and, for each v € T+ M, the shape operator A, is diagonalized with respect
to an J-orthonormal base, then we call (M, ( , ), J) a proper anti-Kaehlerian isoparametric

submanifold.
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LEMMA 4. Let (M, , ), J) be a proper anti-Kaehlerian isoparametric submanifold.

Then Ay’s (v € TXJ‘ M) are simultaneously diagonalized with respect to a J-orthonormal base

of Ty M.

PROOF. Let{vy,---, v} be an orthonormal base of TXJ-M. Let {E;j | j € I;} be the set
of J-eigenspaces of A,, (i = 1,---,r). Let AUi|Eij =aqjjid+bJ (G =1,---,r, jel).

Fix jo € 1. Take X € Eyj,. Let X = Zjelz

ApAnX =Y Ay (@2jXj + b J X))
JE

and

Ay, Ay X = (ayjyid + b1 jyJ) Z(azjxj +byjJX)).

Jjeh

Since [Ay,, Ay,] = 0, we have

D (Ay, —a1jyid = bijy ) (a2 X+ b2 JX ) = 0.

Jeh
Also, by using [Ay,, Ay, ] = 0 again, we can show
(Ay, —a1jyid = b1y ) (@i X; +brjJXj) € Enj.

Hence we have az;X; + byjJX; € Ejj,, which implies X;

Eyj, is J-invariant.  After all we have X e@jelz(EljomEzj)'

Ej, =@ e, (E1j, N Ezj) and hence

M= P (EijNEy).
Ui, )€l xIp

By repeating the same process, we have

<M = @ (EvjyN---NE;).
(J1,-sjr)€ly x---x1Iy

X; (X € E3j). Then we have

€

E1j, because

Thus we have

This relation implies that A,’s (v € TXJ- M) are simultaneously diagonalized with respect to a

J-orthonormal base.

q.e.d.

Let (M, {, ), J) be a proper anti-Kaehlerian isoparametric submanifold in an infinite

dimensional anti-Kaehlerian space (V, (, ), J ). Let{E; | i € I} be the family of distributions
on M such that, for each x € M, {E;(x)|i € I} is the set of all common J-eigenspaces of
Ay’s (v e TXJ-M). Let A; (i € I) be the section of (T+M)* ® C such that A, = Re; (v)id +
ImA; (v)J on E;(r(v)) for each v € T+M, where 7 is the bundle projection of T+ M. We
call A; (i € I) complex principal curvatures of (M, ( , ), J) and call distributions E; (i € I)

complex curvature distributions of (M, ( , ), J).
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LEMMA 5. There uniquely exists a normal vector field v; of (M, (, ), J) with A;(-) =
(i, ) =V =1{Jvi, -).

PROOF. We can express as A; () = (vi, -) + +/—1{wj, -), where v; and w; are normal
vector fields of (M, (, ), J). We shall show w; = —.71),-. Let v € T+M. From Ai(J~v) =
~/—1X;(v), we have

2 (Jv) = —(wi, v) + v —1(v;, v).

On the other hand, we have
2i(Tv) = (v, Tv) + =T (wi, Jv) = (Jvi, v) +V=1{Tw;, v) .

Hence we obtain (w; + J~vi, v) = 0. It follows from the arbitrariness of v that w; = —J~v,-.
Thus the existenceness is shown. The uniqueness is trivial. g.e.d.

We call v; (i € I)the complex curvature normals of (M, (, ), J). Note that v; is parallel
with respect to the normal connection V.

6. The parallel transport map for the complexification of a semi-simple Lie group

In this section, we define the parallel transport map for the complexification G¢ of a
connected semi-simple Lie group G. Take an Ad(G)-invariant non-degenerate symmetric
bilinear form ( , ) of the Lie algebra g of G. Fix an orthogonal time-space decomposition
g =g_ @ g+. Let {, ) be the real part of the complexification { , )¢(: g¢ x g¢ — C) of
{, ). Denote by the same symbol ( , )’ the bi-invariant pseudo-Riemannian metric of G¢
induced from ( , ). Itis clear that g¢ = (g— ® ~/—1g+) ® (g+ ® v/ —1g-) is an orthogonal
time-space decomposition of (g, (, )’). Set g¢ :=g_ ® v/ —lgy, g} =g+ &/ —1g_ and

/e % / * / ¢ )i : : c c
(, )gi = ngg( , ) +7TB"+< . )'s where ge (resp. yrg+) is the projection of g€ onto g¢ (resp.
g%). Let HO([0, 1], g°) be the space of all L2-integrable paths u : [0, 1] — g (with respect
to (, )/g < ). Note that H°([0, 1], g%) is independent of the choice of the orthogonal time-space
decomposition g = g_ @ g.. Let H°([0, 1], g¢) (resp. H°([0, 1], g%)) be the space of all L%-
integrable paths u : [0, 1] — g© (resp. u : [0, 1] — g% ) with respect to —(, )'[ge xqe (resp.
()t xge)- Itis clear that HO([0, 11, g) = HO([0, 1], 6©) & H°([0, 1], g$). Define a non-
degenerate symmetric bilinear form ( , );, of HO([0, 11, g) by (u, v)y = fol (u(t), v(r)) dr.
It is easy to show that the decomposition H([0, 1], g%) = H([0, 11, ¢*) & H ([0, 11, g%)
is an orthogonal time-space decomposition with respect to ( , );,. For simplicity, set Hg’c =

0 —
H ([Oa 1]7 gfl:) and < ) )0!Hivc R _JT;:EL( ) )O + JT;:EL< ) >Os Where JTHEvC (resp' JTH_?_‘)

is the projection of HO([0, 1], g¢) onto Ho* (resp. HJ?’C). It is clear that (u, U)O,Hi'c =

/01 (u(t),v(t))/gcidt (u, v € HO([0, 11, g%)). Hence (H°([0, 1], g%, (., >8,ch) is a Hilbert
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space, that is, (H (10, 11, a9, (, )6) is a pseudo-Hilbert space. Let J be the endomorphism
of g¢ defined by JX = v/—1X (X € g°). Denote by the same symbol J the bi-invariant al-
most complex structure of G€ induced from J. Define the endomorphism Jof H (10, 11, g%
by Ju = /=Tu (u € H([0,1],g%). Since THY® = HY* and (Ju, Jv)y = —(u, v)
(u, v € H'([0, 1], g)), the space (H°([0, 11, g%, ( , )o» J~) is an anti-Kaehlerian space. Let
H([0, 1], G®) be the Hilbert Lie group of all absolutely continuous paths g : [0, 1] — G¢
such that the weak derivative g’ of g exists and that ¢’ is squared integrable (with respect
to (, yﬂi)’ that is, g;'¢g' € HO([0, 1], g°). Define a map ¢¢ : H([0, 1], g°) — G°® by

*

¢C(u) = g.(1) (u € HO(0, 11, g%)), where g, is the element of H!([0, 1], G®) satisfying
9.(0) = e and g,;*l g, = u. We call this map the parallel transport map (from 0 to 1) for G€.
It is shown that this map ¢¢ is an anti-Kaehlerian submersion of (H°([0, 11, g%), ( , )o» J )
onto (G¢, {, ), J) (ie., it is a pseudo-Riemannian submersion, its vertical distribution is
J-invariant and ¢§(.7 X) = J(¢£X) for every horizontal vector X).

Imitating the proof of Lemma 2.1 in [24], we can show the following relations.

LEMMA 6. Forv e T()HO([O, 11, g% (6 . the constant path at the zero element 0 of
g%, ¢:6(v) = fol v(2)dt holds, where we identify T@HO([O, 11, g% with H°([0, 1], g°).

Imitating the proof of Lemma 2.3 in [24], we can show the following relation.

LEMMA 7. For the horizontal lift 7% of a vector field ¥ on G€ to H°([0, 11, g°) and
§ € T@HO([O, 11, g9 (= H°([0, 1], g°)), we have

~ ! - 1 -
Ver! = (Ve 0f — [ /0 & dt, ve} + 565, Tl

where V (resp. V*) is the Levi-Civita connection of { , )6 (resp. {, ).

Set P(G%, e x G% = {g € H'([0,1],G%|g(0) = e} and £2,(G%) = {g €
H'([0, 11, G%) | g(0) = g(1) = e}. The group H'([0, 1], G) acts on H°([0, 1], g°) by gauge
transformations, that is,

gxu:=Ad(Qu—g'g;" (g€ H'(0,1],G%, ue H(0,1],g%).

It is shown that the following facts hold:
(i) The above action of H!([0, 1], G%) on H([0, 1], g°) is isometric,

(i) The above action of P(G¢, e x G¢) on H([0, 1], g°) is transitive and free,

(iii)  ¢¢(gxu) = g(0)p¢(u)g(1)~" for g € H'([0, 1], G*) and u € H([0, 1], g°),

(v) ¢°: HO([0, 1], g°) — G®is regarded as a £2,(G)-bundle.

(v) If ¢¢(u) = xoqﬁc(v)xl_l (u,v € H(0, 1], g%, xo,x1 € G®), then there exists
g € H'([0, 1], G%) such that g(0) = x0, g(1) = x1 and u = g * v. In particular, it follows
that each u € H([0, 1], g°) is described as u = ¢ * 0 in terms of some g € P(G¢,G® x e).
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Let 7 be the inclusion map of HO([O, 1], g) into HO([O, 1], g€) and ¢ be the inclusion map
of G into G¢. Also, let ¢ be the parallel transport map for G. Then we have

(6.1) PCoT=10¢.

7. Proof of Theorem 1

In this section, we prove Theorem 1. First we prepare the following proposition.

PROPOSITION 4. Let M be an anti-Kaehlerian submanifold in G¢/K ¢ with globally
flat and abelian normal bundle, where G¢/K€ is the complexification of a symmetric space
G /K of non-compact type. Then M is anti-Kaehlerian equifocal in G¢/ K€ if and only if each
component of (1€ o )~V (M) is anti-Kaehlerian isoparametric in H°([0, 11, g%). In detail,
for each unit normal vector v of M, complex focal radii along the geodesic y, coincide with
the inverse numbers of complex principal curvatures of the horizontal lift vL-direction, where
Yy is the maximal geodesic in G¢/ K€ with y,(0) = v.

PROOF. Let M be an anti-Kaehlerian submanifold with globally flat and abelian normal
bundle in G¢/K . Denote by the same symbol J the almost complex structures of G¢/K ¢ and
HO([0, 1], g°) and by the same symbol J those of M and (7¢0$®) ™! (M). Fix a normal vector
vof Matxand X € (€0 ¢°)~!(x). Since 7€ o ¢° is a pseudo-Riemannian submersion,
it is shown that exp*(av + bJv) is a focal point with multiplicity m along the geodesic
Yavipjy if and only if expr((av + bfv)é) is a focal point with multiplicity m along the
geodesic ¥, 1) Tk by imitating the proof of Lemma 5.12 in [49], where exp" (resp. exp™)

is the normal exponential map of M (resp. (7€ o ¢)~1(M)). Further, since 7€ o ¢¢ is an
anti-Kaehlerian submersion, we have (av + bJ1 Vi = avk + bT vk, Hence we see that

a+ b+/—1is a complex focal radius of direction v if and only if a 4+ b+/—1 is a complex focal
radius of direction vé . Complex focal radii of direction v é coincide with the inverse numbers

L
7
direction v coincide with the inverse numbers of complex principal curvatures of direction

of complex principal curvatures of direction vy. Thus we see that complex focal radii of
v)%. On the other hand, since M has abelian normal bundle, we can show that for each normal
vector field 7 of M, V7 = 0 is equivalent to VLol = 0 (see the proof of Lemma 5.6 in
[49]), where V+ (resp. %L) is the normal connection of M (resp. (7€ o ¢°)*1 (M)). Hence
since M has globally flat normal bundle, (7€ oq&c)*1 (M) also has globally flat normal bundle.
These facts deduce that M is anti-Kaehlerian equifocal if and only if each component of
(¢ 0 $©)~1(M) is anti-Kaehlerian isoparametric. g.e.d.

The statement (i) of Theorem 1 directly follows from this proposition and Theorem 5.
Next we prepare some facts to prove the statement (ii) of Theorem 1. Let M™* be one of
components of 7~ 1(M) and M be one of components of ¢¢~1(M*). Then we have the
following fact.
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LEMMA 8. Take u € M. Set go = ¢%(u) and x = (€ o ¢¢)(u). Then there exists
g € HY([0, 1], G®) satisfying g xu = 0, ¢(0) = go_1 (and hence g(0)x = eK®) and ¢(g *
M) = g(0)M* (and hence (€ o ¢©)(g x M) = g(0)M).

PROOF. According to the facts (iii) and (iv) stated in Section 6, we can find g €
H(0, 1], G satisfying ¢(0) = g(;l, g(l) = eand g xu = 0. Then it follows from
the fact (iii) that ¢¢(g + M) = g; ' M*. ge.d.

Denote by X* the horizontal lift of a vector (or a vector field) X of G¢/ K€ to G€ and by

YL the horizontal lift of a vector (or a vector field) Y of G to H 0([0, 1], g9). In particular,
the horizontal lift X7 of X € T,x<(G®/K®) to e is identified with X. Fix v € TgJ(;KcM with

[lv]| = 1 and u € (€ 0 $°)~(goK®), where gy € M*. According to Lemma 8, we may
assume goK¢ = ¢K® and u = 0. Also, we may assume ¢ € M*. Let g¢ = ¢ + p¢ be the
canonical decomposition of g€¢. Take a maximal abelian subspace h¢ (in p¢ = T,x<(G¢/K®))
containing v. Let p¢ = h*+ 3" . Ay p¢ be the root space decomposition. Take a maximal

abelian subalgebra b€ in g€ containing h° and let f)? := N §°. Denote by X the constant path
at X € g®and by X é the horizontal lift of X € g€ to 0. Note that X coincides with X é under

the identification of T; H([0, 1], g) and H°([0, 1], g°).
For X € pg, let Xje be the element of § such that ad(a)X = a®(a)Xje for all a € b°,
where ad is the adjoint representation of g¢. Note that ad(a) Xje = a“(a) X for all a € h°. For

X € p (resp. h°), we define loop vectors lix,j e H°([0,11,¢% (i =1, 2, j € Z)by
Iy ;(t) := X cos(2jmt) + /=1 Xje sin(2jmt)
(resp. l}(’j(t) = X cos(2jmt))
and
I3 (1) = v/=1X sin(jmt) + Xge cos(2jt)
(resp. ligj(t) =/ —1Xsin(2jmt)).

According to Lemma 6, these loop vectors are vertical with respect to ¢€. Under the iden-
tification of HO([O, 1], g¢) and T@HO([O, 1], g%), the constant path X and loop vectors lg(’j

(i = 1, 2) are regarded as elements of Ty H 0([0, 11, g°). Now we prepare the following lemma.

LEMMA 9. Let{Xy,---, Xn} be an orthonormal base of ToxeM,
(Y1, -, mec} be that of §¢, {e(l), e eglo} be that 0ff~)° and {ef,-- -, e} (@ € Ay) be that
of p&. Then the system

{)?11"'1)%n}u{)}lv"'v?mfc}

U{«/iliqk|i:1,2, j=1,---,mp, k €N}
J’
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u( U {lf??)k|i=1,2, J=1,, mg, keZ\{O}})

aeN

is a J-orthonormal base of(T()]VI, (, )o)-

PROOF. This fact is shown by imitating the proof of Lemma 5.3 in [25]. g.e.d.

From Lemma 7, the following relations are directly deduced.

LEMMA 10. Let ¥ be a vector field on a neighborhood of e in G¢ with 1, = v (€
T,ke(GS/K®) = (T,xe(G/K)L C T,G%) and V* (resp. V) be the Levi-Civita connection
of G€ (resp. H([0, 11, g°). Then the following statements (i)—(iii) hold.

(i) For X €S, the relation V 3" = (V;ﬁ)é holds.

(i) For X € p, the relations %XEL = (V;}f))é‘ + taf(v) Xje — %ac(v)f(fc and

S. L ~ L 1 &
V;(fcv = (V;fcv)ﬁ +ta®(v)X — 5a¢(v) X hold.
(iii) For X € ¢S, the relations Vlix,j oL = —[fé l’X!j(t)dt, v](i=1,2, jeZ)hold

Also, since 7€ is a pseudo-Riemannian submersion, we have the following relations.

LEMMA 11. (i) For X € T.xeM (= (ToxeM)E C T,M*), the relation A*X =
AyX + 3[v, X1 holds.

(ii) For X € §¢(C T.G"), the relation Viv* = %[U, X1 holds.

PROOF. Since 7 is a pseudo-Riemannian submersion, the statement (i) is shown by

imitating the proof of Proposition 7.3 in [49]. Also, since v* is a right-invariant vector field
along the fibre K€ of 7€, the statement (ii) is directly deduced. q.e.d.

From Lemmas 10 and 11, the following facts are directly deduced.

LEMMA 12. Let X € Ec. Then the following statements (i)—(iii) hold.
1) IfX € BN T,xeM and AyX = AX(= (ReA)X + (ImA)JX), then we have
A; X =X,
) IfX e h;, then we have K{,)A( =0.
(iii)  For the vertical loop vectors lix)j (i=1,2, j €N),we have Avf)lixgj =0.

In the sequel, for a family {ax}rez\(0y of complex numbers or vectors, the notation
Zkez\{o} ay implies Z,fil(ak + a_i), where Z is the set of all integers. Also, we obtain
the following relations in terms of Lemmas 10 and 11.

LEMMA 13. Let X € p. The following statements (i)—(v) hold.
1) IfX € TogeM, AyX = AX(= ReA)X + (ImA)J X) and a®(v) = 0, then we
have AgX =2.X, AgXpe = Ayl , =0(i=1,2, j €Z).
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(i) IfX € TogeM, AyX = AX(= (ReM)X + (ImA)J X) (A # £a®(v)) and a€(v) #
0, then

X+ ax,af(fc + Z
keZ\{0}

) 1 2
m(lx,k + ax.alx 1)

o (U)F OfA

5 where aj o = N O) N (2-valued),

is a J-eigenvector for a J -eigenvalue
22 _QC(U)Z

by« = arctan(ay o/ —1) (co-valued).
(iii)) If X € T,xeM, AyX = F+a®(w)X and otc(v) # 0, then there exists no J-
eigenvector ofA belonging to Span((UkEz\{O}{lX o Ix k}) U {)A( )A(fc}).

v) IfX e Te#(cM and a®(v) = 0, then we have Zg)?fc = lle =0(i=1,2, ke
7\ {0}).
(V) If X € TjgeM and a*(v) # 0, then we have Asly ; = “PL=L1L - (j e 2\ {0)
and
2] + 1
X l e Z
EZ\{0}

o (U)«/_ OfA N

is a J-eigenvector for a J-eigenvalue FESIE

PROOF. These facts are shown by imitating the proof of Proposition 5.7 in [25]. g.e.d.
Now we obtain the following fact in terms of these lemmas.

PROPOSITION 5. Let M be an anti-Kaehlerian submanifold with globally flat and
abelian normal bundle in G¢/ K€, where G/ K€ is the complexification of a symmetric space
G /K of non-compact type. Assume that M is curvature adapted. Then M is anti-Kaehlerian
equifocal in G¢/K® and for each v € T+M and each of € A with a(g;v) # 0,
:I:ozc(g;1 v) is not a J-eigenvalue of A§|g,pe if and only if (7€ o @)~ Y(M) is proper anti-
Kaehlerian isoparametric in H°([0, 11, g%), where g is a representative element of the base
point of v and A is the positive root system with respect to a maximal abelian subspace
(equipped with some lexicographical ordering) of p¢ = T,x<(G®/K®) containing g; v

PROOF. This proposition directly follows from Proposition 4 and Lemmas 9, 12 and

13. q.e.d.
Now we prove the statement (ii) of Theorem 1.

PROOF OF (ii) OF THEOREM 1. The first half of the statement (ii) of Theorem 1 di-
rectly follows from this proposition and Theorem 5. It remains to show that each component
of (1€ 0 p¢) 1 (M) extends to a complete proper anti-Kaehlerian isoparametric submanifold.
Let M® be one component of (7€ o ¢)~1(M®) and {E; |i € I} be the set of all complex
curvature distributions on M¢. According to Theorem 2 (which will be proved in the next
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section), the distribution E; is totally geodesic in M¢ (and hence integrable) and each leaf L
of E; is an open potion of a complex sphere or complex affine subspace. Denote by Sy this

complex sphere or this complex affine subspace. Set (M%), = Uier Ureiie JE; S7, where
M¢ /E; is the leaf space of E;. It is shown that (1\71 €)1 is a real analytic extension of M¢. From
this fact, it follows that (1\71 €)1 is also proper anti-Kaehlerian isoparametric. Let {Eil |i € I}
be the set of all complex curvature distributions on (ZVI ©)1. For each leaf L; of El.l, denote
by Szl the complex sphere or the complex affine subspace containing L; as an open subset.
Set (M®), := Uier ULlE(/Vl“)l/E,-l Szl, which is a real analytic extension of (M*®),. From
this fact, it follows that (M), is also proper anti-Kaehlerian isoparametric. In the sequel, we
define (]l71°)j (j =2,3,4,--)inductively. Set (M%) ™= U?‘;l(ﬂc)j. It is clear that (M€)™

is a desired extension of M°. g.e.d.

8. Proof of Theorem 2

In this section, we prove Theorem 2. First we characterize totally anti-Kaehlerian um-
bilical submanifold in an infinite dimensional anti-Kaehlerian space (V, (, ), J ). Let W be
a (2m + 2)-dimensional J-invariant vector space of (V, (, ), J ). Identify W with cntl,
Hence we have (%, %)C‘chwc = %Sij, (3%, %>C|WCXWC =0(1<ij<m+1)and
.7|W = \/—_1idcm+l , where (z1, -+, Zm+1) is the natural coordinate of C"+!. Define the
complex hypersurface SJ* (k) in W = C"+1 by the equation z% 4+ 4 z,2n+1 =«? (k € C).
Let « = a + b/—1 (a,b € R). It is clear that S¢t (k) is an anti-Kaehlerian submanifold
in W (and hence (V, (, ), 7)). We call S (k) a complex sphere of radius k. The position

vector field v (¢ (z1, -+, Zmt1) (€ SF'(k)) — (21,---,Zm+1)) is a parallel normal vec-
tor field on S7' (x) and the normal space TZJ-SQ" (x) (z = (215, Zm+1)) In W is spanned
by v, and N v;. Denote by J the almost complex structure of S} («). For the shape tensor
A of Sf(k)(C V), we have Ay = —id and Ay = —J, that is, Spec;Ay = {—1} and
Spec; Ajs = {—+/—1}. Also, we have A,, = 0 for every w € Span{v, Jo}L. On the other
hand, we have (7, %) = a? — b2, (J¥, J?) = —(a® — b?) and (¥, J¥) = 2ab. From these
relations, we see that v} := —#(aﬁ + bJv) and J7; become an orthonormal frame field of

TLSQ" (k). Note that (v1, V1) = 1. Denote by h the second fundamental form of S (k)(C V).
Then we have

h(X,Y) = (h(X,Y),T1)T — (h(X, Y), Jo1)J ¥y
= (A5, X. V)01 — (Agy, X, V)T

1 ~ 1 ~
= W(aX+bJX, Y)Ul - W(aJX—bX, Y>JU1
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I - 1~ -
=(X,Y)—(aV; +bJv)) — (JX,Y)— J(aV + bJ 7))
l«c|? k|
Re(x? Im(k2) ~ ~( Re(k? Im(k?2) ~
=y (ReW Dy ImED) 52 xR 5 Il 5
I |+ lic|* lic|* lic|*

Thus the complex sphere S’ («) becomes a totally anti-Kaehlerian umbilical submanifold

2y 2y~ 2y~ 2y~
with the mean curvature vector %v + %JU. Set H := %v + %JU. Then we

can show

(H,H) — /—1(JH, H)

1 2 = i
@1 * (H,H)2 + (H, JH)?

Now we prove the following characterization theorem for totally anti-Kaehlerian umbilical
submanifolds.

THEOREM 6. A totally anti-Kaehlerian umbilical submanifold with parallel mean cur-
vature vector in the infinite dimensional anti-Kaehlerian space is an open potion of a complex
sphere or a complex affine subspace.

PROOF. Let (M, (, ), J) be a totally anti-Kaehlerian umbilical submanifold in the
infinite dimensional anti-Kaehlerian space (V, ( , ), T ). Denote by V, A, h, V< and H the
induced connection, the shape tensor, the second fundamental form, the normal connection
and the mean curvature vector of (M, (, ), J), respectively. When H = 0, it is clear that M
is an open potion of a complex affine subspace. In the sequel, we consider the case of H # 0.
The first normal space Ny of (M, (, ), J) is spanned by H and JH. From the assumption, we
obtain V%H = 0 and V)%(J~ H) = 0. Thus the first normal space N is parallel with respect
to VL. Therefore, according to the reduction theorem, there exists an (n + 2)-dimensional
J-invariant subspace W of (V, (, ), JN) containing (M, (, ), J). Set

1
(Hy, Hy)? + (Hy, JH,y)

vei=x+ S((Hy, Ho)Hy + (Hy, TH)THy)

where x € M. Then we can show

(H, H) (H, JTH) )

8.2 Vyv=X— - X — Ay X
®2 X (H H)2+ (H, JH32 " H

(H,H)2 + (H, JH)?

(X € TM) in terms of V1H = VL JH = 0. On the other hand, we have Ay X = (H, H)X —
(H,TH)JX (X e TM)and A7y X = (H, JH)X + (H, H)J X (X € TM). By substituting
these relations into (8.2), we obtain %Xv = 0. That is, v is a constant vector. Identify W with

n n
C2t! Foreachz = (zy, - -, Z%+1) € C2T! we denote z%+~~+z2%+1 by z2. Then we have

((Hx, Hy)? = 25/=1(Hy, Hy)(Hy, JHy) — (Hy, JHy)?) H?

— 2 — —
(o) (Hy. Hy)? + (Hy. THy)))?
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It follows from VX H = V- (JH) = 0 that the right-hand side is independent of x € M. This
means that (M, {, ), J) is contained in a complex sphere. g.e.d.

REMARK 4. A real n(> 4)-dimensional totally anti-Kaehlerian umbilical submanifold
in the infinite dimensional anti-Kaehlerian space has automatically parallel mean curvature
vector.

Now we prove Theorem 2.

PROOF OF THEOREM 2. First we prove the statement (i). Let v € TXLM . The point
x + v is a focal point of (M, x) if and only if Ker(id — A,) # {0}, thatis, 1 € Spec;A,.
The J-spectrum Spec; A, coincides with {A;(x)(v) |i € I}. Hence, x 4 v is a focal point of
(M, x) if and only if v € Uie, 2 (X)~1(1). That is, the focal set of (M, x) coincides with
Uier Mi (x)~'(1) (under the identification of v with x 4 v). Next we prove the statement (ii).
Denote by V the Levi-Civita connection of M and by 4; (i € I) the second fundamental form
of the distribution E; on M. Let X,Y € I'(E;), Z € I'(E;) (i # j) and v be a parallel
normal vector field of (M, ( , ), J) satisfying A; (v) 7# A;(v). Then we have

(VzA)WX =24 (0)VzX — Ay(VzX)
and
(VxAWZ =1j(v)VxZ — Ay(Vx Z),

where /—1x implies J* and we use the fact that A;(v) and A;(v) are constant be-
cause of V4v = 0. Since (VzA)yX = (VxA),Z by the Codazzi equation, we have
(Ay — Li(V)id)VzX = (Ay — A;j(v)id)VxZ. By taking the inner product with Y, we
have (A;(v) — A;(V))(VxZ,Y) = 0, thatis, (VxZ,Y) = 0. On the other hand, we have
(VxZ,Y) = —(Z,VxY) = —(h;j(X,Y), Z). Hence we have (h;(X,Y),Z) = 0. From
the arbitrariness of Z € E; and j(# i), we obtain 4;(X,Y) = 0. Thus E; is totally geo-
desic in M. Denote by h the second fundamental form of M and by h;i the second funda-
mental form of leaves of E; in V. Let X,Y € (E;)y and v € Tle. From h; = 0 and
Ay X =Re(hi(v)X + Im(; (v))J X = (vj, v) — (Jvi, v)J X (by Lemma 5),

(hi(X,Y),v) = (h(X.Y),v) = (A,X.Y)
= ((vi, V)X — (Jv;, V)X, Y) = (X, Y)vi = (JX, ¥)Jv;, v).
From the arbitrariness of v, we have 71,- (X,Y) = (X, Y)v; — (JX, Y)fvi. This means that
leaves of E; are a totally anti-Kaehlerian umbilical submanifold with the mean curvature vec-

torv; in (V, (, ), J ). Further, it is easy to show that v; is parallel with respect to the normal
connection of each leaf of E; in (V, (, ), JN). Hence it follows from Theorem 6 and (8.1) that

) ; ; Wi )=/ =TT v v A3
the leaves of E; are open potions of complex spheres of radius oo P o To . = Tl

(when %; # 0) or complex affine subspaces (when A; = 0). q.e.d.
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9. Proof of Theorem 3

In this section, we prove Theorem 3. For its purpose, we prepare some propositions. First
we prove the following fact for isometric actions on a semi-simple Lie group G equipped with
a bi-invariant pseudo-Riemannian metric { , ).

PROPOSITION 6. Let H be a closed subgroup of G x G, which is an isometric action on
G by the adjoint action. Also, let v be the cohomogeneity of the H -action. If the normal space
TeJ‘(H - e) of the orbit H - e at e contains a v-dimensional non-degenerate abelian subspace
%, then principal orbits through X = exp (%) of the H-action are complex equifocal, where
expg is the exponential map of G.

PROOF. By imitating the proof of Lemma 2.2 of [18], we can show that all H -orbits
through ¥ meet ¥ orthogonally. Now we shall show that the principal orbit H - g; through
g1 € X is complex equifocal. Since the dimension of ¥ is equal to the cohomogeneity of
the H-action, we have Tgl1
the orbit H - g1 is a pseudo-Riemannian submanifold and it has abelian normal bundle. Also,
since H - g is a principal orbit, there exists a normal frame field (v, ---,v,) of H - ¢
consisting of H-equivariant normal vector fields. Let U be an open neighborhood of H - g
consisting of principal orbits of the H-action and ¢ : U — U/H be the natural submersion.
It is clear that there exist the pseudo-Riemannian metric on U/H such that ¢ is a pseudo-
Riemannian submersion, where we use the non-degeneracy of €. Since the fibres of the
pseudo-Riemannian submersion ¥ are orthogonal to X', we see that the horizontal distribution
of i is integrable. Hence H-equivariant normal vector fields v; (i = 1,---,v) of H - g1 are
parallel with respect to the normal connection of H - g;. Also, since v; is H-equivariant, we
see that the complex focal radii along (v;), is independent of the choice of x € H - g1. These
facts imply that H - g1 is complex equifocal. g.e.d.

(H - g1) = Ty X. Hence, since ¥ is non-degenerate and abelian,

Next we prove the following fact for isometric actions on a symmetric space G/K of
non-compact type.

PROPOSITION 7. Let H be a closed subgroup of G and v be the cohomogeneity of
the H-action. If the normal space TelK (H (eK)) of the orbit H(eK) at eK contains a v-
dimensional abelian subspace X, then principal orbits through X := exp(%) of the H-action
are complex equifocal, where exp is the exponential map of G/K at eK.

PROOF. Let T be the horizontal lift of T to e and set & := expg . The group H x K
acts on G by the adjoint action. Since 7 o (h, k) = hom ((h, k) € H x K), the H x K -orbits
are the inverse images of the H-orbits by . Hence the cohomogeneity of the H x K-action
is equal to v and T C TEL((H x K) - e) holds. Therefore, it follows that all H x K-orbits
through 5 meet it orthogonally. This implies that all H-orbits through 7(2) meet 7(%)
orthogonally. Since 7 o expg |p = exp, we have 7(X) = X. Hence, by imitating the proof of
Proposition 6, we can show that the principal orbits through ¥ are complex equifocal. q.e.d.
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Next we prove the following fact for isometric actions on the pseudo-Hilbert space
HO([0, 1], g), where g is the Lie algebra of a semi-simple Lie group G (see [25] about the
definition of the pseudo-Hilbert space H°([0, 1], g)).

PROPOSITION 8. Let H be a closed subgroup of G X G and v be the cohomogeneity
of the H-action. Also, set P(G, H) = {g € H'([0,1],G) | (9(0), g(1)) € H}, which acts
on HO([0, 11, @) by the gauge action. If the normal space T(A)l(P(G, H) % f)) of the orbit

P(G, H) % 0 at 0 contains a v-dimensional non-degenerate subspace % such that ¢, % is
abelian, then principal orbits through T (which is regarded as the subspace of H°([0, 11, g))
of the P(G, H)-action are complex isoparametric, where ¢ is the parallel transport map for
G (see [25] about this definition).

PROOF. Let X' := expg ¢«T. Since ¢ o (g x -) = (¢(0), g(1)) o ¢ (see §4 of [25]),
the P(G, H)-orbits are the inverse images of the H-orbits by ¢. Hence the cohomogeneity
of the P(G, H)-action is equal to v, ¢.T C Tel(H - e) holds and the P(G, H)-orbits are
Fredholm. Therefore, since ¢, T is abelian, all H-orbits through X' meet it orthogonally (see
the first half of the proof of Proposition 6). It is shown that there exists the horizontal lift X
of X' through 0 (see the proof of (i)<>(ii) in Theorem 4). Clearly we have X1 = T. This fact
implies that P(G, H)-orbits through ¥ meet it orthogonally. Hence, by imitating the second
half of the proof of Proposition 6, we can show that principal orbits through T have a global
parallel normal frame field consisting of P(G, H)-equivariant normal fields. Therefore, we
see that principal orbits through T are complex isoparametric. g.e.d.

Next we prove the following fact for isometric actions on the complexification G¢ of a
semi-simple Lie group G.

PROPOSITION 9. Let H be a closed subgroup of G¢ x G¢ and v be the cohomogeneity
of the H-action. If the normal space TEJ‘(H -e) of the orbit H - e at e contains a v-dimensional
J-invariant abelian subspace X, then principal orbits through X := expgc(%) of the H-
action are anti-Kaehlerian equifocal, where J is the complex structure of G and expge is the
exponential map of G.

PROOF. By imitating the proof of Lemma 2.2 of [18], we can show that all H-orbits
through X~ meet it orthogonally. Take the principal orbit H - g; of the H-action through
g1 € X. Since the dimension of ¥ is equal to the cohomogeneity of the H-action, we have
Tng- (H - g1) = Ty X. Hence since T is J-invariant and abelian, it is shown that the orbit
H - g1 is an anti-Kaehlerian submanifold with abelian normal bundle. By imitating the proof
of Proposition 6, we can show the existence of a global parallel normal frame field of H - g;
consisting of H-equivariant normal vector fields. This implies that H - g; is anti-Kaehlerian
equifocal. g.e.d.
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By imitating the proof of Proposition 7, we obtain the following fact for isometric actions
on the anti-Kaehlerian symmetric space G¢/K ¢ associated with a symmetric space G/K of
non-compact type.

PROPOSITION 10. Let H be a closed subgroup of G¢ and v be the cohomogeneity of
the H-action. If the normal space TELK (H(eK®)) of the orbit H(eK®) at eK® contains a v-
dimensional J-invariant abelian subspace %, then principal orbits through ¥ := exp(%) of
the H-action are anti-Kaehlerian equifocal, where J is the complex structure of G¢/ K€ and
exp is the exponential map of G¢/ K€ at eK©.

By imitating the proof of Proposition 8, we obtain the following fact for isometric ac-
tions on the anti-Kaehlerian space H([0, 1], g), where g¢ implies the Lie algebra of the
complexification G¢ of a semi-simple Lie group G.

PROPOSITION 11. Let H be a closed subgroup of G¢ x G¢ and v be the cohomogeneity
of the H-action. Also, set P(G¢, H) := {g € H'([0, 11, G%) | (¢(0), g(1)) € H}, which acts
on HO([0, 1], g by the gauge action. If the normal space T(A)L(P(Gc, H) x 0) of the orbit

P(G¢, H) %0 at 0 contains a v-dimensional J -invariant subspace T such that $$% is abelian,
then principal orbits through T (which is regarded as the subspace of H([0, 11, g°)) are anti-
Kaehlerian isoparametric, where J is the complex structure of H°([0, 1], g°) and ¢° is the
parallel transport map for G€.

Now we prove Theorem 3 in terms of these propositions.

PROOF OF THEOREM 3. In the case where the H-action is of cohomogeneity one,
the statements (i) ~ (vi) are directly shown by imitating the proof of Proposition 6. So we
shall consider the case where H is the group of all fixed points of an involution o (# idg)
of G. Let p : G — G be the Cartan involution associated with G/K. Also, let | (resp.
gy ) be the Lie algebra of K (resp. H) and p (resp. py) be the eigenspace of py, (resp. oye)
for the eigenvalue —1. Note that p (resp. pg) is the orthogonal complement of | (resp. gg).
It is clear that the isotropy group (H x K). of H x K at e is equal to the diagonal group
A(HNK). Also,wehave T,(H x K)-e) ={X —-Y|X egy, Y €} =gun + |, we have
TEL((H x K) -e) = py Np. Let L be the group of all fixed points of p o ¢ and [ be the Lie
algebra of L. Itis easy to show that p = o on L and that H N K is the group of all fixed points
of p|L(= o|L). The eigenspace decomposition of p.|(is given by [ = (gg N ) + (py N p).
It is clear that this decomposition is a Cartan decomposition, thatis, L/H N K is a symmetric
space of non-compact type. From these facts, we can show that the slice representation of
(H x K).(= A(HNK))on TEJ-((H x K) - e)(= pyg Np) is equivalent to the linear isotropy
representation of the symmetric space L/H N K. This fact deduces that the section ¥ of the
slice representation is an abelian subspace of g and (, )|gxg is positive definite. On the
other hand, the cohomogeneity of the slice representation coincides with that of the H x K-
action. That is, the dimension of ¥ is equal to the cohomogeneity of the H x K-action.
Therefore, it follows from Propositions 6 ~ 11 that principal orbits of the H-action through



COMPLEX EQUIFOCAL SUBMANIFOLDS 235

(7 oexp ) (%) and those of the H x K -action through exp (%) are complex equifocal, those of
the P(G, H x K)-action through Té are complex isoparametric, those of H¢-action through

(7€ 0 expge) (T€) and those of the H® x KC-action through expge(T€) are anti-Kaehlerian
equifocal and that those of the P(G¢, H® x K¢)-action through (Ec)é‘ are anti-Kaehlerian

isoparametric. By the same argument for g~ Hg (g € G) instead of H, we can show that
other principal orbits of those actions also are complex equifocal, complex isoparametric,
anti-Kaehlerian equifocal or anti-Kaehlerian isoparametric, where we note that g~! H g is the
group of all fixed points of the involution Ad(g~!) o o 0 Ad(g). g.e.d.

Now we classify homogeneous complex equifocal submanifolds in the m-dimensional
hyperbolic space SO°(m, 1)/S O (m). For its purpose, we recall the classification of cohomo-
geneity one actions on SO%(m, 1)/SO (m).

THEOREM 7 ([6]). A cohomogeneity one action on SOO(m, 1)/SO(m) is orbit equiv-
alent to one of the SO%m —k, 1) x SO (k)-action (1 < k < m) or the N-action, where N is

the nilpotent part in the Iwasawa decomposition of SO°(m, 1).
From this classification, we can obtain the following fact.

THEOREM 8. A homogeneous complex equifocal submanifold in SO°(m, 1)/S0 (m)
is congruent to one of the following (I)—(IV):
(I) A complete totally umbilical hypersphere (= a geodesic sphere).
(Il) A tube over a complete totally geodesic submanifold of codimension bigger than
one.

(IIT) A complete totally umbilical hyperbolic space of codimension one
(IV) A horosphere.

PROOE. Since SO%(m, 1) /S0 (m) is of rank one, complex equifocal submanifolds in
the space are hypersurfaces. Hence homogeneous ones are principal orbits of cohomogeneity
one actions on the space. Therefore, we obtain the statement from Theorem 7. g.e.d.

REMARK 5. (i) The hypersurfaces (I), (II), (III) and (IV) are a principal orbit of the
actions SO (m), SO%(m —k,1) x SO(k) 2 <k <m —1), SO°Gm —1,1) and N, respec-
tively.

(ii) The anti-Kaehlerian isoparametric hypersurface in H ([0, 11, so(m, 1)¢) arising
from the hypersurfaces (I), (II) and (III) are proper anti-Kaehlerain isoparametric but so is
not the hypersurface arising from the hypersurface (IV). Here we note that a horosphere has
imaginary focal points on the ideal boundary of S 0%m, 1) /SO (m).

(iii)) The hypersurfaces (I) and (IT) have the only real focal radius and the hypersurfaces
(IIT) and (IV) have no real focal radius.

For cohomogeneity one actions on irreducible symmetric spaces of non-compact type,
the following facts have recently been shown by J. Berndt and H. Tamaru.
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THEOREM 9 ([4]). Let G/K be an irreducible symmetric space of non-compact type
and G = K AN be the Iwasawa decomposition of G. A cohomogeneity one action on G/K
having no singular orbit is orbit equivalent to one of the following actions:

(I) The Si-action, where L is a linear line of h (h : the Lie algebra of A ) and Sj is a
connected Lie subgroup of AN associated with the orthogonal complement (h +n) &1 of lin
b+ n(n : the Lie algebra of N).

(II)  The Sg-action, where & is an element of the root space gy = {X € g|ad(H)(X) =
a(H)X for all H € b} for a simple root o and S¢ is a connected Lie subgroup of AN associ-
ated with the Lie algebra b + (n © RE).

THEOREM 10 ([S]). Let F be a totally geodesic singular orbit of a cohomogeneity one
action on an irreducible symmetric space G /K of non-compact type. If dim F > 2, then F is
one of totally geodesic submanifolds in Theorems 3.3 and 4.2 of [5].

From these classifications, we can obtain the following fact.

THEOREM 11. Let M be a homogeneous hypersurface (hence a complex equifocal
one) in an irreducible symmetric space of non-compact type.

(1) If M has no real focal radius, then M is congruent to an orbit of the above S;-action
or Sg-action.

(i1) If M has a real focal radius and the focal submanifold is totally geodesic, then M
is congruent to a tube over one of totally geodesic submanifolds in Theorems 3.3 and 4.2 of
[5] or a tube over geodesics.

REMARK 6. (i) Orbits of the S;-action are curvature adapted but so are not those of
the Sg-action. Also, the anti-Kaehlerian isoparametric hypersurfaces arising from orbits of
both the S;-action and the Sg-action are not proper anti-Kaehlerian isoparametric.

(ii) Tubes over totally geodesic submanifolds in Theorems 3.3 and 4.2 of [5] are cur-
vature adapted and the anti-Kaehlerian isoparametric hypersurfaces arising from the tubes are
proper anti-Kaehlerian isoparametric.

(iii) Homogeneous complex equifocal hypersurface in a irreducible symmetric space
of non-compact type has at most one real focal radius (by Proposition 1 of [3]). Also, if the
hypersurface has a real focal radius with multiplicity bigger than [%] then the focal subman-
ifold is automatically totally geodesic (by Proposition 2 of [3]).

10. Complex and anti-Kaehlerian hyperpolar actions

In this section, we introduce the new notions of complex hyperpolar actions on a sym-
metric space G/K of non-compact type, a connected semi-simple Lie group G equipped with
a bi-invariant pseudo-Riemannian metric and a pseudo-Hilbert space V. It is shown that the
principal orbits of those actions become complex equifocal or complex isoparametric sub-
manifolds. Also, we introduce the new notions of anti-Kaehlerian hyperpolar actions on an
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anti-Kaehlerian symmetric space G¢/ K¢, the complexification G€ of G and an infinite dimen-
sional anti-Kaehlerian space V€. It is shown that the principal orbits of those actions become
anti-Kaehlerian equifocal or anti-Kaehlerian isoparametric submanifolds. A complex hyper-
polar action is interpreted as an action having common focal points of the complexifications
of its orbits as its poles and imaginary poles. Also, an anti-Kaehlerian hyperpolar action is
interpreted as an action having common focal points of its orbits as its poles. We investigate
the relations among those actions. First we define the notion of a complex hyperpolar action
on the symmetric space G/K.

DEFINITION 1. Let H be a closed subgroup of G. If there exists an embedded (i.e.,
properly and injectively immersed) submanifold X of G/K which meets all H-orbits orthog-
onally, then we call the H-action the complex polar action and call X' its section, where we
note that ¥ is automatically totally geodesic. Further, if the section X' is flat (with respect to
the induced metric), then we call the action a complex hyperpolar action and X its flat section.

Here we explain the situation of the poles and the imaginary poles of complex hyperpolar
actions on the hyperbolic space S OO(m, 1)/SO(m).

EXAMPLE 4. Since SO%(m, 1)/S O (m) is of rank one, complex hyperpolar actions on
the space are automatically cohomogeneity one actions. According to Theorem 7, a cohomo-
geneity one action on the space is one of the SO%(m — k, 1) x SO (k)-action (1 < k < m) or
the N-action, where N is as in Theorem 7. It is clear that these actions admit a flat section,
that is, they are complex hyperpolar. For example, the orbits, the poles and the imaginary
poles of the SO (m)-action are as in Figure 5, those of the SO%m — 1, 1)-action are as in
Figure 6 and those of the N-action are as in Figure 7.

Now we define a complex hyperpolar action on a simply connected semi-simple Lie
group G equipped with a bi-invariant pseudo-Riemannian metric.

DEFINITION 2. Let H be a closed subgroup of G x G, which acts on G by the adjoint
action. We call the action of H a complex polar action on G if the following conditions (i)
and (ii) hold:

EC
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T

I

the only pole and the imaginary poles

4 7 of the SO(m)-action

FIGURE 5.
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7
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of the N-action

FIGURE 7.

(i) each H-orbit is a pseudo-Riemannian submanifold in G,

(i) there exists an embedded submanifold ¥ of G which meets all H-orbits orthogo-
nally.
Also, we call X its section, where we note that X' is automatically totally geodesic. Further,
if the section X' is flat, then we call the action a complex hyperpolar action and X its flat
section.

Next we define the notion of a complex hyperpolar action on a pseudo-Hilbert space V.

DEFINITION 3. Let H be a Hilbert Lie group consisting of isometries of V. We call
the H-action a complex hyperpolar (or simply complex polar) action on V if the following
conditions (i)—(iii) hold:

(i) the H-action is Fredholm, that is, each orbit map h(e H) — hu(e V) is a
Fredholm map foreachu € V,
(i) each H-orbit is a pseudo-Riemannian submanifold,
(iii) there exists a subspace X~ of V which meets all H-orbits orthogonally.
Also, we call X its flat section.
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REMARK 7. Each orbit of an isometric action H on V satisfying the above conditions
(1) and (ii) becomes a Fredholm pseudo-Riemannian submanifold.

For these complex hyperpolar actions, we have the following fact.

THEOREM 12. (i) Let G/K be a symmetric space of non-compact type. Principal
orbits of a complex hyperpolar action on G /K are complex equifocal.

(i) Let V be a pseudo-Hilbert space. Principal orbits of a complex hyperpolar action
on V are complex isoparametric.

PROOF. The statement (i) is shown by using the argument in the second half of the
proof of Proposition 6. Assume that the H-action on V is complex hyperpolar. Let M be a
principal orbit of the H-action. Since H is a Fredholm action, the normal exponential map
of M is a Fredholm map, that is, M is a Fredholm submanifold. Further, by imitating the
argument in the second half of the proof of Proposition 6, it is shown that M is complex
isoparametric. Thus the statement (ii) is also shown. q.e.d.

For complex hyperpolar actions on a symmetric space G/K of non-compact type and the
connected semi-simple Lie group G, we can show the following fact by imitating the proof of
Proposition 2.11 in [18], where we give G a bi-invariant pseudo-Riemannian metric inducing
the Riemannian metric of G/K.

THEOREM 13. Let H be a closed subgroup of G. Then the H-action on G/K is com-
plex hyperpolar if and only if so is the H x K -action on G.

PROOF. Let 7 be the natural projection of G onto G/K. Since each H x K-orbit is the
inverse image of an H-orbit by w, each H x K-orbit is a pseudo-Riemannian submanifold.
Assume that the H x K-action is complex hyperpolar. Let X be a flat section of the H x K-
action. Then it is shown that 7 (X') meets all orbits of the H-action orthogonally and that it is
embedded. Denote by Dy (resp. Dy ) the vertical (resp. horizontal) distribution of the pseudo-
Riemannian submersion 7. Define B € I'(D}; ® D}; ® Dy) by B(X,Y) := (V;}Y)V for
X,Y € Dy, where V* is the Levi-Civita connection of G and (-)" is the vertical component
of -. For an arbitrary tangent 2-plane o of 7 ('), we have

(10.1) K(0) = K(o%) + 3(e1, e1)(ea, e2)(Ble1, e2), Blei, €2))

(see [32,33]), where oL is the horizontal lift of o to X, K (¢) (resp. K (o L)) is the sectional
curvature of o (resp. o) and {ey, e2} is an orthonormal base of o*. Since B(ej, e2) = 0
by the existence of ¥ and K(c%) = 0 by the flatness of ¥, we have K(0) = 0. Af-
ter all 7(X') is a flat section of the H-action, that is, the H-action is complex hyperpolar.
Conversely assume that the H-action is complex hyperpolar. Let ¥ be a flat section of
the H-action. For an arbitrary tangent 2-plane o of X, we have (10.1). From the flatness
of X, we have K(¢) = 0. Since G is of non-positive curvature, we have K (¢%) < 0.
Also, since (, )pyxpy (resp. {, ) pyxpy) is positive (resp. negative) definite, we have
(e1, e1){ea, e2)(B(ey, e2), B(er, e2)) < 0. It follows from these relations that K (c£) = 0
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and B(e1, e2) = 0. These facts imply that the horizontal lift YL of ¥ exists and XL is flat.
Further, it is shown that X1 meets all H x K-orbits orthogonally and that it is embedded.
After all XL is a flat section of the H x K -action, that is, the H x K-action is complex
hyperpolar. g.e.d.

Now we prove the equivalenceness of (i) and (ii) in Theorem 4.

PROOF OF (i) < (ii) IN THEOREM 4. Let ¢ : H%([0,1],g) — G be the parallel
transport map and 7 : G — G/K be the natural projection. Take g € P(G, H x K). Then
we have ¢ o (¢ x -) = (g(0), g(1)) o ¢. Hence P(G, H x K)-orbits are the inverse images
of H x K-orbits by ¢. This fact implies that each H x K-orbit is a pseudo-Riemannian
submanifold if and only if so is each P(G, H x K)-orbit. Since P(G, H x K) is closed and
of finite codimension in ([0, 1], G), the P(G, H x K)-action is Fredholm. First we show
(i) = (i). Assume that the P(G, H x K)-action is complex hyperpolar. Let 5 be a flat
section of the P(G, H x K)-action. Then it is clear that d)(f) meets all orbits of the H x K-
action orthogonally. It follows from this fact that (X is totally geodesic. Denote by Dy
(resp. Dy) the vertical (resp. horizontal) distribution of the pseudo-Riemannian submersion
¢. Define B e 1"(5}; ® 5}"_1 ® 5v) by ]§(X, Y) = (VxY)V for X, Y € Dy, where V is
the Levi-Civita connection of H°([0, 1], g) and ()Y is the vertical component of -. For an
arbitrary non-degenerate 2-plane o of ¢ ( 5), we have

K (o) = K(oX) 4 3(e1, e1)(e2, e2)(B(er, e2), Bley, e2)),

where oL is the horizontal lift of o to f, K (o) (resp. K (o)) is the sectional curvature of
o (resp. ol) and {eq, 5} is an orthonormal base of oZ. From the existence of f, we have
g(el, e2) = 0. Also, from the flatness of 5, we have E(O’L) = 0. Hence we have K (o) = 0.
Thus qb(f) is flat. Hence, by imitating the proof of Theorem 13, we can show that n(qﬁ(f))
is flat section of the H-action. That is, the H-action is complex hyperpolar. Next we show
(i) = (ii). Assume that the H-action is complex hyperpolar. According to Theorem 13, the
H x K-action is also complex hyperpolar. Let X be a flat section of the H x K -action. Take
an arbitrary non-degenerate 2-plane o of X' and an orthonormal base {e1, €3} of the horizontal
lift 0¥ of 0. Let u be the base point of o'%. According to the fact (v) stated in §2, we can

express u = g * 0 for some g € P(G, G x e). By using Lemma 7, we have
(9%, 'Bler.e2) = B((g* ), e1. (g% ), 'e2)
= (—tlpu(g )} er, du(gx ), ea])”
= (—1[9(0); 'pxe1. 9(0); ' prea))V .

On the other hand, since ¢«e; (i = 1, 2) are normal to the H x K-orbit through ¢ (#) and the
orbit has abelian normal bundle, we have [¢(0) lqb*el, g(0), 1¢*€2] = 0. Therefore, we have

B (e1, e2) = 0. Hence the existence of the horizonal lift 3L of ¥ is assured. Further, since
X meets all H x K-orbits orthogonally and each P(G, H x K)-orbit is the inverse image
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of a H x K-orbit by ¢, X1 meets all P(G, H x K)-orbits orthogonally. This fact implies
that X' is a complete totally geodesic submanifold (i.e., a subspace) in H°([0, 1], g). Thus
YL is a flat section of the P(G, H x K)-action, that is, the P(G, H x K)-action is complex
hyperpolar. q.e.d.

Now we define a notion of an anti-Kaehlerian hyperpolar action on the anti-Kaehlerian
symmetric space G¢/ K¢ associated with a symmetric space G/K of non-compact type.

DEFINITION 4. Let H be a closed subgroup of G¢. We call the action of H on G¢/K*
an anti-Kaehlerian polar action on G¢/K € if the following conditions (i) and (ii) hold:

(i) each H-orbit is an anti-Kaehlerian submanifold in G¢/ K¢,

(i) there exists an embedded submanifold X of G¢/K¢ which meets all H-orbits or-
thogonally.
Also, we call X' its section, which is automatically totally geodesic. Further, if the section X~
is flat, then we call the action an anti-Kaehlerian hyperpolar action and X' its flat section.

The complexificaton G¢ of a connected semi-simple Lie group G equipped with a bi-
invariant pseudo-Riemannian metric is regarded as the anti-Kaehlerian symmetric space as-
sociated with G = G x G/A(G), where A is the diagonal map. Hence an anti-Kaehlerian
hyperpolar action on G€ is defined as above. Next we define a notion of an anti-Kaehlerian
hyperpolar action on an infinite dimensional anti-Kaehlerian space (V, T ).

DEFINITION 5. Let H be a Hilbert Lie group consisting of isometries of (V, T) pre-
serving J. We call the H-action an anti-Kaehlerian hyperpolar (or simply anti-Kaehlerian
polar) action on (V, J ) if the following conditions (i)—(iii) hold:

(i) the H-action is Fredholm,

(ii) each H-orbit is an anti-Kaehlerian submanifold in V,

(iii) there exists a subspace X of V which meets all H-orbits orthogonally.
Also, we call X' its flat section.

For these anti-Kaehlerian hyperpolar actions, we have the following fact.

THEOREM 14. (i) Let G¢/K€ be the anti-Kaehlerian symmetric space associated
with a symmetric space G /K of non-compact type. Principal orbits of an anti-Kaehlerian
hyperpolar action on G/ K€ are anti-Kaehlerian equifocal.

(ii) Let V be an infinite dimensional anti-Kaehlerian space. Principal orbits of an
anti-Kaehlerian hyperpolar action on V are anti-Kaehlerian isoparametric.

PROOF. These facts are proved by imitating the proof of Theorem 12. g.e.d.
Next we prove the equivalenceness of (ii) and (iii) in Theorem 4.

PROOF OF (ii) < (iii) IN THEOREM 4. It is clear that the P(G, H x K)-action and
the P(G€, H® x K¢)-action are Fredholm, each P(G, H x K)-orbit is a pseudo-Riemannian
submanifold and each P(G€, H® x K¢)-orbit is an anti-Kaehlerian submanifold. Assume that
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the P(G, H x K)-action is complex hyperpolar. Let X be a flat section of the P(G, H x K)-
action. Note that X is a finite dimensional subspace of V. It is clear that the complexification
¢ of the subspace X is a flat section of the P(G€, H®x K°)-action. Thatis, P(G¢, H*x K¢)-
action is anti-Kaehlerian hyperpolar. Conversely assume that the P(G¢, H® x K ©)-action is
anti-Kaehlerian hyperpolar. Let 5 be aflat section through ug € V (C V°) of the P(G¢, H® x
K©)-action. Note that X is a finite dimensional anti-Kaehlerian subspace of V€. Let > =
SNV. Itis clear that £’ is a flat section of the P(G, H x K)-action. That is, the P(G, HxK)-
action is complex hyperpolar. q.e.d.

At the end of this section, we propose the following problem.

PROBLEM 2. (i) Can any homogeneous complex equifocal submanifold in a sym-
metric space G/ K of non-compact type be caught as a principal orbit of a complex hyperpolar
action?

(ii) Can any homogeneous complex isoparametric submanifold in H°([0, 1], g) which
is the sum of fibres of o ¢ be caught as a principal orbit of a complex hyperpolar action of
P(G, - x K)-type?

(iii)) Can any homogeneous anti-Kaehlerian isoparametric submanifold in H O([O, 11, g%
which is the sum of fibres of 7€ o ¢ be caught as a principal orbit of an anti-Kaehlerian
hyperpolar action of P(G€, - x K€)-type?

11. Isoparametric submanifolds in the sense of Heintze-Liu-Olmos

In this section, we first investigate the equivalence of the complex equifocality and the
isoparametricness with flat section in the sense of [16] of a submanifold in a symmetric space
of non-compact type. Heintze-Liu-Olmos [16] defined the notion of an isoparametric subman-
ifold in an arbitrary (finite dimensional) Riemannian manifold as a submanifold M satisfying
the following conditions:

(i) M has flat normal bundle and locally parallel submanifolds of M have constant
mean curvature in radial directions,

(ii)) M has a section at each point, where a section means a totally geodesic submanifold
meeting M orthogonally whose dimension is equal to the codimension of M.

In the above definition, Heintze-Liu-Olmos assumed only the (not necessarily globally) flat-
ness of the normal bundle of M. However, we may assume that M has globally flat normal
bundle by letting the universal covering of M be M newly if necessary, where we note that
the universal covering is immersed by the composition of the universal covering map and the
original immersion of M. In particular, if the sections are flat with respect to the induced
metric, then M is called an isoparametric submanifold with flat section. According to Theo-
rem 6.5 of [16], we see that a submanifold in a symmetric space G/K of compact type is an
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isoparametric submanifold with flat section in [16]-sense if and only if it is equifocal. So the
following question is naturally proposed.

QUESTION. Is a submanifold in a symmetric space of non-compact type an isopara-
metric submanifold with flat section if and only if it is complex equifocal?

For this question, we can answer partially as follows.

THEOREM 15. Let M be a submanifold in a symmetric space G/K of non-compact
type. Then the following statements (i) and (ii) hold:

(1) If M is an isoparametric submanifold with flat section, then it is complex equifocal.

(i) If M is complex equifocal and curvature adapted, then it is an isoparametric sub-
manifold with flat section.

(i) If M is complex equifocal submanifold of codimension r(:= rankG/K) and if
there exists a parallel normal frame field (vy, - - -, v,) of M such that, for each x(= gK) €
M, ((g*_lmx);, cee (g*_lvm)];) is a simple root system for a maximal abelian subspace
g;l TXLM of p = T,x G/K, then it is an isoparametric submanifold with flat section, where
(g5 i)z () = (g5 "ix, -y ((, ) : the inner product of g; ' T}M).

PROOF. We first note that M has abelian normal bundle if and only if it has flat sections.

Let v be a parallel unit normal vector field on M. Let 1y, := exp-osv(: M — G/K) and
My := 150 (M), where s is sufficiently close to zero. Define a function Fy, on M by 1}, wsy =

Fsyo, where w (resp. wgy) is the volume element of M (resp. Mj,). Set I:*vx (5) := Fsp(x)
(x € M). It is shown that ﬁvx (x € M) have the holomorphic extensions. Denote by }:"lf; (:
C — CO) its holomorphic extension. According to Corollary 2.6 of [16], M is isoparametric

if and only if the projection from M to any (sufficiently close) parallel submanifold along the
sections is volume preserving up to a constant factor. That is, M is isoparametric if and only

if ﬁlf; = ﬁlf; , holds for every parallel normal vector field v of M and every x1,x2 € M. On
the other hand, the complex focal radii along the geodesic y,, are catched as zero points of
I:*?fi. Hence we see that M is complex equifocal if and only if (ﬁ&] y~ L) = (ﬁ&z)_l(o)
holds for every parallel normal vector field v of M and every x1, x2 € M. From these facts,
the statement (i) is shown. We shall show the statements (ii) and (iii). Take a continuous

orthonormal tangent frame field (ey, - - - , e,) of M defined on a connected open set U such that
R(e;,v)v = —,Bizei (i=1,---,n), where 8; (i = 1, ---, n) are continuous functions on U.
Let Aye; = Z.’;’:l ajjej (i =1,---,n), where a;j (i, j = 1, -- -, n) are continuous functions

on U. The Jacobi field J; x along y,, (x € U) with J; ,(0) = ¢;; and Ji’x(O) = —Ayeix 18
described as

n i inh(sB:
Jiats) = (e oty — LRI ey

j=1
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where % implies s when 8 (x) = 0. From this description, we have

By (s) = det(cosh(s,B,- (o) — L () SInh(sE; (x))> ,

Bj(x)

where (cosh(sBi (x))8;; — %W) is the matrix of (n,n)-type whose (i, j)-

4ij (x) sinh(sB; () - Hance we have

component is cosh(sB; (x))8;; — TE3)

a;ij(x) sin(«/—_lz,Bj(x))>
V—=1B;(x) '

Assume that M is complex equifocal and curvature adapted. Then since R(:, v)v and A,

(11.1) Fl'(2) = det(cos(\/—_lzﬂ,- (x))8ij —

are commutative, we may assume that a;; = 0 (i # j). For simplicity, set A; := a;; (i =
1,---,n). From (11.1), the function ﬁvﬁ (x € U) is described as

. . i (x) sin(v/— 126 (x))
2 h(z) = V=1zB;(x)) — )
(2 Fu E(COS( i) VAT )

Hence we have

n

(11.3) FH~' oy = {z| cos(v/=126; (x)) =

i=1

Li (x) sin(v/—1zBi (x)) }
V—=1Bi(x) .

Take arbitrary two points x; and xp of U. Since M is complex equifocal, we have
(F )71(0) = (£} )™'(0). These facts together with (11.2) and (11.3) deduces £ = F

sz N
From the arbitrarinesses of xj, xp and U, we see that ﬁlf; is independent of the choice
of x € M. Thus M is an isoparametric submanifold with flat section. Next we as-
sume that M is complex equifocal, codimM = rankG/K and it admits a parallel normal
frame field as in the statement (iii). Then we see that each B; is constant over U because
Bix)|i = 1,---,n} = {a(g;'vy) |a € Ay} for each x(= gK) € U, where A, is a
positive root system for the maximal abelian subspace g, ! TXLM . Let W be the set of all
parallel unit normal vector field v such that 81 : --- : B, is an integer ratio and that 8; # 0
(i=1,---,n). Also, let Wy := {vy |v € W} (x € M). Itis easy to show that W, is dense
in the unit sphere of 7" M. Assume that v € W. Since B : --- : f8, is an integer ratio,
they are expressed as 8; = m;b (i = 1,---,n) in terms of some real constant b and inte-
gers mi, - - -, my, which are mutually primal. Hence the function I:*lf; (x € U) is described as
}:"5: (z) = e~ P2 Xi=1 il G (¢2b%) in terms of some polynomial G, of degree |[m |+ - - - + |my].
Take arbitrary two points x; and xp of U. Let ¢ : [0, 1] — U be a continuous curve with

¢(0) = x1 and ¢(1) = x». Since M is complex equifocal, (ﬁlf'c(t))’l (0) is independent of the

choice of t € [0, 1]. Hence so is also GC_(}) (0). This implies that G, = aGy, (a : anon-zero
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h _ o rh : h _ Ih _
complex constant). Hence we have Fy, = aFy. Further, since F”n 0) = vaz 0) =1, we
have ﬁlfi = I:*lf‘xz. From the arbitrarinesses of x1, x, and U, we see that I:*If’x is independent of

the choice of x € M. Further, since W, is dense in the unit sphere of TXLM , we see that F 5’/ is

independent of the choice of x € M for each parallel unit normal vector field v’ with v’ ¢ W.
Thus M is an isoparametric submanifold with flat section. g.e.d.

REMARK 8. Complex equifocal hypersurfaces in rank one symmetric spaces of non-
compact type admit a parallel normal frame field as in the statement (iii). Also, if the H-
action (H : the group of all fixed points of an involution of G) on a symmetric space G/K
of non-compact type is of cohomogeneity rankG /K, then principal orbits of the action admit
a parallel normal frame field as in the statement (iii) (see the proof of Theorem 3). Similarly,
principal orbits of complex hyperpolar actions of cohomogeneity rankG/K on G/K also
admit such a parallel normal frame field.
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